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1. Introduction

Under fairly general conditions, the absence of arbitrage opportunities implies the
existence of a pricing kernel, that is, a stochastic process that assigns values to
future state-contingent payments. Knowing the properties of such processes is
important for asset pricing, and it has been the focus of much recent research.!
Given that many securities are long-lived, the low-frequency or long-term proper-
ties of pricing kernels are important determinants of their prices.

In this paper, we present and estimate a lower bound for the size of the perma-
nent component of asset pricing kernels. The bound is based on return properties
of long-term zero-coupon bonds, risk-free bonds, and other risky securities. We
find the permanent component of the pricing kernel to be very large; its volatility
is about 100% of the volatility of the stochastic discount factor. This result should
provide guidance for the specification of asset pricing models, particularly, if the
objective is to price long-lived securities.

Our results are related to the work by Hansen and Jagannathan (1991). They
use no-arbitrage conditions to derive bounds on the volatility of pricing kernels as a
function of observed asset prices. An important lesson from their research is that,
in order to explain the equity premium, pricing kernels have to be very volatile.
Our bound for the permanent component of the pricing kernel complements this
approach. We find that, because term spreads for long-term bonds are so small
relative to the excess returns on equity, the permanent component of the pricing
kernel has to be very large.

Asset, pricing models link pricing kernels to the underlying economic funda-
mentals. Thus, our analysis provides some insights into the long-term properties
of these fundamentals and into the functions linking pricing kernels to the funda-
mentals. Along this dimension, we have two sets of results.

First, under some assumptions about the function of the marginal utility of
wealth, we derive sufficient conditions on consumption so that the pricing kernel
has no permanent innovations. We present several examples of utility functions
for which the existence of an invariant distribution of consumption implies pric-
ing kernels with no permanent innovations. Thus, these examples are inconsistent
with our main findings. This result is useful for macroeconomics, because for some

LA few prominent examples of research in this line are Hansen and Jagannathan (1991),
Snow (1991), Cochrane and Hansen (1992), Luttmer (1996), and Backus, Foresi, and Telmer
(1998).



questions, the persistence properties of the processes specifying economic variables
matter a great deal. Specifically, for processes with highly persistent innovations,
small changes in the degree of persistence can generate large differences in the
answers to quantitative questions. For instance, on the issue of the welfare costs
of economic uncertainty, see Dolmas (1998) and Alvarez and Jermann (2000a);
on the issue of the volatility of macroeconomic variables such as consumption, in-
vestment, and hours worked, see Hansen (1997); and on the issue of international
business cycle comovements, see Baxter and Crucini (1995). On a related matter,
Nelson and Plosser (1982) argue that many macroeconomic time-series are char-
acterized by nonstationary instead of stationary processes. They interpret their
findings as implying that stochastic variations due to real factors are essential in
explaining macroeconomic fluctuations rather than monetary disturbances, which
are assumed to have short term effects. A large body of literature has developed
statistical tools to address the question of stationarity versus unit roots and to
measure the size of the permanent component. The fact that most economic time-
series are relatively short has been a challenge for that literature.? Our results
complement the direct statistical analysis of macroeconomic time-series by using,
among other things, the information contained in long-term bonds about how
asset markets forecast long-term changes in the pricing kernel.

Second, measuring the size of the permanent component in consumption di-
rectly and comparing it to the size of the permanent component of pricing ker-
nels provides guidance for the specification of functions of the marginal utility of
wealth.? Specifically, we find the size of the permanent component of consumption
to be lower than that of pricing kernels. This suggests the use of utility functions
that magnify the permanent component.

The rest of the paper is structured as follows. Section 2 contains definitions
and theoretical results. Section 3 presents empirical evidence. Section 4 concludes.
Proofs are in Appendix A. Appendix B describes the data sources. Appendix C
addresses a small sample bias.

2See, for instance, Hamilton (1994).
3See Daniel and Marshall (2001) on the related issue of how consumption and asset prices
are correlated at different frequencies.



2. Definitions and Theoretical Results

Here we present our theoretical results. We start by stating some results about
long-term discount bonds. Specifically, we present an inequality linking the term
spread of interest rates to the excess returns on any security. This inequality holds
for pricing kernels that have no permanent innovations. We then consider the case
of a pricing kernel whose innovations have permanent and transitory components,
and we present a lower bound for the size of the permanent component. We
show how to interpret this lower bound for some classes of lognormal processes.
Our second set of results extends the characterization of the stochastic process of
pricing kernels to the properties of their determinants; specifically, consumption.

Let Dy be a state-contingent dividend to be paid at time t+k and V;[D; x| be
the current price of a claim to this dividend. Then, as can be seen, for instance,
in Duffie (1996), arbitrage opportunities are ruled out in frictionless markets if
and only if a strictly positive pricing kernel or state-price process, { M}, exists so

that Iy D
Vt[Dt+lc] = t[ tJ;\Z. Hk] A (2-1)
t

For our results, it is important to distinguish between the pricing kernel, M;,1,

and the stochastic discount factor, My, /M;.> We use R, for the gross return
on a generic portfolio held from ¢ to ¢ + 1; hence,(2.1) implies that

M4

1=F, | =2t
t M,

R (2.2)

We define Ry1 as the gross return from holding from time ¢ to time t + 1 a
claim to one unit of the numeraire to be delivered at time t + k,

Vigr (Lig)
Vi (Leyk)

4As is well known, this result does not require complete markets, but assumes that portfolio
restrictions do not bind for some agents. This last condition is sufficient, but not necessary,
for the existence of a pricing kernel. For instance, in Alvarez and Jermann (2000b), portfolio
restrictions bind most of the time; nevertheless, a pricing kernel exists that satisfyies (2.1).

5For instance, in the Lucas representative agent model, the pricing kernel M; is given by
BtU’ (¢;) , where (3 is the preference time discount factor and U’ (¢;) is the marginal utility of con-
sumption. In this case, the stochastic discount factor, M; /My, is given by BU’ (¢iv1) /U’ ().

Rt+1,k =




The holding return on this discount bond is the ratio of the price at which the
bond is sold, Vi1 (145%), to the price at which it was bought, V; (1;14). With this
convention, V; (1;) = 1. Thus, for £ > 2 the return consists solely of capital gains;
for k£ = 1, the return is risk free. Finally, we define the continuously compounded
term premium for a k-period discount bond as

he (k) = E; {log l%ﬁiﬂ } ,

that is, the expected log excess return on the k-period discount bond.
Based on these definitions, simple algebra allows us to write the term premium
as having two components:

E, .1 [M,
he (k) = {log BtMii1 — Eylog My} + By {log M}

Ey [M; ]

The first component in braces depends only on kernels dated ¢ 4 1, while the last
term contains the dependence on ¢t + k. We now define a condition for pricing
kernels that turns out to be key for the properties of long-term bonds.

Definition 2.1. We say that a pricing kernel has no permanent innovations at
t, if

lim F;<log ————— 2.3
hmoo t{ g By [My1] (2:3)

Under a set of regularity conditions presented in Appendix A, this definition
is equivalent to assuming that

. By [Myy]
1m

— T =1 2.4
k—oo  Ey [ M4k (24)

in distribution. This can be seen intuitively by using Jensen’s inequality and the
law of iterative expectations:

) Eiiq [Myyk] } ) {Et+1 [Miik] }
lim E,{log ———= % < lim log B, { ————— % = log (1).
Koo ! { & By [Myyr] |~ koo & Ey [Myy ] 2 ()

Thus, condition (2.3) can only be satisfied if the ratio of expectations converges
to its (constant) mean. We say that there are no permanent innovations because,
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as the forecasting horizons k become longer, information arriving at ¢ + 1 will
not lead to revisions of the forecasts made with current period ¢ information.
Alternatively, condition (2.3) says that innovations in the forecasts of the pricing
kernel have limited persistence, since their effect vanishes for large k. Formally,
we will use the definition in condition (2.3) because it requires no further auxiliary
assumptions; it also turns out to be easier to check in our examples.

The following proposition states an important result for zero-coupon bonds if
pricing kernels have no permanent component.

Proposition 2.2. If a pricing kernel has no permanent innovations, then
Ry
log | =—— | |, 2.5
<Rt+1,1 (2.5)

Proposition 2.2 states that without permanent innovations, the term spread
is the highest (log) risk premium. Notice that the portfolio with the highest
Ei [log (Ry41)] is known as the growth optimal portfolio.

We present here an intuitive proof of Proposition 2.2 that uses the slightly
stronger notion of no permanent innovations than the one defined in condition
(2.3). A formal proof of Proposition 2.2 is in Appendix A.

The holding return to a k-period discount bond can be written as

Vier (Ligr) _ M; .Et+1[Mt+l€]
Vi (Ltk) My E My

k—oo

where R, is the holding return on any asset.

Rt+1,k =

Thus, the return depends on the stochastic discount factor between time ¢ and
t 4+ 1 and on the innovations about the future in k periods. Using the slightly
stronger version of no permanent innovations as defined in equation (2.4), namely,

lim By [Myi4] _
koo By [Myk] ’

we can write the limiting holding return as

M,
M

Rt—i—l,oo -



Therefore, the price of the long-term bond is risky solely because of the effect from
the valuation at ¢ + 1. There are no innovations about the far future. Clearly,
then, R;11 . commands a positive risk premium because its return is negatively
correlated with the stochastic discount factor M;,,/M,. It remains to be shown
why there can be no return that commands an even higher risk premium. Specif-
ically, the issue at hand is to find the distribution of the return that yields the
highest expected log return subject to satisfying the Euler equation, that is,

M,
max Py log R;11, subject to E; (M;HRtH) =1.

Riy1 t
From the concavity of the log, we can write

M, 1 M, 1
E;log ( ]\Z Rt+1> < log E; ( ]\Z Rt+1> =log (1) =0. (2.6)
Moreover, the left-hand side achieves the highest value, that is, 0, for a return for
which %Rt+1 is constant. With R o = Nﬁtﬂ’ this condition is satisfied for

the asymptotic bond. Because the log is additive and log %t"—l is common to all
returns, Ryi1 o is the highest expected log return of all assets. A return with an
even higher variance will not lead to an increase because the concavity of the log
reduces the mean on the left hand-side of equation (2.6).

Proposition 2.2 essentially restates results presented in earlier studies in such
a way as to allow for our subsequent extensions. Kazemi (1992) shows that in
a Markov economy with a limiting stationary distribution, the return on the
discount bond with the longest maturity equals the stochastic discount factor.
Growth optimal returns were analyzed in Cochrane (1992) and Bansal and Lehmann
(1997). Campbell, Kazemi, and Nanisetty (1999) note the relationship between
the growth optimal portfolio and the return on asymptotic discount bonds.

