NBER WORKING PAPER SERIES

OPPORTUNITY COUNTS:
TEAMS AND THE EFFECTIVENESS OF PRODUCTION INCENTIVES

Brent Boning
Casey Ichniowski
Kathryn Shaw

Working Paper 8306
http://www.nber.org/papers/w8306

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138
May 2001

We thank John Engberg, Marty Gaynor, John Ham, James Heckman, Hide Ichimura, Fallaw Sowell and the
participants of seminars at NBER, Society of Labor Economists meetings, American Economics Association
meetings, and Carnegie Mellon University for their helpful comments. We also thank the Alfred P. Sloan
Foundation for their generous support of this research, and thank the many employees of steel minimills for their
generosity in sharing their insights and data with us. The views expressed herein are those of the authors and not
necessarily those of the National Bureau of Economic Research.

© 2001 by Brent Boning, Casey Ichniowski and Kathryn Shaw. All rights reserved. Short sections of text, not
to exceed two paragraphs, may be quoted without explicit permission provided that full credit, including ©
notice, is given to the source.



Opportunity Counts: Teams and the Effectiveness of Production Incentives
Brent Boning, Casey Ichniowski and Kathryn Shaw

NBER Working Paper No. 8306

May 2001

JEL No. J24, J41,J5, 120, M11

ABSTRACT

This paper investigates the individual and joint effects of group incentive pay and problem-
solving teams on productivity. To estimate models of adoption of these work practices and models of
the effects of the work practices on productivity, we constructed a data set on the operations of 34
production lines in U.S. steel minimills. Through site visits and interviews, we collected longitudinal data
including precise measures on productivity, work practices, and technology of each of these production
lines. We find strong support for the proposition that problem-solving teams are an important means for
increasing the effectiveness of group incentive pay plans in establishments with complex production
processes.

With regard to adoption of work practices, we find that problem-solving teams are adopted only
in the presence of incentive pay plans, and that more technologically complex production lines are much
more likely to adopt teams. The latter result implies that teams are more valuable in these types of
production environments. We also present estimates of the productivity effects of adopting these work
practices. Group-based incentive pay, on average, raises productivity, and the adoption of teams in
addition to incentive pay leads to a further increase in productivity. The average effect of teams together
with group incentives is economically important, corresponding to an annual increase of over 3000
additional tons of steel with a value of over $1.4 million. We also find that the productivity effect of
teams is significantly larger in more complex production lines, consistent with the result that more
complex production lines are more likely to adopt problem-solving teams. Finally, we show that our
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1. Introduction

This study presents new evidence on the productivity effects of group incentive pay and problem-
solving teams. Several recent studies on the economics of firm’s internal organization indicate that certain
personnel and human resource management (HRM) practices may be complementary inputs in a
manufacturing firm’s production function. The productivity gain from adopting the complementary practices
together would exceed the sum of their individual productivity effects if they were adopted individually.'
However, theoretical explanations for why certain work practices should be complements are not well
developed. As a result, existing research offers conflicting views about which work practices might be
profitably combined. Empirical tests of complementarity among HRM practices are also limited. No current
study provides evidence on both the adoption of HRM practices and on their productivity effects, even though
the argument that HRM practices are complementary has clear empirical implications for both the adoption
and productivity effects of the work practices.”

To address these limitations in the existing research, we concentrate on two HRM practices in
particular — group incentive pay and problem-solving teams. We model why these two specific work
practices should be complements. The central hypothesis derived from the model is that group incentive pay
and problem-solving teams can be jointly performance enhancing, and that the joint adoption of these two
work practices will have their largest effects on productivity in more complex production processes. We test
this hypothesis using a unique, personally collected data set on the operations of U.S. steel minimills, and
estimate both adoption and productivity equations. This study’s data permit particularly convincing empirical
tests for several reasons. First, through site visits and interviews at each minimill, we develop a detailed
understanding of the production processes of these establishments. These visits allow us to identify and
collect accurate data on the work practices, performance, and capital equipment on these lines. Second, the
carefully defined sample based on observations from one narrow segment of the U.S. steel industry eliminates
many sources of heterogeneity that would confound empirical models of the productivity effects of work
practices in more broadly defined cross-industry samples of firms. Third, we obtained longitudinal data on
the operations of each minimill in the sample to estimate fixed effects models of the productivity differences
that occur before and after the adoption of the work practices.

Empirical results from these panel data on steel minimills consistently support the study’s central
hypothesis.

= Teams are adopted only in the presence of incentive pay plans, indicating that teams enhance the value of
production-based incentives.

' Milgrom and Roberts (1995) provide some of the first arguments in favor of this view. See also Kandel and Lazear
(1992) and Baker, Gibbons, and Murphy (1994).

* Athey and Stern (1998) illustrate limitations on empirical tests for complementarity of observed production inputs
when omitted variables affect the productivity of the observed inputs. For empirical work on complementary work
practices, see Black and Lynch (1999, and forthcoming), Appelbaum, Bailey, Berg, and Kalleberg (2000), Appelbaum
and Batt (1994), Bartel (2001), Batt (1999), Brynjolffson, and Hitt (2001), Dunlop and Weil (2000), Hunter and Lafkas
(1998), Huselid and Becker (1996), Ichniowski, Levine, Olson, and Strauss (1996), Kruse (1993), and MacDuffie
(1995).



* The complexity of the production lines is an important determinant of the adoption of problem-solving
teams. Hazard rate models show that a one standard deviation increase in this study’s measure of
production process complexity more than doubles the probability that a line adopts teams.

* Group incentive pay raises productivity. We estimate that the adoption of group incentive pay raises
productivity of a minimill production line by .49 percentage points.

= Problem-solving teams, when adopted in concert with group incentive pay, produce further productivity
gains. However, the added productivity benefit due to problem-solving teams occurs exclusively in more
complex production lines. When we allow the productivity effects of teams to vary with line complexity,
we find that the added productivity benefit of teams in the most complex production lines is .39
percentage points. In lines of average complexity, the increase due to teams is .21 percentage points. In
the sample’s least complex production lines, teams do not raise productivity.

= Given the possibility of endogeneity between teams and productivity, we also estimate semi-parametric
nonlinear selection models to correct for this potential bias, and find little change in our estimates of the
productivity effects of teams and incentives.

In sum, we find that problem-solving teams enhance the effectiveness of group incentive pay in those
production lines that have more complex production technologies and products. In these types of production
environments, this added opportunity for production workers to use their knowledge to solve problems and
make improvements in operations leads to significant productivity gains, while following standard operating
procedures appears to suffice in less complex environments.

I1. A Model of Incentive Pay and the Adoption of Teams

Before presenting the formal model, it is useful to have a picture of the production process in the steel
minimills that we are studying. In a typical steel minimill, scrap steel is brought to the mill, melted, formed
into large blocks, cooled and finally reheated and rolled into finished products. Minimills use electric arc
furnaces to melt scrap steel to form raw steel bars (billets) and then roll the billets into products for final use,
primarily for the construction and automotive industries. Within this overall process, we analyze the
production lines that reheat the billet to make it malleable, and pass the reheated billet through equipment,
known as stands, that shape and elongate the billet. Finally, these production lines take the shaped and formed
steel after it has cooled and cut it to the desired length before it is prepared for shipping.

In this study, we focus on the use and effects of group incentive pay and problem-solving teams in
these production lines. The nature of the particular manufacturing setting that we are studying also helps
determine the way that these two employment practices might affect an employee’s contribution to output.
With regard to incentive pay in these minimill production lines, only group incentives are employed. In
particular, the total output quantity and the quality from the production line are readily measured, but the
contribution or output of individual employees is not. Group incentive pay plans may still be ineffective in
raising output because these plans can be subject to free-rider problems, or because production workers might
not have the opportunity to control and thus elevate production-line output.

We argue in this section that a second employment practice — problem-solving teams — can overcome
this latter problem that can cause group incentive pay to be ineffective. We define a problem-solving team as
a group of workers who meet regularly with a goal of solving production problems that managers or workers



identify. The team’s activities may be governed by formal rules specifying who may join the team, how
meetings are conducted, when meetings might be held, and workers’ compensation for attending meetings,
but the goal of continuously improving production operations is an important part of the definition. Problem-
solving teams provide employees in our sample of minimills with opportunities that they would not otherwise
have to elevate output. Through their participation in these teams, production workers can affect the
performance of these production lines in a number of ways. Examples of the work of problem-solving teams
in these lines include: solving a quality control problem by suggesting the insertion of a new gauge on the
line, tackling a defects problem by reconfiguring the layout of the line, and improving operations after the
introduction of new capital by sharing information on production problems and discussing ways of speeding
up the learning curve. Some of the team’s suggestions may require limited amounts of new capital equipment
and some may require no investments. Production workers play an important role in crafting these
technological improvements because of their hands-on knowledge of how the lines operate.

Economic analysis of problem-solving teams is not extensive.’ This limitation is perhaps surprising
given the growth of problem-solving teams among contemporary U.S. businesses.* Central to this growth in
the use of teams is the recognition on the part of managers that production workers possess valuable
information about the operation of production lines that engineers and supervisors often lack. Jensen and
Meckling (1992) emphasize the value of production workers’ input and argue that managers should “co-
locate” decision-making authority with employees who have the most relevant information. Furthermore, if
knowledgeable line workers are given the authority to make operating decisions, they must also be given the
incentives that motivate good decisions (Jensen and Mechling, 1992; Baker, 1992).

The model we present in this section follows in the spirit of these theoretical arguments. It posits that
good (performance-improving) decisions do not just happen spontanecously. Jobs must be designed to put
decision-making authority in the right hands, and employees must be motivated to exercise that authority in a
productive manner. Because problem-solving teams help with the job design issues and incentive pay plans
help motivate the employees in the groups, the two work practices serve complementary roles. The model
here also extends this proposition by identifying specific conditions under which these two work practices are
most likely to exhibit these complementary effects on production.

The Model

To model the role of teams and incentive pay, we propose that there are two ways that production
workers can contribute to the plant’s performance:

? Holmstrom (1982) and MacLeod (1988) offer analyses of teams. These examples pertain more to team production than
to the kinds of continuous improvement and problem-solving practices that we focus on this study. Aoki’s analysis of
Japanese manufacturing firms (1988) considers continuous improvement activities of worker teams.

* Osterman (1994, 1997) estimates that the percent of establishments with more than half of their employees participating
in teams or quality circles had grown to 62% of U.S. establishments with over 50 employees by the early 1990’s and rose
modestly in the mid-1990s.

> For more on the assignment of responsibility within firms, see Prendergast (1995), Rosen (1982) and Geanakoplos and
Milgrom (1991).



1. They can exert “production effort” (e;) while running the production line. Workers must decide how
much production effort to exert — how carefully and quickly they perform routine tasks such as
monitoring production and repairing equipment.

2. They can also exert “problem-solving effort” (e,) in team sessions. When production workers join
problem-solving teams, they must decide whether to make some minimal effort on these teams in order
to keep their jobs, or whether to expend greater effort.

