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ABSTRACT

Economists working with numerical solutions to the optimal consumption/saving problem under

uncertainty have long known that there are quantitatively important interactions between liquidity

constraints and precautionary saving behavior. This paper provides the analytical basis for those

interactions. First, we explain why the introduction of a liquidity constraint increases the precautionary

saving motive around levels of wealth where the constraint becomes binding. Second, we provide a

rigorous basis for the oft-noted similarity between the effects of introducing uncertainty and introducing

constraints, by showing that in both cases the effects spring from the concavity in the consumption

function which either uncertainty or constraints can induce. We further show that consumption function

concavity, once created, propagates back to consumption functions in prior periods. Finally, our most

surprising result is that the introduction of additional constraints beyond the first one, or the introduction

of additional risks beyond a first risk, can actually reduce the precautionary saving motive, because the

new constraint or risk can ‘hide’ the effects of the preexisting constraints or risks.
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1 Introduction

In the past decade, numerical solutions to the optimal consumption/saving problem
have become the standard theoretical tool for modelling consumption behavior. Nu-
merical solutions have become popular because analytical solutions are not available
for realistic descriptions of utility and uncertainty, nor for the plausible case where
consumers face both liquidity constraints and uncertainty.

A drawback to numerical solutions, however, is that often it is difficult to determine
why results come out the way they do. A leading example of this problem crops up
in the relationship between precautionary saving behavior and liquidity constraints.
At least since Zeldes (1984), economists working with numerical solutions have known
that liquidity constraints can induce precautionary saving even by consumers with
quadratic utility functions that provide no inherent precautionary saving motive. Sim-
ulations have also sometimes found that liquidity constraints boost the effect of risk on
saving even when the utility function already induces a precautionary saving motive.1

On the other hand, simulation results have sometimes seemed to suggest that liquidity
constraints and precautionary saving are substitutes rather than complements. For ex-
ample, Samwick (1995) has shown that unconstrained consumers with a precautionary
saving motive in a retirement saving model behave in ways qualitatively and quantita-
tively similar to the behavior of liquidity constrained consumers facing no uncertainty.

This paper provides the theoretical tools needed to make sense of the interactions
between liquidity constraints and precautionary saving. These tools provide a rigor-
ous theoretical foundation that can be used to clarify the reasons for the numerical
literature’s apparently contrasting findings.

For example, one of the paper’s simpler points is a proof that when a liquidity
constraint is added to the standard consumption problem, the resulting value function
exhibits increased prudence around the level of wealth where the constraint becomes
binding. (Kimball (1990) defines prudence of the value function and shows that it is the
key theoretical requirement to produce precautionary saving.) The essential logic for
why a liquidity constraint can induce precautionary saving is relatively straightforward.
Constrained agents have less flexibility in responding to shocks because the effects of
the shocks cannot be spread out over time; thus risk has a bigger negative effect on
expected utility (or value) for constrained agents than for unconstrained agents. The
precautionary saving motive is heightened by the desire (in the face of risk) to make
such constraints less likely to bind.

At a deeper level, we also show that the effect of a constraint on prudence is an
example of a more general theoretical result: Prudence is induced by concavity of
the consumption function. Since a constraint causes consumption concavity around
the point where the constraint binds, adding a constraint necessarily boosts prudence

1For a detailed but nontechnical discussion of simulation results on the relation between liquidity
constraints and precautionary saving, see Carroll (2001).
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around that point. We show that this concavity-boosts-prudence result holds not just
for quadratic utility functions but for any utility function in the Hyperbolic Abso-
lute Risk Aversion (HARA) class (which includes Constant Relative Risk Aversion,
Constant Absolute Risk Aversion, and most other commonly used forms).

These results tie in closely with findings in our previous paper, Carroll and Kim-
ball (1996), which shows that within the HARA class, the introduction of uncertainty
causes the consumption function to become strictly concave (in the absence of con-
straints) for all but a few carefully chosen combinations of utility function and uncer-
tainty. Indeed, taken together, the results of the two papers can be seen as establishing
rigorously the sense in which precautionary saving and liquidity constraints are very
close substitutes.2 In this paper, in fact, we provide an example of a specific kind of
uncertainty that (under CRRA utility, in the limit) induces a consumption function
that is pointwise identical to the consumption function that would be induced by the
addition of a liquidity constraint.

We further show that, once consumption concavity is induced (either by a con-
straint or by uncertainty), it propagates back to periods before the period in which the
concavity is first created.3 But in the quadratic utility case the propagation is rather
subtle: the prior-period consumption rules are concave (and prudence is higher) at any
level of wealth from which it is possible that the constraint will bind, but also possible
that it may not bind. Precautionary saving takes place in such circumstances because
a bit more saving can reduce the probability that the constraint will bind.

The fact that precautionary saving arises from the possibility that constraints might
bind may help to explain why such a high percentage of households cite precautionary
motives as the most important reason for saving (Kennickell and Lusardi (1999)) even
though the fraction of households who report actually having been constrained in the
past is relatively low (Jappelli (1990)).

Our final theoretical contribution is to show that the introduction of further liq-
uidity constraints beyond the first one may actually reduce precautionary saving by
‘hiding’ the effects of the preexisting constraint(s); identical logic implies that uncer-
tainty can hide the effects of a constraint, because the consumer may need to save so
much for precautionary reasons that the constraint becomes irrelevant. For example, a
typical perfect foresight model of retirement consumption for a consumer with Social
Security income implies that the legal constraint on borrowing against Social Security
benefits will cause the consumer to run assets down to zero, then set consumption equal
to income for the remainder of life. Now consider adding the possibility of large medical
expenses near the end of life (e.g. nursing home fees). Under reasonable assumptions
the consumer may save enough against this risk to render the constraint irrelevant.

2See Fernandez-Corugedo (2000) for a related demonstration that ‘soft’ liquidity constraints bear
an even closer resemblance to precautionary behavior.

3Our previous paper showed that the concavity induced by uncertainty propagated backwards, but
the proofs in that paper cannot be applied to concavity created by a liquidity constraint.
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The rest of the paper is structured as follows. To fix notation and ideas, the
next section presents a very brief review of the logic of precautionary saving in the
standard case (without liquidity constraints). The third section sets out our general
theoretical framework. The fourth section shows that concavity of the consumption
function heightens prudence. The fifth section shows how concavity, whether induced
by constraints or uncertainty, propagates to previous periods. Section 6 shows how
the introduction of a constraint creates a precautionary saving motive for consumers
with quadratic utility, and how that precautionary motive propagates backwards; it
also shows that the introduction of additional liquidity constraints beyond the first
constraint does not necessarily further increase (and can even reduce) the precautionary
motive at any given level of wealth. The next section examines the effects of introducing
a constraint when utility is of the CRRA form, and contains our example in which a
constraint and uncertainty have identical effects on the consumption function. It uses
this example to make the point that introduction of uncertainty can hide the effects of
constraints or preexisting uncertainty. The final section concludes.

2 A Brief Review

We begin with a very brief review of the logic of precautionary saving in the two-
period case; with minor modifications this two-period model is directly applicable to
the multiperiod case when the second period utility function is interpreted as the value
function arising from optimal behavior from time t+ 1 on.

Consider a consumer with initial wealth wt who anticipates uncertain future income
yt+1. This consumer solves the unconstrained optimization problem

4

max
{ct}

u(ct) + Et [Vt+1(wt − ct + ỹt+1)] , (1)

or, equivalently,

max
{st}

u(wt − st) + Et [Vt+1(st + ỹt+1)] . (2)

The familiar first-order condition for this problem is to set u′(ct) = Et[V
′
t+1(wt − ct +

ỹt+1)] or, equivalently, u
′(wt − st) = Et[V

′
t+1(st + ỹt+1)].

Figure 1 shows a standard example of this problem in which both u and Vt+1 are
Constant Relative Risk Aversion (CRRA) utility functions. The consumer is assumed
to start period t with amount of wealth wt. The horizontal axis represents the choice
of how much the consumer saves in period t, and the upward-sloping curve labelled

4Here and henceforth we use a ∼ to designate those variables inside an expectations operator
whose value is uncertain as of the date at which the expectation is taken. Hence, since yt+1’s value is
uncertain as of time t, it is written as ỹt+1 on the RHS of (1).
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Figure 1: Determining Consumption in the Two Period Case Given Initial Wealth wt

u′(wt−st) reflects the period-t marginal utility of the consumption (wt−st) associated
with that choice of saving. The downward-sloping curve labelled V

′
t+1(st + y) reflects

the marginal value the consumer would experience in period t+1 as a function of saving
st in the previous period if she were perfectly certain to receive income y = Et[ỹt+1]
in period t + 1. This curve is downward-sloping as a function of st because the more
the consumer saves in period t, the more is available for consumption in period t + 1
and thus the lower is the marginal utility of spending in t+1. In this perfect-certainty
case, the utility-maximizing level of consumption is found at the point of intersection
between the u

′
(wt−st) and the V

′
t+1(st+y) curves, i.e. the level of saving that equalizes

the current and future marginal utility of consumption. In the CRRA case where the
period-utility functions u(c) and Vt+1(wt+1) are identical, the optimal solution is to
consume exactly half of total lifetime resources in the first period; the point labelled s̄
reflects this level of saving.

In the case where period t + 1 income is uncertain, first-period marginal utility
must be equated to the expectation of the second-period marginal value function. That
expectation will be a convex combination of the marginal values associated with each
possible outcome, where the weights on each outcome are given by the probability of
that outcome. For illustration, suppose there is a 0.5 probability that the consumer will
receive income y+ η and a 0.5 probability that she will receive income y− η. Since the
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Figure 2: Construction of Et[V
′
t+1]

probability of each outcome is 1/2, the consumer’s expected marginal value function for
each st will be traced out by the midpoint of the line segment connecting V

′
t+1(st+ȳ+η)

and V
′
t+1(st + ȳ − η). Figure 2 illustrates the construction of the Et[V

′
t+1(st + ỹt+1)]

curve; for example, if the consumer chooses to save st = s, then her expected marginal
value in the second period is given by .5V

′
t+1(s̄ + y + η) + .5V

′
t+1(s̄ + y − η), as shown

in the figure.
The expected marginal value function traced out by this convex combination of the

good and bad outcomes is reproduced and labelled Et[V
′
t+1(st + ỹt+1)] in figure 1. The

optimal level of saving s∗ under uncertainty is simply the level of st at the intersection
of u′(wt − st) and Et[V

′
t+1(st + ỹt+1)], where the first order condition is satisfied. The

magnitude of precautionary saving is the amount by which saving rises from the riskless
case (s̄) to the risky case (s∗).

