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Introduction 
 

Much quantitative and case-study evidence documents a strong association between the adoption of 

computers and computer-based technologies and the increased use of college-educated and non-

production labor within detailed industries, within firms, and across plants within industries. These 

patterns implicating computerization as a potential source of a demand shift favoring better-educated 

labor appear consistently in studies from the U.S., the OECD, Canada and other developed and 

developing countries.1 While the empirical relationship between computer investment and use of 

educated labor is firmly established, it is our view that the conceptual link explaining specifically how 

computer technology complements skilled labor or substitutes for unskilled labor is not well 

developed. In particular, most studies do not ask, or are prevented by data limitations from answering, 

what is it that computers do – or what is it that people do with computers – that causes educated 

workers to be relatively more in demand.2  

These mechanisms may initially appear trivial; computers substitute for less educated workers in 

the performance of simple tasks or and/or complement the performance of more educated workers in 

complex tasks. Reflection suggests that the relationship between human education and “computer 

skills” is more complex. In the economy of the 1970s, long haul truck driving and double entry 

bookkeeping were both tasks routinely performed by workers with modest education, typically high 

school graduates. In the present economy, computers perform a vast share of the routine bookkeeping 

via database and accounting software but do little of the truck driving. Similarly, playing a strong game 

                                                   
1 Autor, Katz and Krueger (1998) and Berman, Bound and Griliches (1994) present evidence on industry level shifts. 
Bresnahan, Brynjolfsson and Hitt (forthcoming) and Levy and Murnane (1996) and Doms, Dunne and Troske (1997) 
provide evidence on firm and plant level shifts. Machin and Van Reenen (1998) provide data on the OECD, Gera, Gu 
and Lin (2001) on Canada, and Berman, Bound and Machin (1998) and Berman and Machin (2000) on other 
developing and developed countries. 
2 Herbert Simon (1960) provides the first treatment of this question with which we are familiar. His essay introduces 
many of the ideas explored here. Influential studies in the ethnography of work literature provide insightful discussions 
of what computers and related technology do in the workplace but do not consider economic implications (Adler, 
1986; Orr, 1996; and Zuboff, 1988). Bresnahan (1999), Bresnahan, Brynjolfsson and Hitt (forthcoming), Goldin and 
Katz (1998), and Lindbeck and Snower (2000) exemplify important studies in the economic literature that explore why 
new technologies and educated labor appear to be relative complements.  
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of chess and writing a persuasive legal brief are both skilled tasks. Current computer technology can 

readily perform the first task but not the second. These examples suggest that neither all ‘high’ nor all 

‘low’ skilled tasks are equally amenable to computerization. We argue below that present computer 

technology has quite specific applications and limitations that make it an incomplete substitute for both 

well-educated and less educated human labor. 

The objective of this paper is to propose and test a model of how the computerization of workplace 

tasks alters job content and thereby human skill demands. We build the model from an understanding 

of what computers do – by which we mean the tasks that present computer technology is particularly 

suited to performing. By conceptualizing and measuring job skill demands in terms of job tasks rather 

than the educational credentials of workers performing those tasks, we believe our analysis makes 

three contributions. First, we provide an explicit account of how computerization alters work content, 

exposing the mechanisms undergirding the widely documented observation that computers and 

education are relative complements. Second, using representative observational metrics of job tasks 

from the Dictionary of Occupational Titles (DOT), we analyze the degree to which technological 

change has altered the cognitive and manual content of jobs between 1960 and 1998. A unique virtue 

of the DOT is that it permits us to study changes in job content within industries, education groups, and 

occupations – phenomena that in all but the first case are not normally observable. Finally, we quantify 

the extent to which changes in the structure of work induced by computerization have contributed to 

recent observed increases in the relative demand for educated labor. We find that this contribution is 

sizable.  

Our analysis builds upon two branches of the literature on the demand for skill. The first infers 

shifts in the demand for skills from secular trends in the occupational, educational, and gender 

composition of employment.3 The second posits, and in several cases tests empirically, individual and 

                                                   
3 See Bound and Johnson (1992); Juhn (1999), Juhn, Murphy and Pierce (1993), Katz and Murphy (1992), Murphy 
and Welch (1992 and 1993), and Welch (2000). 
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organizational level complementarities between technological change and workers’ learning and 

problem solving capabilities.4 Our analysis extends both avenues of research. We first offer a 

conceptual framework that makes specific predictions about complementarity and substitutability 

between new technology and labor in carrying out workplace tasks. We next explore the empirical 

implications of this framework using economy-wide data on the task distribution of employment over 

four decades. 

1. Framework  

For purposes of our framework, it is useful to conceptualize a job as a series of tasks: moving an 

object, executing a calculation, communicating a piece of information, resolving a discrepancy. In this 

context, we ask the question: which tasks can be performed by a computer?5 A good first answer is that 

computers perform tasks that can be expressed using procedural or ‘rules-based’ logic, that is codified 

in a fully specified sequence of logical programming commands (“If-Then-Do” statements) that 

designate unambiguously what actions the machine will perform and in what sequence at each 

contingency to achieve the desired result.6 The simple observation that tasks cannot be computerized 

unless they can be proceduralized is the point of departure for our discussion. We focus first on the 

computerization of manual tasks and subsequently discuss information processing (cognitive) tasks.7   

                                                   
4 Important examples include Acemoglu (1999), Bartel and Lichtenberg (1989), Bresnahan (1999), Bresnahan, 
Brynjolfsson and Hitt (forthcoming), Casselli (1999), Goldin and Katz (1998), Lindbeck and Snower (2000), Nelson 
and Phelps (1966), Schultz (1975), and Welch (1970). 
5 We take as given that the rapidly declining price of computer capital – a 35 percent average annual rate from 1985 to 
1996 (Grimm, 1998) – provides firms with strong incentives to answer this question. Jorgenson and Stiroh (1995 and 
1999) discuss the importance of  the declining price of computer capital in inducing substitution between information 
technology and other forms of capital and labor input. The model advanced by Borghans and Ter Weel (2000) 
underscores that computers are particularly likely to substitute for (in our terminology) routine tasks performed by 
high-wage workers. 
6 The Encyclopedia Brittanica (2000) defines a computer program as a “detailed plan or procedure for solving a 
problem with a computer; more specifically, an unambiguous, ordered sequence of computational instructions 
necessary to achieve such a solution.”  
7 A logical question is whether the requirement for proceduralization is intrinsic to computer technology or is an 
artifact of the economic incentives that shaped its development. Our view is that proceduralization is inherent, 
although other specific aspects of computer technology may not be. As evidence for this point, we note that Charles 
Babbage articulated the notion of procedural programming in his description of the “Analytical Engine” in 1837, 
almost a century before the first computer was developed (cf. Babbage, 1888). Babbage’s device was in turn inspired 
by what many consider to be the first mechanical computer, the Jacquard Loom developed by Joseph Marie Jacquard 
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Many manual tasks that humans perform (or used to perform) at their jobs can be specified in 

straightforward computer code and accomplished by machines, for example, monitoring the 

temperature of a steel finishing line or moving a windshield into place on an assembly line. However, a 

problem that arises with many tasks is that, as Michael Polanyi (1966) put it, “we do not know how to 

do many of the things we do.” Accordingly, it is difficult to develop machines that carry out these 

tasks. For example, it is a trivial undertaking for a human child to walk on two legs across a room to 

pick an apple from a bowl of fruit. This same task is presently a daunting challenge for computer 

science and robotics. Both optical recognition of objects in a visual field and bipedal locomotion across 

an uneven surface appear to require enormously sophisticated algorithms, the one in optics and the 

other in mechanics, which are currently poorly understood by cognitive science (Pinker, 1997). These 

same problems explain the earlier mentioned inability of computers to perform the tasks of long haul 

truckers.8   

In this paper we refer to such tasks requiring visual and manual skills as ‘non-routine manual 

activities.’ We emphasize the phrase non-routine because if a manual task is sufficiently well specified 

or performed in a well-controlled environment, it often can be automated despite the seeming need for 

visual or manual skills that at present are poorly simulated by machines (as, for example, in the case of 

industrial robots on assembly lines). It is this ‘routineness’ or predictability that is lacking in the truck-

                                                                                                                                                                       
in 1801 (Mokyr, 1990). What the Jacquard loom shares with essentially all computers is: first, it is a symbolic 
processor, acting upon symbolic representation of information such as binary numbers or, in this case, punched cards; 
and, second, its actions are deterministically specified by explicit procedures or programs. Despite the substantial time 
interval between initial vision and ultimate implementation, the modern computer is a close relative of Babbage’s 
machine. As Acemoglu (1998 and 2000) argues forcefully, however, the specific characteristics and applications of the 
technology are likely to be endogenously shaped by market forces. 
8 It is of course a fallacy to assume that a computer must reproduce all of the functions of a human to perform a task 
traditionally done by humans. Automatic Teller Machines, for example, have supplanted many bank teller functions 
although they cannot verify signatures or make polite conversation while tallying change. This observation raises the 
important question of which if any attributes of a task are intrinsic and which are artifactual characteristics that these 
tasks may have obtained precisely because humans traditionally performed them. Although we do not attempt to 
address this question here, we surmise that whether the characteristics of a task are intrinsic or merely artifactual, these 
historical characteristics generate real costs when automating a task. For example, if robotic technology had preceded 
the automobile, it is likely that vehicle navigation would have been designed to rely less heavily on sightedness. Given 
the present (sunk) infrastructure of sight-dependent vehicles and visually cued roads, a major cost of automating the 
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driving example.9  

The substitution of machinery for repetitive human labor has of course been a central thrust of 

technological change since (at least) the industrial revolution (cf., Hounshell, 1985; Mokyr, 1990; and 

Goldin and Katz, 1998). What computer capital uniquely contributes to this process is the capability to 

perform symbolic processing, that is, to calculate, store, retrieve, sort, and act upon information.10 

Although symbolic processing depends on little more than Boolean algebra, the remarkable generality 

of this tool allows computers to supplant or augment human cognition in a vast range of information 

processing tasks that had historically been the mind’s exclusive dominion. In economic terms, 

advances in information technology have sharply lowered the price of accomplishing procedural 

cognitive tasks (i.e., rules-based reasoning). Accordingly, computers increasingly substitute for the 

routine information processing, communications, and coordinating functions performed by clerks, 

cashiers, telephone operators, bank tellers, bookkeepers, and other handlers of repetitive information 

processing tasks, a point emphasized by Bresnahan (1999).11 

Yet, the applicability of computer capital is nevertheless circumscribed by the need for an 

unambiguous, ordered sequence of computational instructions that specify how to achieve a desired 

end. As a result, there is little computer technology that can develop, test, and draw inferences from 

models, solve new problems, or form persuasive arguments – tasks that many jobs require.12 In the 

                                                                                                                                                                       
task of driving appears to be developing computers that can perform visual processing approximately as well as 
humans. 
9 Industrial robots may, for example, select distinct parts from bins, transport parts to work stations on demand, and 
perform other non-repetitive manual tasks that require responding appropriately to environmental stimuli. What makes 
these robotic feats possible is the extreme predictability of the assembly line, a purposefully engineered attribute. As 
Simon (1960) observed, environmental control is a substitute for flexibility. Moreover, the simple distinction between 
computer-substitutable and non-substitutable tasks is not absolute. For example, by calculating more efficient long 
haul trucking routes, computers can ‘substitute’ for the labor input of long haul truck drivers without driving trucks. 
This observation suggests that there is a non-zero elasticity of substitution between routine and non-routine tasks, a 
point we encapsulate in our model. 
10 This point is emphasized by Weizenbaum (1976) and Bryjolfsson and Hitt (2000). 
11 Autor, Levy, and Murnane (2001) provide an example of this generalization in a study of the automation of check 
clearing in a large bank. 
12 Software that recognizes ill structured patterns (‘neural networks’) and solves problems based upon inductive 
reasoning from well-specified models (‘model based reasoning’) is under development and has been applied 
commercially in several cases. But these technologies have had little role in the computer-induced technical change of 
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words of artificial intelligence pioneer Patrick Winston (1999): 

“The goal of understanding intelligence, from a computational point of view, remains elusive. 
Reasoning programs still exhibit little or no common sense. Today's language programs 
translate simple sentences into database queries, but those language programs are derailed by 
idioms, metaphors, convoluted syntax, or ungrammatical expressions. Today's vision programs 
recognize engineered objects, but those vision programs are easily derailed by faces, trees, and 
mountains.”  

The capabilities and limitations of present computer technology make it, in our terminology, more 

substitutable for routine than non-routine tasks. By implication, computers are relative complements to 

workers engaged in non-routine tasks. This complementarity flows through three channels. 

First, at a mechanical level, computers increase the share of human labor input devoted to non-

routine cognitive tasks by offloading routine manual and cognitive tasks from expensive professionals. 

More substantively, an outward shift in the supply of routine informational inputs (both in quantity and 

quality) increases the marginal productivity of workers performing non-routine tasks that rely on these 

inputs. For example, comprehensive bibliographic searches increase the quality of legal research; 

timely market information improves the efficiency of managerial decision-making; richer customer 

demographics increase the productivity of salespersons, etc. Third, and perhaps most significantly, 

workplace computerization appears to increase the demand for problem-solving tasks – a non-routine 

cognitive task by our definition. Because ‘solved’ problems are intrinsically routine and hence readily 

computerized, the comparative advantage of labor in a computerized environment is specifically in 

handling non-routine problems such as resolving production deficiencies, handling discrepancies and 

exceptions, and detecting and resolving unanticipated bottlenecks.13 In net, these arguments imply that 

price declines in computerization should augment the productivity of workers engaged in non-routine 

cognitive tasks.  