Problem-solving teams confer decision-making rights on the production employee, thereby
providing the employee with the opportunity to put his knowledge of the production process to work. Without
these opportunities that teams provide, e, will be lower. Incentive pay shares the value of any increased
production, giving employees a reason to put forth the extra production and problem-solving effort to increase
output.6

We use a simple principal-agent framework to model the firm’s decision to adopt incentive pay in
which the firm balances the cost of compensating employees for working harder and bearing risk with the
value of the additional production. Specify the production function as:

(1) output = f(e,e,) = A+ A, () + Aye,(IT) +&

e; and e; are production and problem-solving effort, / and T represent the firm’s implementation of group
incentive pay and respectively, and 4, 4, and 4, are parameters of production.” In each of the effort
dimensions, employees choose either high or low effort, denoted ¢; = 1 and e; = 0, respectively, for i=1,2.
The effort choice e, is a function of the incentive, or e;(I). The effort choice e, is a function of both the
incentive and the presence of teams, or e,(1, 7). The random production shock € is a normally distributed

random variable with mean 0 and variance &°.

A;, which parameterizes the effect of production effort, should vary with the manufacturing
environment. For example, high values might be associated with very labor-intensive environments, or
situations where monitoring is costly. 4, parameterizes the productivity of problem-solving efforts, and may
also vary with the production environment. For example, from field observations and interviews in our sample
of minimill production lines, 4, appears to vary in important ways with the technological complexity of the
production process. A very simple production process, involving a relatively small number of steps with

® Our model incorporates two types of effort, and thus has a multi-tasking element. However, it differs from the multi-
tasking models where the employee chooses between efforts that produce multiple outputs for the firm, such as
Holmstrom and Milgrom (1991). In our model, both types of employee effort are directed to the single objective of
increasing quality production. Thus, there is not a problem with the employee underproducing one output, and
overproducing another output. We also assume that high effort in both production and problem solving is feasible. The
discrete effort levels bound total effort: the high effort level is still a limited effort. Constraining high effort to a single
dimension is a straightforward extension of the model.

7' We omit an interaction effect, 4; e;e,, from this model. It is conceivable that a problem-solving improvement might
stem from a technological solution that requires a high level of production effort. For example, a production line can be
stopped frequently by debris from another stage in the production. Problem solving might identify that debris is causing
the breakdowns, and then additional effort can be expended to clean the debris on a regular basis, so that the interaction
effect exists. However, it is more likely that the problem-solving team would create a mechanism to shield the
equipment from the debris, so that the interaction effect is likely small. Our interest is the interaction effect of the
practices rather than the efforts.



established and tested technologies, may have a low value for 4,. In such low complexity lines, extensive
meetings among employees to brainstorm for solutions to operating problems are unnecessary. In these lines,
following easily specified standard operating procedures will suffice. In contrast, a more complex production
process, involving more steps, more sophisticated technology or higher quality standards, will have higher
values of 4,. Put differently, 4, represents the opportunities for worker-directed technological change, and
these opportunities should increase with technological complexity of the production process.

The risk-neutral principal pays an output-based linear incentive to the employees, I=8p fle, e, T) +
where B and y define the incentive payment and base pay; p is revenue less the (constant) marginal cost per
unit of output; and output /' depends on efforts e; and e,, and on the presence of teams 7.* The principal sets
the employees’ share of revenue, f3, to maximize expected profits. We assume that the firm operates in
competitive markets for both inputs and outputs.

The principal’s expected profits are:

n(elaez): E[(I_B)pf(epez)_k _ST_V]

where £ is the fixed cost of production, and s is the ongoing cost of problem-solving teams. The basis of the
incentive is the increase in revenue less marginal cost. An incentive based on revenues, profits or production
does not alter the model’s implications.

The agent is an expected utility maximizer with preferences represented by the utility function
u(W,ee;) = - exp [-r(W-c(e;,e;))], where r is a risk-aversion parameter, ¥ is the agent’s income, and c(e;,e,)
is the disutility of effort, which is measured as a monetary cost. We follow Itoh (1994) and model the
disutility of effort as c(e;,e;) = (¢/2)e; + (c/2)e; + dcey,e,. If 0> 0, diligence in both dimensions has a higher
disutility than just the sum of diligence in each dimension alone, so the model includes an additional cost for
performing multiple tasks. We model the employees as a single unit. While this abstracts from potential free-
riding problems associated with group incentives,’ the empirical work to follow tests whether incentive pay is
effective and thus implicitly examines whether the free-rider problem is overwhelming.

Implications of the Model

The firm must decide what levels of production and problem-solving efforts to induce by determining
whether the cost of inducing high effort levels are justified by the increased revenue generated by high
production.'” The solution of the model is provided in Appendix A1. Here, we summarize hypotheses arising
from the model with respect to problem-solving teams and incentive pay. The central proposition of the model

¥ Our motivations for using a linear incentive are that it most closely resembles observed practices in the steel industry,
that it makes the problem more tractable, and that it is optimal in many circumstances. See Holmstrom and Milgrom
(1987) for a discussion of these points.

® Kandel and Lazear (1992) and MacLeod (1988) present models that limit or eliminate the free-rider problem through
mechanisms like “positive peer pressure” or other group responses to evidence of individual free riding.

' This production function makes explicit the connection between the firm’s decision to adopt problem-solving teams
and inducing high problem-solving effort; it is clear that the decision to adopt problem-solving teams and the decision to
induce high problem-solving effort are actually one decision. Since high problem-solving effort is only effective when a
problem-solving team is in place, eliciting high problem-solving effort and instituting problem-solving teams will always
occur simultaneously.



is that, all else constant, the joint adoption of problem-solving teams and incentives is a function of the
opportunities for incremental technological improvements, or 4,."" In our sample, measures of production
process complexity are the main proxy of the 4, parameter. Given this proxy for 4,, we can then specify the
following six hypotheses that we test directly with the data from our sample of minimills. With regard to the
adoption of the work practices, the above model yields the following propositions:

Hypothesis 1. Teams will be adopted only in the presence of incentive pay.

Hypothesis 2: Higher levels of production process complexity promote the adoption of problem-
solving teams that complement the adoption of incentive pay.

With regard to the productivity effects of these two work practices, the model implies the following additional
hypotheses:

Hypothesis 3: Output will be higher in the presence of incentives, because incentive pay increases
workers’ production effort by increasing the returns to that effort.

Hypothesis 4: Output will be higher when teams are added to incentive pay, because teams provide
workers with the opportunity to improve the performance of the line, and incentive pay increases
workers’ returns to problem solving effort to elevate output. Thus, workers’ problem-solving effort
rises with teams and incentive pay.

Hypothesis 5: The magnitude of the effect of teams plus incentives on productivity will be larger in
more complex production lines, if 4, increases with line complexity.

Hypothesis 6: The decision to adopt teams and the performance gains from teams are jointly
determined—Ilines that are more complex (or higher 4, ) have a greater output from teams and are
therefore more likely to adopt teams. Thus, in modeling the output gains from teams, the decision to
adopt teams must be endogenously estimated.

I11. Data

To test these hypotheses, we have assembled detailed data on the operations of production lines in
steel minimills. We limit our study to a single production process to eliminate many sources of heterogeneity
that have confounded previous attempts to estimate the effects of work practices on productivity or to identify
determinants of different work practices. The sample does not simply contain minimills that have been
reported in the business press as successful adopters of work teams or other work practices. Rather, the
sample represents the full breadth of the experience in the minimill segment of the steel industry. These mills
utilize a variety of human resource practices, and have a wide range of profitability, from mills that are

" Other predictions of the model include that the value of adopting incentives or teams will rise with the price-cost
margin. It will fall with the direct disutility of effort c, the disutility of multiple tasking &, the variability of production
o0” and risk aversion r, and with higher transition costs.



unprofitable to those that are highly profitable. The sample pertains to 34 different production lines, owned
by 19 different companies, and includes nearly all U.S. minimill production lines of this kind."?

We personally visited each minimill from November 1994 through April 1997, conducting extensive
interviews and touring each line. We interviewed workers, union officials in organized establishments, plant
managers, and HR managers to understand how workers contribute to productivity. These interviews also
permit us to identify the actual HRM practices of the lines, and not simply the set of formal policies listed in
personnel manuals that may not be used in practice. We also toured the production lines with experienced
line supervisors, operators and engineers. These personal inspections allowed us to identify ways in which
production processes and technologies still differ from one line to the next, even within a sample drawn from
one narrowly defined segment of one manufacturing industry. The visits also allowed us to observe the
workings of real problem-solving teams.

Sample

The sample for analysis consists of 2355 monthly observations on the operations of these 34
production lines, or about five years of monthly data per line on average. In the empirical analysis, we
estimate models on both the adoption of work practices and on the effects of work practices on productivity.
The model of section II identifies three important categories of variables — output measures, the HRM
practices, and production line complexity. In addition, the productivity equations that we estimate must also
control for other technological features of the lines that affect productivity.

Productivity

Our site visits and interviews allowed us to identify the most convincing measures of productivity and
technological features of the production process that can affect the lines’ performance. The measure of
productivity is YIELD, defined as “good tons” produced (tons that meet industry-established quality
standards) divided by the tons that enter the production process. This measure is directly related to amount of
steel output, since tons produced is the product of YIELD and “tons charged” (or the amount of steel that
enters the production process). Tons charged will vary depending on the size of the mill, its rated capacity,
and the products produced. YIELD also captures quality dimensions of output. It is lower when the finished
product fails to meet a quality standard, such as failing to conform to the specified dimensions of the product.

Employees can affect YIELD in a number of ways. Workers improve yield through any activities or
decisions that prevent “wrecks” on the line when material jams in the equipment or by limiting the number of
electrical or mechanical failures in the equipment. These activities help keep lines running more
continuously. Workers can also correct quality problems before a significant amount of unacceptable quality
steel is produced. According to managers, YIELD is the most useful measure of line performance. It
captures both the output and quality dimensions of productivity. We were able to obtain yield data for 2251 of
the 2355 observations. The mean value of the YIELD variable is 93.3, so that 6.7% of the output of this

12 This sample includes the vast majority of U.S. minimills that make the kinds of steel products that we consider in our
sample. We were unable to visit only eight such U.S. minimills. Based on our conversations with managers at these
mills and at the mills in our sample, our sample provides an accurate picture of the range of performance outcomes and
HRM practices in this industry, and accurately reflects the nature of the available technology for producing these steel
products.



sample’s mills is lost in the production process or does not meet the required quality specifications. YIELD
has a standard deviation of 3.20, and a minimum and maximum of 73.05 and 100 respectively.

HRM Practices

Section II models how incentive pay and problem-solving teams can increase productivity. The
dummy variable INCENTIVE indicates the presence of an incentive pay scheme at the mill. As indicated
above, given the relative ease of measuring production line and mill-level output, and the difficulty of
measuring individual employee contributions, incentive pay plans in this sample are always group incentives.
We define an incentive pay scheme as being present when pay is a function of production, product quality,
profits or some combination of these."” The use of some incentive plan is nearly universal by the end of our
sample period, with 91% of the lines having an incentive plan by the end of our monthly data for each line.