We illustrate Proposition 2.2 for a kernel whose logarithm follows an infinite
moving-average process with normal innovations. We show that if this process
is covariance stationary, then condition (2.3) is satisfied, that is, there are no
permanent innovations. Assume that

M; = 3 (t) exp (i O‘jgtj) :

=0
with g, ~ N (0,0?), ap = 1, and 3 (-) a function of time. Then
Eyq [Myys] 1

B, log = CHR 2 (1) 02



If M;/( (t) is covariance stationary, so that the variance is finite and independent
of time, we have that limy_, . (ak,1)2 = 0, and the condition of no permanent
innovations is satisfied.® It also follows directly that

0.2

Ehi ()] = =
2

Recall that ¢ is the conditional volatility of the discount factor or, equivalently,
the volatility of the innovations of the pricing kernel. This last equation illustrates
that if a pricing kernel has no permanent innovations, then the volatility of the
innovations of the pricing kernel is tightly linked to the term premium. Hansen
and Jagannathan (1991) and Cochrane and Hansen (1992) show that the condi-
tional volatility of the discount factor is quite large, so a pricing kernel without
permanent innovations will have a very large term premium.

2.1. The size of the permanent component of the pricing kernel

So far, we have focused on kernels that have innovations that are either perma-
nent or not. We now consider the case of a kernel that has both a permanent
and a transitory component. If we assume that the covariance between the two
components stabilizes as maturity increases, then we can obtain a lower bound
on the size of the permanent component of the pricing kernel. If, as a matter
of definition, we further require that the permanent component be a martingale,
then we can obtain a lower bound for the volatility of the permanent innovations
relative to the overall volatility of the stochastic discount factor.

Proposition 2.3. Assume that the kernel has a component with transitory inno-
vations M, that is one for which (2.3) hold, and a component that has permanent
innovations MF | that is one for which (2.3) does not holds, so that

M, = M} MF.
Let vy 41 be defined as

T P
covy | MEy,, ME,]

Ey [Mfy] B [ME,)

Vtt+k =

®Note that with logz ~ N (p,0?) var(z) = exp (2u + 0?) [exp ((72) — 1]. Thus, if logz is
stationary, x is stationary too.



and assume that

(1 + vep1,04k)

klim E, [log a ] = 0 almost surely. (2.7)

+ Vi itk)

Then

Eyi1 |ME
t+1 |: t+l€:| } — {log EtMt+1 — Et log Mt+1} - ht (OO) (28)

~ lim { B, log —— Lk
Ry

> EtlogR -
t+7

— hy (00). (2.9)

Thus, we have first an equality, (2.8), relating the size of the permanent com-
ponent to a Jensen’s inequality effect associated with the next period’s kernel (the
term in braces on the right-hand side). And second, we have an inequality, (2.9),

because this Jensen effect is shown to equal the growth optimal excess return;

thus, F;log %"ﬁ for all Ryy is (weakly) smaller.

Proposition 2.3 holds when the transitory and permanent components are
uncorrelated, but it requires only a much weaker condition. Condition (2.7) states
that the conditional covariance between the transitory and permanent components
stabilizes for long forecasting horizons. To understand condition (2.7) better, we
present a simple example in which it is satisfied. In the example, both components
of the pricing kernel are lognormal with correlated innovations: the permanent is
a random walk with drift, and the transitory is covariance stationary. This type
of process has often been used in the measurement of the size of the permanent

component, for linear time series. See, for instance, Watson (1986) and Cochrane
(1988).

Example 2.4. Assume that
log Mtﬁl = log [ + log MtP + Et}jrl,

0
T T
1Oth+1 = Zai5t+1—z‘u
i=0

where « is a square summable sequence and e and el are i.i.d. normal with
covariance opp. Direct computation gives

(1 + vt t4k)

lo
8 (14 vegtk)

= —Qg_10TP;
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hence, (2.3) is satisfied, since limy_,o, a_1 = 0 because « is square summable.”

The following proposition gives a clear interpretation of the expression mea-
suring the size of the permanent component derived in Proposition 2.3.

Proposition 2.5. Assume that ., = log At“ and m = T 4+ Y2 b1,

where b is a square summable sequence and &; is i.i.d. normal. Assume that
|covy (Tyyky Tk )| < pPB with1 < p <1 and B > 0. Then

B, |ME 1 %
- klim E; {log M} == {Uar (ms) +2  cov (s, Fs_j)} . (2.10)

j=1

Notice that the right-hand side of equation (2.10) is the spectral density of the
discount rate at frequency zero. This seems a very natural representation for the
size of the permanent component.

Now we make an assumption about the process for the permanent component.
In the spirit of Beveridge and Nelson (1981) and Cochrane (1988), we assume that
the permanent component is a martingale. We can then bound the volatility of
the permanent component of the discount factor relative to the total volatility.
For this purpose, we use J (z) = log (F [z]) — F [log (z)] as a measure of volatility,
defined for a positive random variable z.

Proposition 2.6. Assume that the permanent component is a martingale, so
that
ME, =M} -\, with B, =1,

and under the assumptions from Proposition 2.3, then (i)

Ji (M) = Eilog R (o) (2.11)
t+1,1
and (ii)
J(A ) E [1og EUTE ] — E [y (00)]
S LAE! i (2.12)
J (%) E [log Iftﬁll} +J(1/Ri31,1)

"Note that (1+ve4r) = By (ME ME ) /Ee (ME ) B (ME,). Thus, the deterministic
part, represented by (3, is irrelevant.

10



if =B [hy (00)] < J(1/Riga,), or if —E [h (50)] > J (1/Rys11), then J (AL,) /

J (%:—1) > 1, where J; (x141) = log Fixyy 1 — Eylog x4y and J (x41) = log By —
E'log x4,1 are the conditional and unconditional Jensen’s inequality terms associ-
ated with the log of the random variable x.

We will focus on providing a lower bound for .J ()\fﬂ) /J (ijt—gl) as presented in
equation (2.12). That is, if —F [h; (00)] < J (1/Ry41,1) were to hold, the size of the
permanent component would be bounded below by 1; in that case, the right-hand
side of equation (2.12) would be an upper bound for the size of the permanent com-
ponent. Also, note that for the bound in equation (2.11), J ()\fﬂ) =FEJ (Aﬁrl)
due to the assumption that the permanent component is a martingale. Because
of this, taking unconditional expectations on both sides of (2.11), preserves the
inequality.®

To better understand Proposition 2.6, we expand on our measure of volatility
J (z). Clearly, if var (z) = 0, then J () = 0. The reverse is not true, as higher-
order moments than the variance also affect the size of this Jensen measure as
further illustrated below. More specifically, the variance and J (x) are related in
the following way. Consider the general measure of volatility f (Fz)—Ef (z), with
f (+) a concave function. The statistic J (z) is obtained by making f (z) = log z,
while for the variance, f (z) = —z?. In a similar sense, if a random variable z;
is more risky than z,in the Rothschild-Stiglitz way, then J (z1) > J (x2) and, of
course, var (z) > var (x5).°

We can also directly relate the moments of logz to J (z) . If log (z) has mo-
ments of all orders,

Tw) =3 /i

where £ is the jth cumulant for the conditional distribution of log . Cumulants
are related to the moments of the distribution of logx. For instance, ki = puq,
Ko = g, Ky = pig, and kg = pg — 3 (1u2)?, where gy denotes the mean of log

8Note that the presence of a deterministic component in ]V[g_l would not affect any results;
for instance, assuming that E;A\f, /6 =1 would lead to the same equation (2.11) and equation
(2.12).

9Recall that z; is more risky than z3 in the sense of Rothschild and Stiglitz if, for E (z;) =
E (z2), E(f (z1)) < E(f (z2)) for any concave function f.

11



and p; for j > 1 the jth central moment.!® Thus, the Jensen’s effect summarizes
information about higher moments.

To further illustrate the measure .J, note that if = is lognormal, then J (z) =
1/2 var(logz). The next two examples and the subsequent discussion illustrate
the bounds derived in Proposition 2.6.

Example 2.7. Assume that log \{, is normal i.i.d. with variance o} and that
log % is normal with unconditional variance ailug v~ Then

1 R
Je (M) = 50 = Bilog - — hu (o)

41,1
and R
TO8) oy Pllosg] - Blk(co)
M, o2 - i .
J ( Atftl) Opalgm  E [log ﬁ} + 50 e

Thus, the ratio of the Jensen’s effects is just the ratio of the innovation vari-
ance of the permanent component to the unconditional variance of the stochastic
discount factor. On the right-hand side of the inequality, we have used the fact
that, given the lognormality of the stochastic discount factor, the interest rate
is lognormal itself. Beveridge and Nelson (1981) show that it is always possible
to decompose a linear homoscedastic difference stationary process into a random
walk component and a component that is covariance stationary. The example here
falls into this category. Cochrane (1988) focuses on the ratio of the innovation
variance of the random walk component to the variance of the growth rate of the
time series as a measure of the permanent component in GDP.!!

The next example covers a large class of processes typically used in finance.!?

Example 2.8. Assume that )‘id and %}:—1 are conditionally lognormal. Then

1 R
Jy ()\ﬁrl) = Svar: <log )\ﬁrl) > B, [1Og = t+1 ] — hy (00) (2.13)

t+1,1

10Note that for the normal distribution, cumulants are zero after the first two, as can be seen
in our two examples. See Billingsley (1995) for details and Backus, Foresi and Telmer (1998)
for an application to the forward risk premium.

1See Quah (1992) about specifying the permanent component as a random walk.

12The affine processes used in Backus, Foresi, and Telmer (1998) fall into this category.

12



and

06) Bl o) | Plesi] el
) R 7 o ]

The bound for the absolute size of the permanent component, equation (2.13),
has again a straightforward interpretation as limiting the conditional variance of
the permanent component. We have defined a slightly different bound for the
relative size of the permanent component. Indeed, (2.14) is now for the mean
of the conditional variance as opposed to the unconditional variance in equation
(2.12). The right-hand side also does not require, in this case, a term related to

interest rate volatility. Note that with conditional lognormality, Fvar, (log %"—)

— var (log %I—_) — var (Et log ) for the more general case, EJ; (T["’—l) =
7 ( % ) _J ( E, Mt+1) While lnterest rate data allows us to estimate J (Et Mt“)

directly, and for the lognormal case, with conditional lognormality, in-

2
Tlog Rey1,17
terest rates cannot pin down var (Et log %"—) Thus, we have the modification
in the definition of the bound.'?