                                                                                                                                                                       
the last three decades. See Davis (1984) for further discussion. Bresnahan (1999) similarly emphasizes that computers 
are at best a limited substitute for human decision-making. Levy et al. (1999) provide a discussion of rules-based 
reasoning in the context of auto repair. 
13 Observational studies that offer this insight include Adler (1986), Autor, Levy and Murnane (2001), Bartel, 
Ichniowski and Shaw (2000), Fernandez (1999), Levy and Murnane (1996) and Zuboff (1988).  
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Table 1 provides examples of jobs in each cell of our two-by-two matrix of workplace tasks 

(routine versus non-routine, manual versus information processing) and states our hypothesis about the 

impact of computerization on the tasks in each cell. Although we limit our focus here to task shifts 

within occupations, these forces are likely to alter the task and organizational structure of firms along 

analogous dimensions.14  

2. Routine and non-routine skills in production: A model 

The manner in which an exogenous decline in the price of carrying out  ‘routine’ tasks alters the 

task content of jobs and the wages attached to them depends on the elasticity of substitution between 

routine and non-routine tasks and the supplies of workers and capital to each. While these parameters 

are not known with any precision, we believe our discussion motivates several plausible assumptions. 

First, we have argued above that computer capital is more substitutable for humans in carrying out 

routine tasks than non-routine tasks. Second, we believe it is non-controversial that routine and non-

routine tasks are themselves imperfect substitutes. Third, at least in the domain of cognitive tasks, we 

observe that greater intensivity of routine inputs increases the marginal productivity of non-routine 

inputs.15  

These assumptions structure the production side of our model. Consider the following production 

function in which two types of tasks, routine R  and non-routine N , are used to produce output, q , 

which sells at price one. For tractability, we assume a constant returns to scale Cobb-Douglas 

technology: 

(1) )1,0(,1 ∈= − βββ NRq . 

To encapsulate the notion that computers are more substitutable for routine than non-routine tasks, we 

                                                   
14 See Autor, Levy and Murnane (2001), Bartel, Ichniowski and Shaw (2000), Bresnahan (1999), Bresnahan, 
Brynjolfsson and Hitt (1999), and Brynjolfsson and Hitt (2000), Caroli and Van Reenen (forthcoming), Garicano 
(2000), Lindbeck and Snower (2000), and Thesmar and Thoenig (2000) for perspectives on these ideas. 
15 While in the model below we aggregate our four tasks groups into only two categories – routine and non-routine – 
we suspect that in actuality routine and non-routine manual tasks are substantially less complementary as productive 
inputs than are routine and non-routine cognitive tasks.  
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assume that computer capital, C , and humans are perfect substitutes in carrying out routine tasks, R . 

While this assumption is obviously extreme, the only substantive requirement for our model is that 

computer capital is more substitutable for humans in carrying out routine than non-routine tasks.16 

Computer capital is supplied perfectly elastically at market price P  per efficiency unit, where P  is 

falling exogenously with time due to technical advances. The declining price of computer capital is the 

causal force in our model. 

To model labor supply, we assume as in Roy (1951) that workers choose among occupations (here, 

routine and non-routine) according to comparative advantage. We model each worker as possessing a 

productivity endowment, ),( ii NRE , in routine and non-routine tasks specified in efficiency units 

where iNR ii ∀> 0, . Define the relative efficiency of individual (i) at non-routine versus routine tasks 

as iii RN=α  where ),0( ∞∈α . We assume a large number of workers who choose to supply either 

iR  efficiency units of routine task input or iN  efficiency units of non-routine task input. In keeping 

with our discussion, we think of the decision to supply labor to routine or non-routine tasks as the 

choice of an occupation.  

Under these assumptions, it is straightforward to trace out the implications of a technical advance – 

a fall in the price of computer capital – for occupational choice, marginal task productivity, and wages 

(specified in efficiency units). Given the perfect substitutability of computer capital and routine skills, 

the wage per efficiency unit of routine labor is given by 

(2) PWR = .  

Since workers choose their occupation – that is, to supply routine or non-routine labor – to maximize 

earnings, the marginal worker with relative efficiency units *α  in routine vs. non-routine tasks is 

indifferent between routine and non-routine occupations when 

                                                   
16 Cobb-Douglas technology implies that the elasticity of substitution between routine and non-routine tasks is one. 
Hence, computer capital and non-routine task inputs are relative complements. 
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(3) 
N

R

W
W

=*α . 

Equation (3) implies that for *αα <i , individual i  supplies routine labor, and for *αα ≥i , i  supplies 

non-routine labor.  

To quantify factor supplies to each occupation as a function of *α , denote the functions 

)(),( αα hg  that give the population endowment in efficiency units of routine and non-routine tasks 

respectively for each value of α . We make no assumption on the population distribution of 

endowments or their correlation except to require that the joint distribution of ii NR ,  is non-degenerate 

and has mass at all α .17 Hence, we have 00)(),( >∀> ααα hg ; for every α , there is a non-zero set 

of workers with total routine efficiency endowment )(αg  and non-routine efficiency endowment )(αh . 

Accordingly, both occupations face a strictly upward sloping supply of task input. 

Productive efficiency requires that factors are paid their marginal products: 

(4) βθβ −−=
∂
∂

= )1(
R
q

WR  and   ββθ −=
∂
∂

= 1

N
q

WN , 

where 
dxxh

dxxgC

∫
∫

∞

+
=

*

*

)(

)(
0

*

α

α

θ  is the ratio of routine to non-routine task input in production. θ  is a crucial 

endogenous variable in our model. Factors that raise the relative intensity of routine task input (that is, 

increase θ ) lower the wage per efficiency unit of routine task input, and vice versa for the wage paid to 

non-routine task input. 

To evaluate the impact of a decline in the price of computer capital on the relative intensity of task 

input, we use (2) and the first order condition for RW  and take logarithms to obtain 

(5) 
PP

WR

ln
ln

1
ln

ln
∂
∂

−==
∂

∂ θ
β  ⇒

β
θ 1

ln
ln

−=
∂
∂

P
.  
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A decline in the price of computer capital reduces the wage per efficiency unit of routine tasks and, as 

the final term of (5) indicates, increases the relative intensity of routine task input in production.  

Since routine and non-routine tasks are complementary inputs (specifically, q-complements), 

increased intensity of routine task input raises the wage per efficiency unit of non-routine task input: 

(6) 
β

β 1
ln

ln −
=

∂
∂

P
WN . 

A decline in the price of computing power unambiguously increases the marginal productivity of 

workers engaged in non-routine tasks. 

In the equations above, wages are specified in efficiency units. Since efficiency units vary over the 

population and workers choose their occupation to maximize earnings, a decline in the price of 

computer capital alters occupational choice. Consider the impact of a price decline in computer capital 

on *α , the relative efficiency endowment of the marginal worker in the routine occupation. Combining 

(3), (5) and (6), we find  

(7) 
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A fall in the price of computer capital decreases labor supply to the routine occupation and raises labor 

supply to the non-routine occupation.  

Since we derived above that a decline in the price of computer capital raises the relative intensity 

of routine task input (i.e., 0lnln <∂∂ Pθ ), (7) further implies that 
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Although labor supply to the routine occupation declines, there is a more than offsetting increase in the 

demand for routine tasks in the form of computer capital. Thus, the relative intensity of routine task 

                                                                                                                                                                       
17 Formally, write the probability density function of relative efficiency endowments as )(αf , with 0)0( =f  and 

0)( >αf  for ),0( ∞∈α . 
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input rises even as the relative labor supply of routine task input falls. 

The implications for observed wages are ambiguous, however, without further assumptions. 

Because an increase in non-routine relative wages may reduce the average productivity (in efficiency 

units) of workers entering the non-routine occupation, quality change could reduce observed wages 

even as the per-unit price of non-routine tasks rises.18 

To summarize our simple conceptual framework, we find that a decline in the price of computer 

capital lowers the wages of workers carrying out routine tasks and causes employment in these tasks to 

contract. Although the demand for routine task input increases as the price of computer capital falls, 

this demand is satisfied by substitution of computer capital for human labor. Because greater relative 

intensity of routine task input raises the marginal productivity of non-routine tasks, the wage per 

efficiency unit of non-routine labor input rises.  

Many of the details of our model were chosen for simplicity and are not essential to the basic 

results. What is critical is our assumption that computer capital is more substitutable for routine than 

non-routine skills, an assumption that we believe is justified by the present state of computer 

technology. One dimension of the model we have not explored here is how consumer tastes interact 

with price declines and accompanying income gains to shape final demand. If we consider the model 

above to characterize production in a single industry and assume that industries have heterogeneous 

production technologies, it is plausible, depending on elasticities, that changes in final demand could 

amplify or offset changes in industry level demand for skills. For this reason, we focus our empirical 

exploration below on the composition of demand at the industry level.19 

3. Empirical Implementation 
 

                                                   
18 For example, if there is a strictly positive correlation between workers’ ability at carrying out routine and non-
routine tasks, a decline in the price of computer capital reduces average ability (in efficiency units) in both 
occupations. Given the decline in NR WW , observed wages in the routine occupation unambiguously fall. But wages 
in the non-routine occupation may not rise. 
19 Mobius (2000) and Thesmar and Thoenig (2000) provide insightful formal treatments of the impact of technological 
change on tastes, market structure, and the implications for the organization of production.  
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The approach of this paper is to conceptualize jobs in terms of their component tasks rather than 

the educational attainments of jobholders. To implement this approach, we require measures of tasks 

performed in particular jobs and their changes over time. We draw on information from the Fourth 

(1977) Edition and Revised Fourth (1991) edition of the U.S. Department of Labor’s Dictionary of 

Occupational Titles. Many of the details of our data construction are provided in the Data Appendix. 

Here we discuss the features most salient to our analysis. 

The U.S. Department of Labor released the first edition of the DOT in 1939 to “furnish public 

employment offices… with information and techniques [to] facilitate proper classification and 

placement of work seekers.”20 Although the DOT was updated four times in the ensuing five decades 

(1949, 1965, 1977 and 1991), its structure has been little altered. Based upon first-hand observations of 

workplaces, DOT examiners using guidelines supplied by the Handbook For Analyzing Jobs rate 

occupations along 44 objective and subjective dimensions including training times, physical demands, 

and required worker aptitudes, temperaments, and interests. While the Dictionary of Occupational 

Titles categorizes more than 12 thousand highly detailed occupations, the DOT data we employ here 

are based on an aggregation of these detailed occupations into three-digit Census Occupation Codes 

(COC) of which there are approximately 450.21  

Using these COC-DOT aggregations, we append DOT occupation characteristics to the Census 

IPUMS one percent extracts for 1960, 1970, 1980 and 1990, and to CPS Merged Outgoing Rotation 

Group (MORG) files for 1980, 1990 and 1998. We use all observations on non-institutionalized, 

employed workers, ages 18 – 64. For our industry analysis, these individual worker observations are 

aggregated to the level of 140 consistent Census industries spanning all sectors of the economy to 

provide indicators of average task requirements by industry for 1960, 1970, 1980, 1990 and 1998. All 

individual and industry level analyses are performed using as weights full-time equivalent hours of 

                                                   
20 U.S. Department of Labor (1939:xi) as quoted in Miller et al (1980). 
21 The actual number varies by Census year.  
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labor supply, which is the product of the individual Census or CPS sampling weight times hours of 

work in the sample reference week and, for Census samples, weeks of work in the previous year.22  

In measuring changes in task requirements, we exploit two sources of variation. The first consists 

of changes over time in the occupational distribution of employment economy-wide, within industries, 

and within-education groups within industries, holding task content within occupations at its DOT 

1977 level. We refer to this source of variation as the ‘extensive’ (i.e., across occupations) margin, 

which we are able to measure consistently over the period 1960 to 1998.  

Variation along the extensive margin does not, however, account for changes in task content within 

occupations such as is described in Levy and Murnane (1996), and is accordingly likely to provide an 

incomplete picture of changing job task requirements. Hence, we exploit changes between 1977 and 

1991 in skill content measures within occupations – the ‘intensive’ margin – using matched 

occupations from the Revised Fourth Edition of the Dictionary of Occupational Titles. This approach 

also has limitations. In the Revised Fourth Edition of the DOT, only a subset of occupations was 

reevaluated by DOT examiners, and moreover the year of reevaluation varied among occupations.23 

Measured changes along the intensive margin are therefore likely to provide a conservative picture of 

the total change in occupational task content.  

Although the DOT provides unique, observational measures of occupational task requirements, it 

has a number of well-known limitations documented by Miller et al (1980). These include limited 

sampling of occupations (particularly in the service sector), imprecise definitions of measured 

constructs, and omission of important job skills. One result of these problems is that DOT measures of 

the skills required in particular occupations are likely to be imprecisely estimated, particularly for 

                                                   
22 Because the CPS labor force sub-sample only includes those employed during the survey reference week, it is 
intrinsically weighted by weeks of labor force participation.  
23 The weighted fraction of employment reevaluated between 1978 and 1990 in our data is 73 percent, with 32 percent 
reevaluated between 1978 and 1984 and 41 percent reevaluated between 1985 and 1990. Occupations were chosen for 
reevaluation by DOT examiners partly on the expectation that their content had changed since the previous evaluation. 
Hence, the subset that was reevaluated may have changed more than the subset that was not. 
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occupations outside of manufacturing. Despite these limitations, the DOT contains to our knowledge 

the best time series information available on the skill requirements for detailed occupations economy-

wide.24 Researchers who have used the DOT for related analyses include Howell and Wolff (1991), 

Ingram and Neumann (2000), Spenner (1983 and 1990), and Wolff (1996). Our focus on routine versus 

non-routine tasks, choice of DOT variables, and analysis of change in job content within occupations 

across successive DOT editions is distinct from these studies.25 

a. Selecting DOT measures of routine and non-routine tasks 

To identify plausible indicators of the skills discussed above, we reduced the DOT measures to a 

relevant subset using their textual definitions and detailed examples provided by the Handbook for 

Analyzing Jobs (U.S. Department of Labor, 1972), the guidebook used by the DOT examiners. Based 

on these definitions and examination of means by major occupation for the year 1970, we selected five 

variables that appeared to best approximate our skill constructs. Definitions of these variables and 

example tasks from the Handbook for Analyzing Jobs are provided in Appendix Table 1.26  

To measure non-routine cognitive tasks, we employ two variables, one to capture interactive and 

managerial skills and the other to capture analytic reasoning skills. The variable DCP codes the extent 

to which occupations involve Direction, Control, and Planning of activities. This variable takes on 

consistently high values in occupations involving substantial non-routine managerial and interpersonal 

tasks. The variable GED-MATH, our second measure of non-routine cognitive tasks, codes the 

quantitative skills ranging from arithmetic to advanced mathematics that are required in occupations. 

