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1 Introduction

Rigorous theoretical understanding of the effects of uncertainty on the marginal
propensity to consume (MPC) out of transitory shocks to income is surprisingly
recent: Kimball (1990a, 1990b) showed that for standard utility functions, the in-
troduction of uncertainty in noncapital income increases the MPC at a given level
of consumption, but not necessarily at a given level of wealth; and Carroll and Kim-
ball (1996) show that the introduction of uncertainty causes the MPC to rise at any
given level of wealth, but to increase more for consumers at lower levels of wealth.1

The response of consumption to permanent shocks to income (henceforth, the
MPCP) is also an important question, for both micro and macroeconomic analysis
of tax policies and business cycles, and for microeconomic analysis of inequality (in
both consumption and income).2 Yet no paper in the new literature has performed
a general analysis of the MPCP, despite the presence of a large body of evidence
from a variety of sources suggesting that permanent shocks are empirically quite
large at the household level (MaCurdy (1982); Abowd and Card (1989); Carroll and
Samwick (1997); Jappelli and Pistaferri (1999)).

There appears to be a presumption in the literature that in a model with impa-
tient consumers the MPCP must equal one. Aside from its strong intuitive appeal to
economists steeped in the proposition that consumption equals permanent income,
this presumption draws its principal theoretical backing from Deaton (1991), who
shows that in a model of impatient, liquidity-constrained consumers, when shocks
to permanent income are the only form of income uncertainty, consumers who begin
with zero wealth will exhibit an MPCP of one. This is because these consumers
always set their consumption equal to their actual income. There seems to be a
compelling explanation for this behavior: It is impossible to permanently insulate
consumption from a permanent shock, and if consumption does not adjust imme-
diately and fully, it will eventually need to adjust more than one-for-one to make
up for the initial period of less-than-full adjustment. Consumption-smoothers will
prefer to adjust fully now rather than less-than-fully now and more-than-fully later.

It turns out, however, that Deaton’s result relies critically on the specific setup
of his model. After deriving some new results that bolster Deaton’s conjecture
that in his specific model wealth tends to fall toward the absorbing state of zero
where the MPCP is indeed one, this paper shows that if the model is parameter-
ized in a way that allows for empirically realistic transitory as well as permanent

1This result is a direct implication of the concavity of the consumption function that Carroll
and Kimball (1996) prove.

2By ‘permanent shocks to income’ I mean shocks to noncapital income; I will use the terms
permanent income and permanent noncapital income interchangably in this paper, except where
doing so might cause confusion because of the ambiguity the term ‘permanent income’ can have
when consumers receive both capital and noncapital income.
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shocks, and if consumers are impatient in the relevant sense, the MPCP can be
substantially (though not enormously) less than one. The essential intuition comes
from the target-saving behavior that emerges when consumers are both prudent
and impatient. An increase in the level of permanent income leaves the target ratio
of wealth to permanent income unchanged, but for a given level of initial wealth, a
positive shock to permanent income reduces the ratio of actual wealth to permanent
income, thus inducing the consumer to increase his saving rate because his wealth-
to-permanent income ratio is now lower relative to its target. Thus consumption
does not move up by the full amount of the income shock; the reciprocal logic holds
for negative shocks to permanent income.

This paper is organized as follows. The first section sets up the model and
demonstrates that a problem with both transitory and permanent shocks to non-
capital income can be restated in a form such that all stock and flow variables are
expressed as ratios to permanent noncapital income. The second section derives
an expression for the marginal propensity to consume out of permanent shocks and
explains qualitatively why it can be different from one. This section proceeds to
show the relationship between the formula and Deaton’s results, then derives a for-
mula that applies to the more general model with both transitory and permanent
shocks. Because the exact value of the MPCP out of permanent shocks cannot be
determined except by simulation methods, the fourth section presents simulation
results and finds that the marginal propensity to consume out of permanent shocks
tends to fall in the range from 0.80 to 0.95 for a plausible range of parameter values
of the general model with both transitory and permanent shocks. This section also
shows that behavior of the ergodic population of consumers is very close to behavior
of a single consumer with wealth equal to its target value, indicating that the com-
putationally burdensome task of simulation may be unnecessary for the analysis of
models in this class.