2.1.1. Yields and forward rates: Alternative measures of term spreads

For empirical implementation, we want to be able to extract as much information
from long-term bond data as possible. For that reason, we show here that for as-
ymptotic zero-coupon bonds, the unconditional expectations of the yields and the
forward rates are equal to the unconditional expectations of the holding returns.

Consider forward rates. The k-period forward rate differential is defined as the
rate for a one-period deposit k periods from now relative to a one-period deposit

Nnow:
Vtk+1) 1

k)= —1o : — log
o) g( o) oy L

Forward rates and expected holding returns are also closely related. They both
compare prices of bonds with a one-period maturity difference, the forward rate
does it for a given ¢, while the holding return considers two periods in a row.

3With conditional lognormality, var (Et log =7+ Mt ) = var <logE & 2var (log Mgy ))

Because vary (log ﬁ) is not assumed to be constant, interest rates, Etﬁ, are not directly
M1+1

informative for E;log =

13



Proposition 2.9. Assume that bond prices have means that are independent of
calendar time, so that E (V) = E (V,y) for every t and k. Then

Elh (k)] = E[fi (k= 1)].

Note that there is a time shift because the holding return on a k-period bond
is for the purchase of a k-period bond that becomes a (k — 1)-period bond when it
is sold. For the k-period forward, the corresponding rate compares dates between
k and k 4 1 periods from now.

We define the continuously compounded yield differential between a k-period
discount bond and a one-period risk-free bond as

Vi [Le44] >

6= (G

and the limiting yield differential as

1
Yt (00) = lim log (Lﬂ]me) .
Fmee A\ (Va [Lig])
Proposition 2.10. Average forward rate differentials equal yield differentials

1 k—1

wk) =3 4G,

and the limiting rates are equal; that is,

lim y, (k) = lim f, (k)

k—oo

if the two limits exist.

The proof of this proposition is trivial, because the forward rate is defined as
the difference in price between a (j + 1)- and a j-period zero-coupon, while the
yield is just the per period discount of the price of the k-period bond relative to
the current one-period bond.

The next proposition shows that under regularity conditions, the three mea-
sures of the term spreads are equal for the limiting zero-coupon bonds.

14



Proposition 2.11. If the limits h; (©), f;(00), and y; (00) exist, the uncondi-
tional expectations of holding returns are independent of calendar time; that is,

Elog Rit1%x] = Ellog Rry1y] forallt, 7,k
and holding returns and yields are dominated by an integrable function,
E[hy (00)] = E[f; ()] = E [y1 (00)] .

In practice, these three measures may not be equally easy to estimate for
two reasons. One is that the term premium is defined in terms of the conditional
expectation of the holding returns. But this will have to be estimated from ex post
realized holding returns, which are very volatile. Forward rates and yields are,
according to the theory, conditional expectations of bond prices. While forward
rates and yields are more serially correlated than realized holding returns, they
are substantially less volatile. Overall, they should be more precisely estimated.
The other reason is that, while results are derived for the limiting maturity, data is
available only for finite maturities. All the previous results could have been derived
for a finite k£ by assuming that limiting properties are reached at maturity k, except
Propositions 2.10 and 2.11. In these cases, yields are equal to averages of forward
rates (or holding returns), and the average only equals the last element in the
limit. For this reason, yield differentials, y, might be slightly less informative for
k finite than the term spreads estimated from forward rates and holding returns.

2.2. Consumption

In many models used in the literature, the pricing kernel is a function of current
or lagged consumption. Thus, the stochastic process for consumption is a deter-
minant of the process for the pricing kernel. In this section, we present sufficient
conditions on consumption and the function mapping consumption into the pric-
ing kernel so that pricing kernels have no permanent innovations. We are able to
define a large class of stochastic processes for consumption that, combined with
standard preference specifications, will result in counterfactual asset pricing impli-
cations. We also present two examples of utility functions in which the resulting
pricing kernels have permanent innovations because of the persistence introduced
through the utility functions.!4

14n Section 3.3, we present evidence that the permanent components of asset pricing kernels
are mainly real, as opposed to nominal (meaning driven by uncertainty in the aggregate price
level). For this reason, we omit nominal risk in this section.
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As a starting point, we present sufficient conditions for kernels that follow
Markov processes to have no permanent innovations. We then consider consump-
tion within this class of processes. Assume that

My =B () f (s1),

where f is a positive function and that s; € S is Markov with transition function

Q:
Pr(s;1 € Alsi =35)=Q (s, A).

We assume that () has an invariant distribution A* and that the process {s;} is
drawn at time ¢ = 0 from A*. In this case, s; is strictly stationary, and the
unconditional expectations are taken with respect to A*. We use the standard
notation,

(T7) ()= [.£ ()@ 5.9,

where Q" is the k-step ahead transition constructed from Q.

Proposition 2.12. Assume that there is a unique invariant measure, \*, and

that
(7"1f) ()

(757 (5) > >0 for all k.

In addition, if either (i)
lim (T"£) (s) = / FAN >0
or, in case limy_, (T’“f) (s) is not finite, if (ii)
Jim [(T4F) () = (T°F) ()] < AGs)

for each s and s', then

Eiiq [Myy]

=0.
By [M; 1]

klim FEilog

Remark 1. For a set of conditions leading to the existence of a unique invariant
measure, see Stokey and Lucas (1989, Section 11).
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Remark 2. The uniform lower bound, [, is slightly stronger than the strict pos-
itivity implied by no-arbitrage. This bound is needed to pass the limit through
the conditional expectation operator.

As an example, consider the pricing kernel as a log-linear autoregressive process
log My = log B (t) + plog My + €441,
with € ~ N (0,0?). Simple calculations show that

Eiy1 [Myyx] 1 o1y 2

FEilog—————— = — o”.
YR TE M 27
If |p| < 1, limg_o E; log%}a]‘i} =0, while if p = 1, E; log %}:}ﬂ = —%02 for

any k.1 Thus, log M being covariance stationary with a deterministic trend is a
sufficient condition for not having permanent innovations. For the nonstationary
process with the unit root, innovations are permanent.!®

We are now ready to consider consumption explicitly. Assume that

Co=1)ce=1(t)g(s1),

where ¢ is a positive function, s; € S is Markov with transition function @), and
7 (t) represents a deterministic trend. We assume (a) that a unique invariant
measure \* exists. Furthermore, using the standard notation

TN (A) = [ QF (5. 4) A (ds).
we assume (b) that

Jim T\ (A) = \* (A), for all A.
Proposition 2.13. Assume that My = 3 (t) f (¢, z¢), with f (+) positive, bounded,
and continuous and that (¢, x;) = s, satisfies properties (a) and (b) with f (-) > 0
with positive probability. Then M; has no permanent innovations.

5Note that this process does not satisfy the lower bound used as a regularity condition in
Proposition 2.12.
161t is straightforward to show that for a multivariate log-linear process, limp_ oo

Elog % = 0, unless there is at least one unit root.
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An example covered by this proposition is CRRA utility, where f (¢;) = ¢; 7,
with ¢ > ¢, > ¢ > 0. Note that the bounds might not be necessary. For instance,
if logc;, = plogey 1 + &, with e ~ N (0,0%) and |p| < 1, then, log f (¢;) =
—~vlog ¢, and direct calculations show that condition (2.3) defining the property
of no permanent innovations is satisfied. A counter example, in which condition
(2.3) is violated and that thus has a better chance of explaining term structure and
return behavior would be a consumption process that does not have an invariant
distribution, for instance, if p = 1.

For the CRRA case, even with consumption satisfying properties (a) and (b),
condition (2.3) could fail to be satisfied because ¢; " is unbounded if ¢; gets ar-
bitrarily close to zero with large enough probability. While this case cannot be
ruled out a priori, this property would not seem to be a desirable feature, because
infinitely large marginal utility is more a technical condition than a representation
of consumer behavior. We are not aware of economic applications where equation
(2.3) is violated while consumption is assumed to satisfy properties (a) and (b).

2.2.1. Examples with additional state variables

There are many examples in the literature in which marginal utility is a function
of additional state variables; Proposition 2.13 also applies in these cases. Promi-
nent examples are models in which the representative agent utility displays habit
or durability. We present three cases below. There are also examples of pref-
erence specifications in which, even with consumption satisfying the conditions
required for Proposition 2.13, the additional state variables do not have invariant
distributions, and, thus, innovations to pricing kernels have permanent effects.
We present two examples of this type.

For the following examples we assume that aggregate consumption satisfies
the assumptions of Proposition 2.13. In addition, we assume that ¢; € [¢, ¢| and
that the trend is geometric, 7 (t) = 7*. For the following three cases, s; = (¢, 2¢),
f (), and B (t) = (87" 7)" will then satisfy the assumptions of Proposition 2.13.

First, Ferson and Constantinides (1991) study a model in which the utility of
the representative agent is given by

0o 1 J 1=y
Ey Zﬁtl— (Ct - Zajct—j) )
j=1

=0 -7
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where o's are constant coefficients. We can map the pricing kernel of this model
into the Markov case as

J ' -
fle,z) = (ct — ZajT_Jct7j>

J
Z (Br)’ oz]Et

j=1

—
(Ct+] Z T Ct+r])
r=1

for
Tt = (Ct_1,Ct—2y -y Ct—g) -
Second, a related habit model is the one in which each agent compares her or
his consumption with the aggregate consumption. Abel (1999) studies the case

where the utility is given by
Z ﬁt < Ct )1—7
C’YO Cvt’Yl 1 )

where ?’t denotes average aggregate consumption and v, o, v1 > 0. In equilib-
rium, C; = C}. We can then map the pricing kernel of this model into the Markov
case as

Eq

vy (1—
f (Ct,mt) C — C*’)’o(l ’y) (T C 71) '71( ’Y)

for z; = ¢;_;.
Third, Campbell and Cochrane (1999) study a version of external habit where
the utility of each identical agent is given by

> 1 _
Ey [Z fl——(C— X)) ”] :
i 1=
where X; is taken as given by each agent and evolves as

X1 = C’t+1 (1 - yt+1)
logyis1 = (1— )9+ dlogy, + h(ye) [10g Ciy1 — Eyilog @H}

for some continuous and decreasing function h, constants 0 < ¢ < 1, and y <
0. Using that in equilibrium C; = C;, we can map the pricing kernel of this model
into the Markov case as

fle, o) = (e (1 —ye)
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for z; = y;.