Figure 2 illustrates the simple point that the magnitude of precautionary saving is
related to the degree of convexity of the marginal value function. Jensen’s inequality
guarantees that if V

′
t+1 is strictly convex, then Et[V

′
t+1(st + ỹt+1)] > V

′
t+1(st +Et[ỹt+1])

and consequently the intersection with u′(wt − st) will occur at a higher value of first-
period saving. Clearly, if V

′
t+1 were linear (as is true in the case of quadratic utility in

the absence of liquidity constraints), mean-zero risks in period t + 1 would not affect
the expectation of the marginal value function, because the curve generated by the
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‘convex combination’ would lie atop the original marginal value function. Thus, the
convexity in the marginal value function creates a precautionary saving motive.

Formally, Kimball (1990) shows that the prudence of the value function (defined
as −V ′′′(w)/V ′′(w)) measures the convexity of the marginal value function at w and
therefore the intensity of the precautionary saving motive at that point. To be precise,
given two different value functions V (w) and V̂ (w), if the absolute prudence of V̂ (w)
is greater than for V (w)—that is, if −V̂ ′′′(w)/V̂ ′′(w) > −V ′′′(w)/V ′′(w)– then the
addition of a risk causes a greater rightward shift of expected V̂ (w) than of expected
V (w). As figure 2 suggests, a greater rightward shift tends to produce a greater increase
in precautionary saving.

To analyze the multiperiod case, we need to be able to characterize the degree of
convexity of the marginal value function or the prudence of the value function itself.5

3 The Setup

Before stating and proving our main theorems, we need to lay out the basic setup
of the consumption/saving problem with many periods. Consider a consumer who
faces some future risks but is not subject to any current or future liquidity constraints.
Assume that the consumer is maximizing the time-additive present discounted value
of utility from consumption u(c). Denoting the (possibly stochastic) gross interest rate
and time preference factors as R̃t ∈ (0,∞) and β̃t ∈ (0,∞), respectively, and labelling
consumption ct, stochastic labor income yt, and gross wealth (inclusive of period-t labor

5In order to use the prudence of the value function to gauge the effect of a risk in labor income at
time t+ 1, we implicitly assume that this risk is independent of all the other risks realized in periods
beyond t+ 1 that are already built into the shape of Vt+1. In other words, the effect of labor income
on the value function must work entirely through its effect on wealth at time t + 1. There are two
possible approaches when the realization of yt+1 is correlated with future risks, incomes, or rates of
return. First, each period could be decomposed into two transitions, one where the information is
revealed about the distribution of future incomes, rates of return, etc. and a second where the labor
income at time t + 1 is revealed. The other approach, which, when possible, is more powerful, is to
capitalize all the future effects of a shock into wealth at time t + 1. This approach is possible when
the news revealed is mathematically equivalent to a particular effect on the quantity of an asset in
the model.
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income) wt, the consumer’s problem can be written as:6,7

Vt(wt) = max
{ct}

u(ct) + Et

[
T∑

s=t+1

(
s∏

j=t+1

β̃j

)
u(c̃s)

]
(3)

s.t. wt+1 = Rt+1(wt − ct) + yt+1.

As usual, the recursive nature of the problem makes this equivalent to the Bellman
equation:

Vt(wt) = max
{ct}

u(ct) + Et[β̃t+1Vt+1(R̃t+1(wt − ct) + ỹt+1)]. (4)

Defining

Ωt(st) = Et[β̃t+1Vt+1(R̃t+1st + ỹt+1)] (5)

where st = wt − ct is the portion of period t resources saved, this becomes
8

Vt(wt) = max
{ct}

u(ct) + Ωt(wt − ct). (6)

It is also useful to define c̆t(µt), s̆t(µt), and w̆t(µt) as:

c̆t(µt) = u′−1(µt), (7)

s̆t(µt) = Ω
′−1
t (µt), (8)

w̆t(µt) = V
′−1
t (µt). (9)

In words, c̆t(µt) (‘c-breve’) indicates the level of consumption which yields marginal
utility µt (note the mnemonic convenience of defining marginal utility as the Greek

6We allow for a stochastic discount factor because some problems which contain a stochastic scaling
variable (such as permanent income) can be analyzed more easily by dividing the problem through by
the scale variable; this division induces a term that effectively plays the role of a stochastic discount
factor.

7The analysis here is similar in some respects to the analysis in Carroll and Kimball (1996); see
that paper for more detailed discussion of the methods used below.

8For notational simplicity we express the value function Vt(wt) and the expected discounted value
function Ωt(st) as functions simply of wealth and savings, but implicitly these functions reflect the
entire information set as of time t; if, for example, the income process is not i.i.d., then information
on lagged income or income shocks could be important in determining current optimal consumption.
In the remainder of the paper the dependence of functions on the entire information set as of time
t will be unobtrusively indicated, as here, by the presence of the t subscript. For example, we will
call the policy rule in period t which indicates the optimal value of consumption ct(wt). In contrast,
because we assume that the utility function is the same from period to period, the utility function
has no t subscript.
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letter spelled mu), s̆t(µt) indicates the level of end-of-period savings
9 in period t that

yields a discounted expected marginal value of µt, and w̆t(µt) indicates the level of
beginning-of-period wealth that would yield marginal value of µt assuming optimal
(though potentially constrained) disposition of that wealth between consumption and
saving.10 In the absence of a liquidity constraint in period t, these definitions imply
that for an optimizing consumer whose optimal choice of consumption in period t yields
marginal utility µt,

ct = c̆t(µt), (10)

st = s̆t(µt), (11)

wt = w̆t(µt). (12)

In the presence of a liquidity constraint that requires st ≥ 0, equation (11) becomes:

st = max[0, s̆t(µt)]. (13)

Note that the budget constraint wt = ct + st allows us to write:

w̆t(µt) = c̆t(µt) + max[0, s̆t(µt)]. (14)

4 Prudence and the Concavity of the Consumption

Function

Our ultimate goal is to understand the relationship between liquidity constraints and
precautionary saving behavior. As noted above, the magnitude of precautionary saving
depends on the absolute prudence of the value function. We begin this section by
showing that the absolute prudence of the value function will be greater whenever the
consumption function is concave (as opposed to linear); later we will tie constraints
to concavity (and therefore to prudence) by showing that the imposition of liquidity
constraints concavifies the consumption function.

Our analysis of the concavity of the consumption function is couched in general
terms, and therefore applies whether the source of consumption concavity is liquidity
constraints or something else. This generality is useful, because there is a compelling
candidate for the ‘something else’: uncertainty. Carroll and Kimball (1996) show
that the introduction of uncertainty into an optimization problem without preexisting
uncertainty or constraints causes the consumption function to become strictly concave

9We use the word ‘savings’ to indicate the level of wealth remaining in a period after that period’s
consumption has occurred; ‘savings’ is therefore a stock variable, and is distinct from ‘saving’ which
is the difference between income and consumption.

10We chose the slightly unusual breve accent (̆ ) because of its rough resemblance to the shape of
marginal utility µ, which is the argument for the breve-accented functions.
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for most combinations of utility function and uncertainty. Our treatment here will
therefore alternate between discussion of the effects of imposing liquidity constraints
and the effects of introducing uncertainty. Our treatment thus provides the analytical
foundation for the qualitative similarity between the effects of liquidity constraints and
of uncertainty that has been known from simulation results since Zeldes (1984).

4.1 When Is the Consumption Function Linear?

Our method in this section will be to compare prudence in a baseline case where the
consumption function ct(wt) is linear to prudence in a modified situation in which the
consumption function ĉt(wt) is concave.

Carroll and Kimball (1996) prove that for utility functions in the HARA class, in
the absence of liquidity constraints the consumption function will be linear (c′′t (wt) = 0)
only in three cases: when utility is of the Constant Relative Risk Aversion (CRRA)
form u(c) = c1−γ/(1− γ) and the only future risk is multiplicative (i.e. rate-of-return
risk);11 when utility is of the Constant Absolute Risk Aversion (CARA) form u(c) =
−(1/a)e−ac and the only future risk is additive (i.e. labor income risk); and when the
utility function is quadratic, u(c) = −(α/2)(c−κ)2.12 Thus, the natural baseline cases
to consider are the three HARA cases where the consumption function is linear.

4.2 How Does Concavity of the Consumption Function Heighten

Prudence?

4.2.1 The CRRA Case

Our first baseline ct(wt) will be the linear consumption function that arises under
CRRA utility in the absence of labor income risk or constraints.13 Below (in sec-
tion 6) we show that imposing a constraint makes the consumption function in the
constraint-modified situation ĉt(wt) concave. Similarly, Carroll and Kimball (1996)
show that the addition of labor income risk renders the risk-modified consumption rule
concave. In either case it is possible to show that as wealth approaches infinity the
consumption rule in the modified situation approaches the consumption rule in the
baseline situation. When the experiment is the imposition of a liquidity constraint,

11The consumption function when utility is CRRA with a shifted origin, u(c) = (c− κ)1−γ/(1− γ),
is not linear when there is multiplicative risk, as can be seen from the first order condition for the
penultimate period of life when β = 1: (cT−1 − κ)−γ = ET−1[(R̃T (wT−1 − cT−1) − κ)−γ ] implying
that cT−1 − κ = {ET−1[(R̃T (wT−1 − cT−1)− κ)−γ ]}−1/γ which has no linear solution for cT−1 unless
κ = 0.

12See section 4.2.3 for a demonstration that the consumption rule is linear under quadratic utility
in the presence of both labor income and rate-of-return risk.

13The analysis below goes through even if there is rate-of-return risk in the problem, so long as the
rate-of-return risk is not modified when the labor income risk is added.
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the reason ĉt(wt) approaches ct(wt) is that as wealth approaches infinity the constraint
becomes irrelevant because the probability that it will ever bind becomes zero. When
the treatment is the addition of labor income risk, ĉt(wt) approaches ct(wt) because as
wealth approaches infinity the portion of future consumption that the consumer plans
on financing out of the uncertain labor income stream becomes vanishingly small.14

Formally, we can capture both the liquidity constraint and the precautionary saving
cases with the assertion that

lim
wt→∞

ĉ(wt)− c(wt) = 0.