2 The Model

Consider a consumer solving the maximization problem

Vt(Xt, Pt) = max
{Cs}Tt

u(Ct) + Et

[
T∑

s=t+1

βs−tu(C̃s)

]
(1)

s.t.

Wt = Xt − Ct,
Xt+1 = RWt + Yt+1,

Yt+1 = Pt+1εt+1,

Pt+1 = GPtNt+1,

2



where Wt indicates the consumer’s wealth at the end of period t, which accrues
interest at gross rate R = (1 + r) between periods; Xt+1 indicates the level of the
consumer’s ‘cash-on-hand,’ the sum of beginning-of-period assets plus current-period
noncapital income Yt+1; actual noncapital income Yt+1 equals permanent noncapital
income Pt+1 multiplied by a mean-one transitory shock εt+1, Et[ε̃t+1] = 1;3 and
permanent noncapital income Pt+1 is equal to its previous value, multiplied by a
growth factor G, and modified by a mean-one shock Nt+1, Et[Ñt+1] = 1.4 This
problem is essentially identical to problems that have been analyzed in a number
of papers on ‘buffer-stock saving’ beginning with Carroll (1992); it differs from
the problem analyzed by Deaton (1991) primarily because liquidity constraints are
absent. As usual, the recursive nature of the problem allows us to rewrite the
problem as:

Vt(Xt, Pt) = max
{Ct}

u(Ct) + βEt

[
Vt+1(X̃t+1, P̃t+1)

]
. (2)

As written, the problem has two state variables, the level of permanent income
Pt and the level of cash-on-hand Xt. If utility is of the Constant Relative Risk
Aversion (CRRA) form u(C) = C1−ρ/(1−ρ) it is possible to normalize all variables
by the level of permanent income Pt and thereby to effectively reduce the number
of state variables to one. Specifically, defining lower-case xt = Xt/Pt, ct = Ct/Pt,
and so on, consider the problem in the second-to-last period of life,

VT−1(XT−1, PT−1) =

(
1

1− ρ

)
max
{CT−1}

C1−ρ
T−1 + ET−1[βX̃1−ρ

T ]

=

(
1

1− ρ

)
max
{cT−1}

(PT−1cT−1)1−ρ + ET−1[β(P̃T x̃T )1−ρ]

=

(
1

1− ρ

)
P 1−ρ
T−1 max

{cT−1}
c1−ρ
T−1 + ET−1[β(GÑTxT )1−ρ]

= P 1−ρ
T−1vT−1(xT−1)

3The notational convention is that stochastic variables have a ∼ over them when their expec-
tation is being taken, but not otherwise, on the grounds that equations where the expectation
is being taken are equations where the time period from which the equation is being viewed is
well-specified. Hence we write Pt+1 = GPtNt+1 but if we need the period-t expectation we would
write Et[P̃t+1] = GPtEt[Ñt+1].

4Note that the definition of permanent income here differs from Deaton’s (1992) definition
(which is often used in the macro literature), in which permanent income is the amount that a
perfect foresight consumer could spend while leaving total (human and nonhuman) wealth constant.
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where we define vT (xT ) = x1−ρ
T /(1− ρ) and

vt(xt) = max
{ct}

u(ct) + βEt[(GÑt+1)1−ρvt+1(x̃t+1)] (3)

s.t.

wt = xt − ct, (4)

xt+1 =

(
R

GNt+1

)
wt + εt+1. (5)

Note that equation (3) has only a single state variable, xt, and recusion on
this equation yields a ‘normalized’ value function function for any period prior to
T − 1. The full value function Vt(Xt, Pt) is recovered simply from Vt(Xt, Pt) =
P 1−ρ
t vt(Xt/Pt). The first order condition is

c−ρt = RβEt[(GÑt+1)−ρc̃−ρt+1], (6)

and Carroll (1996) shows that the problem defines a contraction mapping if the
‘impatience condition’ originally derived by Deaton (1991)

RβEt[(GÑt+1)−ρ] < 1 (7)

holds, so that as the horizon recedes the consumption function ct(xt) approaches
an invariant function c(x) which we define as the infinite-horizon solution to the
problem, and which will be used as the object of analysis in the rest of this paper;
we will refer to the term on the LHS of (7) as the ‘coefficient of impatience.’