We now present two examples of representative agent economies in which
preferences are nonseparable in such a way that the pricing kernel does have
permanent innovations even if detrended aggregate consumption is iid. In the
first example, preferences are given by expected discounted utility displaying an
extreme form of habit formation. In the second example, preferences are given by
nonexpected utility.

For the first example, the representative agent’s preferences are given by

00 1 1—
t ®
Ey Lz;ﬂ — (C/x) ]
with v > 0, and X} is the external habit stock. Thus, the pricing kernel is
Mt — ﬁtCt*VXf’(Vfl)‘

We assume that detrended consumption is iid, so that C; = 7'c; with ¢; iid. The
stock of habit evolves as

log X;,1 = log X; + log C;. (2.15)

In equilibrium, C; = C;, so that

_ _ P(v=1)

Thus, after some algebra, we can write

By My orq

EMyx E, (C’?_ﬂfl)) '

Hence, if ¢ > 0 and v # 1, then the pricing kernel has permanent innovations.
This result is not surprising, given the extreme amount of persistence assumed in
the law of motion of the habit stock in equation (2.15).

For the second example, the representative agent has preferences represented
by nonexpected utility. In particular, this class of preferences can be represented
in a recursive way as

Uy = ¢ (ct, BUita)
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where U, is the utility starting at time ¢ and ¢ is an increasing concave function.
For this utility function, risk aversion does not need to equal the reciprocal of
the intertemporal elasticity of substitution. Epstein and Zin (1989) and Weil
(1990) develop a parametric case in which the risk aversion coefficient, 7, and the
reciprocal of the elasticity of intertemporal substitution, p, are constant. They
also characterize the stochastic discount factor M, /M, for a representative agent
economy with an arbitrary consumption process {C;} as

Mt+1 _ [ﬁ (C’t+1>—9‘|9 [ 1 ‘|(1—9) (2 16)
M, Ci R .

with
P,
L=p
where (3 is the time discount factor and Rf,  the gross return on the consumption
equity, that is the gross return on an asset that pays a stream of dividends equal
to consumption {C}}.

Inspection of (2.16) reveals that a pricing kernel M, for this model is
My = po0FY Y:ti_ll Ct_ffy (2.17)
where
Yiin= R, Y

and Yy = 1.

The next proposition shows that the nonseparabilities that characterize these
preferences for 6 # 1 are such that, even if consumption is iid, the pricing kernel
has permanent innovations. More precisely, assume that consumption satisfies

Cy = 1ley, (2.18)

where ¢, € [c,¢] is iid with cdf F. Let V,® be the price of the consumption equity,

so that .
c V;+1 + Ct+1

t+1 = Ve :
We assume that agents discount the future enough so as to have a well-defined
price-dividend ratio. Specifically, we assume that

o 1—y 1/0
1—p - /
mnax B {/ (c) dF (c)} <L (2.19)



Proposition 2.14. Let the pricing kernel be given by (2.17), let the detrended
consumption be iid as in (2.18), and assume that (2.19) holds. Then the price-
dividend ratio for the consumption equity is given by

C

t v—1
— = C
o = v
for some constant v > 0; hence, V,¢/Cy is iid. Moreover,

1 (1?1
Tpp1p = Erpa My = <1 T yan ) :

thus the pricing kernel has permanent innovations, that is E;logxiy1, < 0, iff
0 # 1, v # 1, and ¢; has strictly positive variance.

(2.20)

Note that § = 1 corresponds to the case in which preferences are given by
time separable expected discounted utility; and hence, with iid consumption, the
pricing kernel has only temporary innovations. Expression (2.20) also makes clear
that for values of 6 close to one, the size of the permanent component is very
small.

3. Empirical Evidence

In this section, we present our estimates for the size of the permanent component
of pricing kernels. We use several data sets, notably U.S. zero-coupon bonds and
coupon bonds, and U.K. coupon bonds. Additional results are presented. First,
to illustrate our findings, we present two simple examples of processes for pricing
kernels. Second, we show that the permanent component from inflation is small,
suggesting that most of the permanent effects in pricing kernels are real. Third,
we measure the size of the permanent component of consumption directly from
consumption data.

3.1. The size of the permanent component

We estimate here the lower bound of the size of the permanent component of
pricing kernels that was derived in Proposition 2.6:

J(\) g E [log | — B [hy (0)]

] : (3.1)
J (%) B [log %ﬁ} +J(1/Ret11)
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Tables 1, 2, and 3 contain the estimates of the right-hand side of (3.1) obtained
by replacing each expected value with its sample analog for different data sets.
In Table 1, we present estimates using zero-coupon bonds for various maturi-
ties, k, of 25 and 29 years, and for various term spread measures. We find that the
size of the permanent component is usually about 100%; none of our estimates are
below 75%. For each maturity k, we present four panels, A, B, C, and D, where we
use forward rates, holding returns, and yields to estimate E [h; (00)], since, as we
have shown above, under regularity conditions, E [f; (k)] and E [y, (k)] converge
to E [h (00)] for large k. The data set is monthly, covering the period 1946:12
to 1999:12. In panels A, B, and C the holding period for the aggregate equity
portfolio is one year, so the returns used in the estimation overlap. In panel A,
forward rates are computed for a yearly period, that is, by combining the prices
of zero-coupon bonds with a difference in maturity of one year. In panel B, the
holding period returns on bonds are calculated using a yearly holding period. In
panel D, the holding period is one month, so the returns do not overlap. Standard
errors of the estimated quantities are presented in parentheses; for the size of the
permanent component, we use the delta method. The variance-covariance of the
estimates is computed by using a Newey and West (1987) window with 36 lags
to account for the overlap in returns and the persistence of the different measures
of the spreads.!” When yields and forward rates are used to measure the term
spreads, our estimates of the size of the permanent component are all close to
100%, with standard errors of 10% and lower. One factor that affects our esti-
mates is the choice of the risk-free rate. When we use a holding period of one year,
as in panels A, B, and C, we use an annual rate (the yield on a zero-coupon bond
maturing in one year) as the risk-free return. For comparison, panel D presents
results with monthly rates. Since monthly rates are about 1% below the annual
rates, all excess returns increase by approximately that same amount, leading to
a slight reduction in the estimate of the size of the permanent component.'® Note

ITFor maturities longer than 15 years, we do not have a complete data set for zero-coupon
bonds. In particular, long-term bonds have not been consistently issued during this period. For
instance, for zero- coupon bonds maturing in 29 years, we have data for slightly more than half
of the sample period, with data missing at the beginning and in the middle of our sample. The
estimates of the various expected values on the right-hand side of (3.1) are based on various
numbers of observations. We take this into account when computing the variance-covariance of
our estimators. Our procedure gives consistent estimates as long as the periods with missing
bond data are not systematically related to the magnitudes of the returns.

8Note that our data set does not contain the information necessary to present results for
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that by estimating the right-hand side of equation (3.1) as the ratio of sample
means, our estimate is consistent but biased in small samples because the denom-
inator has nonzero variance. In Appendix C, we present estimates of this bias.
They are quantitatively negligible, on the order of about 1% in absolute value
terms. Finally, column 6 of Table 1 contains the asymptotic probability that the
term spread is larger than the log equity premium. This would be consistent with
a pricing kernel with no permanent innovations. The probability is very small, in
most cases well below 1%.

In Table 2, we attempt to take into account that equation (3.1) holds with
equality if R, is the growth optimal return. In particular, we select portfolios to
maximize F [log %‘ﬁ]. All the results in this table are for maturity k equal to 25
years. As a benchmark case, panel A reproduces the results of Table 1 using an
aggregate equity portfolio to measure R;,;. Panels B and C use different equity
portfolios to measure R;,;. In panel B, we present results for the return R;,; on
a portfolio that combines aggregate equity with the risk-free asset. Depending on
the choice of the risk-free rate, E [log %‘ﬁ} is up to 9% larger than the unlever-
aged log equity premium presented in p&fnel A. Here, the investor is allowed to
choose the amount of the aggregate market in her or his portfolio to maximize
the log excess return. The investor typically chooses an equity share that is larger
than 1, either 2.14 or 3.47 depending on whether the holding period is yearly of
monthly. As a first-order effect, this leverage increases the mean return, but given
that the log is a concave function, the ensuing increased volatility contributes neg-
atively to the log excess return. As an illustration, assume that the return on the
market, R, is lognormal and that the investor is allowed to choose the fraction,
w, of her or his portfolio, R, that is allocated to the market then

(s(5)) - 2(sle [22)

1
= logE (14 wr)— Fvar (log [1 + wr])
2
~ wkE (r)— %UCLT (r),
where we have used log (1 + ) ~ z and r = RA;;RJ‘; thus, the optimal share is
given by w* ~ FE (r) /var (r)."? In panel C, we let the investor choose from the

monthly holding periods for forwards rates and holding returns.
YNote that we do not assume lognormality for the results presented in Table 2.
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menu of the 10 CRSP size decile portfolios, which leads to a log excess return of
up to 22.5%.

Table 3 extends the sample period to over 100 years and adds an additional
country, the United Kingdom. For the United States, given data availability, we
use coupon bonds with about 20 years of maturity. For the United Kingdom,
we use consols. For the United States, we estimate the size of the permanent
component between 78% and 93%, depending on the time period and whether
we consider the term premium or the yield differential. Estimated values for the
United Kingdom are similar to the U.S. numbers.

A natural concern is whether 25- or 29-year bonds allow for good approxima-
tions of the limiting term spread, E [h; (c0)]. From Figure 1, which plots term
structures for three definitions of term spreads, we take that the long end of the
term structure is not increasing. This suggests, if anything, that our estimates of
the size of the permanent component presented in Tables 1 and 2 are on the low
side. In this figure, the standard error bands are wider for longer maturities, which
is due to two effects. One is that spreads on long-term bonds are more volatile,
especially for holding excess returns. The other is that for longer maturities, as
discussed before, our data set is shorter.

Note that for the bound in Equation (3.1) to be well defined, specifically
J(1/Ryy11), we have assumed that interest rates are stationary.”’ While the
assumption of stationary interest rates is standard (for instance, in Ait Sahalia
(1996)), many studies report the inability to reject unit roots (for instance, Hall,
Anderson, and Granger (1992)). To some extent, if interest rates were nonsta-
tionary, this would seem to further support the idea that the pricing kernel itself
is nonstationary.