Theorem 1 Consider an agent who has a utility function with u′(c) > 0, u′′(c) < 0,
u′′′(c) > 0 and nonincreasing absolute prudence −u′′′(c)/u′′(c) in two different situa-
tions. If optimal consumption in the baseline situation is described by a neoclassical
consumption function ct(wt) that is linear, while optimal behavior in the modified situ-
ation (indicated by a hat) is described by a concave neoclassical consumption function
ĉt(wt) and if lim

wt→+∞
ĉt(wt) − ct(wt) = 0, then at any given level of wealth wt the value

function in the modified situation exhibits greater absolute prudence than the value
function in the baseline situation. Prudence in the modified situation is strictly greater
at wt than in the baseline situation if and only if the consumption function is strictly
concave at some wealth level at or above wt.

Proof. By the envelope theorem, the marginal value of wealth is always equal to
the marginal utility of consumption as long as it is possible to spend current wealth
for current consumption. That is,

V ′t (wt) = u′(ct(wt)) (15)

V̂ ′t (wt) = u′(ĉt(wt)). (16)

Differentiating each of these equations with respect to wt,
15

V ′′t (wt) = u′′(ct(wt))c
′
t(wt) (17)

V̂ ′′t (wt) = u′′(ĉt(wt))ĉ
′
t(wt). (18)

Taking another derivative can run afoul of possible discontinuity in ĉ′t(wt), but to
establish intuition it is useful to consider first the case where ĉ′′t (wt) exists; we will

14Since in the CRRA case the proportionate effect of risk on consumption depends on the square
of the standard deviation of the risk relative to wealth, as this ratio gets small as wealth approaches
infinity, the absolute size of the effect of the risk in reducing consumption approaches zero.

15Since ĉ(wt) is concave, it has left-hand and right-hand derivatives at every point, though the left-
hand and right-hand derivatives may not be equal. Equation (18) should be interpreted accordingly
as applying to left-hand and right-hand derivatives separately. (Reading (18) in this way implies that
ĉ′t(w

−
t ) > ĉ′t(w

+
t ); therefore V ′′(w

−
t ) < V ′′(w+

t )).
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then adapt the proof for the case where ĉ′′t (wt) does not exist. For the baseline linear
consumption function,

V
′′′

t (wt) = u
′′′
(ct(wt))[c

′
t(wt)]

2 + u′′(ct(wt))[c
′′

t (wt)] (19)

= u
′′′
(ct(wt))[c

′
t(wt)]

2, (20)

where the second line follows because with a linear consumption function c′′t (wt) = 0.
Thus,

Absolute Prudence = −V
′′′
t (wt)

V
′′
t (wt)

=

(
−u

′′′
(ct(wt))

u′′(ct(wt))

)
c′t(wt).

In the modified situation with a concave consumption function, where ĉ′′t (wt) exists,

V̂
′′′
t (wt) = u

′′′
(ĉt(wt))[ĉ

′
t(wt)]

2 + u′′(ĉt(wt))[ĉ
′′
t (wt)] (21)

− V̂
′′′
t (wt)

V̂
′′
t (wt)

= −
(

u
′′′
(ĉt(wt))[ĉ

′
t(wt)]

2 + u′′(ĉt(wt))[ĉ
′′
t (wt)]

u′′(ĉt(wt))ĉ′t(wt)

)
(22)

− V̂
′′′
t (wt)

V̂
′′
t (wt)

=

(
−u

′′′
(ĉt(wt))

u′′(ĉt(wt))

)
ĉ′t(wt)−

ĉ
′′
t (wt)

ĉ
′
t(wt)

. (23)

As can be seen from Figure 3,16 the assumption that the two consumption functions
converge asymptotically, lim

wt→+∞
ĉt(wt)−ct(wt) = 0, together with the linearity of ct(wt)

and concavity of ĉt(wt), guarantees that the marginal propensity to consume is higher
and the level of consumption lower in the modified situation: Thus ĉ′t(wt) ≥ c′t(wt) and
ĉt(wt) ≤ ct(wt). The inequalities are strict if there is any strictness to the concavity of
ĉt(·) at any level of wealth above wt.

In conjunction with the assumption of nonincreasing absolute prudence of the utility
function, ĉt(wt) ≤ ct(wt) implies that

−u′′′(ĉt(wt))

u′′(ĉt(wt))
≥ −u′′′(ct(wt))

u′′(ct(wt))
. (24)

16This figure was generated using simulation programs written for Carroll (2001); these programs
are available on Carroll’s web page. The parameterization is as follows. The coefficient of relative
risk aversion is ρ = 2, the time preference factor is β = 0.95, the gross interest factor is R = 1.04,
the growth factor for permanent income is G = 1.01. The stochastic process for transitory income for
ĉ(w) involves a small probabilitly (0.005) that income will be zero; if it is not zero, then the transitory
shock is lognormally distribuuted with standard deviation of 0.2. Both rules reflect the limit as the
number of remaining periods of life approaches infinity.
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Figure 3: Consumption Functions in the Baseline and Modified Cases

Therefore, where ĉ′′t (wt) exists,

− V̂
′′′
t (wt)

V̂
′′
t (wt)

=

(
−u

′′′
(ĉt(wt))

u′′(ĉt(wt))

)
ĉ′t(wt)−

≤0︷ ︸︸ ︷
ĉ
′′

t (wt) /

>0︷ ︸︸ ︷
ĉ
′

t(wt)︸ ︷︷ ︸
≤0

(25)

≥
(
−u

′′′
(ct(wt))

u′′(ct(wt))

)
c′t(wt) (26)

= −V
′′′
t (wt)

V
′′
t (wt)

. (27)

That is, concavity of ĉt(wt) along with limwt→∞ ct(wt) − ĉt(wt) = 0 implies that the
absolute prudence of V̂ (wt) is greater than the absolute prudence of V (wt).

Even when the absolute prudence of the utility function is constant, (26) is strict
whenever either (1) ĉt(·) is strictly concave at some level of wealth above wt (be-
cause, with weak concavity everywhere, strict concavity anywhere above wt implies
that ĉ′t(wt) > c′t(wt)); or (2) ĉt(·) is strictly concave exactly at wt (because strict con-

cavity at wt implies that − ĉ
′′
t (wt)

ĉ
′
t(wt)

> 0). Conversely, if ĉt(·) is linear at wt and all higher

levels of wealth, (26) clearly holds with equality. We can summarize by saying that the
inequality (26) which expresses the result of the theorem is strict if and only if ĉt(·) is

12



strictly concave at or above wt.
What if ĉ′′t (wt) and V̂

′′′
t (wt) do not exist? In that case, greater prudence of V̂ than

V is defined as V̂ ′ being an increasing, convex function of V ′, or equivalently,
V̂ ′′t (wt)

V ′′t (wt)

being a decreasing function of wt.
17 By (17) and (18),

V̂ ′′t (wt)

V ′′t (wt)
≡ u′′(ĉt(wt))

u′′(ct(wt))

ĉ′t(wt)

c′t(wt)
. (28)

The second factor,
ĉ′t(wt)
c′t(wt)

, is clearly decreasing (it declines monotonically toward 1).

As for the first factor, note that nonexistence of V̂
′′′
t (wt) and/or ĉ

′′
t (wt) do not spring

from nonexistence of either u
′′′
(c) or ĉ

′
t(wt),

18 so to discover whether
V̂ ′′t (wt)

V ′′t (wt)
is decreasing

we can simply differentiate:

d

dwt

(
u′′(ĉt(wt))

u′′(ct(wt))

)
=

u
′′′
(ĉt(wt))ĉ

′
t(wt)u

′′
(ct(wt))− u

′′
(ĉt(wt))u

′′′
(ct(wt))c

′
t(wt)

[u′′(ct(wt))]2
. (29)

Since the denominator is always positive, this will be negative if the numerator is
negative, i.e. if

u
′′′
(ĉt(wt))u

′′
(ct(wt))ĉ

′
t(wt) ≤ u

′′
(ĉt(wt))u

′′′
(ct(wt))c

′
t(wt) (30)(

u
′′′
(ĉt(wt))

u′′(ĉt(wt))

)
ĉ
′

t(wt) ≤
(

u
′′′
(ct(wt))

u′′(ct(wt))

)
c
′

t(wt) (31)(
−u

′′′
(ĉt(wt))

u′′(ĉt(wt))

)
︸ ︷︷ ︸

Absolute prudence at ĉt(wt)

ĉ
′
t(wt) ≥

(
−u

′′′
(ct(wt))

u′′(ct(wt))

)
︸ ︷︷ ︸

Absolute prudence at ct(wt)

c
′
t(wt). (32)

Recall that ĉ(wt) ≤ c(wt) (see figure 3), so the assumption of nonincreasing abso-
lute prudence tells us that the absolute prudence term on the LHS of (32) is greater
than that on the RHS. But by the assumption of concavity of ĉt(wt) we also know
that ĉ

′
(wt) ≥ c

′
(wt). Hence both terms on the LHS are greater than or equal to the

corresponding terms on the RHS.
Thus, combining all of the factors involved in comparing the prudence of V̂t(wt) to

the prudence of Vt(wt), we have shown that the value function in the modified situation
will exhibit strictly greater prudence at any given wt than the value function in the
baseline situation if and only if ĉt(wt) is strictly concave at wt or at some level of wealth
above wt.

17To see this, use the implicit function theorem as in Pratt (1964), remembering that V̂ ′t (wt) exists,
at least in the sense of right-hand and left-hand derivatives. Note that the theorem at hand is about
guaranteeing that concavifying the argument of V ′ on the inside from wt to c−1

t (ĉt(wt)) will have the
same effect as convexifying V ′ on the outside by some increasing convex function.

18It is possible that ĉ
′

t(wt) may be discontinuous at specific values of wt, but in this case the
argument below goes through when taking either the right or the left derivatives.
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4.2.2 The Exponential Case

The assumption that lim
wt→∞

ĉt(wt) − ct(wt) = 0 holds true if consumers have CRRA

utility and if the difference between the baseline and the modified situations is the
addition of either labor income risk or a liquidity constraint. However, if the consumer’s
utility function is of the CARA form, a labor income risk simply shifts the entire
consumption function down by an equal amount at all levels of wt, and so the level
of consumption in the modified case does not approach the level in the baseline case
as wealth approaches infinity. We therefore need a modified version of the theorem to
apply in this case.

Corollary 1 Consider an agent who has a utility function with u′(c) > 0, u′′(c) < 0,
u′′′(c) ≥ 0 and nonincreasing absolute prudence −u′′′(c)/u′′(c) in two different situa-
tions. If the baseline situation has a neoclassical consumption function ct(wt) that is
linear, while the modified situation (indicated by a hat) has a concave neoclassical con-
sumption function ĉt(wt) and lim

wt→+∞
ĉ′t(wt)−c′t(wt) = 0 with lim

wt→+∞
ĉt(wt)−ct(wt) ≤ 0,

then the value function in the modified situation has greater absolute prudence at wt

than does the value function for baseline situation. The inequality of prudence is strict
if the modified consumption function is strictly concave at or above wt.