Some important conclusions can be drawn simply from the fact that the model
can be rewritten in ratio form. The first is that because the level of consumption
can be rewritten as Ct = c(xt)Pt for some invariant function c(x), the only way the
elasticity of consumption with respect to permanent income Pt can be different from
one is if there is a correlation between Pt and xt. But of course such a correlation
does exist: Both Pt and xt are influenced by the realization of the stochastic shock
to permanent income Nt. Furthermore, both will reflect residual effects of the
previous shocks to permanent income, Nt−1, Nt−2, . . . . It is these effects of the
permanent shocks on the cash-on-hand to permanent-income ratio that will be the
key to understanding the results below.

Another important insight is that if the distribution of xt is ergodic (which to
my knowledge remains an important unproven conjecture,5 but which both intuition
and simulations suggest is true), then eventually the infinite-horizon MPCP must
be one because ergodicity of xt means that the expectation as of time t of xs as

5Similar ergodicity results can be found in Laitner (1992) and Aiyigari (1994), but both of these
papers assume liquidity constraints so their results are not directly applicable.
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s → ∞ is the same for any particular realizations of Nt, Nt−1, Nt−2, . . . , implying
that as s→∞ the time-t expectation of c(xs)Ps depends only on the level of Pt.

But the ‘marginal propensity to consume’ out of a shock has traditionally been
defined as the immediate effect, not the total eventual effect, and so we now turn
to the question of how consumption is affected in period t by the contemporaneous
realization of the shock to permanent income Nt.

3 The Marginal Propensity to Consume Out Of

Permanent Income

3.1 The Perfect Foresight Case

As a baseline for comparison, it is useful to derive the relationship between con-
sumption and permanent income in the perfect foresight framework.6 A standard
result in consumption theory is that in the infinite horizon perfect foresight version
of the model above (i.e. a version in which εt = Nt = 1 ∀ t), the level of consumption
is given by

Ct = (1− R−1(Rβ)1/ρ)

[
RWt−1 +

(
Pt

1−G/R

)]
. (8)

While strictly speaking there is no such thing as a ‘shock’ to permanent income
in the perfect foresight model, it is of course possible to calculate how consumption
would change with a change in permanent income. The answer is given by(

dCt
dPt

)
=

(
1− R−1(Rβ)1/ρ

1−G/R

)
, (9)

which I will refer to henceforth as the MPCP for the perfect foresight model. This
quantity is less than one if

G/R < R−1(Rβ)1/ρ (10)

G < (Rβ)1/ρ (11)

1 < RβG−ρ. (12)

Notice that this is exactly the opposite of the ‘impatience’ condition (7). The
interpretation is that in the perfect foresight framework, only the patient consumers

6Results would be similar in the certainty equivalent framework obtained under quadratic utility,
or in a model with Constant Absolute Risk Aversion with a nonstochastic component of income
growing at rate G.
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have an MPCP of less than one. This makes intuitive sense: Patient consumers
prefer to consume more in the future than in the present, so they do not spend all
of the increase in income today.

Although this perfect foresight framework is often presented as the formaliza-
tion of Milton Friedman’s (1957) Permanent Income Hypothesis, the model implies
that consumption responds one-for-one to a change in permanent income Pt only if
(Rβ)1/ρ = G. For plausible parameter values the model can easily predict an MPCP
of anywhere between 0 and 6 (see the table below for a paramterization that implies
an MPCP of 6). This observation casts doubt upon the proposition that it is ap-
propriate to treat the perfect foresight model as a formalization of Friedman (1957).
For an argument that the buffer-stock model with impatient but prudent consumers
considered below is a much better match to Friedman’s original description of the
PIH model, see Carroll (2001).