3.2. Examples of pricing kernels

To illustrate quantitative findings, we present here two lognormal examples. The
first example is a process for the pricing kernel that is roughly consistent with
the overall volatility and persistence as estimated in subsection 3.1. The second
example illustrates the power that bond data have to distinguish between similar
levels of persistence.

For our first example, assume the following process for the pricing kernel M =

20Equation (2.11), which defines a bound for the size of the permanent component in absolute
terms, does not require this assumption.
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MTM?T | with
log M” =log M[” | +¢f, and log M} = plog M}" | + &7,

where €} ~ N (0,0%). Assume that the innovations of the permanent and transi-
tory components are uncorrelated, that is, 0%, = 0. Then interest rate behavior
is determined exclusively by the transitory component M. The following simple
calculations show that this process can be made roughly consistent with the evi-
dence about interest rates, growth optimal returns, and the size of the permanent
component.

Simple calculations show that the volatility of the short rate and its autocor-

relation are given by

1—
var (log Ry 1) = FZU%, and (3.2)
corr (log Ry1,log Ri11) = p. (3.3)

For the postwar period, the standard deviation of 1-month rates is about 2.9%,
and the first-order serial correlation is about 0.968, implying that p = 0.968
and 0% = 0.05.2! Under the stated assumptions, the variance of the log of the
stochastic discount factor can be written as

M, 2
var <log ]\?1> = 0'123 + 175 0'%. (3.4)
t P

As shown in Proposition 2.3

Mt+1> R{9
J = Flog——+ J(1/R
(57) = Bloa ot 7 (1/ i),

where Rgol is the growth optimal return. Thus, with lognormality,

M, R{9
var (log ]\Zl> =2-FElog tt—+111 + var (log Ryt11) -
+ k)

21 An alternative way to pin down the volatility of the innovation of the stationary component
would be to use the term premium for a long-term discount bond. The implied value of o2 for
a term premium of about 1% for a 25-year bond would be even smaller for the given p. We
discuss this case below.
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Based on our estimates in Table 2, the growth optimal excess return should be at

least 20%, so that var (log %) = 0.4; thus,

= 0.873.%2

M. 0.4 —2/(1.968) - 0.05
afp/var (log ]\Zl> - /(0 ; )

Note that our measure of the size of the permanent component, as presented in
this paper and restated in equation (2.12), is, in general, not constrained to be
bounded by 1. This is the case, however, in the example here with uncorrelated
innovations. To summarize, we have a simple example of a process that replicates
the empirical magnitudes of the volatility of the stochastic discount factor and the
volatility and first-order serial correlation of the short rate, as shown in equations
(3.2), (3.3), and (3.4). This process also implies a permanent component of a
magnitude similar to those estimated in the subsection 3.1.

The second parametric example illustrates that even for bonds with maturities
between 10 and 30 years, one can obtain strong implications for the degree of
persistence. Alternatively, the example shows that, in order to explain the low
observed term premia for long-term bonds at finite maturities with a stationary
pricing kernel, the largest root has to be extremely close to 1.

Assume that

log M1 =log 3+ plog My + 441

with g,41 ~ N(0,02). Simple algebra shows that

o2
hik) = (1-p"Y). (3.5)
This expression suggests that if the volatility of the innovation of the pricing ker-
nel, o2, is large, then values of p below 1 may have a significant quantitative effect
on the term spread. In Table 4, we calculate the level of persistence, p, required
to explain various levels of term spreads for discount bonds with maturities of 10,
20, and 30 years. Consistent with our estimates of a growth optimal return of at
least 20%, as discussed in the previous example, we have that

Mt+1>_ 2
M,

~

2
== o. X0
1+p8 o

0.4 = var (log

22Note that we have omitted var (log Ri41,1) because it is a mere 0.03°2 = 0.0009.
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where the last approximate equality holds for p close to 1. As is clear from Table
4, p has to be extremely close to 1. Otherwise, as shown in equation (3.5), p

raised to the power of 2 (k — 1) with k equal to 10, 20, or 30 will vanish and & (k)
will be very large.

3.3. Nominal versus real pricing kernels

Because we have so far used bond data from nominal bonds, we have implicitly
measured the size of the permanent component of nominal pricing kernels, that
is, the processes that price future dollar amounts. We present now two sets of
evidence showing that the permanent component is to a large extent real, so that
we have a direct link between the size of the permanent component of pricing
kernels and real economic fundamentals.

First, assume, for the sake of this argument, that all of the permanent move-
ments in the (nominal) pricing kernel come from the aggregate price level. Specif-
ically, assume that M; = (P%) MT, where P, is the aggregate price level. Because,
P, is directly observable, we can measure the size of its permanent component
directly and then compare it to the estimated size of the permanent component
of pricing kernels reported in Tables 1, 2, and 3. It turns out that the size of the
permanent component in F; is estimated at up to 100 times smaller than the size
of the permanent component in pricing kernels. This suggests that movements in
the aggregate price level have a minor importance in the permanent component, of
pricing kernels, and thus, permanent components in pricing kernels are primarily
real.

The next proposition shows how to estimate the size of the permanent com-
ponent based on the J (.) measure.

Proposition 3.1. Assume that the process X; can be decomposed into a perma-
nent component XF > 0 and a transitory component X' > 0, so that (i)

X, = XFx?
(ii) the permanent component is a martingale, that is,
B, [X[,| = xF for all t,
(iii) the process X} has no permanent innovations, that is,

—Et“XtTﬂ —0

Jm E llog EXT
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Additionally, assume the following regularity conditions: (a) the covariance be-
tween X! and X[ stabilizes, that is,

(1 + Ut+1,t+k)

= 0 almost surel
(14 veese) ] Y

klim B, llog

with v, ;1 defined as
covy [Mtﬁk, Mﬁk}

Ey M7, ] B[ ME,)

Vtt+k =

(b) X—;("t'—l is strictly stationary, (c) that the following limit exists:

|

Xitk Xivk—1

— log E;

lim F [log E;

k—o0

t t

and (d)

1B X\

thj,_l R T 1 Xt+k
J(?? = Jim 27 (5¢*). (3.6)

The usefulness of this proposition is that J (X,frl /XF ) is a natural measure
for the size of the permanent component. However, it cannot directly be esti-
mated if only X; is observable, but X* and X* are not observable separately.
Proposition 3.1 shows that limy_, %J (Xi11/X}) is an equivalent measure, under
some regularity conditions, and clearly, it can be estimated with knowledge of
only X;. This result is analogous to Cochrane (1988), with the difference that he
uses the variance as a measure of volatility.

Cochrane (1988) proposes a simple method for correcting for small sample
bias and for computing standard errors when using the variance as a measure
of volatility. Thus, we will focus our presentation of the results on the variance,
having established first that, without adjusting for small sample bias, the variance
equals approximately one-half of the J(.) estimates, which would suggest that
departures from normality are second-order. Overall, we estimate the size of the
permanent component of inflation to be below 0.5% based on data for 1947-99

Then
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and below 0.8% based on data for 1870-1999. This compares to the lower bound
of the (absolute) size of the permanent component of the pricing kernel,

ME R
J ( Mt“) >F [log HLhy(o0)] (3.7)

P
t t+1,1

that we have estimated to be up to about 20% as reported in column 5 in Tables
1, 2, and 3.

Table 5 contains our estimates of the permanent component of inflation. The
first two rows display results based on estimating an AR1 or AR2 for inflation and
then computing the size of the permanent component as one-half of the (popula-
tion) spectral density at frequency zero. For the postwar sample, 1947-99, we find
0.21% and 0.15% for the AR1 and AR2, respectively. The third row presents the
results using Cochrane’s (1988) method that estimates var (log X/ XE ) using
limy o (1/k) var (log Xiyx/X:). For the postwar period, the size of the perma-
nent component is 0.43% or 0.30%, depending on whether k = 20 or 30.2% The
table also shows that J (X, x/X;) /var (log X;1r/X:) is approximately 0.5. Note
that the roots of the process for inflation reported in Table 5 are not close to one,
supporting our implicit assumption that inflation rates are stationary.

A second view about the size of the permanent component can be obtained
from inflation-indexed bonds. Such bonds have been traded in the United King-
dom since 1982. Considering that an inflation-indexed bond represents a claim
to a fixed number of units of goods, its price provides direct evidence about the
real pricing kernel. However, because of the 8-month indexation lag for U.K.
inflation-indexed bonds, it is not possible to obtain much information about the
short end of the real term structure. Specifically, an inflation-indexed bond with
outstanding maturity of less than eight months is effectively a nominal bond; in
general, the last eight months of every payout is effectively uninsured against
inflation risk. For our estimates, this implies that we will not be able to obtain
direct evidence of E (log R¢1+11) and J (1/R41 1) in the definition of the size of the
permanent component as given in equation (2.12). Because of this, we focus on
the bound for the absolute size of the pricing kernel as given in equation (3.7). For
the nominal kernel, we use average nominal equity returns for Flog R;,, and for

ZCochrane’s  (1988)  estimator is  defined as Gz = 1 (ﬁ) (T+c+1)
. Z;‘-F:k [Jgj —Tj_f — % (xr — xo)]g, with T the sample size, x = log X, and standard errors

given by (%%)0'5 G2,
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Elog Ri11 0, we use forward rates and yields for 20 and 25 years, from the Bank
of England’s estimates of the zero-coupon term structures, to obtain an estimate
of the right-hand side of

ML,
J (M—tp) > E[log Rey1 —log Rt 0] -
For the real kernel, we take the average nominal equity return minus the average
inflation rate to get Elog R1; for E'log Ry 11+, We use real forwards rates and
yields from a zero-coupon term structure of inflation-indexed bonds. Thus, the
differences in size between nominal and real permanent components are given
by the differences between, on one side, the average nominal rate, and on the
other side, the average real rate plus average inflation. To the extent that there
is a positive risk premium compensating investors for inflation risk in long-term
nominal bonds, the size of the permanent component in real kernels will be larger
than for nominal kernels.

Table 6 reports estimates for nominal and real kernels. The data are further
described in Appendix B. Consistent with our finding that the size of the perma-
nent component of inflation is very small, the differences in size of the permanent
components for nominal and real kernels are very small. In fact, for three out
of the four point estimates, the size of the permanent component of real kernels
is larger than the estimate for the corresponding nominal kernels; for the fourth
case, they are basically identical. Compare columns (3) and (6). The correspond-
ing standard errors are always larger than the differences between the results for
nominal and real kernels.