While incentive pay is widespread in the sample, the use of problem-solving teams is more varied. At
the beginning of our data, 12 percent of lines have teams and by the end 42 percent have teams. The dummy
variable TEAMS represents the presence of a formal problem-solving structure at the mill. We classify lines
as having TEAMS only if they had a formal structure designed to involve production workers in identifying
ways to improve production. Thus, a line that only had crew meetings to share information and organize a
shift was not classified as having teams. Further, lines that would informally gather to correct an immediate
problem were not classified as having teams, because the focus was not on improving the production process,
but simply repairing an immediate breakdown. Given the widespread adoption of the INCENTIVE measure,
it is also the case that teams exist together with incentive pay. Teams without incentives exist in only 1.5% of
all monthly observations and this situation lasts only a few months in any mill. By the end of the sample
period, no mill has teams without an incentive. When we estimate productivity equations, we are therefore
essentially estimating the effect of adopting group incentives and the effect of adopting group incentives plus
teams relative to productivity levels observed in workplaces with the neither incentives or teams.'*

Complexity of Production

Differences in the technological complexity of production processes are central to the model of
Section II. While the sample of minimill production lines eliminates many types of heterogeneity across the
sample’s observations, production lines in the sample are not identical in terms of the complexity of their
operations. In our sample of minimills, the complexity of steel products and the technological complexity of

" The most common incentives in the steel industry make pay a function of production by the crew or of profits of the
mill. Profits are based on the mill’s performance, not company performance. A few mills include multiple criteria in
their incentive scheme; these criteria are combined linearly.

'* While our model focuses on the complementarity between group incentives and problem-solving teams, recent
research also suggests that complementarities may exist among a broader set of HRM practices (Milgrom and Roberts,
1995; Ichniowski, Shaw and Prennushi, 1997). We therefore collected data on nine other HRM practices measuring
employment security and no layoff policies, training and education programs, extensive pre-hire screening of job
applicants, employee visits to customers, and combined operator-maintenance job definitions. We do find that lines with
teams and incentives use 5.9 of these supporting practices on average, while incentive-only lines use 3.6 of these other
practices. While lines with teams are much more likely to do more extensive pre-hire screening and are much more likely
to have workers visit customers, the precise set of additional practices that exist in lines with teams varies from mill to
mill. Still, these data suggest that it may be appropriate to think of the estimated productivity effects of the INCENTIVE
variable and the TEAM PLUS INCENTIVES interaction variable in the empirical work to follow as measures of the
effects of an “Incentive Without Teams System” and an “Incentives with Teams System.” However, we do not have
sufficient data to test for separate or added productivity effects from these individual practices, given the multicolinearity
between practices.



the production process go hand in hand. More intricate minimill products with more demanding tolerances
are made on lines with more elaborate production technology.

We construct two related measures of this complexity. First, based on our plant visits, we define four
product classes. Product 1 involves the least complex production in which billets are simply reduced to
smaller sizes, and product 4 involves the most complex production process that produces intricate steel shapes
with very tight tolerances in product specifications. The four variables, PROD1 through PROD4, measure
the percentage of the mills’ production in each of these four categories. Each mill has a clear majority of its
production in one of the four categories. Furthermore, with only one exception, 100% of each mill’s
production is accounted for by either one or two production categories. When production is split between two
categories, it is split across relatively similar groups (e.g., 80% in PROD1 and 20% in PROD2). Second, we
also measure production process and product complexity with the variable COMP, which is a weighted sum
of the four production PROD1-PROD4 variables, with weights equal to a representative market price for each
product group.

Other Control Variables

Econometric specifications of the adoption model and the productivity model are given in the next
section. We describe there any additional control variables beyond the HR practice and complexity variables
that we include in those models. For example, the productivity equation includes controls for vintage of the
capital, experience of the managers and the work force, and a time trend for learning curve effects. While we
describe these other controls in more detail in the next section, Table 1 provides a reference list of the entire
set of dependent and independent variables that we use in the adoption and productivity models.

IV. Estimation

The theoretical model in Section II concludes with six predictions about the adoption of problem-
solving teams and incentives and about the impact of these HRM practices on productivity. We take up the
hypotheses concerning adoption and productivity in turn.

Adoption Equations

Hypothesis 1 of section II — that teams are adopted only in the presence of incentives — is borne out
by the data on the distribution of these two HRM practices. Incentives are widespread in our sample, and are
universal across all production lines by the end of our sample period. Problem-solving teams always follow
the introduction of incentives. Because group incentives are so widespread, our multivariate analysis of the
adoption of HRM practices focuses on problem-solving teams, which are present in 42% of these production
lines by the end of our sample."

Hypothesis 2 proposes that a more complex production process increases the value of adopting
teams—production lines that are more complex provide workers with more opportunities to identify ways of
elevating output by solving problems. Represent the decision to adopt teams with the equation:

'3 Since all mills eventually adopt incentives, incentive pay may be productivity-enhancing for all. Late adoption may be
governed by transition costs (such as the need to negotiate with the union) rather than differences in the performance
gains from incentives. In addition, the theoretical model does not generate specific predictions about the impact of
complexity on incentives.
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(2) T, =1 if and only if [ Z,, +u, >0

it

where [ Z,, +u,, is the profitability of adopting teams. Lines adopt teams when the net gains are positive.

The Z vector contains variables influencing adoption, as specified below.

We estimate hazard rate models of the probability of adopting problem-solving teams, conditional on
the mill not having already adopted teams and on the features of the production and managerial environment.
We estimate these hazard rate models of the adoption of teams using data from 31 mills that had the
opportunity to adopt teams. Three of the 34 lines in our data set enter our sample period already having
adopted teams. The sample for the hazard rate models is 1,686 monthly observations from the 31 lines that
began the sample period without teams. We estimate both exponential and Weibull hazard models, where the
Weibull model permits duration dependency. For our estimation, we assume that January 1984 was the first
date when teams could have been adopted.'®

Table 2 presents the results from the hazard rate models. The Weibull and exponential specifications
yield qualitatively similar results. The shape parameter, which indicates the duration dependence in the
Weibull models, is approximately .8 and not statistically significantly different from 1 in either model. The
point estimates indicate negative duration dependencell the longer a mill operates without teams, the less
likely the mill will adopt problem-solving teams. However, the insignificance indicates that the exponential
model is a legitimate specification.

The results in Table 2 provide strong support for Hypothesis 2: the complexity of the production
process is a significant determinant of the adoption of problem-solving teams. Mills with the two most
complex production processes, those concentrating on PROD3 and PRODA4, are much more likely to adopt
problem-solving teams than mills with the less complex processes. Lines with higher production
concentrations in PROD1 products are the least likely to adopt teams (Table 2, columns 1 and 3). The
composite measure of complexity, COMP, also has a positive and significant effect on adoption, again
indicating that the higher the complexity, the more likely the adoption of teams (Table 2 columns 2 and 4).
Based on the column 2 exponential hazard model, a one standard deviation increase in the COMP measure (or
103.9 units) increases the probability of adopting teams by 210%. In a given month, the probability that a line
adopts teams is, on average, .0041. A one standard deviation increase in COMP implies an increase in this
probability to .0086. Over a five-year period, the mean probability of adopting teams would be .13, and this
figure would increase to .40 with a one standard deviation increase in COMP.

Two other factors included in these adoption equations are consistently significant determinants of
teams adoption. The significance of these variables may reflect the effects of risk aversion or other factors
suggested in the Section Il model. For example, OPAGE, the average age of the employees, has a negative
effect, suggesting that older workers could be more risk averse, have higher costs of effort, or are more

1 Cole (2000) presents evidence that the quality movement was transferred from Japan to the United States in the early
1980s and the associated teams were introduced into American manufacturing firms around that time. Thus, we interpret
teams as a managerial innovation or “shock” that entered the U.S. in the mid-1980s. Empirical results are not sensitive to
the choice of a specific start date. Using start dates before 1984 does not change the results significantly. Three mills
were built after 1984, so they could adopt no earlier than they began operations, and the start date is set accordingly. For
most mills, the data we obtain begins after 1986; we estimate the hazard rate models conditional on the mill having not
adopted by the first date that we observe the mill.
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resistant to change.'” The positive and significant coefficient on CEONEW may suggest the importance of
transition costs, as managers who have used traditional managerial styles and have a long association with a
given set of practices may be less likely to accept new practices such as problem-solving teams."®

Productivity Equations

The adoption models provide one way to investigate the notion that problem-solving teams (in
conjunction with incentives) are more effective in more complex production environments. We also have
collected data to provide direct estimates of the productivity effects of teams and incentives in different
production environments.

Begin by writing the productivity model as:
3) Yy = ap+ ol + oy ;T + asCol Ty + 60X, + uy

Y, is our measure of productivity, YIELD, [, represents the adoption of incentives (with or without teams),
1,,T;, the joint adoption of teams in addition to incentives, a;C;[; T} is the interaction between complexity and
teams with incentives, and X}, a set of control variables for production that are not affected by the presence of
incentives or teams.

Hypotheses 3 and 4 state that output will be higher when incentive pay elicits greater production
effort, or a; > 0, and output will be higher when problem-solving teams elicit problem solving effort, or a, >
0. The productivity regression results support these hypotheses: incentive pay and problem-solving teams
raise performance.”” Column 1 of Table 3 presents the initial OLS estimates of the productivity equation (3),
assuming that the error term u;, is distributed i.i.d. with mean 0. Both practices, incentives and teams, raise
performance. In Column 3, we relax the assumption that v, is distributed i.i.d., and allow for the possibility
of line-specific fixed productivity effects and line-specific auto-regressive errors:

(4) Yi=0y+al, +a, ;T + o;Cl, T+ 60X, + Vi t uy

where u;; = pu;.; + €. Though our data are specific to one type of production process and we have extensive
controls, some line-specific fixed effects might exist because some key variables, such as managerial quality,
may be omitted from (3) and could be correlated with line performance. In estimating our model and
collecting the data, we attempted to proxy managerial quality with managerial tenure, but such measures serve

"7 Tenure has a significant positive effect in some specifications. OPLONG is a dummy equal to 1 if the average
operator tenure at the mill is over 10 years, and in each of the models, the coefficient on OPLONG is positive and
significant. Assuming tenure is an indicator of employee problem-solving ability, the estimation may provide additional
support that the potential productivity of the teams affects adoption. Mills that are part of a single-mill company
(SOLO) are less likely to adopt teams, possibly because they cannot spread transition costs, such as costs of training

rograms and learning how to implement teams, across mills.