The proof of the corollary follows the proof of the main theorem, except where
limwt→+∞ ĉt(wt) − ct(wt) = 0 and concavity of ĉt(wt) were used to demonstrate that
ĉ
′
t(wt) ≥ c

′
t(wt) and that ĉt(wt) ≤ ct(wt); here we assume the second, and the first fol-

lows from concavity of ĉt(wt), linearity of ct(wt), the assumption that limwt→∞ ĉ
′
(wt)−

c
′
(wt) = 0, and the fact that lim ĉt(wt)− ct(wt) ≤ 0.

4.2.3 The Quadratic Case

The quadratic case requires a somewhat different approach. First, the limit wt →∞ is
not as meaningful, since it goes beyond the bliss point. Second, since u′′′(·) = 0, strict
inequality between the prudence of V̂ and the prudence of V will hold only at those
points where ĉt(·) is strictly concave.

To gain intuition for the quadratic problem, consider the Euler equation in the
second-to-last period of a lifetime that ends at T , under the assumption that there is
no chance that wealth in period T will be greater than the bliss-point level of con-
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sumption:19

u′(cT−1) = ET−1

[
β̃T R̃Tu

′(R̃T (wT−1 − cT−1) + ỹT )
]

(33)

α(κ− cT−1) = ET−1

{
β̃T R̃Tα

(
κ−

[
R̃T (wT−1 − cT−1) + ỹT

])}
(34)

cT−1 =

(
ET−1[β̃T R̃

2
TwT−1] + ET−1[β̃T R̃T ỹT ] + κ(1− ET−1[β̃T R̃T ])

1 + ET−1[β̃T R̃2
T ]

)
.(35)

As this equation indicates, in the quadratic case in the absence of liquidity con-
straints, the solution exhibits certainty equivalence with respect to risks to labor income
yT . An interesting subtlety is that even though the solution is linear in wealth, it does
not exhibit certainty equivalence with respect to rate-of-return risk, since the level of
consumption is related to the expectation of the square of the gross return, in a way
that implies that an increase in rate-of-return risk increases the marginal propensity to
consume. Finally, note that interactions between rate-of-return risk and income risk
can cause the consumption function to shift up or down by a potentially large amount.

Recall now from equation (28) that greater prudence of V̂ (wt) occurs if

V̂ ′′t (wt)

V ′′t (wt)
≡ u′′(ĉt(wt))

u′′(ct(wt))

ĉ′t(wt)

c′t(wt)
(36)

=
ĉ′t(wt)

c′t(wt)
(37)

is a decreasing function of wt (the second line follows because for quadratic utility u′′(c)
is a constant).

Thus, prudence of the value function can be increased in the quadratic case only by
something that causes the marginal propensity to consume to decrease as wealth rises.
We will show below that in the quadratic case ĉ

′
t(wt) experiences a discrete decline at

points where a future liquidity constraint potentially becomes binding. Note, however,
that an increase in rate-of-return risk, while it increases the level of the MPC compared
to the baseline case, does not induce a declining MPC in wealth: The MPC is higher
everywhere, but constant. Thus, rate-of-return risk does not induce an increase in
prudence in the quadratic case because u′′′(c) = 0 for quadratic utility functions (cf.
equation (32)).

Corollary 2 Consider an agent who has a quadratic utility function in two different
situations. If the baseline situation has a neoclassical consumption function ct(wt)
that is linear over some range wt < ω̄, while the modified situation has consumption
function ĉt(wt) that exhibits a declining marginal propensity to consume for wt < ω̄,

19If there is a chance that wT could exceed the bliss point, then the kink point in the period-T
consumption rule can impart concavity to the period-T − 1 consumption rule.
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then prudence of V̂t(wt) will be greater than prudence of Vt(wt) at points where ĉ
′
t(wt)

declines.

The proof is simply to note that equation (37) is a declining function of wt only at
points where ĉ

′
(wt) declines with wt.

5 The Recursive Propagation of Consumption Con-

cavity

The preceding sections make clear the significance of a concave consumption function
for the prudence of the value function. Now, we provide conditions guaranteeing that
if the consumption function is concave in period t + 1, it will be concave in period t
and earlier, whatever the source of that concavity may be.

Carroll and Kimball (1996) show that in the absence of liquidity constraints, uncer-
tainty will cause the consumption function to become concave, and that this concavity
is propagated to earlier periods. The crucial element in the proof is to show that the
value function satisfies the differential inequality

V ′′′(w)V ′(w)/[(V ′′(w))2] ≥ k (38)

which holds if the utility function is in the HARA class, which that paper views as a
utility function satisfying

u′′′(c)u′(c)/[(u′′(c))2] = k. (39)

The HARA utility functions with positive, nonincreasing absolute prudence satisfy
this equation with k ≥ 1, quadratic utility satisfies it with k = 0, while the imprudent
HARA utility functions satisfy it with k < 0.

For reasons that will become evident, it will be more convenient in this paper to
work with an alternative to (39) as our definition of the HARA class; here we view
the HARA class as those utility functions with nonnegative, nonincreasing absolute
prudence that (after normalization) satisfy either (1) u′(c) = κ − c, with the domain
of c limited to c < κ (the quadratic case); (2) u′(c) = (c − κ)−γ with γ ≥ 0 and the
domain of c limited to c > κ (the main case); or (3) u′(c) = e−ac with a > 0 (the
exponential case).

Our goal in this section is to generalize the Carroll and Kimball (1996) results on
the propagation of consumption concavity to encompass the case where consumption
concavity may arise from the possibility of future liquidity constraints, rather than
from the presence of uncertainty. Since (as we show below) constraints can cause V ′′

to be discontinuous and V ′′′ to fail to exist entirely, the proof strategy of Carroll and
Kimball (1996) involving condition (38) will not work. Instead, the central issue in our
new proof will involve whether the value function exhibits what we will call “property
CC”. (The mnemonic is that “CC” stands for “concave consumption”.)
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Definition 1 A function F (x) has property CC in relation to a utility function u(c)
with u′ > 0, u′′ < 0 iff F ′(x) = u′(ψ(x)) for some monotonically increasing concave
function ψ.

Thus, to say that property CC holds for a value function Vt(wt) is to say that there
exists a concave ψ(wt) such that

V
′
t (wt) = u′(ψ(wt)).

But the envelope theorem tells us that

V ′t (wt) = u′(ct(wt)), (40)

so property CC holding for Vt(wt) is equivalent to having a concave consumption func-
tion ψ(wt) = ct(wt).

20

It is easy to show by taking derivatives that if V (w) satisfies property CC, then
when V ′′′(w) exists this condition reduces to the differential inequality (38), with k = 0
in the quadratic case, k = 1 + (1/γ) in the main case and k = 1 in the exponential
case.

5.1 Horizontal Aggregation

First we establish that property CC of the value function is preserved through the
process we call “horizontal aggregation,” in which the utility from optimal current
consumption and the expected utility from optimal saving are aggregated to yield the
value function for current wealth.21

Lemma 1 If Ωt(st) has property CC in relation to u, then Vt(wt) has property CC in
relation to u, whether or not a liquidity constraint holds at the end of period t.

We begin by showing concavity in the case where there is no liquidity constraint;
we will then show that incorporating a current-period constraint does not disturb
concavity.

Designate the amount of consumption that would occur in the absence of a current
constraint c∗t . In the unconstrained case, the first order condition for the problem
implies that

u′(c∗t ) = Ω′t(st) (41)

= u′(ψt(st)) (42)

20Remember that the envelope theorem depends only on being able to spend current wealth on
current consumption, so it holds whether or not there is a liquidity constraint.

21We call the intertemporal summing of utility ‘horizontal aggregation’ because it is easy to visualize
as the sum of a series of (expected) marginal values laid out horizontally through time. See Carroll
and Kimball (1996) for a more detailed justification of this terminology.
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for some increasing concave ψt. Taking u′−1 of both sides yields

c∗t = ψt(wt − c∗t ) (43)

ψ−1
t (c∗t ) = wt − c∗t (44)

wt = ψ−1
t (c∗t ) + c∗t . (45)

Since the inverse of an increasing concave function is an increasing convex func-
tion,22 ψ−1

t is an increasing convex function. Since the sum of an increasing linear
function c∗t and an increasing convex function ψ−1

t (c∗t ) is an increasing convex function,
wt(c

∗
t ) is an increasing convex function. Finally, since the inverse of an increasing con-

vex function is an increasing concave function, c∗t (wt) is an increasing concave function.
Thus, in the absence of a period-t liquidity constraint, property CC of Ωt(st) implies

property CC of Vt(wt).
Note now that when there is a liquidity constraint that requires actual consumption

ct to be less than total resources wt, actual consumption will be given by the lesser of
the unconstrained amount of consumption and the total amount of resources,

ct(wt) = min[c∗t (wt), wt].

But the min operator applied to two concave functions preserves concavity. Hence
even when there is a binding constraint at the end of period t, the consumption rule is
concave, implying that Vt(wt) satisfies property CC.

5.2 Vertical Aggregation

Our next result states that property CC is preserved when expectations are taken.23

Lemma 2 If Vt+1(wt+1) has property CC and Rt+1 is always nonnegative, then the
function Ωt(st) defined by equation (5) has property CC.

Unfortunately, separate proofs are needed for the three classes of HARA utility
functions specified above.

We begin by simplifying the problem by assuming that βt+1 = Rt+1 = 1. This is
for expositional clarity only; the steps below all go through with stochastic βt+1 and
Rt+1.

22To see this, flip an increasing concave function through the 45 deg line.
23We refer to the taking of expectations as ‘vertical aggregation’ because it is easy to visualize

as the vertical stacking and summation of all possible outcomes at a point in time, weighted by
their probabilities. Again, see Carroll and Kimball (1996) for a more detailed justification of this
terminology.
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5.2.1 The Quadratic Case

In the quadratic case, property CC of Vt+1(wt+1) means that V
′
t+1(wt+1) = κ−ct+1(wt+1)

for an increasing concave function ct+1(wt+1), implying that V
′
t+1(wt+1) is a decreasing

convex function. Since Ω
′
t(st) is a positive linear combination of decreasing convex

functions, it must itself be a decreasing convex function. Property CC of Ω
′
t(st) holds

if

Ω
′

t(st) = u′(φt(st))

= κ− φt(st)

for some concave φt. But we can simply define φt(st) = κ− Ω′t(st) which is clearly an
increasing concave function because it is a constant minus a decreasing convex function.
Hence Ω

′
t(st) satisfies property CC with respect to a quadratic utility function.