3.4. The size of the permanent component in consumption

Following our analyses in Section 2.2 of how various utility functions relate the
pricing kernel to consumption, we present here estimates of the size of the perma-
nent component of consumption, obtained directly from consumption data. We
end up drawing two conclusions. One is that the size of the permanent compo-
nent in consumption is about half the size of the overall volatility of the growth
rate, which is lower than our estimates of the size of the permanent component
of pricing kernels. This suggests that, within a representative agent asset pricing
framework, preferences should be such as to magnify the size of the permanent
component, in consumption. The other conclusion, as noted in Cochrane (1988)
for the random walk component in GDP, is that standard errors are large.
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Our estimates are presented in Figures 2 and 3 for the periods 1889-1997
and 1946-97, respectively. The first panel shows J (Xyyx/X¢) /var (log X/ Xt)
to be close to 0.5, suggesting, as in subsection 3.3 for inflation, that we can
safely use Cochrane’s method based on the variance. The second panel shows the
estimates of (1/k)var (log X;1r/X:)/var (log X;11/X;) with associated standard
error bands. For the period 1889-1997, shown in Figure 2, the estimates seem to
stabilize at about 0.5 and 0.6 for k£ larger than 15. For the postwar period, shown
in Figure 3, standard error bands accommodate any possibly reasonable number.

4. Conclusions

In this paper, we derive and estimate a lower bound for the size of the permanent
component of asset pricing kernels. The bound is based on rates of long-term
bonds. These rates contain the market’s forecasts for the growth rate of the
marginal utility of wealth over the period corresponding to the maturity of the
bond. We find that the permanent component amounts to about 100% of the
total volatility of the stochastic discount factor. Standard error bands around
this estimate are tight. We also relate the persistence of pricing kernels to the
persistence of their determinants, notably consumption. We present sufficient
conditions for consumption and preference specifications to imply a pricing kernel
with no permanent innovations. We present evidence that the permanent compo-
nent of pricing kernels is real to a large extent. Finally, we present some evidence
that the size of the permanent component in consumption is smaller than the
permanent component in pricing kernels. Within a representative agent frame-
work, this evidence points toward utility functions that magnify the size of the
permanent component.
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Appendix A: Proofs
Definition 2.1. The following proposition shows that, under some regularity con-
ditions, the notion of no permanent innovations can be stated in several equivalent
ways.
Proposition A.1. Assume that (i) zx > 0, E[zg] = 1 for all k, (ii) zx — z in
distribution (converges weakly), and (iii) 0 < z < 2, < & < oo for all k. Then
the following conditions are equivalent:

a) limy, F [log zx] =0,

b) limyvar[log zx] = 0,

¢) xx — 1 in distribution (weak) or z = 1,

d) limgvar[z,] = 0.
Proof. By (ii)

lim B/ (2,) = Bf (x)

for any continuous function f : [z, Z] — R. Hence,

lilgn Elogzy] = Ellogx],
lilrgn var [logzy] = var[logz],
lillgn var [zy] = var[z].
By (i) and the previous result, Fxz = 1. Since log is strictly concave, by

Jensen’s inequality,
Elogz <log Fx =log Ex =1log (1) =0

with strict inequality if and only if var[x] > 0. Since log is strictly increasing,
var[z| = 0 if and only if var[log z] = 0. Finally, var[z] > 0 if and only if x # Ex =

1 with positive probability.
Proposition 2.2. By definition,
Byp1[Miy ]
i B (M
Et[ﬂ/ft+k] Mt
M,

L Riy1k L
hi (00) = klljg(} {Et (log [RHLID} = thI{.lo {Et log

— klir?o {Et (log [Eﬁi\f%] bEjtt[[J\]\j:/:H) }

= log By [My 1] — Eylog My + kh_)fgo {Eilog By [Myy] — log By [My 4]} -
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Without permanent innovations, we have,

ht (OO) = lOg Et [Mt+1] — Et log Mt+1, (Al)
M, M, M,
= log E; ]\Zl — Eilog ]\Zl = —log Ryy11 — E;log ]\Zl.
For any risky gross asset return R;;;, we have that
M4
1=FE|R
t t+1 Mt 9
so that
M,
0 = log(1l)=log (Et Ryyq il )
M,

v

M,
) + By flog (Rus)],

E, |l R
t[og( t+1 M,

M.
=F; [log ( A}“)
t

where the inequality follows from the concavity of log. Then

M,
()
t

Combining this expression with equation (A.1), we obtain

> E;[log (Riy1)] -

hi (00) > Ey [log (Ryy1)] —log Riyia

for any asset return R;.;.
Proposition 2.3. First note that

COV¢1 [Mtjjrk’ Mt}ik} )
Ein [Mtj-;-k:| B [Mtljrk}

= Epur [M}] Brot [ME] (14 v e0)

Epa1 [Mex] = Epax [M},)] Bv [ME] (1+

and likewise
Et [Mt+l€] = Et [Mtj_;_k:| Et |:Mtl—3‘,-/€:| (1 + /Ut,t+/€) .

Hence,

T P
B [Myy] o B [Mt%} 4l s, [MH’C} +log (1 + veg104k)

log = log og .
Ey [Miyk) E; [MEF,J E; [Mt}jr,ﬂ} (L + v4k)
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Finally, given our hypothesis about v;;,, we have that

Ei | M,
hi(00) = E[log Ey [Myy1] — Eylog Myy] + lim { Eylog —— Mo
k—oo Et [Mt_t,_]g]
| Eior [ME,
= Ei[log By [My11] — Eylog M) + Jim {Et log # '
- t [MHIJ

Using this equality, the proof of the proposition follows from a straightforward
modification of the proof for Proposition 2.2.
Proposition 2.5. Through some algebra, we obtain

E ME
E, {log M} = vary 1 (log Piyg) — vary (log Pryk)

Ey | M,
k—1
= —var (Tyyx) — 2 Z covy (Toyk—js Tevk) 5
j=1

where we have used that var; (my;) = variyq (m4j11). Using the assumption of
square summability, we have that

lim covy (Mg, Tesk) = cov (ms_j,ms), and lm var, (my) = var (7).
k—oo k—oo

Since by assumption
|covy (Teik—j, Teiw)| < p' B,
then

k—1

kh_)rgo vary (Terg) + 2 ; covy (Tt k—js Titk)
oo

= wvar (m) + 2 cov (ms, m_j) -
=1

Proposition 2.6. Equation (2.11) follows directly from the fact that M7 is a
martingale. We then use the result that

J (xe41) = EJy (ve41) + Ji (Brwegq)
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which can be derived through straightforward algebra. Together with the results
from Proposition 2.3, equation (2.12) follows. The direction of the inequality
is obtained by differentiating with respect to the term representing the growth-
optimal return.

Proposition 2.9. By definition,

(log Vip1k—1 — log Vir + log Vi1) —
E(h (k)= f,(k—1)) = E ’ ’
( t( ) ft( )) { (log‘/t,/ﬂ—l —log‘/;;k—}_log‘/;‘,,l)

= E{logVii1p—1 —logV,p_1} =0,
where the last line follows from the assumption of stationarity.

Proposition 2.11. By definition,

k
hi (00) — yi (00) = Jim Eilog Ry — lim (1/k) > 1og Ry jk—(j-1)-

Jj=1

Taking unconditional expectations on both sides, we have that

k
E{h;(0) —y (00)} = Ekh_{go Eilog Rtk — E]}Lrlgo (1/k) Zlog Rt jr—(j-1)-

J=1

Since by assumption expected holding returns and yields, F;log R+ ; and

(1/k) Zle log Ry+jk—(j—1), are dominated by an integrable random variable and
the limit of the right-hand side exists, then by the Lebesgue dominated conver-
gence theorem,

Eklim Elog Ry, = klim Elog R4 1.k,
k k
E lim (1/k)} log Reyjr--1) = lm (1/k) 3 Elog Reyjk—(j-1).
o0 =1 o j=1
Denote the limit
khm ElOg RtJrLk =, (A2)

which we assume to be finite. Since, by hypothesis,

Elog Ry jr—(j—1) = Elog Riy1 p—(j-1)
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for all 7, then

k k
Jim (1/k) Y Elog Ritjr—(j—1) = Jim (1/k)Y " Elog Ry p—(j—1) =T

Jj=1 Jj=1

where the second inequality follows from (A.2). Thus, we have that

k
E{hi(00) =y (00)} = I}L%Elog Rt“”“_klir& (1/k) > Elog Ryt jj(j—1) = r—r = 0.

=1

Eyp1 My

By Given that A; is Markov, under the

Proposition 2.12. Define z;;1 =
stated assumptions, we can write

lim F;log w41k

k—o0

= Jim [ logc (+/,9)] Q (ds5).

where
(T"11) ()
J(TF1) f(3)Q (ds,s)

Ty = o (8, 8) =

By Jensen’s inequality,

/ log 2 (5, 5)] Q (ds', s) < 0

since

/ / . f (Tkilf) (8/) Q (dsl’ S) —
/xk(375)Q(d875) = I(kal)f(g)Q(dé,S) =1

By our assumption, zy (s,s’) > 1 > 0; hence, for all k, s, s,

—o00 < logl < log (min {z (s',s),1+¢}) <log(l+¢) <

for any arbitrary £ > 0. Because log (min {zy (s, s) , 1 4 ¢}) is uniformly bounded,
Lebesgue dominated convergence applies. Note that we impose an artificial upper
bound, log (1 + ¢) to get dominated convergence. With this bound, the integral
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can only get smaller. Thus, if we find that the integral equals zero, its upper
bound, the artificial bound could not have mattered. Thus,

/]}Lrgo log (min {z (s',s),1+¢})Q (ds, s)
= lim / log (min {z (s',s),14+¢}) Q (ds', s)
< Jim [ log (@ (s,5) Q (ds'.5) <0.
Hence, it suffices to show that
/ lim log (min {xy (s, s),14+¢}) Q (ds',s) = 0.

k—oo

Under (i) or (ii),

i limy o0 (Tl“ 1f) (s') limy 00 (T’“_lf) (s')
im zy, (s',s) = =

oo limg oo [ (TF1) £ (5) Q(d3,5)  limg_o (T*f) (5)
= 1.

Thus, because log (min {zy, (s',s),1 + ¢}) is bounded from below,
lim log (min {zy (s',s),1+¢})

k—oo
= log hm (min {zy (s',s),1+¢}) =
log (min {khm x (s',8), 1+ €}>
= 0.

Proposition 2.13. Properties (a) and (b) define setwise convergence, and set-
wise convergence implies weak convergence. That is, with f(.) bounded and
continuous, expected values converge.