¥ We also considered the possible effects of unionization. Unions, by providing a framework for communication and
management-employee interaction, might contribute to team formation. The data indicate that the unionization effect on
adoption is insignificant. When the model is expanded to include a variable for unionization rates, the coefficient on a
union dummy variable is 0.585, with a p-value of .539.
' The coefficients on the control variables are in the expected direction and, in many cases, significant. The variables
LINEAGE, LINEAGE2 and EDATE have a high degree of colinearity, so interpretation is difficult, but EDATE is
consistently positive and significant, indicating the existence of learning curves in the industry. Performance falls with
operators’ average age and rises with average tenure. This pattern mirrors the effects of these variables in the equations
for the adoption of teams shown in Table 2, reinforcing a conclusion that longer tenure raises performance on the job and
therefore raises the value of teams, but age controlling for tenure does not.
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only as proxies for managerial technical and leadership skills.”” The fixed effects estimates reflect the
increased performance within mills from introducing the practices, rather than a comparison between mills
that do and do not have incentives. While the magnitudes of the estimated coefficients change after allowing
for these line-specific effects in columns (3) and (4), the pattern of results is the same. The results in column
(3) show that adopting incentive pay (with or without teams) raises productivity by .493 percentage points,
and that the joint adoption of teams and incentive pay increases the yield by another .248 percentage points.

The effect of problem-solving teams on output is amplified in Hypothesis 5, which predicts that
problem-solving effort will be more valuable with more complex production processes (C;), because
opportunities to use teams to develop improvements in production operations are greater in complex
environments, thus a; > 0. In the OLS results of column (2) of Table 3, the coefficient on the complexity

times teams plus incentives (i.e., the coefficient a; on COMPs TEAMS) is positive and highly significant, and
in the fixed effects model of column (4) it remains significant, though less sizable. Note that when
COMP.TEAMS is added in (2) and (4), the coefficient on TEAMS alone turns negative (though insignificant

in the fixed effects model.”!

To interpret these productivity effects, we evaluate the models for different values of the complexity
variable. Because the results in column (4) indicate the existence of significant line-specific productivity
effects, we focus on the point estimates from the column (4) specification. The point estimates of the
coefficients on the TEAMS (which includes incentives) dummy and on the COMPe TEAMS interaction term
indicate that teams have a net positive effect in more complex production environments. At the maximum
value (585.2) and average value (431.3) of the complexity variable, the additional increase in productivity due
to the adoption teams would be .39 and .13 percentage points, respectively. At the minimum value of the
complexity (284.7), the estimated coefficients on the TEAMS and COMPe TEAMS variables imply a relative
reduction in productivity of -.12 percentage points once teams are adopted. Perhaps accordingly, teams are
not common in production lines with the lowest levels of production process complexity. The estimated
coefficients on the TEAMS and COMPes TEAMS variables from the column 4 specification imply that the net
effect from adopting teams would be zero when the complexity variable is equal to 356 — a level of
complexity well below the average value of complexity in our sample.

Productivity effects of these magnitudes are economically important. We can interpret the magnitudes
of these productivity effects further by translating them into effects on tons of steel and on revenues and
profits. Based on the fixed effects specification in column 3 of Table 3, the adoption of incentives and teams
would increase the annual output of a typical mill (producing about 400,000 tons of finished product) by over
3,000 tons of steel. This increase translates into additional profits of approximately $1.4 million at 1995
prices.”> Based on the fixed effects specification in column 4 of Table 3 that allows the effects of teams to
vary with production process complexity, the increase in profitability from adopting incentives plus teams
would be even larger. For example, in a line with the highest value of the complexity variable, the increase in
output would be larger and worth approximately $2.4 million per year.

%% The misspecification stemming from the difficulty of modeling managerial skills has long been recognized. An early
treatment is Griliches (1957).

I The terms TEAMS and COMP+ TEAMS are jointly significant, with a p-value of 0.026.

22 An increase in yield does not increase variable costs, so we simply convert the increased production into profits, using
the lowest-priced product. This omits the costs of maintaining teams, and any additional incentive pay. It also omits any
cost savings stemming from the teams or improved operating practices, such as lower replacement costs for damaged
equipment.
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We conclude the tests of Hypotheses 3 through 5 by trying an alternative functional form for the
interactions between incentives, teams, and complexity. We re-estimate the productivity models and
permitting the effect of incentives (as well as teams) to vary between low and high complexity lines, where
complexity is reduced to a (0,1) dummy variable rather than its linear effect. We re-estimate the productivity
equation, including the following four dummy interaction variables: incentive pay only in low complexity
lines; incentive pay plus teams in low complexity lines; incentive pay only in high complexity lines; and
incentive pay plus teams in high complexity lines. Productivity for these groups is measured relative to the
group of observations that have neither incentives nor teams in models that control for line complexity and the
other controls in the Table 3 models. For the purposes of defining these four dummy interaction variables, we
consider low complexity lines to be those lines that concentrate on PROD1 and PROD2 steel products.”

OLS and fixed effects models yield qualitatively similar results to those presented earlier with the
linear complexity variable. Estimated coefficients (and standard errors) from the model that allows for both
line-specific productivity effects and line-specific autoregressive errors are: Incentives and No Teams in Low
Complexity Lines, .419 (.141); Incentives with Teams in Low Complexity Lines, .100 (.222); Incentives and
No Teams in High Complexity Lines, .935 (.301); and Incentives with Teams in High Complexity Lines,
1.358 (.299).

These coefficients really highlight the detailed patterns emerging from the effects of incentives and
teams. First, teams do not add significantly to the productivity levels that low complexity lines achieve with
only group incentives in place. In particular, while the point estimate of the incentives plus teams coefficient
(-100) is less than the point estimate of the incentives without teams coefficient (.419) for low complexity
lines, an F-test indicates that the hypothesis that these two coefficients are equal cannot be rejected at the .10-
level. Second, teams do improve productivity in high complexity lines above what they achieve with only
incentives. For high complexity lines, the coefficient for incentives plus teams (1.358) is significantly
different from the coefficient for incentives without teams (.935) at the .01-level. Even when we allow the
effect of incentives to vary with line complexity, we find that teams provide a productivity advantage in high
complexity lines above and beyond what group incentives on their own produce in these lines. This particular
result provides direct support for Hypothesis 5. Third, incentives on their own appear to matter more in high
complexity lines than in low complexity lines (i.e., .935 > .419), but the difference in the two coefficients that
measure the effects of incentives in high and low complexity lines is significant only at the .12-level.

In sum, the results from the productivity models, like those from the adoption equations, support the
central propositions of the study’s model. Incentive pay and teams improve productivity (Hypotheses 3 and
4), and moreover, when highly complex lines adopt teams and incentives, performance rises more
(Hypothesis 5).

IV. Selection Bias in the Productivity Equation: Focus on the TeamseIncentives Effect

In this section, we address the possibility of selection biases that arise in our estimation of the
productivity effects of the work practice variables, particularly the TEAMS variable. Recall that the
effectiveness of problem-solving teams is represented by A, in the production function, and our proxy for 4,

3 Specifically, if 80 percent or more of the line’s production was in PROD1 and PROD2 combined, we classified the
mills as low complexity. By this standard, 60 percent of the observations are low complexity, and 40 percent high
complexity.
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rises with production-line complexity. In the empirical productivity models above, (a; + a;C;,) provides our
estimate of 4,. If there is an unobserved component to C;, (and therefore to 4,), the endogeneity of teams and
complexity can produce a selection bias when we estimate equation (3). Thus, Hypothesis 6 from our
theoretical model points out that 4, measures the impact of teams on output, and therefore 4 also influences
the return to adopting teams, so this endogeneity of team adoption must be addressed in the estimation of the
productivity regression. Recall also that the TEAMS variable represents all those lines that have both teams
and incentive pay, though the variable is labeled TEAMS.

To address this possible selection bias, it is important to be explicit about the nature of the
performance gains from teams that we seek to determine. Do we want to know the expected gains for only
the subset of lines for which it is optimal to adopt teams, or do we want to know the expected gains if any
random line adopts teams? This question can be rewritten in equation form. The “treatment” here is the
introduction of teams. The expected gains from the random adoption of teams is labelled the “average
treatment effect,” because these gains would be expected if firms randomly adopted teams. This is the
expected value E(YT =T |Xi), where Y7, is the output from the use of teams, YY, is the output without
teams for line 7, and X is the set of control variables that govern production. Knowledge of the size of the
average treatment effect would be valuable if, for example, the government were to advocate that all firms
adopt teams. Alternatively, another measure of the gain from teams is the expected gain for those who find it
optimal, or the “treatment of the treated.” This is the expected value E( Yo, — Y, |Xi, Ti;=1). This would be
the relevant gain for those firms whose characteristics match the characteristics of the adopters. Thus, we
consider two possible mean counterfactuals, the “average treatment effect” and the “treatment of the
treated.”*

To define these counterfactuals, separate the teams and non-teams effects in a switching regression
framework:

) ¥/ =a,+(@,+a,C, ), +0"X, +y T, +y, +¢,
(6) YltN = a() +6N)}iit +yi +Et]tv

where the superscripts 7 and N refer to the presence of Teams and No Teams, respectively, the vector X
contains the control variables and the dummy for an incentive, y; is a mill-specific effect that does not depend
on teams, and for simplicity we omit the serial correlation in the residuals. For the remainder of this section,
we will refer to the T*I, or teams and incentive interaction, as the “teams effect,” and use the short-hand
notation of T to stand for this interaction. While we use the term “teams effect” to simplify the exposition,
teams co-exist with incentives in our data, so we are implicitly describing the teams effect conditional on the
joint use of incentives.

2 We must choose between these different mean counterfactuals because alternative concurrent states are never
observed. That is, for every line i we would like to know the gains from teams, or to know (¥’;,— Y";), where Y7}, is the
output from TEAM use and YV, is the output without teams for line i. However, each team’s non-chosen state is never
observed—for line 1 that chooses teams, the concurrent alternative of no-teams is not observed. Thus, we cannot
calculate individual gains, and must instead turn to the calculation of expected population gains, with assumptions about
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Equation (5) contains a complexity variable that may have observed and unobserved components for
the econometrician, though we assume the manager always knows the value of complexity. Assume that true

complexity is equal to C,, + Y, , where C,, is measured complexity and Y, is line-specific unobserved
complexity. The interaction between complexity and teams adoption in the production equation produces
observed and unobserved components, or C, T, + V< T, , where the unobserved y T, will complicate our

estimation.

In defining the teams subsample in equation (5), we consider two alternatives. As defined, (5) refers
to the subsample of lines that currently have teams. However, it may be more appropriate to separate the
subsample of lines that will eventually have teams. Rewrite (5) as:

') Y =a,+(@, +a,C,)T, +8" X, +y, +y° T, +¢&!

where superscript T refers to the set of lines that will eventually adopt teams (and N in (6) would become
the set of lines that never adopts teams). The primary advantage of the subsample in (5°) is that we can
estimate the teams coefficient within (5°) by using the before-after data on performance. If mills that
eventually adopt teams are inherently different from mills that never adopt teams (due to perhaps a mill-
specific complexity difference), then the bias function using (5°) is the more appropriate model. We will
present results for both (5) and (57).