5.2.2 The Main Case

In the main case, property CC of Vt+1(wt+1) means that

V
′
t+1(wt+1) = u′(ψt+1(wt+1)) (46)

= ψt+1(wt+1)
−γ (47)

for some concave ψt+1, which under the simplification Rt+1 = βt+1 = 1 implies that

Ω
′
t(st) = Et

[
V
′
t+1(st + ỹt+1)

]
(48)

= Et

[
ψ(st + ỹt+1)

−γ] . (49)

Concavity of ψ implies that

ψ(st + yt+1) ≥ pψ(s1 + yt+1) + (1− p)ψ(s2 + yt+1) (50)

for all yt+1 if st = ps1 + (1− p)s2 with p ∈ [0, 1]. Since this holds for all yt+1, we know
that{

Et

[
ψ(st + ỹt+1)

−γ]}−1/γ ≥
{
Et

[
{pψ(s1 + ỹt+1) + (1− p)ψ(s2 + ỹt+1)}−γ

]}−1/γ
.

(51)

Now we need to use Minkowski’s inequality, which says that{
Et

[
(ãt+1 + b̃t+1)

−γ
]}−1/γ

≥
{
Et[ã

−γ
t+1]

}−1/γ
+
{
Et [̃b

−γ
t+1]

}−1/γ

(52)

for γ > 0 if at+1 and bt+1 are positive.
24

24For a proof, see Hardy, Littlewood, and Polya (1967), page 146, Theorem 198, equation (6.13.2).
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Minkowski’s inequality implies that


Et


{

=ãt+1︷ ︸︸ ︷
pψ(s1 + ỹt+1)+

=b̃t+1︷ ︸︸ ︷
(1− p)ψ(s2 + ỹt+1)}−γ





−1/γ

≥
{
Et[{pψ(s1 + ỹt+1)}−γ]

}−1/γ
+
{
Et[{(1− p)ψ(s2 + ỹt+1}−γ]

}−1/γ

= p
{
Et[ψ(s1 + ỹt+1)

−γ]
}−1/γ

+ (1− p)
{
Et[ψ(s2 + ỹt+1)

−γ]
}−1/γ

= pΩ
′
t(s1)

−1/γ + (1− p)Ω
′
t(s2)

−1/γ. (53)

Combining (49) with (51) and (53),

{Ω′t(st)}−1/γ ≥ p{Ω′t(s1)}−1/γ + (1− p){Ω′t(s2)}−1/γ . (54)

Thus {Ω′t(st)}−1/γ is concave, and Ωt(st) exhibits property CC.

5.2.3 The Exponential Case

In the exponential case u(c) = −(1/a)e−ac, to show property CC for Ωt(st) we need

Ω
′
t(st) = e−aφt(st) (55)

−(1/a) logΩ′t(st) = φt(st) (56)

for concave φt. Clearly, φt will be concave if − log Ω
′
t(st) is concave. Again assuming

βt+1 = Rt+1 = 1 for expositional clarity,

log Ω
′
t(st) = logEt[exp(−ψ(st + ỹt+1))]. (57)

Property CC of Vt+1 implies concavity of ψ. Thus,

−ψ(st + yt+1) ≤ −pψ(s1 + yt+1)− (1− p)ψ(s2 + yt+1) (58)

logEt[e
−ψ(st+ỹt+1)] ≤ logEt[e

−pψ(s1+ỹt+1)−(1−p)ψ(s2+ỹt+1)], (59)

where st = ps1 + (1− p)s2.
The arithmetic-geometric mean inequality implies that for positive a and b, if ā =

Et[ã] and b̄ = Et [̃b], then

Et

[
(ã/ā)p(b̃/b̄)1−p

]
≤ Et

[
p(ã/ā) + (1− p)(b̃/b̄)

]
= 1, (60)

implying that

Et[ã
pb̃1−p] ≤ āpb̄1−p. (61)
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Substituting in a = e−ψ(s1+yt+1) and b = e−ψ(s2+yt+1), this means that

Et[e
−pψ(s1+ỹt+1)−(1−p)ψ(s2+ỹt+1)] ≤

{
Et[e

−ψ(s1+ỹt+1)]
}p {

Et[e
−ψ(s2+ỹt+1)]

}1−p
(62)

logEt[e
−pψ(s1+ỹt+1)−(1−p)ψ(s2+ỹt+1)] ≤ p logEt[e

−ψ(s1+ỹt+1)] + (1− p) logEt[e
−ψ(s2+ỹt+1)].

(63)

Inequalities (59) and (63) together prove convexity of log Ω′t(st) and concavity of
− log Ω′t(st), so that Ωt(st) satisfies property CC.

5.3 Recursion

Repeated application of Lemma 1 and Lemma 2 implies that if the value function in
period t exhibits property CC, then the value functions in all previous periods will also
exhibit property CC.

So far we have shown that weak concavity of the consumption function in period
t+ 1 will be propagated into previous periods. We now examine how strict concavity
is propagated.

5.4 Definition of Strict and Borderline Concavity at a Point

Definition 2 A function F (x) has property strict CC over the interval between x1 and
x2 > x1 in relation to a HARA utility function u(c) with nonnegative, nonincreasing
prudence iff

F ′(x) = u′(ψ(x))

for some increasing function ψ(x) which satisfies strict concavity over the interval from
x1 to x2, defined by

ψ(x) >
x2 − x

x2 − x1
ψ(x1) +

x− x1

x2 − x1
ψ(x2) (64)

for all x ∈ (x1, x2).

Definition 3 A function F (x) has property borderline CC over the interval from x1

and x2 if equation (64) holds with equality.

Definition 4 A function F (x) has property CC (strict or borderline, respectively) at
a point x if there exists a δ such that if x ∈ (x1, x2) and |x2−x1| < δ then the function
exhibits property CC (strict or borderline, respectively) over the interval from x1 to x2.
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Intuitively, these definitions are the formal apparatus necessary to handle value
functions that have a kink point at which the slope of the marginal value function
jumps from one value to another, as will occur (for example) in the transition between
levels of wealth where a constraint is not binding and where it is binding.

Note that if a function has property CC globally, then it will have either strict or
borderline CC at every point.

In order to understand our approach here it will be useful to step back for a moment
to preview the next few steps in the paper. The next section will show that, starting
with a setup in which there are no liquidity constraints, the introduction of a first
liquidity constraint that binds at the end of period t+1 imparts strict concavity to the
consumption function at the period-t+1 level of wealth wt+1 = ω# where the constraint
begins to bind. What we are constructing in the present discussion is the apparatus
to determine how that strict concavity at Vt(ω

#) is propagated back to Ωt(st), Vt(wt),
and so forth in the absence of other constraints. Later in the paper (in section 6.5)
we examine what happens when additional constraints are added to the problem (for
example, a constraint that might bind at the end of period t).

5.5 Horizontal Aggregation of Strict and Borderline CC

Recall that we defined ‘horizontal aggregation’ as the propagation of properties from
the end-of-period value function Ωt(st) to the maximized beginning-of-period value
function Vt(wt). We begin with an Ωt(st) function that has property CC globally.
Given this, we can prove the following lemma.

Lemma 3 If Ωt(st) exhibits property strict CC at level of saving st then Vt(wt) exhibits
property strict CC at the (unique) level of wealth wt such that optimal consumption at
that level of wealth yields st = wt − ct(wt).

If Ωt(st) exhibits strict CC at a specific point st, then for any s1 < st < s2 which
are arbitrarily close to st we can write

Ω
′
t(st) = u′(ψ(st)) (65)

for some monotonically increasing function ψ(st) for which

ψ(ps1 + (1− p)s2) > pψ(s1) + (1− p)ψ(s2) (66)

holds for 0 < p < 1. Now take ψ−1 of both sides, yielding

ps1 + (1− p)s2 < ψ−1(pψ(s1) + (1− p)ψ(s2)). (67)
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Now use the first order condition from the maximization problem to find the levels
of consumption corresponding to s1 and s2:

25

u′(c) = Ω
′

t(s) (68)

= u′(ψ(s)) (69)

c = ψ(s) (70)

ψ−1(c) = s. (71)

Substituting (70) and (71) into (67) yields

p

s1︷ ︸︸ ︷
ψ−1(c1)+(1− p)

s2︷ ︸︸ ︷
ψ−1(c2) < ψ−1(pc1 + (1− p)c2) (72)

which means that ψ−1 satisfies the definition of a convex increasing function in a
neighborhood from c1 to c2 around ct. But recall our derivation earlier (equation (45))
that

wt = ψ−1(ct) + ct (73)

ωt(ct) ≡ ψ−1(ct) + ct. (74)

Since ωt(ct) is the sum of the increasing convex function and an increasing linear
function, it is itself an increasing convex function, so by the definition of an increasing
convex function we have

pωt(c1) + (1− p)ωt(c2) > ωt(pc1 + (1− p)c2) (75)

ω−1
t (pw1 + (1− p)w2) < pc1 + (1− p)c2 (76)

ct(pw1 + (1− p)w2) < pct(w1) + (1− p)ct(w2) (77)

where (76) follows from (75) because the inverse of an increasing convex function is
an increasing concave function and (77) follows because the definition of ω−1

t implies
that it yields the level of consumption that satisfies the first order condition of the
maximization problem for the given level of wealth. Thus, ct(wt) satisfies the definition
of a strictly concave function in the neighborhood of ct.

Lemma 3 was stated for points st at which Ωt(st) exhibits property strict CC. What
about points at which Ωt(st) exhibits property borderline CC? It turns out that the

25This first order condition holds with equality if there are no constraints that apply in the current
period. It does not hold with equality at every point if there is a constraint in force at the end of the
current period, because in that case there will be a level of wealth ω# at which the constraint becomes
binding and below which all levels of wealth lead to zero savings; hence when there is a constraint
at the end of period-t there is not a one-to-one mapping from st to a unique corresponding ct and
wt. As noted above, we defer to later sections discussion of what happens when a such an additional
constraint is imposed.
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exact same steps can be employed, substituting equality signs for inequalities, to show
that if Ωt(st) exhibits borderline CC at st then Vt(wt) exhibits borderline CC at the
level of wealth wt that optimally leads to savings st.

The structure of the argument here is identical to the structure used for demon-
strating horizontal aggregation of nonstrict CC in section 5.1; the only complications
are the necessity to be careful about the definition of concavity and convexity over
intervals in a neighborhood, and the restriction to cases where there is no liquidity
constraint at the end of period-t.