3.2 The Response to Permanent Income Shocks

The natural definition of the MPCP in a model with shocks is the derivative of Ct+1

with respect to Nt+1, given an initial level of savings Wt = wtPt,

dCt+1

dNt+1
=

dPt+1c(xt+1)

dNt+1
(13)

=
d

dNt+1

[
GPtNt+1c(

R

GNt+1
wt + εt+1)

]
. (14)

This equation reveals a minor conceptual difficulty: the effect of Nt+1 on Ct+1

depends not only on the value of wt but also on the realization of εt+1, and so in
principle there are two ‘state variables’ (other than the scaling variable Pt) that
determine the ex post MPCP. However, since εt+1 is an i.i.d. random variable, it is
easy and intuitive to calculate the ‘expected MPCP’ as

Et

[
d

dÑt+1

GPtÑt+1c̃t+1

]
= GPtEt

[
Ñt+1

dc(x̃t+1)

dÑt+1

+ c(x̃t+1)

]

= GPtEt

[
Ñt+1c

′(x̃t+1)
dx̃t+1

dÑt+1

+ c(x̃t+1)

]

= GPtEt

[
Ñt+1c

′(x̃t+1)
d

dÑt+1

((
R

GÑt+1

)
wt + ε̃t+1

)
+ c(x̃t+1)

]

= GPtEt

[
c(x̃t+1)− c′(x̃t+1)

(
R

GÑt+1

)
wt

]
, (15)

or, since Et[P̃t+1] = GPt, define P̄t+1 as ‘expected permanent income’ and rewrite

6



(15) as

Et

[
d

dÑt+1

GPtÑt+1c̃t+1

]
= P̄t+1Et

[
c(x̃t+1)− c′(x̃t+1)

(
R

GÑt+1

)
wt

]
(16)

which leads to the natural definition of the MPCP, χ(wt), as the expression multi-
plying the expected level of permanent income,

χ(wt) = Et

[
c(x̃t+1)− c′(x̃t+1)

(
R

GÑt+1

)
wt

]
. (17)

3.3 The Deaton Case (Permanent Shocks Only)

Note first how this expression maps into Deaton’s (1991) finding that for consumers
who begin with zero wealth the marginal propensity to consume out of Pt+1 is one.
Such consumers have wt = 0 and therefore the second term on the RHS in equation
(16) drops out. Deaton also assumed that there were no transitory shocks to income,
so that εt+1 ≡ 1. Finally, his consumers were sufficiently impatient so that their
consumption at c(x) was equal to one at x = 1. Hence the MPCP was given by
χ(0) = Et[c(1)] = 1.

To really understand Deaton’s result, it is necessary to recall why it must be that
c(1) = 1.7 Consider the first order condition for the unconstrained optimization
problem,

c(xt)
−ρ = RβEt[(GÑt+1)−ρc(x̃t+1)−ρ]. (18)

The consumer will be constrained at ct = xt = 1 iff the marginal utility of consuming
1 (which is 1−ρ = 1) is greater than the marginal utility of saving wt = 0, i.e. if

1 > RβEt[(GÑt+1)−ρc((R/GÑt+1) ∗ 0 + 1)−ρ]

1 > RβEt[(GÑt+1)−ρ] (19)

where the second line follows from the first because with wt = 0, xt+1 = εt+1 = 1 =
xt. But notice that equation (19) is identical to the impatience condition which we
have already imposed, equation (7). Thus in imposing the impatience condition we
guarantee Deaton’s result that a consumer with zero wealth who experiences only
permanent shocks will remain at zero wealth forever. Zero wealth is an absorbing
state.

7The following is intended as a loose intuitive argument rather than a rigorous derivation;
in particular it mixes logic from the constrained and unconstrained optimization problems. See
Deaton (1991) for the rigorous version.
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What Deaton was unable to prove, but conjectured must be true, was that a
liquidity-constrained consumer who starts with positive wealth will always eventu-
ally run down that wealth to reach the absorbing state of zero wealth. Consider the
accumulation equation for wealth,8

wt+1 = (R/GNt+1)wt + 1− c(1 + (R/GNt+1)wt). (20)

Carroll and Kimball (1999) show that the marginal propensity to consume out of
transitory income in a problem with liquidity constraints is always greater than the
MPC in the unconstrained case. We also know, from combining Kimball (1990a) and
Carroll and Kimball (1996), that the MPC in the unconstrained case with noncapital
income risk is greater than the MPC without noncapital income risk. But from (8)
we know that the MPC in the unconstrained case with no uncertainty is

c = (1− R−1(Rβ)1/ρ), (21)

and so the Carroll and Kimball (1996) results tell us that

c(1 + (R/GNt+1)wt) > c(1) + c(R/GNt+1)wt (22)