Treatment of the Treated

From the perspective of managerial decisions, the “treatment of the treated”” may be the most relevant
counterfactual to estimate. A manager typically wishes to know the expected gain from teams given the
characteristics of his production line. Thus, if the manager knows the characteristics of his line (such as its
complexity), he wishes to know both when adoption is valuable (from the hazard rate model of adoption) and

the expected gains conditional on adoption, or E |_Y,~tT -YN|X,.T, = 1J. This is the treatment of the treated.

To estimate the treatment of the treated effect, rewrite (5”) by differencing it within mills. Assume
that a mill adopts teams in the interval between times #-k and ¢, and that prior to the adoption of teams,
productivity evolves according to:

) YT =a, 40Kty +"
which rewrites equation (6), with the symbol of N|T representing the non-teams group that eventually adopts

teams. If we then estimate the productivity regression by differencing between periods #-k and ¢,

~

T NT — T _ANTS, c T _ &NT
(8) Yit 'Yi,t-k - (az +a3Cit )Tit +0 Xit ) Xi,t—k + yi Tit +£it gi,t—k

the alternative states, or the counterfactuals. To organize our discussion of these alternatives, we use the comprehensive
review by Heckman, LalL.onde, and Smith (1999).
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the coefficient on 7, is the estimated treatment of the treated effect. Note also that the gains to treatment

include the observed effects, a, + a;C;, as well as the unobserved effects, yl.c . To estimate this effect, we are
making a key parametric assumption about the unobserved counterfactual. We are assuming that ¥"'" (which

is unobserved after teams are adopted) would have evolved according to the parametric form@ X . in (7).

Or, we are estimating the teams effect assuming that (8" X . -0 NI X .+ ) accurately measures the evolution of

the change in Y due to non-teams influences. *

The results of estimating (8) are in column 1 of Table 4, where (8) is estimated with fixed effects.
The results are little changed relative to those for the full sample in Table 3, column 3 which keeps the non-
teams subsample in the analysis. There is a slight increase in the coefficient on TEAMS and a bigger increase
in the coefficient on INCENTIVE. The results here, which drop the non-teams subsample from the analysis,
suggest that the coefficients in the non-teams sample are similar to those for the TEAMS subsample. In
column (2), we interact complexity with teams and find a significant positive interaction: more complex lines
have higher gains to teams. This result surfaces despite the fact that the sample of lines that choose to adopt
teams are already themselves more complex lines.

Average Treatment Effect

For public policy purposes, we may wish to know the expected gains to teams if all lines were
encouraged to (randomly) adopt teams. This would also be the relevant counterfactual if a manager decided
to adopt teams because he saw others doing so, but did not evaluate whether teams were optimal for him. This
is also the effect that is typically estimated in much of the existing literature on productivity effects of HRM
practices that typically rely on cross-industry samples of establishments. Since the effects of HRM practices
(such as teams) vary with intra-industry factors (such as production process complexity), cross-industry
studies that do not account for factors that mediate the effects of teams will produce estimates of “average
treatment effects.”

To find the expected gains to teams for a randomly chosen production line, we estimate the average
treatment effect, £ |_Y”T -YV X, J To consider alternative approaches to estimating this unobserved

expected value, begin by combining (5”) and (6) in one equation and add the assumption that the control
variables have equivalent coefficients, or 6" = 8":

© ¥ =a +lyrac, ) vox, vy +BC el N N
it 0 2 3 1t/ 1t it 1 1 it 1t it 1t

Using (9), the average treatment effect is

25 Note that we are effectively using a matching estimator, in which the performance data for the years prior to adoption
are used as the matched comparison group. We are also assuming that there are no differences in the distribution of the
residuals for mills before and after treatment. For example, we assume that there is no Ashenfelter (1978) dip prior to
treatment, in which performance falls just prior to team adoption, and that there is no change in the variance of the
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(10) E(YitN _Yii\l |Xit): (az +G3Cit)+ El_(yic +51T _gilt\I)Tit +£ilt\1

The expected value of the residual on the right-hand-side is not equal to zero, but equals

() Bl e -e ) ved]= |l el - )T, =1)pr(r, =1)

Because the choice of T, =1 is determined in part by y; , E |_(in + 85 -&) )Tlt +g) J #0 (and most likely

E[*]>0). This is the nature of the selection bias. We have introduced the unobserved complexity term, yf ,

to emphasize that mills are likely to adopt teams as a function of this unobserved variable, and it in turn enters
the production function and thus biases the results. To facilitate our discussion below, we focus on this

element of the residual in (11), with the assumption that £ |_£5 —-& IItVJ =0.

There are a number of alternative approaches to estimating the average treatment effect, but we focus on
one, semiparametric estimation with fixed effects. To examine the robustness of this estimator relative to the
typical alternatives, the results for several alternatives are reported in Appendix A2. Relative to these
alternatives, the advantage of semiparametric estimation is a gain in robustness, arising from the less
restrictive assumptions regarding the behavior of firms and the error terms (dropping normality). The
approach that we follow is adapted from Heckman, Ichimura, Smith, and Todd (1998) and we use Andrews
and Schafgans (1996) (which modifies Heckman, 1990) to recover the teams coefficient. For details on
estimation, see the Appendix A3.

Temporarily disregarding fixed effects, rewrite the productivity equations (5”) and (6) as

(12) Ynf =6 )N(n t8r (pn)+ giT

(13) Y. =0 Xit * 8y (pit)+ Eq
where X includes TEAMS, INCENTIVE, and the control variables, p is the probability of adopting teams,
and superscript T refers to those lines that eventually adopt teams, and superscript N to those lines that never
adopt teams. We assume that the nonparametric bias correction functions, g, (p, ) for k = T , N, capture

any bias in the model. The conditional expectation of (12) and (13) given p,, is

(14) E[fp)=0ElX b, |+ 2. (p.)

for k=T , N . Taking the difference of the productivity equation from the conditional expected equation
(differencing (12)-(14) and (13)-(14)) produces

(15) Yzzk - E thk[pzr] :0(Xit _El_)?itlpitj)-l-gi/;

residual. These assumptions are confirmed for our data—mills that adopt are not those that see a drop in performance
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which is rewritten as
kF—p k
(16) Vi = 0 Xit + git
where the bias correction term, gi(p;), is differenced out of the equation. Thus, the coefficient estimates from
(16) are the unbiased average treatment effects for TEAMS. To estimate (16), begin by estimating the

expectations, £ I_thk 12 J and E I_X AP J , using Kernel estimation given the p,, from the hazard model results

reported in Table 3. Given these expected values for each line 7 at time ¢, we create the variables in (16) and
estimate with OLS. However, because our productivity regressions are likely to contain important line-
specific fixed effects (as shown in Table 3), we estimate these in fixed effects form (see the Appendix A3 for
details).

The results of the semiparametric estimation are in columns 3 and 4 of Table 4. The estimated
TEAMS effect rises modestly for the estimation of equation (16) (column 3). In the regression of column 4,
we change our definition of teams status. In column 3, teams status is defined as the line eventually having
teams, so the teams coefficient can be estimated from the lines that move from non-teams to teams status. In
column 4, we define teams status as currently having teams. In this case, the regressions are divided into
teams/non-teams, so the TEAMS variable is differenced out of the regression, and thus its coefficient is not
estimated. We therefore introduce the econometric model of Andrews and Schafgans (1998) that estimates
the mean values for mills with teams and without, and uses these to produce an implied mean return to teams.
The estimates in column 4 are very similar to those in 3—the estimated TEAMS effect falls to .396.

Summary of Treatment Effects

For both the average treatment effect and the treatment of the treated, we find that the selection-
corrected coefficient on TEAMS rises modestly, rather than declining due to positive selection bias. One
very likely reason for the increase is the way in which complexity enters the productivity regression.

The complexity variable enters the performance equation in two opposing ways. The TEAMS
variable is positively correlated with complexity—more complex lines are more likely to adopt teams (recall
Table 2)—and TEAMS raise performance. On the other hand, more complex lines have lower levels of yield.
It is harder to get high levels of yield when you are producing complex products with more involved

equipment. Accordingly, in our regression results for equation (3), the complexity variable C, has a

significant negative effect on yield (see Table 3). Therefore, if there is an unobserved omitted complexity
term in the performance regression, the coefficient on TEAMS will be biased downward, because TEAMS is
positively correlated with an omitted complexity variable that has a negative effect on performance. Indeed,

when the observed complexity variable C,, is omitted from the regression, the coefficient on TEAMS

declines (for OLS and fixed effects estimation). When selection corrections are added, the coefficient on
TEAMS rises, because the various selection corrections purposely reduce the correlation between the TEAMS
variable and the unobserved complexity error term.

prior to adoption.
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The main conclusion of the analysis of this section is that we find little bias in the estimated TEAMS
effect. This conclusion is perhaps not so surprising given our research methodology, since the careful
construction of our sample should reduce this selection bias. That is, we have limited our study to very
similar steel rolling mills because we wish to reduce the possible correlation between teams use and other
variables that influence productivity. This limitation enhances the probability of getting unbiased treatment
effects.”® In fact, we find that the characteristics of our treated group are very similar to our nontreated group.
But the careful selection of our sample also means that we are not choosing a control group from the general
population of all firms, and therefore do not know whether these results from the steel industry would transfer
to all firms.

The Adoption of Two Endogenous Practices and Bias in the Test for Complementarity in Production

Thus far, we have addressed in this section the selection bias that arises from endogeneity of the
decision to adopt problem-solving teams. But we have not addressed the selection bias that can arise if
incentives are endogeneous as well. Athey and Stern (1998) stress that this endogeneity bias can be
particularly problematic when there are two or more practices and the researcher is testing for
complementarity between the practices. In particular, correlated unobservables in the returns to practices will
lead to biased tests for the complementarity of the practices. This section now addresses this concern.

Consider a simple example of selection bias in our two-practice model. Rewrite the production
function, (3), dropping the direct and interactive effects of the complexity variable, Cy, to simplify the
exposition.

(17) Yo = oo+ al,+ aoTy + 01,7 + ath + uy

Assume, however, that the effects of / and of 7 on performance depend upon an unmeasured variable, such as
the presence of a culture of a positive work ethic in the mill. Mills with a “positive culture” may be more
likely to adopt teams and incentives and the returns to these practices may rise with culture. To develop
implications for modeling complementarity, assume that the joint effect of I;;T;; on productivity, or the as,
does not depend upon the culture, but that O, and , do. In this case:

(18) a, =0 + G12Cultureit
(19) O, =0, + GZQCUItUI'Cit

so that a positive culture increases the value of both incentives and teams, and thus increases the probability
of adopting incentive pay and teams. Then insert (18) and (19) into (17) and rewrite as:

(20) Yy =ao+ (ay; + aCulture; )i+ (0 + 0y Culture; ) Tit o313 T + uie
or

(21) Yy =ap+ay Li + oy Ty + oL Tie + (0 L+ A, Ty )Culturey + g,

2 Heckman, Lalonde and Smith (1999) point out that when “analysts.. compare comparable people. ..much of the bias in
using nonexperimental methods is attentuated.” (page 3). We attempt to reduce this bias by comparing comparable lines.
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Athey and Stern (1998) show that when 05 is zero (so there is no true complementarity between practices I,
and Tj,), econometric results will still give the appearance of complementarity when culture is unobserved and
when the returns to / and T are a function of the unobserved culture as in (18) and (19). The estimate of a5
will be biased upwards and the correlation between teams and incentives will be positive.