5.6 Vertical Aggregation of Strict and Borderline CC

We are interested in whether strict CC applies to Ωt(st) at point st.

Lemma 4 If from a given value of period-t savings st it is possible that a value of
period-t + 1 wealth wt+1 could arise at which the period-t + 1 value function exhibits
property strict CC, then Ωt(st) will exhibit property strict CC at st.

In the quadratic case, u′(ct+1(wt+1)) = V ′t+1(wt+1) is linear in wt+1 except around
points where the consumption function exhibits strict concavity; around such points
strict concavity of ct+1(wt+1) implies strict convexity of u

′(ct+1(wt+1)). Thus Ω
′
t(st) is a

positive linear combination of functions some of which are linear and some of which are
strictly convex at st, and since the sum of functions some of which are strictly convex
and some of which are linear is strictly convex, Ω

′
t(st) exhibits strict CC at st.

In the main case, suppose the stochastic income process consists of n possible values
of yt+1 indexed by i, and write the simplified Ω

′
t(st) as

Ω
′
t(st) =

n∑
i=1

piψ(st + yi)
−γ. (78)

Now note that concavity of ψ implies that

n∑
i=1

piψ(st + yi)
−γ <

n∑
i=1

pi {(1/2) ((ψ(st + δ + yi) + ψ(st − δ + yi))}−γ (79)

if ψ(st+ yi) is strictly concave for any one of the possible realizations of y. This means
that (51) will be a strict inequality if Vt+1 exhibits property strict CC at any level
of wt+1 reachable with a positive probability from st. But if (51) holds with strict
inequality, then the remaining chain of inequalities from (51) through (54) yields strict
concavity of {Ω′t(st)}−1/γ implying that Ωt exhibits property strict CC at point st.

In the exponential case, (59) will be a strict inequality for st if ψ(wt+1) is strict at
any wt+1 reachable from st, and again the remaining inequalities lead to the conclusion
that Ωt(st) has property strict CC at st.
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The foregoing arguments again hold in the case of a general stochastic distribution
for yt+1, βt+1 and Rt+1, with the additional implication that a general distribution for
yt+1 and stochasticity of Rt+1 makes more values of wt+1 reachable from a given st and
thus expands the number of values of st where Ωt(st) exhibits strict concavity.

5.7 Recursion for Strict and Borderline Concavity

Recursive application of horizontal and vertical aggregation of strict CC implies that
the value function Vs(ws) will exhibit property strict CC at any value of ws such that
there is any possibility in any future period (t > s) of a level of wealth wt occurring at
which Vt(wt) exhibits property strict CC.

6 Liquidity Constraints and Prudence in the Quadratic

Utility Case

Our results thus far have demonstrated that concavity of consumption functions and
prudence of value functions, once created, are propagated back through time to previous
periods’ consumption and marginal value functions. We now turn to the question of
how liquidity constraints can create strict convexity of the marginal value function.

6.1 Introducing the First Constraint

We begin with the question of how introducing a single liquidity constraint induces
precautionary saving when utility is quadratic. The purpose of this section is to show
that the introduction of a liquidity constraint that applies between the current period
and the next period convexifies the marginal value function for the current period and
all prior periods, thus providing the key theoretical requirement for a precautionary
saving motive. The essence of the proof will be to show that a liquidity constraint
introduces a ‘kink’ in the marginal value function at the point where the constraint
binds, and that the kink will be propagated back to the marginal value functions in all
prior periods.26

Before proceeding to the proofs, we need a definition.

Definition 5 Define (ω#
t , µ#

t ) as the “activation point” of the liquidity constraint
under consideration in period t, i.e. µ#

t = Ω
′
t(0), and define two potential values

µ1 = V
′
t (ω1) < µ# < µ2 = V

′
t (ω2).

26For a simple analysis of how liquidity constraints cause a kink in the decision rule and thereby
induce precautionary saving in a three period model, see Besley (1995).
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That is, µ1 is the marginal value of wealth at some level of wealth ω1 above ω#

where the liquidity constraint is not binding, and µ2 is the marginal value of wealth at
some level of wealth below ω#, where the constraint is binding.

We are now in a position to state the following result:

Lemma 5 If the period utility function is quadratic and there are no liquidity con-
straints that could bind after period t + 1, the imposition of a liquidity constraint in
period t+1 induces strict convexity of the period t+1 marginal value function between
any two points ω1 and ω2 which lie on opposite sides of the “activation point” ω# of
the liquidity constraint.

Proof. Carroll and Kimball (1996) analyze the unconstrained problem for util-
ity functions in the HARA class, i.e. those functions which satisfy the condition
u′′′u′/u

′′2 = k ≥ 0. Integrating this in the form u′′′

u′′ = k u
′′

u′ yields the equation

u′′ = −Au
′k. But because c̆′(µ) = 1/u′′(c) (differentiate u′(c̆(µ)) with respect to µ),

c̆′(µ2)

c̆′(µ1)
=

1/u′′(c2)

1/u′′(c1)
(80)

=
u′′(c1)

u′′(c2)
(81)

=
u′(c1)

kA

u′(c2)kA
(82)

=

(
µ2

µ1

)−k
(83)

or c̆′(µ2) = (µ2

µ1
)−k (c̆′(µ1)) (this corresponds to equation (10) in Carroll and Kim-

ball (1996)). The quadratic utility case corresponds to k = 0, which implies that

c̆
′
(µ2) = c̆

′
(µ1). (84)

In the quadratic utility case where there are no future constraints, similar results
can be derived for s̆ (corresponding to Carroll and Kimball (1996) equation (11)),
implying that s̆

′
(µ2) = s̆

′
(µ1). Finally, these can be combined as:

c̆′(µ2) + s̆
′
(µ2) = c̆

′
(µ1) + s̆

′
(µ1). (85)

Now recall that when there is a constraint that binds at the end of the current
period, w̆(µ) = c̆(µ)+max[s̆(µ), 0]. The first derivative is c̆

′
(µ)+χ(µ)s̆

′
(µ) where both

c̆
′
and s̆

′
are negative and χ is a zero-one indicator function for whether µ > µ#. But

by assumption s̆(µ2) < 0. As a result we know that w̆
′
(µ2) = c̆

′
(µ2) > c̆

′
(µ2) + s̆

′
(µ2)

implying

w̆
′
(µ2) = c̆

′
(µ2) > c̆

′
(µ2) + s̆

′
(µ2). (86)
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Combining this with (85) yields

w̆
′
(µ2) > w̆

′
(µ1). (87)

Now recall that w̆(µ) = V
′−1
t (µ) so that w̆

′
(µ) = 1/V

′′
(ω). Therefore, V

′′
(ω1) >

V
′′
(ω2). That is, the (negative) slope of the marginal value function is strictly shal-

lower at levels of wealth above ω# than at levels of wealth below ω#, which is precisely
the condition required for strict convexity of the marginal value function in the neigh-
borhood of ω#. The discrete change in the slope of V

′
t+1(wt+1) at wt+1 = ω# is the

formal definition of the ‘kink’ in the marginal value function.
Less formally, the logic here is essentially as follows. At any level of wealth below

the point ω# at which the constraint begins to bind, all incremental wealth is devoted
to extra current consumption. The decline in marginal value with extra wealth is
exactly as steep as the decline in marginal utility with extra consumption. This is
captured by the fact that, below the constraint cutoff, c̆

′
(µ) = w̆

′
(µ). However, when

wealth is above ω#, an increment to wealth can be spread between the present and the
future, and the decline in total marginal value is therefore strictly less than when all
of the extra wealth had to be consumed in the present.

6.2 The Effect of the Kink(s)

Now consider the effect of the introduction of liquidity constraints on the response of
the expected marginal value function Ωt to risk. Our primary interest in this paper is
in the effects on precautionary saving behavior of the introduction of risk to a situation
without risk. But analyzing the more general case of increases in risk helps to clarify
the theoretical issues, as well as being of interest in its own right.

We need to begin by defining the support of a mean preserving spread in next
period’s wealth wt+1. To motivate our definition, consider the following example.

Recall the definition of the expected marginal value function,

Ω
′

t(st) = Et[β̃t+1R̃t+1V
′

t+1(w̃t+1)]. (88)

For expositional simplicity, suppose again that the interest rate and time preference
factors are nonstochastic and that both are equal to one, R = β = 1. Suppose further
that income shocks can only take the form of a two-point mean-zero risk. That is, if
the size of the income shock is ν, then

Ω̂
′
t(st, ν) = Et[V

′
t+1(st + ỹt+1)] (89)

= 0.5
{
V
′

t+1(st − ν) + V
′

t+1(st + ν)
}

. (90)

We wish to consider the effects on the marginal utility of saving of an increase in
the degree of uncertainty about yt+1, which corresponds to an increase in the size of
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ν. Suppose that the marginal value function for period t+1 takes the piecewise linear
form depicted in figure 4, corresponding to the form that we have just shown arises
in a quadratic utility problem with a single liquidity constraint that applies in period
t+ 1, with an activation point ω#.

Consider the value of ending period t with a specific amount of savings st = A
under the initial assumption that income in period t+ 1 is nonstochastically equal to
zero, ν = 0. In this case,

Ω̂
′

t(A, 0) = 0.5
{
V
′

t+1(A+ 0) + V
′

t+1(A− 0)
}

(91)

= V
′
t+1(A). (92)

Now consider the effect of increasing the size of the income risk to ν = ε where
ε > 0 but A + ε < ω#. In this case, as the figure illustrates, the addition of the risk
has no effect on the expected marginal value of saving A:

Ω̂
′
t(A, ε) = 0.5

{
V
′
t+1(A− ε) + V

′
t+1(A+ ε)

}
(93)

= V
′
t+1(A) (94)

because the expected marginal value function V
′
t+1(wt+1) is linear over the entire range

spanned by the possible values of wt+1 that arise from saving st = A.
Now consider the effect of a larger risk η > ε where A+η > ω#. It is clear from the

figure that increasing the size of the risk from ε to η increases the expected marginal
value of saving amount A, i.e. Ω̂

′
t(A, η) is strictly greater than Ω̂

′
t(A, ε).

Define the level of initial period-t wealth that would have resulted in the optimal
amount of period-t savings being A in the absence of income risk as w0 = w̆t(Ω̂

′
t(A, 0)).