We employ this variable as a measure of occupations’ analytic and technical reasoning requirements.  

We identified STS, the acronym for adaptability to work requiring Set limits, Tolerances, or 

Standards, as an indicator of routine cognitive tasks and selected the variable FINGDEX (an 

                                                   
24 The Department of Labor’s successor to the DOT, the O*NET, offers potentially more up to date information on 
occupational characteristics. O*NET does not, however, provide time series data on job content within occupations. 
25 Spenner (1983) provides a careful analysis of changes in occupational content between the 3rd and 4th editions of 
the DOT. 
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abbreviation of Finger Dexterity) as an indicator of routine manual activity.27 Finally, we selected 

EYEHAND, short for Eye-Hand-Foot coordination, as a measure of non-routine motor tasks. This 

variable takes on high values in occupations requiring physical agility, such as firemen.  

While we believe the selected measures are the most appropriate available from the DOT, we are 

sensitive to the concern that our choice of variables could be viewed as arbitrary (or worse). Hence, we 

test whether the chosen variables are logical candidates and explore whether initial results are similar if 

we employ alternative, composite variables generated by principal components analysis.  

b. Are these the correct DOT measures? A predictive test 

Observe that our model makes three specific predictions about which industries should have 

adopted computer capital most vigorously as its price declined: 1) industries intensive in routine 

cognitive and routine manual tasks – for which computers directly substitute for human labor; 2) 

industries intensive in non-routine cognitive tasks – with which computers complement human labor; 

and 3) industries that employ minimal non-routine manual task input – since non-routine manual tasks 

are not very amenable to computerization. If it were possible to measure industry task input prior to the 

computer era, these task measures should substantially predict subsequent patterns of computer 

adoption.  

To implement a variant of this test, we pair DOT occupational task measures with industry 

occupational distributions from the 1960 Census to fit the following model: 

(9) kkk TC εβα ++=∆ − 1959,19971959, , 

where 19971959, −∆ kC  is the percentage point change between 1959 and 1997 in the share of industry k  

employees using a computer on the job, 1959,kT  is a measure of industry task intensity in 1959 from the 

                                                                                                                                                                       
26 Supplemental tables providing a description of all DOT measures, the means of selected measures by major 
occupation, and a set of cross-industry correlations are available from the authors. 
27 As is clear from Appendix Table 1, there is overlap between our measures of routine manual and routine cognitive 
tasks. Although STS is weighted toward routine clerical and numerical tasks such as transcribing and calculating, and 
FINGDEX is weighted toward routine manual tasks such as feeding machines and performing repetitive movements, 
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DOT, and ε  is an error term.28 Although we do not have a direct measure of the level of industry 

computer use in 1959, computer penetration was close to zero in all industries at this time; hence, the 

1997 industry level is effectively the change since 1959. To test whether the DOT task measures 

provide explanatory power beyond standard education variables, we also fit models that include a 

measure of industry college graduate employment in 1959.  

Estimates of (9) are found in Panel A of Table 2. Most notable from the table is that four of five 

task measures have the predicted sign. Industries intensive in non-routine cognitive tasks and intensive 

in routine cognitive and routine motor tasks in 1959 computerized significantly more than other 

industries over the subsequent four decades. Conversely, industries intensive in non-routine manual 

tasks computerized substantially less than others. As is visible in row (2) of the table, all results are 

robust to inclusion of industry college graduate employment in 1959. The one unexpected pattern in 

the top panel of Table 2 is that the DOT measure of non-routine cognitive/interactive tasks does not 

predict subsequent computerization well. Overall, we take these patterns as preliminary evidence that 

our task measures primarily capture the task dimensions outlined by our model. 

To explore whether similar patterns prevail when we characterize industry task content using 

reasonable alternatives to our five DOT variables, we performed principal components analyses (PCA) 

to pool variation from each selected DOT task measure with several other plausible alternatives.29 We 

estimated equation (9) using these composites in place of the direct DOT measures. To facilitate 

comparisons between the analogous coefficients in the two panels of Table 2, all DOT and composite 

variables are standardized to have mean zero and variance one.  

The patterns displayed in Panel B of Table 2 are largely comparable to the patterns using the direct 

                                                                                                                                                                       
the correlation between the measures is high (0.61 using 1980 Census weights) and examples of both routine manual 
and cognitive tasks appear for each measure in the Handbook for Analyzing Jobs. 
28 Specifically, we apply 1977 DOT measures by occupation to the 1960 Census and aggregate to the industry level.  
29 The PCA extracts eigenvectors that maximize common variation among selected measures, each standardized with 
mean zero and variance one, subject to the constraint that the sum of squared weights in the eigenvector equals one. It 
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DOT measures. For three of the five task types, non-routine cognitive, routine manual, and non-routine 

manual, the coefficient on the relevant composite and the coefficient on the individual DOT variable 

both have the hypothesized sign and are significantly different from zero. For the non-routine 

cognitive/interactive task measure, the composite measure predicts somewhat better than the single 

DOT variable. For the routine cognitive task measure, the opposite is the case.   

While it would be possible to perform our entire analysis using the composites in place of the direct 

DOT measures, we find this approach unappealing. The composites are particularly problematic when 

analyzing within-occupation changes in the DOT since they do not correspond to any specific 

occupational changes observed by DOT examiners. We therefore concentrate the analysis on the direct 

measures. However, we perform a second test of our variable choices below by re-estimating key 

results using the composite measures in place of the direct DOT variables.  

4. Computerization and trends in task input: 1959 – 1998 
 
a. Economy-wide trends 

Figure 1 illustrates the extent to which changes in the occupational distribution over the period 

1960 – 1998 resulted in changes in the task content of the work done by the U.S. labor force.30 The 

proportion of the labor force employed in occupations that made intensive use of non-routine cognitive 

tasks – both interactive and analytic – increased substantially. In contrast, the percentage of the labor 

force employed in occupations intensive in routine cognitive, routine manual and non-routine manual 

activities declined over the period.  

As can be seen in detail in Table 3, while both measures of non-routine cognitive tasks trended 

upward during the 1960s, the upward trend in each accelerated substantially thereafter, and was most 

                                                                                                                                                                       
can be shown that if measurement error in the selected variables is iid, the PCA extracts maximal true variation. 
Details of our compositing exercise are provided in the Data Appendix. 
30 In this figure and the remainder of the analysis, each DOT measure is scaled from zero to ten with higher values 
indicating greater task input. Since these are not standardized metrics, it is potentially misleading to compare the 
magnitude of changes across dependent variables. In section 6, we translate task demands into the more familiar metric 
of educational requirements. 
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rapid during the 1980s and 1990s. Equally notably, routine cognitive and routine manual tasks were 

both increasing during the 1960s, prior to commencing a decline in the 1970s, which became more 

rapid in each subsequent decade. The steady trend against non-routine manual tasks, however, pre-

dates the computer era. These aggregate patterns are also apparent for each gender (Panel B of Table 

3), although given the large increases in women’s educational attainment and labor force participation 

in recent decades, the patterns are more pronounced for women.31  

For reference, Appendix Table 2 tabulates the DOT task measures by major educational group. 

Notably, while three of five skill variables are monotonic in educational attainment, the two measures 

of routine tasks – cognitive and manual – show a U-shaped relationship to education; in particular, high 

school graduates perform substantially more of both types of routine task than either high school 

dropouts or college graduates. This non-monotonicity suggests that the DOT measures may provide 

information about job task requirements distinct from standard educational categories. 

b. Task upgrading: A within-industry phenomenon? 

Changes in the task content of the work done by the U.S. labor force could stem from substitution 

of computer capital for routine labor inputs within detailed industries, as our model suggests. 

Alternatively, shifts in product demand favoring sectors intensive in non-routine activities could give 

rise to economy-wide increases in the utilization of non-routine tasks. Since the focus of our 

conceptual model and empirical analysis is on changes in task demands within industries, we explore 

the extent to which changes in measured job content stem from within-industry shifts.    

A standard decomposition of the change in the use of task j  in aggregate employment between 

years t  and τ  ( jtjj TTT −=∆ ττ ) into a term reflecting the reallocation of employment across sectors and 

a term reflecting changes in task j  input within industries is given by 

                                                   
31 Notably, in the 1960s, women were more (less) concentrated in routine manual and cognitive tasks (non-routine 
cognitive analytic and interactive tasks) than were men. By 1998, the gender distributions of tasks had substantially 
converged and women performed fewer routine cognitive tasks than did males.  
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(10) w
j

b
jkjkkjkkkj TTEET τττττ γγ ∆+∆=∆Σ+∆Σ=∆ )()( , 

where k  indexes industries, τjkE  is the employment of workers in task j  in industry k  in year τ  as a 

share of aggregate employment in year τ , τkE  is total employment (in FTES) in industry k  in year τ , 

τγ jk  is the mean of task j  in industry k  in year τ , 2/)( jktjkjk γγγ τ += , and 2/)( ktkk EEE += τ . The 

first term ( b
jtT∆ ) reflects the change in aggregate employment of task j  attributable to changes in 

employment shares between industries that utilize different intensities of task j . The second term 

( w
jtT∆ ) reflects within-industry task change.  

Table 4 presents between- and within-industry decompositions of our five DOT task measures 

during each decade from 1960 to 1998. These decompositions show quite consistent patterns of task 

change. Both measures of non-routine cognitive task input – interactive and analytic – show strong 

within-industry growth after the 1970s. For the non-routine cognitive/interactive task measure, the 

growth in economy-wide input of this task over four decades is almost entirely a within-industry 

phenomenon; moreover, the rate of within-industry growth accelerates from decade to decade. For the 

non-routine cognitive/analytic task measure, the within-industry growth rate accelerates after the 

1970s. Prior to this decade, the growth of non-routine cognitive/analytic task input is primarily a 

between-industry phenomenon. 

Trends in routine task input, both cognitive and manual, also follow a striking pattern. During the 

1960s, both forms of input increased due to a combination of between- and within-industry shifts. In 

the 1970s, however, within-industry input of both tasks declined, with the rate of decline accelerating. 

As distinct from the other four task measures, we observe steady within- and between-industry 

shifts against non-routine manual tasks for the entire four decades of our sample. Since our conceptual 

framework indicates that non-routine manual tasks are largely orthogonal to computerization, we view 

this pattern as neither supportive nor at odds with our model. 
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In net, these data indicate that within-industry shifts dominate for the most part the task trends that 

we seek to analyze, particularly from the 1970s forward. We now turn to an analysis of the role that 

computerization has played in these within-industry task shifts. 

c. The time pattern of industry task shifts: Do they predate the computer era? 

We begin the analysis of the relationship between computerization and industry task input by 

estimating the bivariate regression 

(11) ττ εβα jkjjk CT +∆+=∆ , 

where jktjkjk TTT −=∆ ττ  is the change in industry input of task j  between years t  and τ  and kC∆  is the 

change between 1984 and 1997 in the percentage of industry workers using a computer at their jobs as 

estimated from the October Current Population Survey supplements of these years.  

In estimating (11), we choose the period 1960 to 1998 because it encompasses the recent computer 

era and, as importantly, the prior decade. Although the widespread diffusion of desktop computers 

during the 1980s and 1990s represents a highly visible technology ‘shock’ – with the share of workers 

using a computer on the job rising from 25 to 51 percent between 1984 and 1997 – it bears emphasis 

that the era of rapid computer investment began in the 1970s (Autor, Katz and Krueger, 1998; 

Bresnahan, 1999). Hence, to the degree that industry computer proxies ‘predict’ occupational task 

change during the 1960s, this would suggest that observed trends in task content in computer intensive 

sectors pre-date the computer era and hence are unlikely to be caused by computerization. Conversely, 

if the relationship between industry computer intensity and task change is not detectable until the 1970s 

or later, this is more likely to be consistent with a causal relationship.  

Table 5 presents estimates of (11) for each of the four decades from 1960 – 1998. Each dependent 

variable measures ten times the annualized industry level change in the average value of one of the task 

indicators. Figure 2 summarizes the time pattern of regression coefficients. 

Industries that computerized relatively rapidly during the 1980s and 1990s increased the share of 
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jobs requiring non-routine cognitive/analytic task input during these decades more than did other 

industries. However, this was not the case for prior decades. As illustrated in Figure 2, during the 

1960s and 1970s, the industries that became the rapidly computerizing industries did not differentially 

increase input of non-routine cognitive/analytic tasks. 