= 1 + c(R/GNt+1)wt (23)

where the equality uses c(1) = 1. Substituting in equation (20),

wt+1 < (R/GNt+1)wt − c(R/GNt+1)wt

< (R/GNt+1)wt(1− c). (24)

From this we have (substituting (21) into (24))

wt+1 < (R/GNt+1)wtR
−1(Rβ)1/ρ

= [(Rβ)1/ρ/GNt+1]wt

implying

Et[wt+1] < Et[(Rβ)1/ρ/GÑt+1]wt. (25)

But note that if Ñt+1 is lognormally distributed then the impatience condition (7)
implies that the expression in brackets on the RHS of equation (25) is less than one,
implying

Et[wt+1] < wt. (26)

8Substitute (5) into (4) and roll forward one period.
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Thus, at any positive level of wealth wt > 0, wealth is expected to fall toward
zero. Note that this condition does not guarantee that wealth ever reaches zero in
finite time, because in principle it is possible (though arbitrarily improbable) to draw
an arbitrarily long sequence of low draws of Nt. On the other hand, equation (26)
does rule out the possibility that Deaton raised (but doubted) that some positive
level of wealth w could exist such that if wt > w the consumption rule might never
allow wealth to fall below w, thus preventing the consumer from ever reaching the
absorbing state of wt = 0. Hence, in Deaton’s model, the wealth ratio falls toward
zero, and if it ever reaches zero, the MPCP equals one ever after.

3.4 The General Case (Transitory and Permanent Shocks)

In the real world households experience both transitory and permanent shocks to
their incomes. A natural supposition might be that since nothing can be done to
insulate consumption in the long run against the permanent shocks, the presence or
absence of transitory shocks should not affect the MPC out of permanent shocks.
This section shows otherwise.

Consider the behavior of consumption around the ‘target’ level of wealth w̄
defined as the level of wealth such that Et[w̃t+1] = wt.

9

wt+1 = (R/GNt+1)wt + εt+1 − c((R/GNt+1)wt + εt+1) (27)

Et[w̃t+1] = Et[(R/GÑt+1)]wt + 1−Et
[
c((R/GÑt+1)wt + ε̃t+1)

]
w̄ = w̄Et[(R/GÑt+1)] + 1−Et

[
c((R/GÑt+1)w̄ + ε̃t+1)

]
Et

[
c((R/GÑt+1)w̄ + ε̃t+1)

]
= 1 + w̄

(
Et[(R/GÑt+1)]− 1

)
. (28)

Now recall that Carroll and Kimball (1996) have shown that the marginal propen-
sity to consume under uncertainty is strictly greater than the MPC in the corre-
sponding perfect certainty model, and therefore we know that c′(xt+1) > c where as
above c = 1−R−1(Rβ)1/ρ. Using these facts in the formula for χ(w̄) gives

χ(w̄) = Et

[
c(x̃t+1)− c′(x̃t+1)

(
R

GÑt+1

)
wt |wt = w̄

]
(29)

< 1 + (Et[R/GÑt+1]− 1)w̄ − cEt[R/GÑt+1]w̄ (30)

= 1 + (Et[R/GÑt+1](1− c)− 1)w̄ (31)

= 1 + (Et[R/GÑt+1](R−1(Rβ)1/ρ)− 1)w̄ (32)

= 1 + (Et[(Rβ)1/ρ/GÑt+1]− 1)w̄. (33)
9Carroll (1996) proves that such a target will exist if consumers satisfy the impatience condition,

and Carroll (1992) shows that average actual wealth in a population of simulated consumers is
close to the target.
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But as noted above, if Ñt+1 is lognormally distributed, the impatience condition
(7) implies that Et[(Rβ)1/ρ/GÑt+1] < 1 and thus that χ(w̄) < 1 if w̄ > 0. Hence, at
the target level of wealth the MPCP is strictly less than one.

We can also say something about how χ(wt) varies with the level of wealth. Its
derivative with respect to wealth is given by(

d

dwt

)
χ(wt) = Et

[
c′(x̃t+1)(R/GÑt+1)− c′(x̃t+1)(R/GÑt+1)− c′′[x̃t+1](R/GÑt+1)2

]
= Et[−c′′(x̃t+1)(R/GÑt+1)2]. (34)

But Carroll and Kimball (1996) prove that for problems in the class considered here
the consumption function is strictly concave, c′′(x) < 0, and since (R/GÑt+1)2 is
certainly positive, equation (34) implies that the marginal propensity to consume
out of permanent shocks is increasing in the level of wealth.