This potential problem is not likely to be a source of significant bias in our estimates of the joint
effect of teams and incentive pay. In particular, with the rare exception of a few months in one mill, mills do
not adopt teams without incentive pay. This is important in that it suggests that a1, is effectively close to zero,
because the value of teams alone are so low as to never be adopted without incentives. If we assume that 0 is
zero, it is evident in (21) that there is no upward bias in the complementarity effect, because the coefficient on
Culture in that equation reduces to (0, I;) and the only potential bias is in the incentive effect, as the
productivity equation (17) becomes:

(22) Yy =0+ oy L + oL Ty + (04, L )Culture; + uy

With a, close to zero, we therefore have focused the econometric analysis of Section IV on the potential
endogeneity of Teams and the resulting selection bias in the Teams coefficient (a bias that is not shown in the
equation above). While there would be efficiency gains to estimating a full structural model as described in
Athey and Stern (1998), we also see no convincing instruments for the adoption of Incentives, in part because
they are nearly universally adopted. Finally, note that the Athey and Stern model uses cross-sectional data.
With our panel data set, the fixed effects estimates control to some degree for this type of selection bias. For
example, if culture is specific to a mill and does not change with the adoption of new practices, then first
differencing the data when estimating the productivity equation (22) as we have done in the fixed effects
model will eliminate the bias term. In fact, this may be the explanation for the reduction in the magnitude of
the coefficient on the incentive variable shown in Table 3 after fixed effects are incorporated in the
productivity equation. But to account for the significant effects of teams and incentives in the fixed effects
models in columns 3 and 4 of Table 3, this omitted variable (which we proxy by Culture in the above
analysis) must be a factor that varies over the five year time periods for the lines in our sample.

V1. Conclusion

The main theoretical hypothesis of this paper is that, in more technologically complex production
environments, problem-solving teams are an important means for elevating the effectiveness of group-based
incentive pay. Econometric evidence using a unique data base on the HRM practices and performance of
U.S. steel minimills provides consistently strong support for this proposition. In models of the adoption of
problem-solving teams, we find that a one standard deviation increase in this study’s measure of the
complexity of minimill production more than doubles the likelihood that mills adopt teams. This empirical
pattern implies that teams are more valuable in more complex production environments.

We also provide direct evidence on the productivity effects of group incentives and problem-solving
teams by estimating models of the productivity of minimill production lines. These estimates show that the
productivity increase that lines achieve when they combine teams with group-based incentive pay is larger in
more complex production lines. Group-based incentive pay on its own raises line productivity by some .51
percentage points. The adoption of teams in addition to group incentives leads to a further productivity
increase of .13 percentage points in production lines of “average complexity” and a larger increase of .39
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percentage points in the most complex production lines. The average productivity effect of teams and
incentives that we estimate is economically important, corresponding to an annual increase of some 3000
additional tons of steel valued at over $1.4 million. We also show that our estimates of the productivity effects
of these HRM practices are little changed by corrections for possible selectivity bias. Furthermore, the
conclusion that teams and group incentives are complementary HRM practices in complex production lines is
not likely to be the result of some unmeasured input in the production function that affects the productivity of
teams and incentives.

Our analysis underscores a point that is not well emphasized in existing studies of incentive pay.
Most theoretical models of the firm emphasize the need to give workers the incentive to increase output (by
designing an optimal incentive pay plan) and the ability to increase output (by investing in the necessary skills
and human capital).”” We show here that opportunity to increase output is also important. The returns to
incentive pay are greater when problem-solving teams provide production workers with the time and
opportunity to diagnose problems and to design and implement technological changes on their lines. The
prevailing assumption in existing economic analyses may have been that workers would find ways of
increasing output given the incentive to do so, or that incentive pay should not be offered when workers do
not have an opportunity to influence output. Our model and results emphasize that when job design is
endogenous, incentive pay can be made more effective by structuring jobs to increase workers’ opportunities
to respond to the incentives. Holmstrom and Milgrom (1991, 25-26) make a similar point when they argue
that “job design is an important instrument for the control of incentives ... [and that] job design can enhance
the value of incentive pay, by allocating people to jobs in which incentives are most efficient.” Our analysis
helps make explicit an important mechanism through which job design enhances the value of incentive pay.
Team-based job design provides workers with a greater opportunity to react to incentives.

The empirical results also provide additional understanding of the causes for limited adoption of
innovative work practices like teams that promote employee participation. Cross-industry studies of firms
with and without teams or other innovative HRM practices often purport to estimate effects of these work
practices on measures of firm productivity or profitability. Yet, when positive performance effects are
documented in these studies, the question naturally arises as to why all firms would not adopt these new HRM
practices. There are transition costs associated with changing HRM practices—costs that can be significant,
because workers must invest in new skills and forge new communications relationships.”® Our analysis here
goes beyond transition costs—to uncover fundamental differences in the expected value of innovative HRM
practices across plants that should limit their adoption. Not all plants should adopt teams—the benefits
appear to be high for plants with complex production processes, but nonexistent for plants without complex
processes. Thus, complex plants should invest in problem-solving teams and incentive pay, and plants
producing simple commodity products should use standard operating procedures for production. Finally, our
results suggest that, as U.S. manufacturers invest more and more in new computer and information
technologies, the use of new work practices like problem-solving teams will become increasingly common:

%7 For reviews of the adoption of incentive pay and the optimal structure of incentive pay, see Brown (1990), MacLeod
and Parent (1999), Gibbons (1996), Gibbons and Waldman (1998), Lazear (1995), and Prendergast (1995). There are
also other incentive structures that can work well with teams—see Baker, Gibbons, and Murphy (forthcoming) on
relational contracts and Kreps (1997) on extrinsic versus intrinsic incentives.

%% For more on transition costs, see Appelbaum, et.al. (2000), Ichniowski and Shaw (1995), and Gant, Ichniowski and
Shaw (2001). For more on the need to elevate the skill level of workers, see Autor, Levy, and Murname (2001a) and
(2001b), and Breshnahan, Brynjolfsson and Hitt (2001).
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information technology puts information in the hands of production workers and innovative work practices
give them the authority to use that information.*

** See Breshnahan, Brynjolfsson and Hitt (2001) and Brynjolfsson and Hitt (2000).

23



References

Andrews, Donald W. K. and Marcia Schagfans (1996) “Semiparametric Estimation of the Intercept of a
Sample Selection Model,” Review of Economic Studies, vol. 65, pp 497-517.

Aoki, Masahiko (1988) Information, Incentives and Bargaining in the Japanese Economy (New York:
Cambridge University Press).

Appelbaum, Eileen, Thomas Bailey, Peter Berg, and Arne Kalleberg (2000) Manufacturing Advantage: Why
High-Performance Work Systems Pay Off. Ithaca, NY: Cornell University Press.

Appelbaum, Eileen, and Rosemary Batt (1994) The New American Workplace: Transforming Work Systems
in the United States, Ithaca, NY: Cornell University Press.

Arthur, Jeffrey (1992) “The Link Between Business Strategy and Industrial Relations Systems in American
Steel Minimills,” Industrial and Labor Relations Review, vol. 45, pp. 488-506.

Ashenfelter, Orley (1978) “Estimating the Effect of Training Programs on Earnings,” Review of Economics
and Statistics, vol. 67, pp. 648-660.

Athey, Susan and Scott Stern (1998) “An Empirical Framework for Testing Theories About Complementarity
in Organizational Design,” MIT Sloan School Working Paper no. 4022BPS-98.

Autor, David, Frank Levy, and Richard Murname (March 2001) “The Skill Content of Recent Technological
Change: An Empirical Investigation.”

Autor, David, Frank Levy, and Richard Murname (March 2001) “Upstairs Downstairs: Computers and Skills
in Two Floors of a Large Bank.”

Baker, George (1992) “Incentive Contracts and Performance Measurement,” Journal of Political Economy,
vol. 100, pp. 598-614.

Baker, George, Robert Gibbons and Kevin Murphy (1994) “Subjective Performance Measures in Optimal
Incentive Contracts,” Quarterly Journal of Economics, vol. 108, pp. 1125-1156.

Baker, George, Robert Gibbons and Kevin Murphy (forthcoming) “Relational Contracts and the Theory of the
Firm,” Quarterly Journal of Economics.

Bartel, Ann, “Human Resource Management and Performance in the Service Sector: The Case of Bank
Branches,” Columbia University working paper, 2001.

Batt, Rosemary (July 1999) “Work Organization, Technology, and Performance in Customer Services and
Sales,” Industrial and Labor Relations Review, vol. 52, pp. 539-64.

Black, Sandra and Lisa Lynch (forthcoming) “How to Compete: The Impact of Workplace Practices and IT
on Productivity,” Review of Economics and Statistics.

Black, Sandra and Lisa Lynch (May 1996) “Human Capital Investments and Productivity,” American
Economic Review Papers and Proceedings: vol. 86: 263-267.

Black, Sandra and Lisa Lynch (1999) “The New Workplace: What Does it Mean for Employers,” Industrial
and Labor Relations Association Papers and Proceedings.

24



Brynjolfsson, Erik, and Loren Hitt (Fall 2000) “Beyond Computation: Information Technology,
Organizational Transformation, and Business Performance,” Journal of Economic Perspectives.

Breshnahan, Timothy, Erik Brynjolfsson and Loren Hitt (2001 forthcoming) “Information Technology, Work
Organization and the Demand for Skilled Labor: Firm-Level Evidence,” Quarterly Journal of Economics.

Cole, Robert E. (2000) “Market Pressures and Institutional Forces: The Early Years of the Quality
Movement,” in The Quality Movement and Organization Theory, eds. Robert E. Cole and W. Richard Scott
(Sage Publications, Inc.: Thousand Oaks, CA), pp. 67-88.

Dunlop, John T. and David Weil (2000) “Diffusion and Performance of Modular Production in the U.S.
Apparel Industry,” in The American Workplace: Skills, Compensation and Employee Involvement, eds.

Freeman, Richard B. and Joel Rogers (1999) What Workers Want, Ithaca, NY: Cornell University Press.

Gant, Jon, Casey Ichniowski, and Kathryn Shaw (2001 forthcoming) “Social Capital and Organizational
Change in High Involvement and Traditional Work Organizations,” Journal of Economics and Management
Strategy.

Geanakoplos, John and Paul Milgrom (1991), “A Theory of Hierarchies Based on Limited Attention Span”
Journal of the Japanese and International Economics, vol. 5, 205-225.