The pattern is somewhat different for the change in cognitive/interactive tasks. Industries that 

subsequently computerized intensively were already raising their input of cognitive/interactive tasks 

relatively more rapidly than other industries in the 1960s and 1970s. However, the magnitude and 

statistical significance of this relationship increased substantially in the 1980s and 1990s, consistent 

with the acceleration in within-industry trends in Table 4. In fact, the estimated impact of 

computerization on both measures of non-routine cognitive tasks accounts for eighty to one hundred 

percent of the observed within-industry growth in input of these tasks over 1980 – 1998.32 

The relationships between computerization and routine cognitive and routine manual task input 

present a mirror image of these patterns. During the 1960s, industries that subsequently underwent 

rapid computerization did not significantly shift their routine cognitive or routine manual task input 

relative to other industries. Beginning in the 1970s, these same sectors undertook rapid reductions in 

routine cognitive and routine manual task input. As above, the impact of computerization accounts for 

all of the observed within-industry reduction in routine task input between 1970 and 1990. 

Consistent with our framework, there is no significant evidence that rapidly computerizing 

industries decreased their use of non-routine manual tasks more rapidly than did other industries during 

this period. During the 1990s, however, rapidly computerizing industries decreased the non-routine 

manual task intensity of work less rapidly than did other industries.33  

                                                   
32 Specifically, the intercept of the bivariate regression of the change in industry non-routine cognitive/analytic task 
input on computerization during the 1980s and 1990s is close to zero although the mean of the dependent variable is 
large and positive. In this sense, computerization accounts for the entirety of the observed phenomenon. 
33 This result should be interpreted carefully. It is unlikely that computerization directly increases demand for non-
routine manual tasks; rather, the share of human labor devoted to non-routine manual tasks is likely to rise 
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To further probe the robustness of our variable choices from the DOT, we estimated comparable 

models using the composite task measures developed from the pure DOT variables (Appendix Table 

3). The time pattern of results for the composite estimates is for the most part comparable to that found 

in Table 5. In all cases, the relationship between computerization and the composite task measure is not 

statistically significant during the 1960s and becomes statistically and economically significant in 

subsequent decades. The decade of the 1970s presents some inconsistencies, however, indicating that 

our composites do not perform as well as the pure DOT measures. 

d. Employing contemporaneous measures of computerization 

The estimates above are consistent with the hypothesis that computerization during the 1980s and 

1990s induced or accelerated industry level task shifts that were not (as) evident in the pre-computer 

era of the 1960s. To provide a broader test of the hypothesis that computerization accounts for these 

task shifts, we employ a contemporaneous measure of per-worker industry computer investment from 

the National Income and Product Accounts (‘NIPA’, U.S. Department of Commerce, 1993 and 1999). 

To measure industry computerization, we calculate the log of real computer investment per full-time 

equivalent employee (FTE) over the course of the decade.34 Since we are interested in the impacts of 

computerization as distinct from overall industry capital deepening, we also construct a measure of the 

change in the log industry capital labor ratio.  

We use these data to estimate stacked first-difference industry task shift models of the form  

(12) τττ εββδδδα jkktkjk KCIT +∆+++++=∆ −−− 21989090808070 , 

where CI  is log industry investment in computer capital per FTE over the contemporaneous decade, 

                                                                                                                                                                       
mechanically as routine tasks are displaced. For example, a constant number of workers doing non-routine manual 
work such as cleaning and serving would account for a growing share of employment in computer-intensive sectors.  
34 Note that we do not use the change in this measure since the level proxies the flow of new computer capital into an 
industry over the decade. The NIPA data are also employed by Berndt, Morrison and Rosenblum (1995) and Autor, 
Katz, and Krueger (1998). We matched data from the Census, CPS, and DOT to NIPA data in 42 aggregated industries 
covering all private industry sectors except private household services. Because the NIPA capital variables are 
measured at a higher level of aggregation than our dependent variables, we estimate Huber-White robust standard 
errors that account for clustering at the NIPA sectoral level.  See the Data Appendix for details.  
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K∆  is the change in the log industry capital labor ratio (also measured in FTEs), the s'δ  are time 

dummies equal to one in each of the post-1960s decades corresponding to their subscripts, and α  is a 

common intercept. In this specification, the s'δ  measure the trend change in industry task input in the 

1970s, 1980s, and 1990s relative to the base period of the 1960s. Hence, the key empirical question is 

whether by conditioning on measures of industry computer investment, we can explain the trend 

changes in task input measured by the s'δ .  

Note that in estimating this equation, it is not necessary to interpret the industry computer 

investment measure, jktCI , as ‘exogenous’ (which it surely is not). As underscored by our theoretical 

model, the exogenous variable in our analysis is the economy-wide decline in the price of computer 

capital. Accordingly, the variation we exploit in (12) stems from industries’ equilibrium response to 

this price decline as they shift the quantities and sources of task input from human to computer capital 

according to the new price schedule.35  

Table 6 displays estimates of (12). The NIPA measure of computer investment consistently 

predicts relative declines in industry employment of both routine cognitive and manual tasks and 

relative growth in employment of non-routine cognitive tasks, both analytic and interactive. By 

comparing the decadal intercepts ( s'δ ) in the first column of each panel to the observed decadal 

changes found at the bottom of the table, one can calculate the fraction of the observed change in the 

task measure explained by industry computer investment. Using the 1960s as the baseline, these 

comparisons indicate that computer investment can more than fully explain the trend increase in both 

measures of non-routine cognitive task input since the 1960s, and accounts for over eighty percent of 

the trend decline in routine cognitive and manual tasks.36 Hence, computerization has substantial power 

in explaining the observed trend shifts in industry task input in each of the three decades following the 

                                                   
35 As demonstrated in Table 2, the ability of industries to respond to these price changes depends importantly upon the 
mix of task inputs that they employ. 
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1960s. 

A notable pattern in these results is that the estimated impact of capital deepening on changes in 

industry skill demands is statistically significant in only one of five models, non-routine manual tasks. 

Yet, the coefficient on computer investment is significant in all five models that contain the measure of 

capital deepening. Consistent with findings of Autor, Katz, and Krueger (1998) and Bresnahan, 

Brynjolfsson and Hitt (forthcoming), these results indicate that there appears to be something 

distinctive about computer capital’s relationship with industry task demands apart from the well-known 

pattern of capital-skill complementarity (Griliches, 1969). 

5. Computerization and contemporaneous task shifts at the industry, 
occupation and educational level, 1980 – 1998 

 
It is possible to argue that the preceding results primarily provide an explanation for the widely 

documented pattern that during recent decades computer intensive industries increased their college 

graduate employment and decreased their high school graduate employment more than did other 

industries.37 Our contention, however, is that changes in the demand for workplace tasks are an 

underlying cause – not merely a reflection – of relative demand shifts favoring educated labor. If so, 

educational upgrading should be only one among several margins through which industries alter task 

input. Underlying shifts in task demand should also yield pervasive changes in task content that are 

visible within (as well as across) education and occupation groups.  

To explore this implication, we examine changes in the task content of work within education and 

occupation categories over the two most recent decades. As a baseline, we first analyze the 

contemporaneous correlations between computerization and within-industry changes in task content 

                                                                                                                                                                       
36 For example, the calculation for routine cognitive tasks is: [((–0.019 – 0.089) + 0.040 + (–0.122 – 0.089) + 0.002 + 
((–0.216 – 0.089) + 0.041)*.8]/([ (–0.019 – 0.089) + (–0.122 – 0.089) + (–0.216 – 0.089)*.8] = 0.87. Note that changes 
over 1990-98 are down-weighted by 20 percent due to the shorter time interval.  
37 Cf., Autor, Katz and Krueger (1998), Berman, Bound and Griliches (1994), Berman, Bound and Machin (1998), and 
Machin and Van Reenen (1998). The logic would be that because workers at higher levels of education appear to hold 
comparative advantage in non-routine relative to routine tasks (Appendix Table 2), industries undergoing rapid 
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between 1980 and 1998. Next, we examine whether within-industry task shifts are present even among 

workers with the same educational attainments. Finally, we exploit direct field observations from 

successive revisions of the DOT to ask whether computerization yielded commensurate shifts in task 

content within nominally identical occupations. In the concluding section of the paper, we collect these 

strands to quantify the contribution of computerization-induced changes in the task content of work to 

recent demand shifts favoring educated labor. 

a. Extensive changes within industries and within education groups: 1980 – 1998 

Panel A of Table 7 presents a series of estimates in which the dependent variable is the within-

industry change between 1980 and 1998 in each of the five DOT task measures. The explanatory 

variable is the change in industry computer use between 1984 and 1997, which in this case is a 

contemporaneous measure. These results underscore the story told by Tables 5 and 6. Industries that 

rapidly computerized during the 1980s and 1990s undertook large relative increases in the share of jobs 

requiring high levels of non-routine cognitive/interactive and cognitive/analytic task input, and 

decreased the share requiring routine cognitive and manual tasks.  

These changes in industry task content have two components. One is educational upgrading. As has 

been widely documented, computerizing industries have substituted towards college-educated workers 

who, by our analysis, appear to hold a comparative advantage in non-routine cognitive tasks (cf. 

Appendix Table 2). A second component of these task shifts (not previously explored), is task 

upgrading within education groups. Industries undertaking computerization may shift the job tasks of 

workers of comparable education towards non-routine and against routine tasks.  

A unique virtue of our data is that it allows us to gauge the importance of both channels of task 

change and estimate the contribution of computerization of each. To perform this decomposition, we 

estimate a variant of equation (11) in which the dependent variable is the within-industry change in the 

                                                                                                                                                                       
computerization may increase input of these tasks through educational upgrading. Note that the growth of non-routine 
manual tasks in computer intensive sectors would not have been predicted by this simple comparison. 
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mean of each DOT measure among workers who have the same educational attainments.38 Since we 

pair the 1977 DOT task content measures to education-group-specific industry observations for 1980 

and 1998, observed changes in task input stem solely from shifts in occupational distributions within 

education groups within industries. To conserve space, we present and discuss results for high school 

graduates and summarize results for all education groups in Figure 3.39  

The weighted means of the task measures for high school graduates (Panel B of Table 7) indicate 

that during 1980 to 1998, the task structure of high school graduates employment shifted towards non-

routine cognitive/interactive tasks and away from routine cognitive and routine manual tasks. Estimates 

of (11) for high school graduates reveal that these task shifts were significantly more pronounced in 

industries undergoing rapid computerization. Comparison of the estimated intercepts for these models 

relative to their weighted means reveals that observed high school graduate employment shifts against 

occupations intensive in routine cognitive and manual tasks and towards occupations intensive in non-

routine cognitive tasks were essentially entirely driven by changing employment patterns within 

rapidly computerizing sectors.  

As is visible from Figure 3, industry-level computerization is associated with within-industry shifts 

towards non-routine and against routine tasks within essentially all education groups. A decomposition 

analogous to that in equation (10) (shown in Table 8) reveals the importance of within-education group 

shifts to the overall pattern of task change. In all but the case of non-routine manual tasks, within 

education group task upgrading explains a substantial share – 45 to 91 percent – of observed within-

industry task upgrading over these two decades. Hence, the impact of computerization is not confined 

to widely observed educational upgrading; within-education group changes in task structure appear at 

                                                   
38 In particular, we replace τjkT∆  in (11) with τjklT∆  where l  denotes education groups within industries. 
39 Estimates comparable to Table 7 Panel B for other education groups are found in Appendix Table 4. The pattern of 
results for workers with some college is virtually identical to that of high school graduates. The relationships are 
almost all of the expected sign for college graduates and high school dropouts but are primarily not statistically 
significant. A likely explanation for the weak college graduate results is ‘topping out.’ Because in 1980, college 
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least equally important.  

Notably, in a recent analysis of the inter-industry wage structure, Bartel and Sicherman (1999) 

found that technology-intensive industries select workers of greater unobservable skill conditional on 

education. Our results suggest a likely causal channel for this finding: within nominally similar 

education categories, these industries have differentially shifted the task content of employment against 

routine, repetitive tasks and towards tasks demanding cognitive flexibility. 

b. Computerization and changes in occupational task content: 1977 – 1991 

The task shifts documented above are measured exclusively by shifts in occupational composition 

(the extensive margin). Our framework further implies that pervasive shifts in task demands should 

induce parallel changes along the intensive margin. In this section, we exploit direct job evaluations 

from successive editions of the DOT to explore whether computerization has yielded commensurate 

changes in task content within nominally identical occupations. Specifically, we estimate the equation 

(13) ττ εβα mkmmk CT +∆+=∆ , 

where τmkT∆  is the change in observed occupational task content between the 1977 and 1991 in 3-digit 

COC occupation m , and mC∆  is the change in occupational computer penetration measured by the 

CPS.40   

To make this test as clean as possible, our DOT 1977 – 1991 comparison data set is constructed 

using only the subset of occupations appearing in the 1977 DOT and represented by the 1973 CPS file 

(National Academy of Sciences, 1981) that provides our DOT-COC crosswalk. In addition, although 

the distribution of employment in DOT occupations (of which there are approximately 12,000) has 

doubtless shifted within COC occupations in recent decades, we hold this distribution fixed at the 1973 

level to again exclude extraneous variation. Accordingly, the variation exploited in estimates of 

                                                                                                                                                                       
graduates were concentrated in occupations with high values of non-routine cognitive tasks and low levels of routine 
cognitive and routine manual tasks, this left little room for the task measures to attain further extremes. 
40 The Fourth and Fourth Revised editions of the DOT were published in 1977 and 1991 respectively. For consistency 
with the analysis above, we use the CPS computerization and education measures for 1984 to 1997. 
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equation (13) stems entirely from DOT examiners’ reevaluations of the task content of individual 

occupations between 1977 and 1991. 

For each task measure, we present the results from two specifications in Table 9. The first includes 

only the occupational computerization measure. To explore whether intra-occupational task change is 

implicitly captured by shifts in the educational distribution of employees in an occupation, the second 

specification adds the contemporaneous change in the percentage of workers in the occupation who are 

college graduates. 