These results appear to be the most that can be said analytically about the
characteristics of χ(wt). To obtain quantitative results for the average behavior of
a population of consumers behaving according to the optimal rule it is necessary to
turn to simulations.

4 Simulation Results

Table 1 presents simulation results for the average value of χ (labelled “Mean χ”)
that arises in steady-state among a population of consumers all behaving according
to the model outlined above, under a baseline set of parameter values and a variety
of alternatives.

The baseline calibration of the income process is taken from Carroll (1992),
who finds that household-level data from the Panel Study of Income Dynamics are
reasonably well characterized by the assumption that Nt is lognormally distributed
with standard deviation σN = .10, while the process for transitory income has
two parts: With probability p, income is zero, and with probability (1 − p) the
transitory shock εt is equal to 1/(1 − p) times the value of a shock drawn from
a lognormal distribution with standard deviation σε = .10 and mean value one, so
that Et[ε̃t+1] = 1 as assumed above. Income growth at the household level is roughly
G = 1.03.

The baseline calibration for the interest rate and time preference rate are commonly-
used values in macroeconomics, R = 1.04, β = 0.96. The baseline coefficient of
relative risk aversion is ρ = 3, in the middle of the range from 1 to 5 generally
considered plausible.

The first row of the table presents results for the baseline parameter values. The
main result is found in the column labelled “Mean χ”; for comparison, the table
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Deviationsa Impatienceb Mean c Mean w Mean c′ Mean χ χPF∞ χPF40

None (Baseline) 0.969 1.012 0.620 0.235 0.873 4.053 1.355
β = 0.98 0.989 1.017 0.805 0.160 0.896 3.364 1.276
β = 0.90 0.909 1.009 0.440 0.370 0.848 6.181 1.615
R = 1.02 0.950 1.000 0.547 0.276 0.857 N/Ac 1.477
R = 1.06 0.988 1.031 0.772 0.180 0.898 1.806 1.255
G = 1.02 0.998 1.030 1.009 0.122 0.918 2.027 1.232
G = 1.04 0.941 1.005 0.515 0.301 0.855 N/Ac 1.494
ρ = 1 0.979 1.005 0.231 0.319 0.936 4.160 1.367
ρ = 4 0.978 1.016 0.839 0.200 0.857 4.040 1.353
σN = 0.05 0.927 1.006 0.497 0.315 0.853 4.053 1.355
σN = 0.12 0.994 1.020 0.838 0.158 0.900 4.053 1.355
p = 0.0005 0.969 1.006 0.320 0.292 0.920 4.053 1.355
p = 0.05 0.969 1.034 1.470 0.177 0.787 4.053 1.355
σε = 0.05 0.969 1.012 0.582 0.239 0.874 4.053 1.355
σε = 0.15 0.969 1.014 0.681 0.228 0.870 4.053 1.355
σN=0, G = 1.00 0.998 1.063 1.585 0.067 0.963 1.013 1.027
σN=0, G = 1.01 0.969 1.020 0.670 0.209 0.882 1.351 1.123
σN=0, G = 1.02 0.941 1.011 0.539 0.282 0.860 2.027 1.232

Notes: aThis column indicates parameters that differ from the baseline. The base-
line values are R = 1.04, β = 0.96, G = 1.03, ρ = 3, σ2

N = 0.1, σε = 0.1, p =
0.005. The first row presents results when all parameters are at their baseline
values.
bThis column calculates the value of the impatience coefficient defined in
equation (7).
cThe infinite horizon perfect foresight solution is not well defined for this
configuration of parameter values because R ≤ G.

Table 1: The MPCP χ For Baseline And Alternative Parameter Values
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also presents, where applicable,10 the MPCP implied by the perfect foresight infinite
horizon version of the model (labelled “χPF∞ ”), and from a perfect foresight model
for a consumer of average age (45) who has twenty years of work and twenty years
of retirement ahead (labelled “χPF40 ”).11

Under the baseline parameter values, the population-average value of χ is about
0.87. As the remainder of the table shows, the population-average value of χ is
between about 0.8 and 0.95 for all parametric configurations.