Gibbons, Robert (1996) “Incentives and Careers in Organizations,” MIT Working Paper.

Griliches, Zvi (1957) “Specification Bias in Estimates of Production Functions,” Journal of Farm Economics,
vol. 39, pp. 8-20.

Heckman, James J. (1990) “Varieties of Selection Bias,” American Economic Review, vol. 80, pp. 313-8.

Heckman, James J., Hidehiko Ichimura, Jeffrey Smith, and Petra Todd (1998) “Characterizing Selection Bias
Using Experimental Data,” Econometrica, vol. 66, pp. 1017-1098.

Heckman, James J., Robert Lalonde, and J. Smith (1999) “The Economics and Econometrics of Active Labor
Market Programs,” in Handbook of Labor Economics, vol. 3, eds. Orley Ashenfelter and David Card
(Elsevier Science: Amsterdam).

Holmstrom, Bengt (1982) “Moral Hazard in Teams,” Bell Journal of Economics, vol. 13, pp. 324-340.

Holmstrom, Bengt and Paul Milgrom (1987) “Aggregation and Linearity in the Provision of Intertemporal
Incentives,” Econometrica, vol. 55, pp. 303-328.

Holmstrom, Bengt and Paul Milgrom (1991) “Multitask Principal-Agent Analyses: Incentive Contracts, Asset
Ownership and Job Design,” Journal of Law, Economics and Organization, vol. 7, pp. 24-52.

Holmstrom, Bengt and Paul Milgrom (1993) “The Firm as an Incentive System,” American Economic
Review, vol. 84, pp. 972-991.

Hunter, Larry and John Lafkas (1998) “Information Technology, Work Practices, and Wages,” Proceedings
of the 50" Annual Meeting of the Industrial Relations Research Association.

Huselid, Mark and Brian Becker (1996) “High Performance Work Systems and Firm Performance: Cross-
Sectional Versus Panel Estimates,” Industrial Relations, pp. 635-672.

Ichniowski, Casey, David I. Levine, Craig Olson and George Strauss (Fall 1996), “What Works at Work:
Overview and Assessment” Industrial and Labor Relations Review, vol. 35, pp.299-334.

25



Ichniowski, Casey, Kathryn Shaw and Giovanna Prennushi (1997) “The Effects of Human Resource
Management Practices on Productivity: A Study of Steel Finishing Lines,” American Economic Review, vol.
87, pp- 291-313.

Itoh, Hideshi (1994) “Job Design, Delegation, and Cooperation: A Principal-Agent Analysis” European
Economic Review, vol. 38, pp. 691-700.

Jensen, Michael C. and William H. Mechling (1992) “Specific and General Knowledge and Organizational
Structure,” in Contract Economics, eds. Lars Werin and Hans Wijkander (Blackwell: Oxford), pp. 251-74.

Kandel, Eugene and Edward Lazear (1992) “Peer Pressure and Partnerships,” Journal of Political Economy,
vol. 100, pp. 801-817.

Kreps, David (1997) “Intrinsic Motivation and Extrinsic Incentives,” American Economic Review, vol. 87, pp.
359-365.

Kruse, Douglas (1993) Profit Sharing: Does it Make a Difference? Kalamazoo, MI: W.E. Upjohn Institute for
Employment Research.

Lazear, Edward (1999) “Personnel Economics: Past Lessons and Future Directions,” Journal of Labor
Economics, vol. 17, pp. 199-236.

Lazear, Edward (1995) Personnel Economics, Cambridge, MA: MIT Press.
Lazear, Edward (1999) “Globalization and the Market for Teammates,” Economic Journal.

MacDuffie, John Paul (1995) “Human Resource Bundles and Manufacturing Performance: Organizational
Logic and Flexible Production Systems in the World Auto Industry,” Industrial and Labor Relations Review,
vol. 48, pp. 197-221.

MacLeod, Bentley (1988) “Equity, Efficiency and Incentives in Cooperative Teams,” Advanced Economic
Analysis of Participatory Labor-Managed Firms, vol. 3, pp. 5-23.

MacLeod, Bentley and Daniel Parent (1999) “Job Characteristics and the Form of Compensation,” Research
in Labor Economics, vol. 18: 177-242.

Milgrom, Paul and John Roberts (1995) “Complementarities and Fit: Strategy, Structure and Organizational
Change in Manufacturing,” Journal of Accounting and Economics, vol. 19, pp. 179-208.

Osterman, Paul (1994) “How Common is Workplace Transformation and Who Adopts It?” Industrial and
Labor Relations Review, vol. 47, pp. 173-187.

Osterman, Paul (January 2000) “Work Reorganization in an Era of Restructuring: Trends in Diffusion and
Effects on Employee Welfare” Industrial and Labor Relations Review, vol. 53, pp. 179-196.

Prendergast, Canice (July 1995) “A Theory of Responsibility in Organizations,” Journal of Labor Economics,
vol 13, no. 3, pp 387-400.

Prendergast, Canice (1999) “The Provision of Incentives in Firms,” Journal of Economic Literature, vol. 37,
pp. 7-63.

Rosen, Sherwin (October 1982) “Authority, Control, and the Distribution of Earnings,” Bell Journal of
Economics, vol. 13;pp. 311-323

26



Wand, M.P. (1994) “Fast Computation of Multivariate Kernel Estimators,” Journal of Computational and
Graphical Statistics, vol. 3, pp. 433-445.

27



Appendix Al: Solution of the Section IT Model

In the first stage of the model solution, the firm finds the incentive that will induce its employee to
exert different effort levels, and the expected profits from those incentive and efforts. The employee’s
preferences are represented by the utility function u(W,e,e;) = - exp [-r(W-c(e;e3))], where r is a risk-
aversion parameter, W is the agent’s income, and c(e;,e;) is the disutility of effort, which is measured as a
monetary cost. We follow Itoh (1994) and model the disutility of effort as c(e,e;) = (¢/2)e; + (¢/2)e; + O
ceje;. If >0, diligence in both dimensions has a higher disutility than just the sum of diligence in each
dimension alone, so the model includes an additional cost for performing multiple tasks. We model the
employees as a single unit. This abstracts from potential free-riding problems associated with group
incentives.*® Of course, in our empirical work we test whether incentive pay is effective and thus implicitly
test whether the free-rider problem is overwhelming. The risk-neutral principal (employer) pays an output-
based linear incentive to the employees, W=Lp f(e; e, T)+ ¥, where  and y define the incentive payment and
base pay; p is the revenue less the (constant) marginal cost per unit of output, and £ is the production
function.’' The principal sets the employees’ share of revenue, 3, to maximize expected profits. We assume
that the firm operates in competitive markets for both inputs and outputs. The firm’s expected profits are

T (el ,e, ) = E[(l -p ) pf (e1 ,e, )— k—sT - y] where £ is the fixed cost of production, and s is the ongoing

cost of problem-solving teams. Table A1 presents the incentive structure and profits arising from each of the
effort levels.

Table Al: Effort combinations, incentives and expected profits

Effort Incentive Expected Profit
(el 362)

0,0) | B=0 pA—k—-W

(1,0) | B=c/(2pA,)
P(A+A)-k-W-c/2-[ra°c*/(84,°)]

(0,1) | B=c/(2pA4;) (Note: only feasible
when 4,>4,) PA+A5)-k-s-W-c/2-[rT ¢ /(845°)]

(L) | ifdo>4), B=[(1+2)c]/(2pA) | p(A+A +Ax)-k-s-W-c-8c-[r0°c*(1+28)°/(84,)]
if A;>A,, B=[(1+2d)c]/(2pA>) P(A+A+A5)-k-s-W-c-0c-[ro°c (1+28)°/(845°)]

3% Kandel and Lazear (1992) and MacLeod (1988) present models that limit or eliminate the free-rider problem. This
problem is that each employee’s incentive to contribute to production falls as the number of employees N rises, because
the incentive pay from the additional production is shared evenly among all N employees while the burden of the effort is
not shared, so that for large &, the employee will become a free rider on the effort of his peers. If everyone acts in this
manner, there is no increase in effort and no incentive pay. Kandel and Lazear (1992) develop a model in which this
drawback can be overcome, by encouraging managerial practices that build positive peer pressure in the plant, causing
employees to monitor the behavior of their peers so that each produces his share and all gain the incentive pay.
MacLeod suggests that the group will enforce high effort, because any drop in production will be attributed to free-riding
by some member, and the group will respond with all individuals reverting to low effort, so that free rider does not
receive the incentive. Thus the group response enforces common high effort.
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In the second stage of the model solution, the firm chooses the effort combination that maximizes

expected profits, and sets [ equal to the value that achieves that effort combination. In accordance with
intuition, inducing high effort is optimal when the productivity of that effort is high. The profit functions in
Table A1 show that a number of factors affect the decision to adopt incentives or teams. Further details on
the solution of the model are available from the authors on request.*

Appendix A2: Alternative Estimators of the Average Treatment Effect

There are several alternative estimators that are commonly used in this literature, so the results of these
alternatives are reported herein to evaluate the robustness of the results reported thus far

Fixed Effects Estimation. The fixed effects estimator can be considered equivalent to a difference-in-

differences estimator, in which we compare productivity gains for teams adopters to those for non-teams
adopters (thereby ruling out any economy-wide or life-cycle shocks that may be occurring as teams are
adopted). The assumptions underlying this estimator are the same as those underlying the fixed effects
estimator used for the treatment of the treated model above (concerning the parametric functional form and
distribution of the residuals). If we assume that y'=0, so adoption is a function of only observed complexity,
the fixed effects model produces an unbiased estimate of the average gain to teams. These results were shown
previously in columns 3 and 4 of Table 3.

Instrumental Variables Estimation with Fixed Effects. Assuming now that the parametric forms of
(5) and (6) are correct, then the instrumental variables estimator provides an unbiased estimate of the average
treatment effect if we find instruments for the TEAMS variable that are uncorrelated with the unobserved

effect, yTit, but that capture the random aspects of teams selection (assuming that some lines adopt teams even
when they do not have the higher product complexity). Based on our preceding adoption model, the
instruments that we have are proxies for transition costs. The results of this estimation is that both
coefficients on the INCENTIVE and TEAMS variables become highly insignificant, though larger in value.
These results suggest that our instruments are inadequate-- the R-squared for our TEAMS variable as a
function of transition costs is a low .01.

Heckman Correction with Fixed Effects. In the Heckman selection model, the average treatment
effect can be estimated consistently if the non-zero portion of the expected value of the residual is controlled
for in the regression by introducing the inverse of the Mills ratio. We assume that mills adopt teams when the
payoff to adoption crosses a minimum threshold of zero (equation (2)), and assuming joint normality between

the error in this selection equation and the production equation.In our model, the vector of variables
identifying adoption are the same as those used in the hazard models of Table 2 (product complexity, new

3! Our motivations for using a linear incentive are that it most closely resembles observed practices in the steel industry,
that it makes the problem more tractable, and that it is optimal in many circumstances. See Holmstrom and Milgrom
(1987) for a discussion of these points.