The most visible change in occupational task content between 1977 and 1991 was a pronounced 

decrease in routine cognitive tasks. A regression of the routine cognitive task measure on occupational 

computerization reveals that input of this task declined by substantially more in rapidly computerizing 

occupations. Comparison of the intercept of this regression to the weighted mean of the dependent 

variable indicates that the implied impact of computerization is more than sufficient to explain the 

observed mean shift against routine cognitive tasks over 1977 to 1991. A second notable pattern is the 

positive relationship between occupational computerization and the input of non-routine 

cognitive/analytic tasks. Even though the average level of non-routine cognitive/analytic tasks declined 

slightly within occupations, the level increased significantly in rapidly computerizing occupations. 

Finally, the input of cognitive/interactive tasks increased within occupations (Column 2), and this shift 

was significantly greater in more rapidly computerizing industries. 

We find little relationship between computerization and changes in the routine manual task content 

of occupations, however. Interestingly, computerization predicts significant increases in the non-

routine manual task content of occupations, a pattern also noted at the industry level.  

Comparison across the two specifications in each panel demonstrates that the relationship between 

computerization and within-occupation task change is quite insensitive to inclusion of the college 

graduate employment share measure. Apparently, observed educational upgrading within occupations 

does not provide an adequate summary measure of shifts in occupational task content.  
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6. Computers, task structure, and the demand for college educated labor 
 

Are the pervasive task shifts documented above economically significant? To answer this question, 

we draw together the estimated impacts of computerization on task change within industries, within 

education groups and within occupations to calculate their net contribution to the demand for skill as 

conventionally measured by educational attainment.  

Since units of task input do not have a natural scale, we translate task inputs into educational 

requirements using a “fixed coefficients” model of occupational education requirements in 1970 as a 

function of occupational task inputs measured by the 1970 DOT. Specifically, we estimate: 

(14) mm
m
c TN ελα ++=  

where m
cN  is the employment share (in FTEs) of college graduates in occupation m , mT  is a column 

vector containing the DOT means of our routine and non-routine skill measures, and λ   is a 

conformable row vector of coefficients. λ̂  is therefore an estimate of college versus non-college 

demand as a function of occupational tasks. 

We then translate our estimates of changes in job tasks induced by computerization (Tables 6 and 

7) into estimates of implied changes in college versus non-college employment along the extensive 

margin by calculating 

(15) λγ τττ
ˆˆˆ

kkkc TN ∆Σ=∆ , 

where τkT∆̂  is a vector of predicted change in industry sk '  input of each of our five task measures due 

to computerization between times t  and τ  from estimates of equation (11) and (12), τγ k  is industry 

sk '  average share of employment between t  and τ . τcN∆̂  is therefore the implied impact of computer-

induced task shifts on the college graduate share of total employment. Similarly, we incorporate 

predicted changes on the intensive margin of task input over 1980 to 1998 by adding to τkT∆̂  the vector 

τmT∆̂ , which is the change from equation (13) in within occupation tasks attributable to 
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computerization (Table 9).41 Hence, this exercise asks by how much the college employment share 

would have needed to increase between 1970 and 1998 to satisfy contemporaneous computer-induced 

task shifts, assuming that college graduates continued to perform the same tasks (on average) as they 

did in 1970.42  

Two caveats apply to these estimates. First, given the limitations of the DOT discussed earlier, 

estimates of λ  are likely to be biased towards zero by measurement error. This will reduce our 

estimates of τcN∆ . Second, because equation (15) is a fixed coefficients model of education demand as 

a function of job tasks, it neglects task prices. To the degree that the implicit prices of non-routine tasks 

have risen (fallen) since 1970, our calculations will under- (over-) state accompanying demand shifts 

favoring non-routine tasks, and vice versa for measured demand shifts against routine tasks. Detailed 

calculations of (15) are found in Table 10. Panels A tabulates estimates of τkT∆̂  for 1970 – 1998 and 

1980 – 1998 excluding and including task changes on the intensive margin. Panel B translates these 

task shifts into units of college graduate employment in percentage points.  

As is visible in Panel A, task changes on the extensive margin attributable to computerization 

explain 1.8 percentage points of the growth in college vs. non-college employment over 1980 – 1998 

                                                   
41 In addition, there is a third (interaction) term in the sum of computer contributions to task upgrading. The total 
contribution of computerization to task change can be written as: 
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where m  subscripts occupations, s'γ  denote occupational shares of employment, and the ‘hat’ overscore ( γ̂ ) 
indicates an estimated occupational shift attributable to computerization. The first term on the right hand side of the 
above equation measures the task change due to within-industry occupational shifts attributable to computerization, 
holding constant the task content of occupations at the initial level in t  (this term is given by Table 7). The second 
term measures the change due to within-occupation task shifts, holding constant the distribution of occupational 
employment at the initial level (this term is given by Table 9). The third term measures the interaction of within-
industry and within-occupation task shifts between time t  and τ . Because computerizing industries experienced 
disproportionate growth in occupations that rapidly computerized, there is a positive covariance between within-
industry and within-occupation components. We calculate this third term and add it to (15). 
42 Although as demonstrated above, task upgrading takes place along many margins – including within education 
groups – our objective here is to quantify the total impact of these shifts by translating them into one hypothetical 
margin: the demand for college educated labor. We estimate (14) using data from the 1970 Census on the task 
structure of employment by education group.  
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and explain 2.0 percentage points of this growth over 1970 – 1998. Slightly more than half of this 

contribution is accounted for by shifts favoring non-routine cognitive tasks, with the remainder 

explained by shifts against routine cognitive and manual tasks.43  

Adding the effect of changes along the intensive margin, τmT∆̂ , more than doubles the magnitude 

of this impact. Computerization is estimated to have increased the college graduate employment share 

by 5.0 percentage points over 1980 – 1998 and 5.3 percentage points over 1970 – 1998. Moreover, 

because the intensive margin change is only measured during 1977 to 1991, it is likely that a longer 

time series would show that these shifts have even greater explanatory power.  

For reference, the estimate of 5.0 percentage points can be compared to the actual change in 

college graduate employment between 1980 and 1998, which is 6.83 percentage points. However, this 

is not the most appropriate comparison since increases in college employment are likely to be driven in 

part by secular trends in the supply of college graduates as well as shifts in demand per se. To make a 

more formal comparison, we employ a simple constant elasticity of substitution framework to translate 

induced employment shifts into log relative demand shifts for college equivalent labor. In this 

framework, we assume that aggregate output, tQ , is produced using two factors, college )(c  and high 

school )(h  equivalents in the production function 

(16) [ ]ρρρ αα
1

))(1()( htttctttt NbNaQ −+= , 

where ctN  and htN  are the quantities of employed college equivalents and high school equivalents in 

period t , ta  and tb  represent skilled and unskilled labor-augmenting technological change, tα  is a 

time-varying technology parameter that can be interpreted as indexing the share of work activities 

allocated to skilled labor, and ρ  is time invariant. The aggregate elasticity of substitution between 

                                                   
43 The increased demand for non-routine manual tasks makes a small offsetting contribution. 
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college and high school equivalents is given by )1(1 ρσ −= .44 

Under the assumption that the economy operates on its labor demand curve so that college and high 

school equivalents are paid their marginal products, we can use (16) to solve for the ratio of marginal 

products of the two labor types, yielding the relationship between relative wages )( htct ww  and relative 

supplies )( htct ww  

(17) )]ln([1)ln( htctthtct NNDww −= σ . 

Rearranging (17) and taking first differences, the change in the relative demand for college equivalent 

labor between times t  and τ  in log quantity units can be written as 45 

(18) [ ] )ln()1()(ln ττττττττ σ hchhcct wwNwNwDDD −+∆=−=∆ . 

Change in the relative demand for college equivalents can be written as the sum of the change in the 

log relative wage bill and a term that depends positively (negatively) on the change in the log college 

wage premium when 1>σ  ( 1<σ ).  

In implementing this framework, we follow Autor, Katz and Krueger (1998) in employing an 

elasticity of substitution between college and non-college labor of 4.1=σ , a figure that receives broad 

empirical support from the literature.46 Using our Census and CPS samples, we calculate that the 

estimated log relative demand for college graduate employment grew by approximately 10 log points 

annually over 1970 – 1998 and 7 log points over 1980 – 1998 (Panel C of Table 10).  

Using these demand shift estimates as a benchmark, we can calculate the share of the estimated 

demand shift attributable to computer-induced task shifts. To make this comparison within our “fixed 

coefficients” framework, we estimate a version of (18) in which we allow −∞→ρ , which implies that 

                                                   
44 Autor, Katz and Krueger (1998), Johnson (1997), and Katz and Murphy (1992) implement a similar model. Our 
implementation is closest to Autor, Katz and Krueger’s, and we update their Table 2 to 1998 to perform the benchmark 
demand shift estimates against which we compare our fixed coefficient calculations. Because (16) exhibits constant 
returns to scale, we conserve notation by using ctN  and htN  to refer to employment quantities and employment shares 
interchangeably.  
45 )ln()1(]1[ln( ttttt baD −+−= σαασ . 
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0→σ , the relative demand for college equivalents is Leontif (i.e., fixed coefficients). In this special 

case, (18) reduces to 

(19) ]/[1ln(]/[1ln()ln( τττττττ hhcchc NNNNNND ∆+−∆+=∆=∆ . 

Here, changes in log relative demand are written entirely in terms of shifts in relative employment.47 

To gauge the contribution of computerization to demand shifts, we replace τcN∆  in (19) with τcN∆̂  the 

estimated computer-induced change in college graduate employment from equation (15).  

For the period 1980 – 1998, task shifts induced by computerization are estimated to have increased 

log relative college demand by 2.8 log points annually (Table 10, Panel C). Comparing this number to 

the estimated economy-wide shift of 6.7 log points over this period, we find that changes in task 

content explain approximately 40 percent of the observed shift. Notably, more than half of this impact 

is accounted for by (normally unobservable) shifts along the intensive margin. The analogous 

calculation for the three-decade interval finds that computer-induced task shifts explain approximately 

30 percent of the demand shift favoring college graduates over 1970 – 1998.48  

In interpreting these estimates, we note that relative demand for college-educated labor in the U.S. 

increased substantially from the 1940s through the 1960s, decades prior to computerization (cf., 

Acemoglu, forthcoming; Autor, Katz and Krueger, 1998; Johnson, 1997; and Mishel, Bernstein and 

Schmitt, 1997). Hence, a claim that computerization has increased the relative demand for educated 

labor requires evidence that computerization has accelerated demand growth beyond trends prevailing 

during the 1960s and earlier. It is therefore noteworthy that the estimates in Table 10 indicate that 

computerization contributed to more rapid growth in college employment in the 1970s relative to the 

                                                                                                                                                                       
46 Cf., Hamermesh (1993), Heckman, Lochner and Taber (1998), and Katz and Murphy (1992). 
47 Note that ττ ch NN ∆−=∆ ˆˆ . For consistency with the fixed coefficients model, we use σ = 0 for this calculation. If we 
used σ = 1.4 instead, our estimate of the contribution of task shifts to observed college demand shifts would be 
significantly larger, as follows from the substantial increase in relative wages of college graduates over 1980 – 1998. 
48 As with the NIPA estimates in Table 6, we perform all calculations for 1970 – 1998 relative to the 1960s. 
Specifically, we subtract off the 1960s trend task change from the task estimates for the 1970s, 1980s, and 1990s on 
the assumption that these trends predated computerization and should not be counted as potential computer impacts. 
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1960s, and that this impact was greater still during the 1980s and 1990s. Hence, our evidence suggests 

that recent technological change has had an accelerating impact on the task structure of employment 

since the 1970s. Cumulatively, this impact appears to have contributed substantially to demand shifts 

favoring college-educated labor. 

7. Conclusion 
 

A number of influential studies report a positive correlation between technology investments and 

educational upgrading. Our study complements and advances this line of research. By conceptualizing 

job skill demands in terms of job tasks rather than the educational credentials of workers performing 

those tasks, our framework provides an account of how computerization and associated organizational 

changes alters the composition of job tasks. This framework rationalizes the observed correlation 

between computerization and increased use of educated labor and predicts pervasive shifts in 

workplace task structure that are not observable in conventional data sources. By exploiting consistent, 

representative, time series observations on the task structure of jobs from the Dictionary of 

Occupational Titles, we both affirm these predictions and find that they contributed substantially to 

demand shifts favoring educated labor over the past three decades. While the limitations of the DOT 

also place some constraints on the precision of our analysis, we believe it advances understanding of 

the evolving skill content of work. 
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Data Appendix 
 
A.1. Samples used from Current Population Survey and Census of Populations 

To calculate occupational and educational distributions economy-wide and within industries for 1960 to 
1998, we used observations on all non-institutionalized, employed workers ages 18 – 64 from the 
Census PUMS one percent samples for 1960, 1970, 1980, and 1990 (Ruggles and Sobek, 1997) and the 
Merged Outgoing Rotation Groups of the Current Population Survey for the years 1980, 1990, and 
1998. All individual and industry le vel analyses are performed using as weights full-time equivalent 
hours of labor supply, which is the product of the individual Census or CPS sampling weight times 
hours of work in the sample reference week divided by 35 and, for Census samples, weeks of work in 
the previous year. Our method provides equal weight to each hour of labor input in the economy rather 
than over-weighting part-time hours as is implicitly done when using raw Census sampling weights. 
Because hours were not reported for the self-employed in the CPS prior to 1994, we assigned self-
employed workers in all CPS samples the average labor hours in their industry-education-year cell. In 
cases where industry hours supplied by education category were unavailable (due to an empty industry-
education-year cell), we assigned weekly hours as the mean of workers’ education-year cells.  