Now note that since the increase in risk from ν = 0 to ν = ε has no effect on the
marginal utility of savings (Ω̂

′
t(A, 0) = Ω̂

′
t(A, ε)), the first order conditions of the prob-

lem continue to be satisfied after this increase in risk at ct = w0 − A and st = A, so
period-t consumption does not change in response to the increase in risk from 0 to ε.
However, when the risk is increased further to ν = η, the marginal utility associated
with saving amount A now becomes strictly higher than it was before. This means that
the problem’s first order conditions for initial wealth w0 are no longer satisfied at the
original level of period-t consumption. In order to satisfy the FOC’s, it is necessary to
find a new level of consumption that generates a marginal utility partway toward the
new higher marginal utility of saving - which is to say, the level of consumption that
now satisfies the FOC’s will have to be lower. Thus, the increase in risk from ε to η
induces a (precautionary) decline in the level of consumption in period t.

Note that the critical issue is whether the additional risk ‘interacts’ with the kink
at the activation point. Consider figure 5. In this case the original situation involves
an equal chance of wt+1 ending up at point A or at point B. Now consider again the
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Figure 4: Effect of Adding Mean-Zero Risks of Size ε and η > ε
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Figure 5: Example of When Adding Risk ε̃ Does Not Induce Prudence

effect of adding a small mean zero risk ±ε to each of the original outcomes A and B.
Although the two points A and B are on opposite sides of the kink, the change in the
risk does not interact with the kink. The expected marginal value conditional on either
A or B does not change, and so the overall expected marginal value does not change.

We now define the formal concept of the support of a mean-preserving spread,
which allows us to say when a mean-preserving spread (including the special case of a
newly introduced mean-zero risk) interacts with a kink.

Definition 6 In an interval [w,w] such that F1(w) = F2(w) = 0 and F1(w) = F2(w) =
1, let the distribution F2 be a mean preserving spread of F1; that is, if we define G1(w) =∫ w
w

F1(ω)dω and G2(w) =
∫ w
w

F2(ω)dω, then G2(w) ≥ G1(w) and G2(w) = G1(w).

Definition 7 The open support of the mean preserving spread is the set {w|G2(w) >
G1(w)}. The support is the closure of the open support.

In figure 4, the support of the mean preserving spread going from ν = 0 to ν = ε is the
region from A− ε to A+ ε, and the support of the mean preserving spread going from
ν = 0 to ν = η is the region from A− η to A+ η. The support of the mean-preserving
spread caused by going from ν = ε to ν = η is the union of the region from A − η
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to A − ε and the region from A + ε to A + η. In figure 5, the support of the mean
preserving spread is the union of the region from A − ε to A + ε and the region from
B − ε to B + ε.

We are now in position to state the critical lemma.27

Lemma 6 For a given level of saving st, let Ψ be the open support of a mean preserving
spread in wt+1, and let Wt+1 be the set of points at which V

′
t+1(wt+1) exhibits strict CC.

Then the expected marginal value of saving Ω
′
(st) is strictly increased by the mean

preserving spread iff Ψ ∩W �= ∅.

Proof. The lemma is proven using integration by parts. Dropping the t+1 subscripts
for clarity, the change in the expectation of next period’s value function as a result of
the mean preserving spread is:

∫ w

w

V ′(w)dF2(w)−
∫ w

w

V ′(w)dF1(w) (95)

= V ′(w) [F2(w)− F1(w)]︸ ︷︷ ︸
=0

−V ′(w) [F2(w)− F1(w)]︸ ︷︷ ︸
=0

−
∫ w

w

[F2(w)− F1(w)]V
′′(w)dw

= −V ′′(w) [G2(w)−G1(w)]︸ ︷︷ ︸
=0

+V ′′(w) [G2(w)−G1(w)]︸ ︷︷ ︸
=0

+

∫ w

w

[G2(w)−G1(w)]dV
′′(w)

=

∫ w

w

[G2(w)−G1(w)]dV
′′(w).

This integral expresses the proposition of the lemma, because the integral will be
positive only if there is some set of points at which G2(w) > G1(w) and dV ′′(w) > 0.
These are the points where the mean preserving spread interacts with the convexity of
the marginal value function. Note that the integrals here are well defined even if V ′′ is
discontinuous.28

With this lemma in hand, the actual theorem is trivial, simply by focusing on the
introduction of a mean-zero risk as a special case of mean preserving spreads.

27In the proof below, choose w strictly above the suprema of both Ψ and W and w strictly below
the infima of both Ψ and W .

28Figure 5 gives the essential intuition for how the concept of the support of a mean preserving spread
can differ from the convex hull of the support of a risk, in the following sense. For a mean preserving
spread, since G2(ω) ≥ G1(ω), when a point ω0 is not in the support of a mean preserving spread,
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Theorem 2 The introduction of a mean-zero risk in period t+1 will induce a (precau-
tionary) increase in saving st at a given level of wealth wt even if utility is quadratic, so
long as the initially optimal level of saving st before introduction of the risk is such that
the introduction of the risk leads to a probability 0 < p < 1 that the liquidity constraint
will bind in period t+ 1.

Proof: By the previous lemma, the introduction of the risk increases the expected
marginal utility of saving, which induces the consumer to save more and consume less.

As we showed in Lemma 5, strict convexity of the marginal value function is gener-
ated by transition from a liquidity constraint being binding to non-binding as wealth
rises. The introduction of a mean-zero risk raises the expected marginal value of sav-
ing in period t if the outcome of that risk affects the probability that the period t+ 1
liquidity constraint will bind.

To restate in a slightly different way, the lemma shows that, from any level of
wealth such that after the risk is introduced the liquidity constraint will bind for bad
outcomes of the risk but will not bind for better outcomes, the introduction of the
risk increases the marginal utility of saving Ω

′
(st) by interacting with the convexity

of V ′t+1. Furthermore, since we are considering the case where utility is quadratic and
where there are no liquidity constraints beyond period t+ 1, the convexity of V ′t+1 all
comes from the activation point, so the introduction of a risk that does not span the
activation point does not affect the marginal utility of saving. For the more complex
case of a mean-preserving spread as opposed to the introduction of a risk, there is no
substitute for the concept of the support of a mean-preserving spread.

The theorem just proven is somewhat backwards: we set out to show that the
addition of liquidity constraints induces precautionary saving, but theorem 2 starts
out with liquidity constraints and adds a risk. Of course, the bottom line is that when
both constraints and risks are present, there will be a precautionary saving motive, but
when only risks and no constraints are present quadratic utility implies that there is
no precautionary motive, so theorem 2 leads trivially to the theorem that we initially
set out to prove.

Theorem 3 The imposition of a liquidity constraint that binds in period t+1 induces
precautionary saving for consumers in period t at all levels of wealth wt such that at
the optimal level of saving st the probability that the constraint will bind depends on
the outcome of the risk.

G2(ω0) = G1(ω0), and G2 is tangent to G1 at ω0. The tangency implies either that F1(ω0) = F2(ω0)
or that the interval [F1(ω−0 ), F1(ω+

0 )] is a subset of the interval [F1(ω−0 ), F2(ω+
0 )]. This means that

both the distribution F1 and the distribution F2 can be sliced into two parts at ω0 such that the two
upper parts have the same mass, the two lower parts have the same mass, the upper part of F2 is a
mean preserving spread of the upper part of F1 and the lower part of F2 is a mean preserving spread
of the lower part of F1. Thus, the implication of the theorem is that if you have a kink that is between
two separate mean preserving spreads, those mean preserving spreads will not interact with that kink
to create an increase in the marginal utility of saving.
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The next question we want to address is the extent to which the precautionary
saving motive induced in period t propagates back to prior periods, in the absence of
further liquidity constraints.

6.3 Main Theorem

Theorem 4 Introducing a liquidity constraint that applies in period t+1 to the quadratic
utility optimization problem induces a strictly convex marginal value function in period
s ≤ t at any level of wealth ws such that, when the constraint is introduced, there is a
probability 0 < p < 1 that the constraint will bind in period t+ 1.

Proof. First, note that, by Lemma 5, introducing the liquidity contraint in period
t + 1 imparts a kink to the marginal value function V

′
t+1 at the point ω# where the

constraint begins to bind. Define the set St as the set of points st such that if the
period-t consumer saves st there is some probability 0 < p < 1 that the constraint will
bind in period t+ 1. Then by Lemma 4, Ω

′
t is strictly convex at all points in St. Now

for each point st ∈ St find the corresponding level of initial wealth such that the level
of saving st is optimal, i.e. wt − ct(wt) = st, and call the full set of such points Wt.
Then by Lemma 3, V

′
t is convex at all points in Wt. Continued iteration using these

lemmas demonstrates that for any s ≤ t, V ′s (ws) is strictly convex at any value of ws

such that there is both a positive probability that the period t+1 constraint will bind,
and a positive probability that it will not bind.

Note that if the risks have discrete distributions, with quadratic utility this recursion
yields a piecewise linear marginal value function for all s ≤ t, where the kinks are all
associated with the points at which the future liquidity constraint begins to bind.
Continuous risk distributions tend to smooth out the kinks.

6.4 Introducing Many Liquidity Constraints and Background
Risks All at Once

The theorems above indicate that adding many liquidity constraints and background
risks simultaneously will make the consumption function concave. If the consumption
function was linear to begin with, by making the consumption function concave, the
addition of many liquidity constraints and background risks unambiguously raises the
prudence of the value function. In the simplest case of a quadratic utility function, the
addition of many liquidity constraints and background risks makes prudence positive-an
unambiguous increase when prudence was zero to begin with. This increase in prudence
implies that all of the liquidity constraints and background risks as a group make
consumption and saving react more strongly to the primary risk. Since interactions,
as a matter of logic, go both ways, this also implies that adding liquidity constraints
and background risks has a bigger negative effect on consumption if there is a primary
risk in place than in the absence of the primary risk.
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Figure 6: How a Liquidity Constraint Today Can ‘Hide’ A Future Constraint

6.5 Does Adding Successive Constraints Further Increase Pru-
dence?

A natural next question is whether adding successive further constraints after the first
one necessarily intensifies the precautionary saving motive.29 The surprising answer, in
general, is no. The reason is that if a constraint exists in period t+n which convexifies
the marginal value function at point wt = ω, introducing a constraint that applies in
period t can ‘hide’ the kink in the initial period-t value function caused by the period
t+ n constraint. This point is illustrated by figure 6.