> Note the asymmetry introduced as a result of the requirement that problem-solving effort be accompanied by an
enabling mechanism to be effective. The firm can restrict problem-solving effort, and choose to induce production effort
even when problem-solving effort is more effective than production effort. However, if production effort has a higher
payoff, then the firm cannot induce only problem solving effort. The incentive designed to bring about problem-solving
effort will instead bring about production effort. (The employees would be making a decision that is profit maximizing;
the firm would be wasting the cost of teams.)
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managers, employee experience, and transition costs). These selection corrected results are comparable to
those of Tables 3 and 4: .337(.0124) INCENTIVE; .366 (.009) TEAM. The coefficient on the inverse of the
Mills ratio is significantly positive, as a model of positive selection bias would suggest. The drawback of the
Heckman model is that if the assumption of joint normality of the errors is violated, the estimates will not be
consistent. For this reason, we focus on the semiparametric selection correction.

Appendix A3: Semi-parametric estimation process.

In this appendix, we provide details on the non-parametric estimation process. The steps involved in
the estimation are:

1. Select a bandwidth and a kernel for the nonparametric estimation. We use the biweight kernel, and a
bandwidth of .5. Most analysis of nonparametric estimation indicates that the choice of kernel does not affect
the results, but the bandwidth can. We also used bandwidths of .3 and .7, with very little change in the
estimated coefficients.

2. Obtain the index parameter. These are the estimated probabilities of adopting teams, obtained from the
hazard rate model of adoption with the dependent variable TEAM.

3. Trim the data. Given the kernel and bandwidth, kernel density estimates are obtained, and low frequency
observations are trimmed. We trimmed 2.5% of the data. Trimming was done separately for the two groups
of data (the teams adopting and the non-adopting groups).

4. Obtain nonparametric regression estimates. Using the trimmed data, the Nadaraya-Watson local constant
estimates are obtained. To reduce the computational burden, local linear binning (see Wand (1994)) was
used.

5. Transform the data, and conduct OLS estimation on the resulting variables (stacking the data for both
groups, imposing the constraint of equal coefficients for both groups).

6. For the model where the bias is determined by the current status of teams, the mean must be obtained. The
coefficient estimates are used to determine the residuals. Then the following formula from Andrews and
Schafgans (1996) can be applied:

_ s -x,e)p slzp-r)
2., D, S(Z[ﬁ - rn)

n

where Z, 3 are the index values from the hazard rate model estimation of adoption, s( - ) is a smoothing

function, and 7, is a smoothing parameter that goes to infinity as sample size gets large. (In the estimation, we
replace the index with the probability of adoption, and assume the smoothing parameter goes to one with
sample size.) The results were sensitive to the smoothing parameter, with higher estimated values of teams
for larger smoothing parameters. The reported values were obtained with a smoothing parameter of .3.
Conducting this estimation for the samples with TEAM=1 and TEAM=0 provides estimates of the mean for
the team and non-teams subsamples. The difference of the estimates is the return to teams for a randomly
selected line.
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Table 1
Vari abl e Definitions and Means

YIELD CQutput tons as percent of input tons 93. 27
I NCENTI VE I ncentive in use (dunmmy) .81
TEAMS Formal problem solving teans in use (dummy) .27
CcowpP Scal e for the conplexity of the mll's production 431. 3
PROD1 % of Production in |low conplexity group 1 .43
PROD2 % of Production in internediate conplexity group 2 . 25
PROD3 % of Production in internediate conplexity group 3 .13
PROD4 % of Production in high conplexity group 4 . 20
GMTEN  Tenure of general manager at mll (years) 5.81
RMIEN  Tenure of rolling m |l manager at mll (years) 7.24
OPAGE Average age of operator at mll (years) 6.03
OPLONG Average tenure of operators over 10 years (dummy) .45
EDATE  Nunber of days since January 1, 1960 11724
LI NEAGE Age of the equi pnment (years) 9.32
EDATE Tinme scale (days since January 1, 1960) 11,724
M LLPR Wi ghted average of price for mll's products ($/ton) 420.69
CEONEW Conpany CEO in position |ess than 2 years (dumy) .14
GWEW M1l GMin position less than 2 years (dunmy) .18
RWEW Rolling MII Manager in position | ess than 2 years .11
(dumy)
TURN Annual turnover of the mlIl (% of workforce) 5. 45
SOLO Corporation contains only 1 mni-mll . 38
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Tabl e 2
Adoption of Probl em Sol ving Teans
Hazard Rate Model s

Exponenti al Exponenti al Wei bul | Wi bul
PROD2 1.102 --- 1. 256 ---
(1.156) (1. 405)
PROD3 4.096*** --- 4.185*** ---
(0.991) (1.173)
PROD4 3. 213*** --- 3. 121*** ---
(1.152) (1.209)
cow, --- 0. 007** --- 0. 007**
(0.003) (0.003)
OPLONG 3. 045%** 2. 624%** 3. 170%** 2. 672%**
(0. 815) (0.969) (1.041) (1.030)
CEONEW 1. 772%*% 1.965*** 1.737** 1. 955***
(0. 654) (0.725) (0. 690) (0.735)
GWNEW -0. 249 -0. 227 -0.254 -0.229
(0.884) (0.956) (0. 896) (0.966)
RWNEW 1.336 1.343 1.299 1.324
(0.817) (0.943) (0. 875) (0.969)
OPAGE -0.212%* -0.175 -0.215** -0.179
(0.093) (0.088) (0.088) (0.092)
SQLO -1.312%* -0.031 -1.271%* -0.033
(0.621) (0.764) (0.642) (0.777)
LI NEAGE 0.228 0. 203 0.225 0. 205
(0.238) (0.247) (0.241) (0. 253)
LI NEACGE2 -0.010 -0. 009 -0.010 -0.010
(0. 009) (0.010) (0.010) (0.010)
TURN -0.06 -0. 044* -0. 059 -0.041
(0. 059) (0.026) (0.057) (0.029)
Shape 0. 827 0. 903
par amet er ? (3.417) (4.323)
Nurber of
MIls 31 31 31 31
Tinme at “risk” 1,703 1,703 1,703 1,703
(rmont hs)
X2 56. 44 28. 24 52. 45 26. 10

Figures in parenthesis are standard errors.
*** means p-val ues $-val ue$<$.01, ** neans p-val ues$<$. 05, * neans p-val ues$<$. 1

a — A shape paraneter less than 1 indicates negative duration dependence
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Tabl e 3:
Productivity Regressions
Dependent Variable: Yield

1 2 3 4
as oS FE/ ARL FE/ ARL
I NCENTI VE 1. 111%%* 1. 127*%* 0. 493%** 0.511%**
(0. 109) (0.108) (0.128) (0.127)
TEAVS 0. 186* -2.106%** 0. 248%** -0.610
0. 107 (0. 554) (0. 092) (0.509)
COVPe TEANVS .- 5. 000E- 03* ** - 1. 712E- 03*
(1. 00E- 03) (9. 84E- 04)
EDATE 3. 19E- 04* ** 3. 19E- 04* ** 2. 08E- 04*** 2. 21E- 04***
(4. 12E- 05) (4. 10E- 05) (5. 34E- 05) (5. 42E- 05)
LI NEAGE -0.011 0. 002 0.022 0.018
(0. 024) (0. 024) (0. 025) (0. 026)
LI NEAGE2 - 3. 28E-03*** -3.57E-03*** -1. 10E-03 -9.28E-04
(8. 41E- 04) (8. 40E- 04) (8. 65E- 04) (8. 84E- 04)
PROD2 -4, 668%** -4, 701%** -1.306%** -1.312%%*
(0.152) (0.151) (0. 434) (0. 434)
PROD3 -2.929%%* -2.972%%%* 38. 544 44, 499
(0.188) (0.188) (107.022) (107.117)
PROD4 - 6. 325%%* -6, 627*** 39. 107 45.026
(0. 160) (0.175) (107. 015) (107. 110)
GMTEN 0. 114%** 0.112%** -0.036%** -0.037***
(0.012) (0.012) (0.012) (0.012)
RMTEN -0. 058*** -0. 050%** 0. 020* 0.019*
(0.012) (0.013) (0.012) (0.012)
OPAGE 0. 042 *** 0. 030** -0.190%** -0.189%**
(0. 015) (0. 015) (0. 066) (0. 066)
OPLONG -0.339*%* -0.203 1. 092%** 1.118%**
(0.132) (0.136) (0. 165) (0.163)
N 2250 2250 2250 2250
R 0. 751 0. 753
X2 10196. 500 9981. 730

O her control variables in the regressions include nine technol ogy variables, turnover,
crew size, and shift |ength.

Fi gures in parentheses are standard errors.
*** nppans p-val ues $-val ue$<$. 01, ** nmeans p-val ues$<$. 05, * neans p-val ues$<$.1
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Productivity Regressions Adjusting for Selection Bias

Table 4

Dependent Vari abl e:

Treatnent of the treated
(Subsanpl e of adopters)

Sem paranetric Estinmation

FE/ AR1 FE/ AR1 Bias by current Bias by current
or future teans teans
I NCENTI VE 0. 615*** 0. 627*** 0. 3666*** 0. 2309**
(0. 148) (0. 147) (0. 1245) (0. 1305)
TEAMS 0.288*** -0. 806 0. 3964*** ---
(0.094) (0.507) (0. 0996) -
COVPs TEAMVS --- 2. 176E- 03** --- ---
- (9. 80E-04) - -
PROD2 -1.353** -1.376**
(0. 610) (0. 610) - -
PROD3 2.416 1.502
(4. 410) (4.399) - -
PROD4 -0.214 -0.723
(1.798) (1.799) - -
OPAGE -0.219** -0.227** -0.2353*** -0.2225***
(0. 100) (0. 100) (0.088) (0.0877)
OPLONG 1. 006%** 0. 996*** 1. 0709%** 1.1511%**
(0.178) (0.178) (0.1671) (0. 1647)
EDATE 1. 35E-04 1. 64E- 04* 0. 0401 0.0413**
(9. 67E-05) (9. 70E- 05) (0.0219) (0.0218)
LI NEAGE 0. 001 -0.016 0. 0595* ** 0. 0725***
(0.037) (0.038) (0.0271) (0.027)
LI NEAGE2 2. 42E- 03 3. 32E-03** -0.0029*** -0.0033***
(1. 58E-03) (1. 66E-03) (0. 0009) (0. 0009)
I mpl i ed TEANVS . 5799* **
(9. 98e-04)
N 1372 1372 2249 2249
R 1722 . 1633
xXn2 3047. 090 3010. 610

O her control

crew size, and shift |ength.
Figures in parentheses are standard errors.

*** npans p-val ues$<$. 01,

Not e: EDATE neasured in days in colums 1 and 2,

** means p-val ues$<$. 05,
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* means p-val ues$<$. 1

variables in the regressions include nine technol ogy variabl es, turnover,

and nonths in colums 3 and 4