To attain comparable educational categories (high school dropout, high school graduate, some college, 
college-plus graduate) across the redefinition of Census’s Bureau’s education variable introduced in 
1990 in the Census and in 1992 in the CPS, we use the method proposed by Jaeger (1997). In data 
coded with the pre-1992 education question (Census PUMS 1960, 1970, and 1980, and CPS MORG 
files 1980 and 1990), we defined high school dropouts as those with fewer than 12 years of completed 
schooling; high school graduates as those having 12 years of completed schooling; some college 
attendees as those with any schooling beyond 12 years (completed or not) and less than 16 completed 
years; and college plus graduates as those with 16 or more years of completed schooling.  In data coded 
with the revised education question (1990 Census PUMS and 1998 CPS MORG file), we define high 
school dropouts as those with fewer than 12 years of completed schooling; high school graduates as 
those with either 12 completed years of schooling and/or a high school diploma or G.E.D.; some college 
as those attending some college or holding an Associate’s Degree (either occupational/vocational or 
academic); and college plus as those with a B.A. or higher.  

A.2. Computing DOT Task Means for Census Occupation Categories (COCs) 

To compute DOT Task Means for 1970 CIC Occupations, we used a special version of the April 1971 
CPS Monthly File issued by the National Academy of Sciences (1981) in which a committee of experts 
assigned individual DOT occupation codes and associated DOT measures to each of 60,441 workers in 
the sample. Because Census occupation categories are significantly coarser than DOT occupation 
categories, the 411 1970 census occupation codes represented in the 1971 CPS were assigned a total of 
3,886 unique 1977 DOT occupations.1 To convert this micro data sample into DOT task measures by 
CIC occupation, we used the CPS sampling weights to calculate weighted means of each DOT measure 
by occupation. Because the distribution of DOT occupations differs substantially by gender within COC 
occupation cells, we calculated DOT-occupation means for each occupation separately by gender. In 
cases where a COC cell contained exclusively males or females, we assigned the cell mean to both 
genders. This provided a set of 822 DOT occupation means by 1970 COC and gender. 

                                                                 
1 Although the DOT contains over 12,000 occupational titles created originally during the 1930s, many of these 
occupations correspond to extraordinarily narrowly defined manufacturing jobs that are no longer represented in 
employment.  
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We next required a method to consistently assign these means to COC occupations for 1960, 1980, and 
1990.  

To generate DOT means by 1960 occupation, we developed a crosswalk from the 1970 to 1960 COC 
occupational classification schemes using information in Priebe and Greene (1972). Our crosswalk 
(available on request) provides a set of 211 consistent 1960 – 1970 occupations that represent the 
lowest common level of aggregation needed to obtain a consistent occupation series. We applied the 
1970 COC means to our 1970 Census sample by occupation and gender and calculated weighted 
gender-occupation means across the 211 consistent 1960 – 1970 occupational categories. These means 
provide our DOT task measures for 1960 occupational categories. 

To generate DOT means for 1980 and 1990 occupations required an additional step. Because there is not 
a close correspondence between the 1970 and 1980 COC coding schemes, it was not possible to 
develop a bridging crosswalk as we did for 1960 – 1970. Instead, we employed a special Census sample 
prepared for the Committee on Occupational Classification and Analysis chaired by Donald Treiman 
and kindly supplied to us by Michael Handel. This file contains 122,141 observations from the 1980 
Census that have been individually dual coded with both 1970 and 1980 COC occupation codes based 
on occupational and other demographic infor mation supplied by Census respondents.2 To calculate 
DOT means by 1980 occupation, we merged the 1970 COC-DOT means describe above to the Treiman 
file by gender and 1970 COC occupation, achieving a 97 percent match rate. We next appended to the 
Treiman file a set of consistent occupation codes for the years 1980 to 1998 developed by Autor, Katz 
and Krueger. These codes resolve minor changes to the COC schemes employed in the 1980 and 1990 
Censuses and corresponding CPS files. Finally, to form DOT means by 1980 COC, we calculated labor-
supply weighted means of each DOT measure within consistent 1980 COC occupation gender 
categories. These steps provide a set of by-gender DOT means for each of 485 DOT occupations that 
are consistent for 1980 – 1998.  

A.3. Computing DOT Task Means by Consistent 1960 - 1998 Industry 

To compute DOT task means overall, by industry, and by industry-education cell for 1960 – 1998, we 
assigned the consistent DOT occupational task means for 1960 – 1998 by gender and occupation to 
each observation in our Census and CPS samples for 1960 – 1998. Using labor supply in FTEs as 
weights, we calculated means of each DOT measure for each occupation-industry-education-year cell. 
These means provide the primary outcome measures for our analysis.  

To attain compatibility between changing Census Industry Codes for 1960 – 1998, we use a crosswalk 
developed by Autor, Katz, and Krueger (1998) providing140 consistent CIC industries spanning all 
sectors of the economy. This crosswalk includes all CIC industrie s and attains consistency by 
aggregating where necessary to the lowest common level of consistent industry definition among 1970, 
1980 and 1990 CIC standards. 

A.4. Calculating Within-Occupation Changes in DOT Task Measures: 1977 – 1991 

To measure within-occupation changes in task content, we employed the 1991 Revised Fourth Edition 
of the Dictionary of Occupational Titles (available in electronic form as National Academy of Sciences, 
1981). Based on a study of select industries to determine which jobs had undergone the most significant 
occupational changes since the 1977 publication of the DOT 4th edition, DOT analysts introduced, 

                                                                 
2 Hence, 1980 COC codes vary within 1970 COC codes and vice versa in this hand-coded sample. 
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revised, and eliminated occupational definitions for occupations that were observed to have most 
substantively changed between 1977 and 1991. In total, 2,452 occupations were reviewed, updated, 
and/or added. In addition, 646 nominal titles were revised, 136 titles combined, and 75 deleted.  

We use the Conversion Tables of Code and Title Changes: Fourth to Revised Fourth Edition Dictionary 
of Occupational Title, kindly provided by the North Carolina Employment Security Commission, to 
construct a crosswalk between the 1991 DOT and 1977 DOT occupation codes. Using this crosswalk, 
we applied the DOT 1991 task variables to our 1971 CPS file, yielding a match rate of over 99.9 
percent. Of these matched occupations, 73 percent had been updated between 1977 and 1991 by DOT 
examiners. We then calculated DOT means by 1970 and 1980 COC occupations and gender using a 
procedure identical to that described in A.3. Because we use identical procedures for processing both 
DOT files, the within-occupation variation in DOT task measures that we exploit stems exclusively 
from re-evaluation of occupational content by DOT examiners, rather than from changes in the relative 
size of DOT sub-occupations within CIC occupations.  

A.5. Composite Task Indicators from the DOT 

To verify that our results are robust to plausible alternative selections of DOT variables, we formed 
composite indicators of our intended constructs using Principal Components Analysis. As described in 
the text, we chose a short list of alternative DOT variables that appeared relevant to each of our 
conceptual categories. These choices are (including our preferred DOT measures): 

Non-Routine Cognitive/Analytic Tasks: GED-MATH, GED-REASON, NUMER, INTELL 

Non-Routine Cognitive/Interactive Tasks: DCP, GED-LANGUAGE, REPCON (-), AND DEPL 

Routine Cognitive Tasks: STS, COLORDIS, MANDEX, AND MVC 

Routine Manual Tasks: FINGDEX, MOTOR, FORM 

Non-Routine Manual Tasks: EYEHAND, CLERICAL (-), SPATIAL 

Note that a (-) sign next to variable means that it was considered to be opposite  to the intended construct 
and hence a suitable candidate for the PCA. 

Using these variables (standardized with mean zero and variance one), we performed a PCA for each 
set to identify the linear combinations that maximized common variation subject to the constraint that 
the sum of squared vector weights is equal to one. Consistent with our treatment of DOT measures 
above, we conducted PCAs separately for males and females using the occupation-by- gender data set 
described in section A.2 and weighting by the occupational distribution of employment in the 1970 
Census. In every case, we used the first principal component as the gender- and occupation-specific 
composite indicator of the task measure. (In almost very case, only the first eigenvector was above one.) 
To aggregate these task composites to the industry by year level, we followed steps exactly analogous 
to those used for the non-composited DOT variables. Models that use these composites in place of the 
direct DOT task measures are found in Panel B of Table 2 and in Appendix Table 5. 

A.6. Computer Usage Data from the Current Population Survey 

Industry computer use frequencies were calculated from the October 1984 and 1997 School Enrollment 
Supplements to the Current Population Survey (CPS) as the weighted fraction of currently employed 
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workers ages 18 - 65 who answered yes to the question, “Do you use a computer directly at work?” 
within consistent CIC industries. A computer is defined as a desktop terminal or PC with keyboard and 
monitor and does not include an electronic cash register or a hand held data device. 61,712 and 56,247 
observations were used to calculate these frequencies in 1984 and 1997 respectively. 

A.7. Computer and Capital Investment Measures from the National Income and Products Accounts 

We used data on capital stock (equipment and structures) and investment in computer equipment from 
the National Income and Product Accounts (NIPA) to measure capital stock and computer capital 
holdings at the industry level between 1950 – 1997. To reduce measurement error, all variables in the 
NIPA were constructed as 5-year centered averages of the respective data category. All NIPA stock and 
investment variables are measured in real dollars. Deflation of NIPA measures is performed by the 
Bureau of Economic Analysis using primarily Producer Price Indexes (PPI’s). PPI’s for computer 
investment are based on quality adjustment, price linking, and hedonic regression methods. As 
denominators for capital/FTE and computer investment/FTE variables, we used Census and CPS 
samples to calculate FTEs by industry by year.  

We used two sources of NIPA data to form estimates of capital stock and computer investment. For the 
years 1950 – 1990, we relied on the 1993 revision of the NIPA (U.S. Department of Commerce, 1993). 
In this data set, we measure computer investment using the Office Computing and Accounting 
Machinery (OCAM) variable. Because this NIPA revision set only provides data to 1989, we utilized 
the as-of-yet incomplete 1999 revision to the NIPA (U.S. Department of Commerce, 1999) to form 
industry capital stock and computer investment measures for 1990 – 1997. In the 1999 NIPA release, 
computer investment is calculated as the sum of data on investment in mainframe and personal 
computers, computer storage devices, and computer peripherals. Because final capital stock measures 
by industry are not yet available in the 1999 NIPA data, we estimated each industry’s capital stock as 
the sum of all individual asset items by industry by year.  

In pairing these two NIPA series, we make every effort to maintain consistency. In particular, we 
rescale the revised NIPA variables for 1990 such that they are identical in weighted mean to the 
previous release of the NIPA. We then apply this scaling factor to all NIPA measures from 1990 – 
1998. In addition, we examined the sensitivity of our results to this pairing by re-estimating the NIPA 
models in Table 6 excluding the years 1990 – 1998 (i.e., the years that use the revised NIPA data). Our 
results (available on request) are quite insensitive to this exclusion. 

To match CPS and Census data to the NIPA, we relied on a crosswalk developed by Autor, Katz and 
Krueger (1998) and revised for this analysis to accommodate small changes in the NIPA sector scheme 
made during the recent NIPA revision. The resulting aggregation of NIPA and CIC data contains 47 
consistent industries covering all industrial sectors excluding Government and Private Households, 
spanning the 1960 – 1998 CIC standards. Of these 47, we exclude from our analysis agriculture and 
government dominated services (5 NIPA industries).  



Figure 1. Economy-Wide Measures of Routine and Non-Routine Task Input: 
1959 - 1998 (1959 = 0)
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Figure 2. Bivariate Relationships Between Recent Industry Computerization 1984 - 1997 
and Decadal Industry Task Change: 1959 - 1998
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Routine Tasks Non-Routine Tasks

• Picking and sorting engineered 
objects on an assembly line.

• Janitorial services.

• Reconfiguring production lines 
to enable short runs.

• Truck driving.

Computer
Impact

• Computer control makes capital 
substitution feasible.

• Limited opportunities for 
substitution or complementarity.

• Bookkeeping; • Medical diagnosis;
• Filing/retrieving textual data; • Legal writing;
• Processing procedural 
interactions/ transactions (e.g., 
bank teller)

• Persuading/selling.

Computer
Impact • Substantial substitution. • Strong complementarities.

B. Information Processing/Cognitive

Examples

Examples

Table 1: Potential Impact of Computerization on Four Categories of
Workplace Tasks.

A. Visual/Manual



(1)

R2

(2)

R2

(3)

R2

(4)

R2 0.440.37 0.22 0.22 0.26

6.28
(2.14) (2.06) (1.73) (1.64) (1.52)
1.19 8.40 10.62 9.79

-11.41
(2.14) (2.06) (1.73) (1.64) (1.52)
12.75 3.18 1.70 4.96

0.29 0.30

0.13 0.00 0.07

(1.90) (1.83)

B. Specifications Using Alternative Composite DOT Task Measures

(1.50)

8.22
(1.61)

0.33

13.59 8.04 -0.66 5.86 -13.59

0.27 0.24

10.78
(1.61)

6.60
(1.62)

9.12
(1.62)

7.00
(1.89)

-3.89

10.89
(1.68)

(1.68)

8.16

0.13

(1.77)(1.84)
5.52

0.01 0.21

6.37 6.43 -8.06

0.06

Table 2: The Impact of Industry Task Content in 1959 on Industry Computer Adoption 
between 1959 and 1997.

Dependent Variable: Percentage of Industry Employees Using a Computer on the Job in 1997

5. Non-Routine 
Manual

(1.89) (1.61) (1.61)

-10.139.94
(1.70)

0.20

(1.89)

A. Specifications Using Individual DOT Task Measures

1. Non-Routine 
Cognitive/ 
Analytic

2. Non-Routine 
Cognitive/ 
Interactive

3. Routine 
Cognitive

4. Routine 
Manual

1959 DOT Industy 
Task Measure

1959 DOT Industy 
Task Measure

1959 Industry 
College Grad. 
Share

-2.09

n  is 140 consistent 3-digit CIC occupations. DOT industry means are calculated using 1960 Census IPUMS 
and DOT 1977 job content measures. To aid comparison between panels A and B, all DOT and composite 
variables are standardized with mean zero and variance one. Mean of dependent variable is 45.4 percentage 
points. Industry computer use 1997 calculated from October 1997 CPS. Details of construction of composite 
DOT measures are provided in the Data Appendix. 