The curve labelled V
′
t (wt) reflects the marginal value function if there are no future

liquidity constraints. V
′
t (wt|ct+1 ≤ wt+1) is the marginal value function when there is a

constraint in period t+1. As we argued above, the constraint in period t+1 introduces
a kink into the marginal value function in period t + 1 and all earlier periods. In the
figure, the point labelled ω designates the level of wt at which the constraint in period
t + 1 kinks the period-t marginal value function. V

′
t (wt|ct+1 ≤ wt+1, ct ≤ wt) is the

29This is, in effect, a question about a triple cross-derivative between the primary risk and two
(sets of) liquidity constraints and/or background risks, which helps explain why the question and its
answer are more subtle than one might initially guess.
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marginal value function when there are constraints in both period t and period t+ 1.
The point of the figure is that when the period-t constraint is not in force but the

period-t + 1 constraint is in force (that is, for V
′
t (wt|ct+1 ≤ wt+1)), the fact that the

period-t marginal value function is kinked at point ω implies that the marginal value
function exhibits prudence at the kink point ω, as argued above. However, when both
constraints are in force, the marginal value function (now V

′
t (wt|ct+1 ≤ wt+1, ct ≤ wt))

is linear in the neighborhood of ω. Thus the imposition of the constraint in period
t has the effect of ‘hiding’ the constraint at t + 1, and so adding the new constraint
reduces the prudence of the value function with respect to risks around wealth level ω.

The intuition is as follows. In the absence of the period-t constraint, for levels of
wealth wt < ω, the period-t consumer would borrow enough from period t+1 that the
period t + 1 consumer would become constrained (that is why the period-t marginal
value function is kinked at ω). Imposing the period-t liquidity constraint prevents
period-t consumers with wt < ω from borrowing so much and causes such consumers
to enter period t + 1 with enough wealth that the liquidity constraint between t + 1
and t+ 2 is no longer relevant.

Note a crucial feature of the liquidity constraint that ‘hides’ the subsequent con-
straint: the ‘hiding’ happens for points at which the marginal value function increases
as a consequence of the introduction of the new constraint. Since an increase in the
marginal value function corresponds to an increase in the value of saving, the new
constraint unambiguously increases total saving, even though it reduces precautionary
saving.

6.6 The Bliss Point and Consumption Concavity in the Quadratic

Case

To this point in our analysis of the quadratic utility case, we have implicitly been
assuming we are examining behavior at levels of wealth low enough that there is no
possibility future wealth will ever be large enough for consumption to equal the bliss
point beyond which extra consumption yields negative utility. However, we are now
in a position to understand that this is an implausible assumption if there are many
periods of life remaining.

The crucial insight here comes from considering the consumption function in the
last period of life T . The consumption rule will be

cT (wT ) = min[wT , κ] (96)

where κ is the bliss point. But this is obviously an example of a strictly concave
consumption function, with concavity at the point wT = κ. Thus, cT−1(wT−1) will
be strictly concave at any level of wealth such that there is a possibility (however
remote) that wT will exceed κ. Similarly for cT−2(wT−2), and so forth. So even in the
baseline case for quadratic utility, if there is future uncertainty (in either labor income
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or the rate of return) the consumption function cT−n(ω) will be strictly concave over
an ever-expanding range of values of ω as the number of periods remaining in life n
increases.

The upshot is that even the most extreme compromise economists have been willing
to make for the sake of tractability (quadratic utility with no liquidity constraints) does
not yield the desired payoff of a linear consumption function if there is any substantial
amount of uncertainty and there are many periods of life remaining, except for levels of
wealth so far below the bliss point that even the most wildly favorable realizations of
uncertainty could not result in sufficient wealth ever to permit blisspoint consumption.
We hope that this will help extinguish any remaining embers of enthusiasm for the use
of quadratic utility functions as a tool for practical economic modelling.

7 Liquidity Constraints and Prudence for CRRA

Utility

We now turn to the question of whether adding a first liquidity constraint to a previ-
ously unconstrained optimization problem with risky future income globally increases
the prudence of the value function for problems where the initial value function already
exhibits positive prudence. Once again, the answer is not necessarily. The reason, once
again, is that a liquidity constraint can ‘hide’ certain points on the marginal value func-
tion that are exposed if the constraint is not present.

We consider a problem in which a consumer with CRRA utility faces a future income
risk but no future liquidity constraints. Note first that the Inada condition of the utility
function will necessarily induce an Inada condition in the value function Vt+1(w) at
some point w, i.e. ∃ w such that limw↓w V

′
t+1(w) = ∞.30 Suppose for simplicity that

the time preference and interest factors are equal to one (the result generalizes to the
case of stochastic interest and time preference rates considered above).

Consider first consumer A for whom income in period t + 1 is nonstochastically
equal to y, and who has amount of wealth wt in period t. Suppose that this consumer
faces a liquidity constraint that prevents borrowing against future income. Consumer
A’s maximization problem is:

max
{cAt }

u(cAt ) + Vt+1(s
A
t + y) (97)

s.t. sAt = wt − cAt ≥ 0.

Now consider consumer B, a non-liquidity-constrained consumer with the same
u(ct), Vt+1, and initial wealth wt but whose income has a small probability p of going

30The argument in this section actually applies to any utility function with an Inada condition; we
use CRRA as our example because of its familiarity.
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to w next period. If this event does not occur, then income will be the same as in the
constrained case, y. This consumer solves

max
{cBt }

u(cBt ) + pVt+1(s
B
t + w) + (1− p)Vt+1(s

B
t + y) (98)

s.t. sBt = wt − cBt .

We wish to show that, as the probability p of the bad shock approaches zero, the
behavior of the unconstrained consumer facing the risk becomes arbitrarily close to the
behavior of the constrained consumer.

First, consider the case in which the constrained consumer’s initial wealth wt is large
enough so that this consumer would, if unconstrained, have saved a positive amount.
That is, consider the case where the liquidity constraint does not bind. In this case the
first order condition for the first consumer is u′(wt− sAt ) = V

′
t+1(s

A
t + y). The FOC for

consumer B, on the other hand, is u′(wt − sBt ) = pV
′
t+1(s

B
t +w) + (1− p)V

′
t+1(s

B
t + y).

But clearly limp↓0[pV
′
t+1(s

B
t + w) + (1− p)V

′
t+1(s

B
t + y)] = V

′
t+1(s

B
t + y).

Since saving is determined uniquely by the FOC’s, this implies that limp↓0 s
B
t = sAt ,

i.e. as p approaches zero the saving of the consumer facing the risk becomes arbitrarily
close to the saving of the constrained consumer.

Now, consider the case where consumer A would be constrained. By the definition
of ‘constrained,’ this consumer spends her full available resources wt, and the marginal
utility of spending in period t exceeds the marginal utility of having more income in
the next period,

u′(wt) > V
′
t+1(y). (99)

Note first that if consumer B were to save exactly 0 and then experienced the bad
income shock in period t + 1, consumer B’s expected utility would be −∞. Hence
saving an amount less than or equal to 0 is ruled out.

What we need to show now is that if consumer B were to choose to save any amount
greater than 0, say δ > 0, then as p approaches zero there will always come some point
at which consumer B could improve her utility by saving less.

Begin by noting that if consumer B saves fixed amount δ (rather than the 0 that A
saves), consumer B’s marginal utility in period t will be u′(wt−δ). But for any fixed δ,
limp↓0[pV

′
t+1(δ+w)+(1−p)V

′
t+1(δ+y)] = V

′
t+1(y+ δ). But we know from equation (99)

and from concavity of the utility function that u′(wt−δ) > u′(wt) > V
′
t+1(y). Hence we

know that as p ↓ 0 there must come a point at which the consumer can improve her
total utility by shifting some resources from the future to the present, i.e. by saving
less. Since this argument holds for any δ > 0, this argument demonstrates that as p
goes to zero there is no positive level of saving which would make the consumer better
off. Hence saving goes to zero.

Thus, we have shown that whether the two consumers start with a wealth position
at which the constrained consumer would like to save, or start with a wealth position
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at which the constrained consumer would not like to save, as p goes to zero the level
of saving of the unconstrained consumer facing the risk becomes arbitrarily close to
the level of saving of the constrained consumer. Hence, in the limit this kind of risk is
indistinguishable from a liquidity constraint.

We showed in section 6 that introducing a liquidity constraint introduces a ‘kink’ in
the value function at the point ω# where the constraint begins to bind. The arguments
in that section are easy to extend to the CRRA case considered here. Recalling that

the prudence of the value function is defined as −V
′′′

V ′′
it is clear that the discrete jump

in the value of V
′′
at the kink point implies infinite prudence exactly at the kink.

Now consider the implications of these arguments. In the limit as p ↓ 0 a future
risk with the character described above becomes indistinguishable from a liquidity
constraint in the implied consumption function, and therefore in the implied marginal
value function V ′(ω) = u′(ct(ω)). Hence introducing a liquidity constraint in period
t when there is a preexisting risk of this kind is essentially indistinguishable from
introducing a second liquidity constraint when there is already a preexisting constraint.
There is no reason that a point which was a kink before imposing the new liquidity
constraint will necessarily remain a kink point after imposing the new constraint. Since
the prudence of the value function at the kink point was infinite before the constraint
was introduced and may be finite after the constraint is introduced, the introduction
of the constraint could reduce the prudence of the value function at the level of wealth
corresponding to the kink. This period’s constraint can ‘hide’ the effects of future risk
by making the consumer save so much that those future risks are less consequential
(from the standpoint of their effects on precautionary saving) than before the liquidity
constraint was introduced.

8 Conclusion

The central message of this paper is that the effects of precautionary saving and liquid-
ity constraints are very similar to each other, because both spring from the concavity of
the consumption function. The paper provides an explanation the apparently contadic-
tory results that have emerged from simulation studies, which have sometimes seemed
to indicate that constraints intensify precautionary saving motives, and sometimes have
found constraints and precautionary behavior to be substitutes.

Our results may have important applications even beyond the traditional consump-
tion/saving problem in which the results were derived. The precautionary-saving effect
of liquidity constraints may apply in many circumstances where a decision-maker faces
the possibility of future liquidity constraints which raise the marginal value of an extra
dollar of cash. Thus, firms which are not currently liquidity constrained may engage
in precautionary saving if they believe there is some risk that constraints may bind in
the future. Governments that worry about whether they will always be able to borrow
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on international markets may engage in precautionary saving even in periods when
they are unconstrained. The logic could even apply to central banks charged with the
responsibility of maintaining stable exchange rate regimes; the possibility of a run on
the currency might induce ‘precautionary’ holdings of international reserves that are
larger than a risk-neutral central bank would hold. Of course, these are all ideas that
have appeared, at least informally and sometimes formally, in the relevant literatures.
But this paper provides a general logic which can be applied to clarify precisely when
and why one should expect such effects to emerge.
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