Proposition 2.14. First, we show a lemma that consumption equity prices and
consumption equity dividend-price ratios are iid. Then we use the lemma to show
that the kernel has permanent innovations.

Lemma A.2. Assume that ¢; is iid with cdf F' and that n < 1, where

¢ 1—y 1/6
=t { [ (5) o]
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Then the price of consumption equity, V,°/C; = f*(¢;), where the function f*is
the unique solution to

™=
£@) = wert
for some constant ¥ > 0 and the operator T is defined as

) 1/6

(TF)(¢) = pr'=* { /(%) T rar (c'>}

Cc

Moreover,

V=1 () = fey) - Co.

Proof. Using the pricing kernel (2.17), we obtain that consumption equity must

tisf
satisfy _ - )
3 (Ct+1> p] l%i—l + Ct+1]

1=F
! C, Ve

or

0

vt = o \[3(%2) ] T 0]

0
TC -r 6
= Et lﬁ (%) ] [‘/tj-l + Tt+1ct+1:| :| .

Guessing that V¢ = v,7%, we obtain

v = E, [(Tﬁ) (Tcm)p] 9 (V41 + Ct+1]€]

Ct
Vs = {Et

and dividing by ¢; on both sides, we obtain
v TC 1-01° Ty M
fo P ) T ] |
Ct Ct Ct+1 |
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] 70 1 1/0
c ,
3 (T t+1> ] [ps1 + Ct+1]9 } ’

Ct




Now we can write

AN St 1/6
[Tf](c)zﬁfl‘p{ /(i)( )[f(c’)+1]9dF(c’)} ,

Cc

where f is the price-dividend ratio of the consumption equity:

v(e)

c

fle) =

The operator T' can be shown to be a contraction: hence, it has a unique fixed
point. Moreover, 1 is given by

v =g { [ @ ar o))

where f* satisfies T'f* = f*. 1
Using Lemma A.2, we can write the return on the consumption equity as

v (cty1) + e
R,  =1——F——— A3
t+1 v (Ct) ( )

Then using (2.17) and (2.20), we get
EpaMyy  Be [59(t+1) .Y Yt?ﬁl}
Ey My E, [ﬁG(t—H) o Y;fi_ll}
00 (e pe . \O-1
_ (TU (Cig1) + ct+1)91 By thl (Rt+2Rt+3 e ka) ]
v (ct) Et

—pbf Rc Rc Rc -1
Ci4+1 t+14+2 7 Ll g

Ti+1,6 =

Using (A.3) we obtain

R§+2R§+3 U R§+k
S (U (cryn) + Ct+2> (U (ciys) + Ct+3) (U (coyr) + Ct+k>
v (Cey1) v (Ces2) v (Ctk-1)
_ k1 1 (U(Ct+2) +Ct+2) (U (cty3) +Ct+3>

vleen) \ v (cry2) v (¢irs)

(M) e e,
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and likewise for Rf | Rf 5 --- Rf ;. Placing E; 1 M;, and E;M;, into the expres-
sion for ., we get

ima] (o M) LG

01
. Ct+1 +Ct+1 v(cep1)t?
Tt41k =

e ()" B+t o]

[~
I Eo8
(5

v(c)
0-1
Ci1) + Ct+1> /E
t
Ct+1

1 6—1 1 0—1
- <1+¢ct+11> /E, <1+¢ct+11> ]

which finishes the proof of the proposition.
Proposition 3.1. Define h; (k) and y, (k) as

X X X
he (k) = E {log Ei 1 [Xt%] — log E; ;;k} + log E; i+l

t+1 t Xy
1 X X
Yt (k) = — (E) log Et )t(tk + log Et ;{:1 .

We will need to show that

Xt .1 My
(57) =i ()0 (55),

In step 1, we obtain that

Xiy1
Xy

Xt+1>
1

°g< X,
Xivk >

X '

XE X
(5 = o fes[
t

~ lim E[h ()]

k— o0

— E; {log

t

In step 2, we obtain that
(1N (Mo X1
1 — = FE|logE
i ()7 (57) Jos e[
) 1
#Jim (7)1 (&
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In step 3, we obtain that

lim E[h (k)] = ,}LH;OE [ye ()]

k— oo

Thus, using (d), we conclude the proof.
Step 1. By definition of J and J; and assumption (ii),

X\ Xt XE\ X,
J(X—tp _EJtX—tP +J B X7 —EJtX—tP .

Then
Et+1Xt+k Et+1XP k XP 1
— lim Flog———— = — lim Elogippr =—-F [Et log t; ]
k—o00 EtXt+/€ k—o00 _Egt)(t_"_l€ Xt
X X Xih
= F [logEt X}S ] —F [Et log X} =F|J X}S ,

where the first equality follows from (i), (iii), and (a), the second and third from
(ii), the fourth from (ii), and

. BeaXew Xt
Ellmlog——|=—-J|—=5 |-
|J~c—>oo & EtXt+/€ ‘| <

Using the definition of h;, we can write

B [Xin) X ]
hi (k) = E;|lo +1o +log &
+ tl STEXe] P X T

= E [log

Taking unconditional expectation and limits, we have that

) ) Ei1 [ Xeyk] [ X1 [ Xit1
lim E A (k)] = lim F |log—————| + £ |log E. —E |l .
Jim B {h (k)] = lim [og B | TP lee ¢ |log —
Using our previous result
XF X X :
J (;é—?) =FE [1og E, ttl — E, [log )21 — lim B [ (K)].
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1) - Dlmsl]- ()
Bisisargatal

X
—F [log < )?1)
t

X
“h\ — Elog E,

t

Xitk
X

(log E {Et

)

X1
X,

X
—F [log ( ;(H>
t

) = Bl ()] +

X1
—FE |1
s (52)
where the first equality is by definition, the second by properties of logs, the third

by (b), the fourth by adding and substracting the relevant quantities, and the fifth
by definition of y; (k) and J (-). By taking limits, we obtain the desired result:

t—i—k

oIS
4
- (beer
B
e

FElog E;

— Elog E,

Xt+1

+FElog E;

- ()

+FE [log B,

t

Xevk
X

Xit1

t

Xit1

1N X X |
i (5)7(551) = 2 [osm [52] - 5 ow (552 - 5 £l 0
. 1 Xtk
+/c155o<E>J<Et X, >

Step 3. For any k, y; (k) can be written as

1 Xitk 1= Xitst1 Xits
E k) =E|—=|logE =——F log By | ———| — log E
[ye (k)] { k{Og (x p [go og I; 8B ||
and by assumption (c),
X, Xtk
lim E [y, (k)] = lim E [mg E, |Z2E | —og B, |2 } .
k—oo k—oo t Xt
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Notice that by (b),

Xirh—1 Xoin
E =E
tTx, t+1 lXHl]
Then for any k,
X, Xk
-E [log B, |22k og B, | Sk }
¢ t
X X
— Bl @) =8 [B os Bs [ - 0a [ K|
t+1 .

and, hence,

lim E'y (k)] = /}LI&E [ (K)] .-

k—oo
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Appendix B: Data

For Table 1, the data on monthly yields of zero-coupon bonds from 1946:12
to 1985:12 comes from McCulloch and Kwon (1990, 1993), who use a cubic spline
to approximate the discount function of zero-coupon bonds using the price of
coupon bonds. They make some adjustments based on tax effects and for the
callable feature of some of the long-term bonds. The data for 1986:1 to 1999:12
are from Bliss (1997). From the four methods available, we use the method
proposed by McCulloch and Kwon (1990, 1993). The second part of the sample
does not use callable bonds and does not adjust for tax effects. Forward rates
and holding periods returns are calculated from the yields of zero-coupon bonds.
The one-month short rate is the yield on a one-month zero coupon bond. Yields
are available for bonds of maturities going from 1 to 30 years, although for longer
maturities, yields are not available for all years. For maturities shorter than
13 years yields are available for all years, for a maturity of 29 years, they are
available for approximately half of the sample. The unconditional expectations
and standard errors are estimated for each maturity, with all the data available
for that maturity, even if the data are discontinuous.

For Table 3, for the United States, equity returns are from Shiller (1998);
short-term rates are from Shiller (1998) before 1926, and from Ibbotson Associates
(2000) after 1926; and long-term rates are from Campbell (1996) before 1926, from
Ibbotson Associates (2000) after 1926.

Ibbotson Associates’ (2000) short-term rate is based on the total monthly
holding return for the shortest bill not having less than one month maturity.
Shiller (1998), for equity returns, used the Standard and Poor Composite Stock
Price Index. The short-term rate is the total return to investing for six months
at 4-6 month prime commercial paper rates. To adjust for a default premium,
we subtract 0.92% from this rate. This is the average difference between T-Bills
from Ibbotson Associates (2000) and Shiller’s (1998) commercial paper rates for
1926-98.

The data for the United Kingdom is from the Global Financial Data-base.
Specifically, the bill index uses the three-month yield on commercial bills from
1800 through 1899 and the yield on treasury bills from 1900 on. The stock index
uses Bank of England shares exclusively through 1917. The stock price index uses
the Banker’s Index from 1917 until 1932 and the Actuaries General/All-Share
Index from 1932 on. To adjust for a default premium, we have subtracted 0.037%
from the short rate for 1801-99. This is the average difference between the rates
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on commercial bills and treasury bills for 1900-98.

For Table 5, the inflation rates are computed using a price index from January
to December of each year. Until 1926, the price index is the PPI; afterwards, the
CPI index from Ibbotson Associates (2000).

For Table 6, the aggregate equity index is from Global Financial Data, further
described above. Inflation is based on the CPI, given by Global Financial Data.
The Bank of England publishes estimates of nominal and real term structures for
forward rates and yields. We use the series indexed by V, corresponding to the
Svensson method, because these are available for the whole sample period, 1982—
2000. See, http://www.bankofengland.co.uk/ and Anderson and Sleath (1999) for
details.
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Appendix C: Small Sample Bias

We derive here an estimate of the size of the small sample bias in our estimates
in Table 1. For notational convenience, define
E [log 54| — E[hy (0)]

E [log &‘i} +J (]-/Rt—&—l,l)'

Ryy11

a
b
In Table 1, we estimate this ratio as the ratio of the estimates a/B =f a,B).

Using a second-order Taylor series approximation around the true values and
considering that @ is an unbiased estimator of a, we can write

off] ~ 3+ [(2) G -on0)] [ 6]

% + bias; + biass.