(1.69)

1959 Industry 
Task Composite 
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Share

(1.50) (1.77)
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Task Composite 

0.37 0.37



Census 1960
Census 1970
CPS 1980
CPS 1990
CPS 1998

Male Female Male Female Male Female Male Female Male Female

Census 1960 3.81 3.05 2.82 1.20 4.43 4.81 3.60 4.29 1.56 0.82
Census 1970 3.93 3.23 2.91 1.27 4.51 5.12 3.64 4.48 1.50 0.80
CPS 1980 3.95 3.46 2.94 1.71 4.47 4.84 3.62 4.34 1.55 0.74
CPS 1990 3.99 3.70 2.99 2.25 4.36 4.45 3.60 4.14 1.49 0.72
CPS 1998 4.07 3.84 3.10 2.62 4.24 3.95 3.58 3.97 1.48 0.73

B. Males and Females

Sources: All employed workers ages 18 - 64, Census IPUMS 1960 and 1970, CPS MORG 1980, 1990, and 
1998, and Dictionary of Occupational Titles 1977. See Data Appendix for details.

Table 3. Means of Dictionary of Occupational Titles Job Task Measures:
Overall and by Gender, 1960 - 1998.

3.97

3.72
3.76
3.87

2.89

4.53
4.70

Task Measure
1. Non-Routine 

Cognitive/ 
Analytic

2. Non-Routine 
Cognitive/ 
Interactive

3. Routine 
Cognitive

4. Routine 
Manual

5. Non-Routine 
Manual 

A. Overall

3.61

4.61
4.40
4.11

2.40
2.40
2.46
2.68

3.75

1.37
1.29
1.24
1.17
1.16

3.78
3.90
3.90
3.83



Data Source

1960 - 70 Census-Census
1970 - 80 Census-Census
1980 - 90 CPS-CPS
1990 - 98 CPS-CPS

Btwn Wthin Btwn Wthin Btwn Wthin Btwn Wthin Btwn Wthin

1960 - 70 Census-Census 0.078 0.029 -0.056 0.061 0.088 0.077 0.068 0.051 -0.062 -0.017
1970 - 80 Census-Census 0.069 0.026 0.002 0.112 0.033 -0.033 0.024 -0.010 -0.031 -0.045
1980 - 90 CPS-CPS 0.040 0.068 0.017 0.198 -0.100 -0.118 -0.001 -0.066 -0.034 -0.037
1990 - 98 CPS-CPS 0.025 0.105 0.028 0.238 -0.100 -0.253 -0.009 -0.097 -0.004 -0.010

Table 4. Between- and Within- Industry Decomposition of the Change in Skill Use: 1960 - 1998:
Dependent Variable is 10 x (Annualized Change in DOT Task Measure).

Task Measure
1. Non-
Routine 

Cognitive/ 
Analytic

2. Non-
Routine 

Cognitive/ 
Interactive

3. Routine 
Cognitive

4. Routine 
Manual

5. Non-
Routine 
Manual 

A. Overall Task Shift

0.107 0.005 0.166 0.119 -0.079
-0.076

0.108 0.215 -0.219 -0.067 -0.071
0.095 0.114 0.000 0.014

-0.0140.130 0.266 -0.353 -0.105

B. Between- and Within-Industry Components

Shift-share analysis based on 140 CIC industries made consistent for 1960 - 1998. Samples are constructed for 
all employed workers from Census and CPS samples listed above. All calculations weighted by labor supply in 
FTEs (product of sample weight and annual hours worked). Observations use DOT 1977 occupational task 
content measures paired to Census and CPS samples. See Data Appendix for further details.



Task Measure Estimate A. 1960 - 70 B. 1970 - 80 C. 1980 - 90 D. 1990 - 98

∆ Computer 0.055 -0.025 0.257 0.390
1984 - 97 (0.147) (0.132) (0.143) (0.156)

Intercept 0.016 0.032 0.003 0.005
(0.038) (0.035) (0.039) (0.043)

R2 0.00 0.00 0.02 0.04
Mean Task ∆ 0.029 0.026 0.068 0.105

∆ Computer 0.532 0.483 0.786 0.758
1984 - 97 (0.239) (0.257) (0.276) (0.258)

Intercept -0.066 -0.008 0.000 0.043
(0.062) (0.069) (0.075) (0.071)

R2 0.03 0.03 0.06 0.06
Mean Task ∆ 0.061 0.112 0.198 0.238

∆ Computer -0.152 -0.485 -0.740 -0.980
1984 - 97 (0.238) (0.289) (0.309) (0.294)

Intercept 0.114 0.087 0.068 -0.002
(0.062) (0.077) (0.083) (0.080)

R2 0.00 0.02 0.04 0.07
Mean Task ∆ 0.077 -0.033 -0.118 -0.253

∆ Computer 0.055 -0.290 -0.241 -0.397
1984 - 97 (0.081) (0.101) (0.128) (0.114)

Intercept 0.038 0.062 -0.005 0.005
(0.021) (0.027) (0.035) (0.031)

R2 0.00 0.06 0.03 0.08
Mean Task ∆ 0.051 -0.010 -0.066 -0.097

∆ Computer 0.022 -0.183 -0.087 0.230
1984 - 97 (0.064) (0.114) (0.105) (0.079)

Intercept -0.022 0.001 -0.015 -0.069
(0.017) (0.030) (0.028) (0.022)

R2 0.00 0.02 0.00 0.06
Mean Task ∆ -0.017 -0.045 -0.037 -0.010

Table 5. OLS Estimates of the Relationship between Industry Computerization and Industry 
Task Input, 1960 - 1998.  Dependent Variables: 10 x (Annual Change in Task Measure)

n  is 140 consistent CIC industries. Standard errors are in parentheses. Weighted mean of ∆ computer use 1984 - 
1997 is 0.252. Estimates are weighted by mean industry share of total employment (in FTEs) over the endpoints 
of the years used to form the dependent variable. Computer use is the change in fraction of industry workers 
using a computer at their jobs estimated from October 1984 and 1997 CPS samples. Samples used are Census 
IPUMS for 1960, 70, and 80 and CPS MORG 1980, 90, and 98 samples.

4. ∆ Routine Manual

5. ∆ Non-Routine 
Manual

1. ∆ Non-Routine 
Cognitive/ Analytic

2. ∆ Non-Routine 
Cognitive/ Interactive

3. ∆ Routine Cognitive



(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Log(CI/L) 0.228 0.202 0.854 0.822 -0.676 -0.623 -0.328 -0.275 0.254 0.201
(0.091) (0.106) (0.244) (0.245) (0.204) (0.187) (0.086) (0.070) (0.043) (0.049)

∆ Log(K/L) 0.033 0.041 -0.069 -0.068 0.068
(0.056) (0.133) (0.109) (0.040) (0.028)

1970-80 -0.027 -0.020 0.002 0.011 -0.040 -0.055 -0.019 -0.034 -0.044 -0.028
(0.035) (0.035) (0.067) (0.066) (0.094) (0.091) (0.022) (0.022) (0.016) (0.018)

1980-90 -0.032 -0.018 -0.132 -0.114 -0.002 -0.032 -0.024 -0.054 -0.106 -0.076
(0.048) (0.050) (0.117) (0.103) (0.116) (0.122) (0.031) (0.036) (0.021) (0.022)

1990-98 -0.035 -0.020 -0.141 -0.123 -0.041 -0.072 -0.012 -0.042 -0.104 -0.074
(0.047) (0.053) (0.108) (0.105) (0.111) (0.111) (0.039) (0.039) (0.023) (0.027)

Intercept 0.152 0.127 0.473 0.443 -0.236 -0.185 -0.102 -0.052 0.106 0.056
(0.050) (0.062) (0.119) (0.127) (0.116) (0.111) (0.044) (0.037) (0.023) (0.031)

R-squared 0.061 0.067 0.172 0.173 0.145 0.147 0.285 0.296 0.095 0.111

Mean ∆ Dep. Variable
1960-70
1970-80
1980-90
1990-98

-0.015
-0.033
-0.043
-0.021

0.055
0.003
-0.070
-0.084

0.089
-0.019
-0.122
-0.216

0.080
0.096

0.064
0.151
0.195
0.255

Table 6. OLS Stacked First-Difference Estimates of the Relationship between Computer 
Investment, Capital Intensivity, and Task Input in Three-Digit Industries 1960 - 1998. 

Dependent Variable: 10 x (Annual Change in Task Measure)

n  is 492: 123 consistent CIC industries times 4 decade changes. Standard errors in parentheses are 
heteroskedasticity consistent and allow for clustering of errors within NIPA-year sectors (42 clusters per decade). 
Private households, government, and government-dominated services are excluded due to NIPA data limitations. 
1960-70, 70-80 use Census IPUMS samples, and 1980-90 and 1990-98 use CPS MORG samples. Log(CI/L) is 
0.1 * log computer investment per FTE over decade in 1,000s of 1987$. ∆ Log(K/L) is annualized change in the 
log capital/FTE ratio over deacde. Weighted mean of log(CI/L) is -0.480 in 1960-1970, -0.379 in 1970-1980, -
0.172 in 1980-90, and -0.91 in 1990-97.  Weighted mean of ∆(K/L) log capital per worker is 0.439 in 1960-1970, 
0.099 1970-1980, 0.100 in 1980-90, and 0.222 in 1990-98. Estimates are weighted by mean industry share of 
total employment (in FTEs) over the endpoints of the years used to form the dependent variable.  

1. ∆ Non-Routine 
Cognitive/ 
Interactive

1. ∆ Non-Routine 
Cognitive/ 
Analytic

3. ∆ Routine 
Cognitive

4. ∆ Routine 
Manual

5. ∆ Non-Routine 
Manual 

Task Measure

0.042
0.038



∆ Computer
Use '84-'97

Intercept

Mean ∆

R2

∆ Computer
Use '84-'97

Intercept

Mean ∆

R2 0.0020.176

0.056
(0.108)

0.001
(0.023)

0.012-0.286 -0.144

0.162
(0.082)

-0.833
(0.154)

0.019

0.006

-0.011
(0.134)

0.796
(0.259)

-2.297
(0.396)

0.046 0.093 0.082 0.058

-0.041
(0.018)

0.082 0.212 -0.177 -0.079 -0.026

0.043
(0.067)

0.000
(0.029)

0.004
(0.032)

0.016
(0.056)

-0.402
(0.137)

0.080
(0.086)

1.008
(0.268)

-1.128
(0.321)

A. Overall Within-Industry Task Shifts

B. Within-Industry Task Shifts Among High School Graduates

0.400
(0.154)

-0.039
(0.028)

-0.041

n  is 140 consistent CIC industries. Standard errors are in parentheses. Computer use is 
measured as ten times the change in industry computer use frequency from the 1984 and 
1997 CPS (weighted mean 0.198). Dependent variables formed from CPS MORG 1980 
and 1998 samples using DOT 1977 occupational task content measures. Models are 
weighted by mean industry share of total employment (in FTEs) over the endpoints of the 
years used to form the dependent variable. 

0.000

-0.037
(0.054)

0.118

0.064 0.197

(0.032)

Table 7. OLS Estimates of the Impact of Industry Computerization on Industry 
Task Input Overall and among High School Graduates, 1980 - 98.

Dependent variable: 10 x (Annualized Change in DOT Task Measure)

Task Measure
1. ∆ Non-
Routine 

Cognitive/ 
Analytic

2. ∆ Non-
Routine 

Cognitive/ 
Interactive

3. ∆ Routine 
Cognitive

4. ∆ Routine 
Manual

5. ∆ Non-
Routine 
Manual 



Overall change 80 - 98 0.152 100% 0.388 100% -0.321 100% -0.143 100% -0.045 100%

Due to computerization 0.143 94% 0.359 93% -0.402 125% -0.143 100% 0.029 -64%

Within education groups 0.069 45% 0.269 69% -0.258 81% -0.131 91% 0.019 -43%

HS dropouts 0.003 2% 0.034 9% -0.026 8% -0.009 6% -0.009 20%

HS graduates 0.050 33% 0.125 32% -0.141 44% -0.051 35% 0.010 -22%

Some college 0.019 12% 0.066 17% -0.126 39% -0.057 40% -0.004 9%

College plus -0.003 -2% 0.044 11% 0.035 -11% -0.014 10% 0.022 -50%

Between education groups 0.074 49% 0.090 23% -0.144 45% -0.013 9% 0.009 -21%

The dependent variable is ten times the annualized within-industry change in each measure of task input. The 
component due to computerization is calculated using regression estimates from Table 7 and Appendix Table 6. 
Two columns of figures are provided for each task measure. The left hand column displays displays the 
annualized change measure and the right hand column displays the percentage of the overall change explained.

5. ∆ Non-
Routine 
Manual

Table 8. Contribution of Computerization to Task Upgrading 
Within and Between Education Groups, 1980 - 1998.