In addition to χ, the table presents population-average values of each of the
terms that made up χ from (17), reproduced here for convenience:

χ(wt) = Et

[
c(x̃t+1)]− c′(x̃t+1)

(
R

GÑt+1

)
wt

]
. (35)

Recall that at the target level of w̄ equation (28) tells us that

Et [c(x̃t+1)] = 1 + w̄
(
Et[R/GÑt+1]− 1

)
. (36)

Since Et[R/GÑt+1] will generally be a number close to one, this first term in the
χ(w) expression could be substantially different from one only if consumers ended
up holding large values of w. But since they are impatient by assumption, they
are not likely to end up with large values of w. This reasoning is confirmed by the
column of the table labelled “Mean c,” which finds values very close to 1 for all
parametric combinations.

Thus, most of the variation in the average value of χ across parametric choices is
attributable to differences the Et[−c′(x̃t+1)(R/GÑt+1)wt] term. Making consumers
more patient has two effects on this term: On the one hand, it increases the level of
target wealth w̄, which would reduce χ(wt); on the other hand, the MPC c′ declines
with the level of wealth, which would tend to increase χ(wt). The near-constancy of
χ indicates that these two effects are of roughly offsetting magnitude across different
parametric choices.

The relative stability of χ for the buffer-stock model contrasts sharply with the
MPCP for the infinite horizon perfect foresight model, for which the MPCP is always
greater than 1.8 in the first panel of the table, and rises as high as 6.2. The reason
the MPCP in the PF model is always greater than one is that our consumers all
satisfy the impatience criterion; inspection of (9) will verify that the MPCP must be
greater than one if the impatience criterion is satisfied. This makes sense; impatient

10For the infinite horizon MPCP to exist, the condition R > G must hold, but this condition is
not required to solve the stochastic model.

11The assumption is that upon retirement, total noncapital income (including Social Security
and pension income) drops permanently to about 70 percent of preretirement salary, a calibration
that roughly matches empirical evidence for the U.S.
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perfect-foresight consumers, upon learning that their income will be higher forever,
will tend to increase their consumption by more than the increase in current income.
However, what may not have been obvious ex ante is how much greater than 1 the
MPCP typically is in the PF model. Results for the finite-horizon perfect foresight
model are less extreme than for the infinite horizon version, but even in the finite-
horizon model the MPCP is always at least 1.2 in the upper panel of the table.

The second panel of the table (the last three rows) presents results when the
permanent shocks are shut down and income growth is reduced; the most important
result is for the case where there is no growth at all in income, so that (Rβ)1/ρ ≈ G,
which, as noted earlier, is the condition that guarantees an MPCP of 1 in the perfect
foresight model (the actual MPCP reported in the table is slightly above 1 because
Rβ is slightly below 1 for the baseline values (R, β) = (1.04, 0.96)). In the absence of
permanent shocks, the impatience condition is (barely) satisfied and the stochastic
version of the model can be solved with transitory shocks, generating an average χ
of about 0.96.

The remaining two rows of the panel show the consequences when the expected
growth rate of income rises to 1 percent and 2 percent: The PF MPCP increases
sharply, to slightly over 2 when G = 1.02; in the finite-horizion PF model, the
MPCP rises to slightly over 1.2. In contrast, χ falls to 0.86 in the stochastic version
of the model. This experiment highlights the interesting point that the relation-
ship between impatience and the MPCP is of opposite sign in the stochastic and
nonstochastic versions of the model.

The principal message from the table is that if consumers are impatient but
prudent, optimal behavior implies an immediate MPC out of permanent shocks that
is somewhat less than one (but not enormously less) for a wide variety of parameter
values. More broadly, the value of the MPCP is much less sensitive to parameter
values in the stochastic version of the model than in the perfect foresight version.

A final point deserves elaboration. The theoretical results derived in section 3
applied only at the target level of wealth. Yet table 1 shows that the conclusions
reached for the target level of wealth hold for populations distributed according to
the ergodic distributions. Since finding the ergodic distributions requires a consider-
able amount of extra work, it would be worthwhile to see whether results at exactly
the target levels of wealth are a good proxy for results from the ergodic populations.