12

We estimate bias; directly from the point estimates and the variance-covariance
matrix of the underlying sample means. We estimate bias, by %B%é%‘/ar (¢), with
¢ the sample mean of 1/R;,.;. For forward rates, we estimate the size of the
overall bias, bias; + biasy, as [—0.004,0.0073, —0.0012] for the three maturities
in panel A of Table 1, where a negative number means that our estimate should
be increased by that amount. Corresponding values for Panel B,C, and D are

0.006,0.0132, 0.0484], [—0.0072, —0.0079, —0.0115], and [—0.0132, —0.0163, —0.0207].
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Table 1

Size of Permanent Component Based on Aggregate Equity and Zero-Coupon Bonds

(1) )

®) (4)

®)

(6)

Maturity Equity Term J(1/R1) Size of (1)~(2) P[(5) < 0]
Premium Premium Adjustment Permanent
for volatility Component E[log(R/R1)]
E[log(R/R4)]  E[log(R/R1)] of short rate J(P)YJ -E[log(R/R4)]
A. Forward Rates E[f(k)] Holding Period is 1 Year
25 years 0.0664 -0.0004 0.0005 0.9996 0.0669 0.0003
(0.0182) (0.0049) (0.0002) (0.0710) (0.0195)
29 years -0.0040 1.0520 0.0704 0.0033
(0.0070) (0.1053) (0.0259)
B. Holding Returns E[h(k)] Holding Period is 1 Year
25 years 0.0664 -0.0083 0.0005 1.1164 0.0747 0.0124
(0.0182) (0.0257) (0.0002) (0.3928) (0.0332)
29 years -0.0199 1.2899 0.0863 0.0206
(0.0353) (0.5611) (0.0423)
C. Yields Ely(k)] Holding Period is 1 Year
25 years 0.0664 0.0082 0.0005 0.8701 0.0582 0.0017
(0.0182) (0.0033) (0.0002) (0.0541) (0.0199)
29 years 0.0082 0.8706 0.0582 0.0055
(0.0036) (0.0610) (0.0229)
D. Yields Ely(k)] Holding Period is 1 Month
25 years 0.0763 0.0174 0.0004 0.7673 0.0588 0.0028
(0.0190) (0.0031) (0.0001) (0.0717) (0.0212)
29 years 0.0168 0.7755 0.0595 0.0066
(0.0033) (0.0796) (0.0240)

For A., term premia (2) are given by one-year forward rates for each maturity minus one-year yields for each
month. For B., term premia (2) are given by overlapping holding returns minus one-year yields for each month.
For C., term premia (2) are given by yields for each maturity minus one-year yields for each month. For A., B.,
and C., equity excess returns are overlapping total returns on NYSE, Amex, and Nasdaq minus one year yields
for each month. For D., short rates are monthly rates. Newey-West asymptotic standard errors using 36 lags
are shown in parentheses. P values in (6) are based on asymptotic distributions. The data are monthly from
1946:12 to 1999:12. See Appendix B for more details.



Table 2
Size of Permanent Component Based on Growth-Optimal Portfolios and 25-Year Zero-Coupon Bonds

1) ) @) (4) ®) (6)

Growth Term J(1/R1) Size of (1)-(2) P[(5) < 0]
Optimal Premium Adjustment Permanent
for volatility Component E[log(R/R1)]
E[log(R/Ry)] E[log(R/R1)] of short rate JPYJ -E[log(R«/R1)]
A. Market Portfolio
One-year holding period
Forward rates 0.0664 -0.0004 0.0005 0.9996 0.0681 0.0003
(0.0182) (0.0049) (0.0002) (0.0710) (0.0195)
Holding return -0.0083 1.1164 0.0759 0.0124
(0.0257) (0.3928) (0.0326)
Yields 0.0082 0.8701 0.0595 0.0017
(0.0033) (0.0541) (0.0198)
One-month holding period
Yields 0.0763 0.0174 0.0004 0.7673 0.0601 0.0028
(0.0190) (0.0031) (0.0001) (0.0717) (0.0212)

B. Growth-Optimal Leveraged Market Portfolio, (Portfolio weight: 3.47 for monthly holding period, 2.14 for yearly)

One-year holding period

Forward rates 0.1095 -0.0004 0.0005 0.9998 0.11 0.01

(0.0486) (0.0049) (0.0002) (0.0431) (0.0473)

Holding return -0.0083 1.0708 0.1178 0.0163
(0.0257) (0.2435) (0.0551)

Yields 0.0082 0.9210 0.1013 0.0169
(0.0033) (0.0386) (0.0477)

One-month holding period

Yields 0.1689 0.0174 0.0004 0.8946 0.1515 0.0315

(0.0818) (0.0031) (0.0002) (0.0518) (0.0814)

C. Growth-Optimal Portfolio Based on the 10 CRSP Size-Decile Portfolios

One-year holding period

Forward rates 0.1692 -0.0004 0.0005 0.9999 0.1697 0.0006
(0.0528) (0.0049) (0.0002) (0.028) (0.0525)

Holding return -0.0083 1.0459 0.1775 0.0021
(0.0257) (0.1551) (0.0621)

Yields 0.0082 0.9488 0.161 0.0009
(0.0033) (0.0202) (0.0518)

One-month holding period
Yields 0.2251 0.0174 0.0004 0.9209 0.2076 0.0086
(0.0876) (0.0031) (0.0002) (0.0318) (0.0872)




Table 3

Size of Permanent Component Based on Aggregate Equity and Coupon Bonds

(1)

) @)

(4)

E[logR/R1] Ely] E[h] J(1/R¢) J(P)J (1)-(2) P[(5) < 0]
Equity Term Adjustment Size of Permanent
Premium Premium Component
us 1872-1999  0.0494 0.0034 0.0003 0.9265 0.0461 0.0003
(0.0142) (0.0028) (0.0001) (0.054) (0.0136)
0.0043 0.9077 0.0452 0.0006
(0.0064) (0.1235) (0.0139)
1926-99 0.0652 0.014 0.0005 0.7792 0.0511 0.0049
(0.0202) (0.0023) (0.0001) (0.0691) (0.0198)
0.0136 0.7855 0.0516 0.0061
(0.0101) (0.1544) (0.0206)
1946-99 0.0715 0.0122 0.0004 0.8245 0.0593 0.0007
(0.0193) (0.0025) (0.0001) (0.0462) (0.0185)
0.006 0.9113 0.0656 0.0004
(0.0129) (0.1728) (0.0196)
(1) 2 3 ) )
EllogR/R] Ely] E[h] J(1/Ry) J(PyJ (1-(2) P[(5) < 0]
Equity Term Adjustment Size of Permanent
Premium Premium Component
UK 1801-1998 0.0239 0.0002 0.0003 0.9781 0.0237 0.0014
(0.0083) (0.0020) (0.0001) (0.0808) (0.0079)
0.0036 0.8361 0.0202 0.0053
(0.0058) (0.2228) (0.0079)
1926-98 0.0550 0.0111 0.0008 0.7870 0.0439 0.0070
(0.0173) 0.0031 (0.0002) (0.0899) (0.0179)
0.0131 0.7516 0.0419 0.0091
0.0130 (0.2189) (0.0177)
1946-98 0.0604 0.0092 0.0007 0.8370 0.0511 0.0074
(0.0198) (0.0038) (0.0002) (0.0904) (0.0210)
0.0018 0.9583 0.0585 0.0006
(0.0143) (0.2289) (0.0181)

(1) Average annual log return on equity minus average short rate for the year.
(2) Average yield on long-term government coupon bond minus average short rate for the year.

(3) Average annual holding period return on long-term government coupon bond minus average short rate for the year.
Newey-West asymptotic standard errors with 5 lags are shown in parentheses. See Appendix B for more details.



Table 4

Required Persistence for Bonds with Finite Maturities

Maturity
(years)

10
20
30

1.0000
1.0000
1.0000

Term spread

0.50%

0.9986
0.9993
0.9996

1%

0.9972
0.9987
0.9991

1.50%

0.9957
0.9980
0.9987




Table 5
The Size of the Permanent Component due to Inflation

1947-99 AR(1) AR(2) o’ Size of permanent component
AR1 0.66 0.0005 0.0021 (0.0009)
AR2 0.87 -0.24 0.0004 0.0015 (0.0006)
(1/2k) var(log Py./Py) k=20 0.0043 (0.0031)
k=30 0.0030 (0.0027)
J( Pui/Py) 1 var(log Pu/Py) (k=20) 0.46
(k=30) 0.45
1870-1999 AR(1) AR(2) o’ Size of permanent component
AR1 0.28 0.0052 0.0049 (0.0013)
AR2 0.27 0.00 0.0052 0.0050 (0.0006)
(1/2k) var(log Py./Py) k=20 0.0077 (0.0035)
k=30 0.0067 (0.0038)
J( Pui/Py) 1 var(log Pu/Py) (k=20) 0.47
(k=30) 0.48

For the AR(1) and AR(2) cases, the size of the permanent component is computed as one-half of the
spectral density at frequency zero. The numbers in parentheses are standard errors obtained through
Monte Carlo simulations. For (1/2k) var(log P../P; ), we have used the methods proposed by Cochrane
(1988) for small sample corrections and standard errors. See our discussion in the text for more details.



Table 6

Inflation-Indexed Bonds and the Size of the Permanent Component of Pricing Kernels, U.K. 1982-99

Nominal Kernel Real Kernel
(1) (2) (3) (4) (5) (6)
(1)-(2) (1)-(4)-(3)
Size of Size of
Maturity Equity Forward Yield Permanent Inflation Forward Yield Permanent
years Component Rate Component
Ellog(R)] Ellog(F)]  Eflog(Y)] J(P) Ellog(m)] E[log(F)] E[log(Y)]  J(P)
20 0.1706 0.0781 0.0924 0.0422 0.0343 0.0941
(0.0197) (0.0038) (0.0206) (0.0063) (0.0022) (0.0229)
0.0836 0.0870 0.0348 0.0936
(0.0053) (0.0193) (0.0017) (0.0223)
25 0.0762 0.0944 0.0342 0.0943
(0.0040) (0.0212) (0.0023) (0.0230)
0.0815 0.089 0.0347 0.0937
(0.0046) (0.0200) (0.0018) (0.0224)

Real and nominal forward rates and yields are from the Bank of England. Stock returns and inflation rates are from
Global Financial Data. Asymptotic standard errors, given in parenthesis, are computed with the Newey-West method
with 3 years of lags and leads.



Figure 1 Average Forward Rates in Excess of One-Year Rate
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Figure 2

Jensen measure divided by variance, no adjustment for small sample bias 1889-1997
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Figure 3
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