Dependent Variable: 10 x (Annualized Within-Industry Change in DOT Task Measure)

1. ∆ Non-
Routine 

Cognitive/ 
Analytic

2. ∆ Non-
Routine 

Cognitive/ 
Interactive

3. ∆ Routine 
Cognitive

4. ∆ Routine 
Manual



(a) (b) (a) (b) (a) (b) (a) (b) (a) (b)

∆ Computer 0.30 0.33 0.96 0.97 -2.96 -3.07 0.04 0.06 0.27 0.28
Use 84-97 (0.12) (0.12) (0.36) (0.36) (0.54) (0.54) (0.12) (0.12) (0.12) (0.12)

∆ College Grad -0.57 -0.14 2.35 -0.42 -0.10
Emp. Share 84-97 (0.34) (1.04) (1.57) (0.35) (0.35)

Intercept -0.09 -0.08 -0.08 -0.08 0.13 0.11 -0.02 -0.02 -0.12 -0.12
(0.03) (0.03) (0.08) (0.08) (0.12) (0.12) (0.03) (0.03) (0.03) (0.03)

R2 0.01 0.02 0.02 0.02 0.06 0.07 0.00 0.00 0.01 0.01

Wtd. Mean
Dep. Var.

Table 9. OLS Estimates of Relationship Between Changes in Dictionary of Occupational 
Titles Task Content Measures 1977 - 1991 and Occupational Computerization 1984 - 1997. 

Dependent Variable: 10 x (Annualized Within-Occupation Change in Task Measure)

1. ∆ Non-
Routine 

Cognitive/ 
Analytic

2. ∆ Non-
Routine 

Cognitive/ 
Interactive

3. ∆ Routine 
Cognitive

4. ∆ Routine 
Motor

5. ∆ Non-
Routine 
Motor

-0.40 -0.02

Task measure

Notes. n is 470 consistent 3-digit CIC occupations. Dependent variable is the change in the occupational 
DOT skill content measure between the DOT 1977 and DOT 1991 revisions. Computer use and college 
graduate employment are measured as ten times the change in occupational computer use and college-
plus graduate frequencies from the 1984 and 1997 CPS (weighted means 0.181 and .018 respectively). 
Estimates are weighted by the occupational share of employment in 1984.

-0.07-0.03 0.09



CPS Data
Task measure 70 - 80 80 - 90 90 - 98 80 - 98 70 - 98 80 - 98

1. N.R. Cognitive/Interactive 0.086 0.263 0.266 0.359 1.020 0.764
2. N.R. Cognitive/Analytic 0.023 0.070 0.071 0.143 0.290 0.268
3. Routine Cognitive -0.068 -0.208 -0.211 -0.402 -1.733 -1.648
4. Routine Manual -0.033 -0.101 -0.102 -0.143 -0.220 -0.128
5. Non-Routine Manual 0.019 0.070 0.074 0.029 0.278 0.144

CPS Data
Task measure 70 - 80 80 - 90 90 - 98 80 - 98 70 - 98 80 - 98

1. Routine tasks 0.13 0.39 0.39 0.76 3.36 3.22
2. Non-routine tasks 0.15 0.44 0.45 0.99 1.85 1.80
3. All tasks 0.28 0.87 0.88 1.75 5.29 5.02

Actual ∆ college emp. 5.74 4.27 2.56 6.83 12.57 6.83

CPS Data
Shift measure 70 - 80 80 - 90 90 - 98 80 - 98 70 - 98 80 - 98

C.E. S. estimated demand 3.26 4.60 2.09 6.69 9.95 6.69
shift using σ=1.4

Shift implied by task ∆'s 0.22 0.51 0.45 1.01 2.86 2.77

Margin Sum

Table 10. Demand Shift Calculations: Estimated Change in Log College vs. Non-College 
Relative Demand Due to Task Shifts Induced by Computerization: 1970 - 1998.

A. Change in DOT task input measures predicted by computerization (from Tables 6, 7 and 9)
Intensive

C. 100 x Annual shifts in log (College/Non-College) demand

NIPA Data

Margin SumExtensive margin

B. Predicted change in college share of employment (in percentage points)
Intensive

NIPA Data
80 - 98

NIPA Data

Margin

80 - 98

2.46
0.81
3.27

6.83

Extensive margin

80 - 98

0.405
0.126
-1.246
0.016
0.116

Intensive

Coefficients for fixed coefficient demand shifts calcuations are estimated from a regression of 
occupational college employment shares on DOT means using the 1970 Census. Changes in DOT skill 
measures predicted by computerization are from Tables 6 and 7 ('extensive margin') and Table 9 
('intensive margin'). Observed change in college employment (in FTEs) are estimated from Census 1970, 
Census 1980, Morg 1980, Morg 1990, Feb. 1990, and Morg 1998 samples for all employed workers. 
Constant Elasticity of Substitution estimates of changes in log(college/non-college) relative demand is 
based on Autor, Katz, and Krueger (1998) Table 2, updated to 1998 using CPS Morg 1998 sample.

Extensive margin

1.85

6.69

Sum



Variable

1. GED Math 

Source: U.S. Department of Labor, Manpower Administration, Handbook for Analyzing Jobs , Washington DC, 1972.

Mixes and bakes ingredients according to recipes; Sews fasteners and 
decorative trimmings to articles; Feeds tungsten filament wire coils into 
machine that mounts them to stems in electric light bulbs; Operates tabulating 
machine that processes data from tabulating cards into printed records; Packs 
agricultural produce such as bulbs, fruits, nuts, eggs, and vegetables for 
storage or shipment; Attaches hands to faces of watches.

Lowest level: Tends machine that crimps eyelets, grommets; Next level: 
Attends to beef cattle on stock ranch; Drives bus to transport passengers; 
Next level: Pilots airplane to transport passengers; Prunes and treats 
ornamental and shade trees; Higherst level: Performs gymnastic feats of skill 
& balance.

Ability to move the hand 
and foot coordinately with 
each other in accordance 
with visual stimuli

Measure of routine 
manual tasks.

Measure of non-routine 
manual tasks.

Plans and designs private residences, office buildings, factories, and other 
structures; Applies principles of accounting to install and maintain operation 
of general accounting system; Conducts prosecution in court 
proceedings…Gathers and analyzes evidence, reviews pertinent 
decisions...Appears against accused in court of law; Commands fishing 
vessel crew engaged in catching fish and other marine life.

Operates a billing machine to transcribe from office records data; Calculates 
degrees, minutes, and second of latitude and longitude, using standard 
navigation aids; Measures dimensions of bottle, using gages and micrometers 
to verify that setup of bottle-making conforms to manufacturing 
specifications; Prepares and verifies voter lists from official registration 
records.

Lowest level: Adds and subtracts 2-digit numbers; performs operations with 
units such as cup, pint, and quart. Mid-level: Computes discount, interest, 
profit, and loss; Inspects flat glass and compiles defect data based on samples 
to determine variances from acceptable quality limits. Highest level: 
Conducts and oversee analyses of aerodynamic and thermodynamic 
systems... to determine suitability of design for aircraft and missiles. 

Measure of non-routine 
cognitive/ interactive 
tasks.

Measure of non-routine 
cognitive/ analytic tasks.

Measure of routine 
cognitive tasks.

DOT Definition Task Interpretation Example Tasks from Handbook for Analyzing Jobs

Appendix Table 1. Definitions of Task Measures Employed from the 1977 Dictionary of Occupational Titles.

2. Set Limits, 
Tolerances, or 
Standards (STS)

4. Finger Dexterity 
(FINGDEX)

5. Eye Hand Foot 
Coordination 
(EYEHAND)

2. Direction, Control,  
Planning (DCP)

Adaptability to situations 
requiring the precise 
attainment of Set limits, 
Tolerances, or Standards.

General Educational 
Development, 
Mathematics.

Adaptability to accepting 
Responsibility for the 
Direction, Control, or 
Planning of an activity.

Ability to move fingers, 
and manipulate small 
objects with fingers, 
rapidly or accurately.



Overall
HS Dropouts
HS Graduates
Some College
College Plus

Male Fem Male Fem Male Fem Male Fem Male Fem

Overall 3.95 3.46 2.94 1.71 4.47 4.84 3.62 4.34 1.55 0.74
HS Dropouts 2.76 2.11 1.55 0.84 5.25 4.26 3.59 4.00 2.12 1.12
HS Graduates 3.45 3.20 2.17 1.20 5.14 5.50 3.69 4.61 1.77 0.60
Some College 4.07 3.82 2.97 1.68 4.38 5.58 3.62 4.61 1.42 0.62
College Plus 5.67 4.75 5.30 3.69 2.86 2.87 3.52 3.67 0.85 0.92

5. Non-Routine 
Manual 

A. Overall

Appendix Table 2: Means of Dictionary of Occupational Titles Job Content Measures Overall 
and by Education Group at Mid-Point of 1960 - 1998 Sample.

Task Measure
1. Non-Routine 

Cognitive/ 
Analytic

2. Non-Routine 
Cognitive/ 
Interactive

3. Routine 
Cognitive

4. Routine 
Manual

1.24
1.80
1.26
1.10

3.90
3.72
4.09
4.02

4.61
4.93
5.30
4.87

2.46
1.32
1.75
2.45

B. Males and Females

Sources: CPS MORG 1980, all employed workers ages 18 - 64 and Dictionary of Occupational Titles, 1977.

5.36 4.76 2.86 3.57 0.87

3.76
2.55
3.34
3.97



Task Measure Estimate A. 1960 - 70 B. 1970 - 80 C. 1980 - 90 D. 1990 - 98

∆ Computer 0.060 -0.047 0.157 0.376
1984 - 97 (0.143) (0.127) (0.130) (0.134)

Intercept 0.057 0.070 0.030 0.001
(0.037) (0.034) (0.035) (0.037)

R2 0.00 0.00 0.01 0.05
Mean Task ∆ 0.071 0.059 0.070 0.097

∆ Computer 0.178 0.017 0.112 0.318
1984 - 97 (0.118) (0.092) (0.120) (0.106)

Intercept 0.012 0.051 0.047 0.006
(0.030) (0.024) (0.032) (0.029)

R2 0.02 0.00 0.01 0.06
Mean Task ∆ 0.054 0.056 0.075 0.087

∆ Computer -0.031 -0.239 -0.106 -0.181
1984 - 97 (0.075) (0.106) (0.097) (0.116)

Intercept 0.022 0.025 -0.030 -0.039
(0.019) (0.028) (0.026) (0.032)

R2 0.00 0.04 0.01 0.02
Mean Task ∆ 0.015 -0.034 -0.060 -0.086

∆ Computer 0.101 -0.390 -0.321 -0.341
1984 - 97 (0.102) (0.121) (0.130) (0.113)

Intercept 0.016 0.040 -0.002 -0.007
(0.026) (0.032) (0.035) (0.031)

R2 0.01 0.07 0.04 0.06
Mean Task ∆ 0.040 -0.010 -0.083 -0.095

∆ Computer -0.027 0.004 0.138 0.274
1984 - 97 (0.057) (0.090) (0.093) (0.075)

Intercept -0.008 0.004 -0.034 -0.056
(0.015) (0.024) (0.025) (0.021)

R2 0.00 0.00 0.02 0.09
Mean Task ∆ -0.014 0.005 0.001 0.014

n  is 140 consistent CIC industries. Standard errors are in parentheses. See Table Notes to Table 5 for 
details on estimation. See Data Appendix for details on construction of composite variables.

4. ∆ Routine Manual

5. ∆ Non-Routine 
Manual

Appendix Table 3. Estimates of the Relationship between Industry Computerization and 
Industry Task Input 1960 - 1998 Using Composite Task Measures.

Dependent Variables: 10 x (Annual Change in Task Measure)

1. ∆ Non-Routine 
Cognitive/ Analytic

2. ∆ Non-Routine 
Cognitive/ 

3. ∆ Routine 
Cognitive



∆  Computer
Use '84-'97

Intercept

Mean ∆

R2

∆  Computer
Use '84-'97

Intercept

Mean ∆

R2

∆  Computer
Use '84-'97

Intercept

Mean ∆

R2

Task Measure

1. ∆ Non-
Routine 

Cognitive/ 
Analytic

2. ∆ Non-
Routine 

Cognitive/ 
Interactive

3. ∆  Routine 
Cognitive

4. ∆  Routine 
Manual

5. ∆  Non-
Routine 
Manual 

(0.162)

A. High School Dropouts

0.066 0.682 -0.522 -0.185 -0.185

(0.034)

(0.150)

-0.076 -0.201 0.068 0.014 0.015

(0.215) (0.476) (0.559)

0.010

(0.031)

-0.063 -0.068 -0.034 -0.022 -0.021

(0.045) (0.099) (0.117)

0.011

B. Some College

0.210 0.748 -1.433 -0.649 -0.044

0.001 0.015 0.006

(0.107)(0.161) (0.281) (0.369) (0.152)

-0.052 -0.046 0.101 0.032
(0.034) (0.058) (0.077) (0.032)

-0.178 -0.095 -0.001

0.008
(0.022)

(0.388)

Appendix Table 4. OLS Estimates of the Impact of Industry Computerization on Industry 
Task Input by Education Group, 1980 - 98.

Dependent variable: 10 x (Annualized Change in Task Measure)

0.012 0.049 0.099 0.117 0.001

-0.011 0.100

(0.396) (0.135) (0.125)

C. College Graduates

-0.035 0.496 0.395 -0.154 0.254
(0.176)

-0.059
(0.037) (0.081) (0.083) (0.028) (0.026)
0.000 -0.009 -0.160 -0.007

0.029

Standard errors are in parentheses. n in panels A, B and C is 139, 140, and 139 consistent industries 
respectively. Industries that did not have employment in the relevant educational category in both 1980 and 
1998 were excluded. Data sources are CPS MORG 1980 and 1998 and DOT 77 job task measures. 
Estimates are weighted by mean industry share of total employment (in FTEs) in 1980 and 1988. 
Computer use is measured as ten times the change in industry computer use frequency from the 1984 and 
1997 CPS (weighted mean 0.198).  

-0.007 0.088 -0.083 -0.037 -0.010

0.000 0.012 0.007 0.009