Table 2 presents the main statistics of interest, calculated both as an average
across the ergodic populations and at the target value of x or s (depending on the
argument of the function). The message of the table is simple: The target values are
always very close to the population-average values among the ergodic distribution.
This suggests that theoretical work along the lines of that conducted in section 3 is
likely to be both qualitatively and quantitatively a good guide to the behavior of an
entire population. Since many more propositions can be proven for the target level
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Wealth w MPC c′ MPCP χ
Deviationsa Impatienceb Mean Target Mean Target Mean Target
None (Baseline) 0.969 0.620 0.602 0.235 0.230 0.873 0.871
β = 0.98 0.989 0.805 0.764 0.160 0.154 0.896 0.894
β = 0.90 0.909 0.440 0.433 0.370 0.370 0.848 0.847
R = 1.02 0.950 0.547 0.535 0.276 0.267 0.857 0.855
R = 1.06 0.988 0.772 0.733 0.180 0.173 0.898 0.897
G = 1.02 0.998 1.009 0.929 0.122 0.112 0.918 0.917
G = 1.04 0.941 0.515 0.505 0.301 0.296 0.855 0.854
ρ = 1 0.979 0.231 0.221 0.319 0.313 0.936 0.935
ρ = 4 0.978 0.839 0.811 0.200 0.196 0.857 0.855
σN = 0.05 0.927 0.497 0.488 0.315 0.313 0.853 0.851
σN = 0.12 0.994 0.838 0.785 0.158 0.147 0.900 0.899
p = 0.0005 0.969 0.320 0.303 0.292 0.259 0.920 0.918
p = 0.05 0.969 1.470 1.388 0.177 0.172 0.787 0.780
σε = 0.05 0.969 0.582 0.573 0.239 0.239 0.874 0.874
σε = 0.15 0.969 0.681 0.648 0.228 0.215 0.870 0.868

σN=0, G = 1.00 0.998 1.585 1.398 0.067 0.065 0.963 0.961
σN=0, G = 1.01 0.969 0.670 0.652 0.209 0.200 0.882 0.881
σN=0, G = 1.02 0.941 0.539 0.529 0.282 0.274 0.860 0.859

Notes: aThis column indicates parameters that differ from the baseline. The
baseline values are R = 1.04, β = 0.96, G = 1.03, ρ = 3, σ2

N = 0.1, σε =
0.1, p = 0.005. The first row presents results when all parameters are at
their baseline values.
bThis column calculates the value of the impatience coefficient defined in
equation (7).

Table 2: Population-Mean Results Versus Results At Target Values
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of wealth than for the behavior of the ergodic population, and since it is possible to
obtain quantitative results for the target values of a model without simulating, this
suggests that future theoretical and quantitative work with this model may be able
to dispense with simulation altogether, considerably reducing the computational
demands of working with this class of models.

5 Conclusion

Intuition suggests that rational forward-looking consumers should have a marginal
propensity to consume of one out of permanent shocks. This paper shows that while
this intuition is not correct, or even close to correct, for the canonical infinite horizion
perfect-foresight version of the optimization model, it is approximately right for the
‘buffer-stock’ version of the model that arises when consumers are impatient and
have a standard precautionary saving motive. The reason the MPCP is somewhat
less than one in the buffer-stock model is that an increase in permanent income
reduces the ratio of wealth to permanent income, thus (temporarily) increasing the
amount of precautionary saving. Simulations show that across a wide range of
assumptions about the degree of impatience, the marginal propensity to consume
out of permanent shocks is generally in or near the range from 0.80 to about 0.95.

The results in this paper are important for three reasons. First, empirical evi-
dence from household surveys indicates that households experience large permanent
shocks to their incomes of precisely the kind studied here, and no existing paper
has provided a general theoretical analysis of the effects of these kinds of shocks
on consumption. Second, the sharp contrast between the results for the stochastic
and nonstochastic models, and the fact that the results for the stochastic model
are much more plausible, provides another reason economists should avoid using
the perfect foresight model for quantitative analysis. Finally, the paper provides a
formal justification (that many economists probably did not know was lacking in the
traditional perfect foresight framework) for the usual assumption that permanent
increases or decreases in taxes should result in consumption responses of roughly
the same size (though the scrupulous policy adviser should warn that the response
is likely to be modestly less than one-for-one).
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