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ABSTRACT
We exploit direct model-free measures of daily equity return volatility and correlation

obtained from high-frequency intraday transaction prices on individual stocks in the Dow Jones
Industrial Average over a five-year period to confirm, solidify and extend existing characterizations
of stock return volatility and correlation. We find that the unconditional distributions of the variances
and covariances for all thirty stocks are leptokurtic and highly skewed to the right, while the
logarithmic standard deviations and correlations all appear approximately Gaussian. Moreover,

the distributions of the returns scaled by the realized standard deviations are also Gaussian.
Consistent with our documentation of remarkably precise scaling laws under temporal aggregation,
the realized logarithmic standard deviations and correlations all show strong temporal dependence
and appear to be well described by long-memory processes. Positive returns have less impact on
future variances and correlations than negative returns of the same absolute magnitude, although the
economic importance of this asymmetry is minor. Finally, there is strong evidence that equity
volatilities and correlations move together, possibly reducing the benefits to portfolio diversification
when the market is most volatile. Our findings are broadly consistent with a latent volatility fact or
structure, and they set the stage for improved high-dimensional volatility modeling and out-of-
sample forecasting, which in turn hold promise for the development of better decision making in

practical situations of risk management, portfolio allocation, and asset pricing.
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1. Introduction

Financial market volatility is centrd tothe theory and practice of asset pricing, asset allocation, and risk
management. Although most textbook models assume volatilities and correlations to be constant, it is
widely recognized among both finance academics and practitioners that they vary importantly over
time. Thisrecognition has spurred an extensive and vibrant research program into the distributional
and dynamic properties of stock market volatility.! Most of what we have learned from this burgeoning
literature is based on the estimation of parametric ARCH or stochastic volatility models for the
underlying returns, or onthe analysis of implied volatilities from options or other derivatives prices.
However, the validity of such volatility measures generally depends upon specific distributional
assumptions, and in the case of implied volatilities, further assum ptions concerning the market price of
volatility risk. As such, the existence of multiple competing models immediately calls into question the
robustness of previous findings. An alternative approach, based for example on squared returns over
the relevant return horizon, provides model-free unbiased estimates of the ex-post realized vdatility.
Unfortunately, however, squared returns are also a very noisy volatility indicator and hence do not
alow for reliable inference regarding the true underlying latent volatility.

The limitations of the traditional procedures maotivate the different approach for measuring and
analyzing the properties of stock market volatility adopted in this paper. Using continuously recorded
transactions prices, we construct estimates of ex-post realized daily volatilities by summing squares
and cross-products of intraday high-frequency returns. Volatility estimates so constructed are model-
free, and as the sampling frequency of the returns approaches infinity, they are also, in theory, free from
measurement error (Andersen, Bollerslev, Diebold and Labys, henceforth ABDL, 2000).> The need
for rdiable high-frequency return observations suggests, however, that our goproach will work most

effectively for actively traded stocks. We focus onthe thirty stocks in the Dow Jones Industrial

Y Foran early survey, see Bollerslev, Chou and Kroner (1992). A selective and incomplete list of studies since then
includes Andersen (1996), Bekaert and Wu (2000), Bollerslev and Mikkelsen (1999), Braun, Nelson and Sunier (1995),
Breidt, Crato and de Lima (1998), Campbell and H entschel (1992), Campbell et al. (2000), Canina and Figlewski (1993),
Cheung and Ng (1992), Christensen and Prabhala (1998), Day and Lewis (1992), Ding, Granger and Engle (1993), Duffee
(1995), Engle and Ng (1993), Engle and Lee (1993), Gallant, Rossi and Tauchen (1992), Glosten, Jagannathan and
Runkle (1993), Hentschel (1995), Jacquier, Polson and Rossi (1994), Kim and Kon (1994), Kroner and Ng (1998),
Kuwahara and Marsh (1992), Lamoureux and Lastrapes (1993), and Tauchen, Zhang and Liu (1996).

2 Nelson (1990, 1992) and Nelson and Foster (1994) obtain arelated by different result: mis-specified ARCH models
may work as consistent filters for the latent instantaneous volatility as the return horizon approaches zero. Similarly,
L edoit and Santa-Clara (1998) show that the Bladk-Schdes implied volatility for an at-the-money gption provides a
consistent estimate of the underlying latent instantaneous volatility as the time to maturity approaches zero.



Average (DJIA), bothfor computationd tractability and because of our intrinsicinterest in the Dow,
but the empirical findings carry over to arandom sample of thirty other liquid stocks. In spite of
restricting the analysis to actively traded stocks, market microstructure frictions, including price
discreteness, infrequent trading, and bid-ask bounce effects, are still operative. In order to mitigate
these effects, we use a five-minute return horizon as the effective “ continuous time record.” Treating
the resulting daily time series of realized variances and covariances constructed from a five-year
sample of five-minute returns for the thirty DJIA stocks as being directly observable allows us to
characterize the distributional features of the volatilities without attempting to fit multivariate ARCH or
stochastic volatility models.

Our approach is directly in line with earlier work by French, Schwert and Stambaugh (1987),
Schwert (1989, 1990a, 1990b), and Schwert and Seguin (1991), who rely primarily on daly return
observations for the construction of monthly realized stock volatilities.®> The earlier studies, however,
do not provide aformal justification for such measures, and the diffusion-theoretic underpinnings
provided here explicitly hinge on the length of the return horizon approaching zero. Intuitively,
following the work of Merton (1980) and Nelson (1992), for a continuous time diffusion process, the
diffusion coefficient can be estimated arbitrarily well with sufficiently finely sampled observations, and
by the theory of quadratic variation, this same idea carries over to estimates of the integrated volatility
over fixed harizons. As such, the use o high-frequency returnsplays a critical rolein justifying our
measur ements. M oreover, our focus centers on daily, as opposed to monthly, volatility measures. This
mirrors the focus of most of the extant academic and industry volatility literatures and more clearly
highlights the impartant intertemporal volatility fluctuations.* Finally, because our methods are trivial
to implement, even in the high-dimensional situations relevant in practice, we are able to study the
distributional and dynamic properties of correlations in much greater depth than is possible with
traditional multivariate ARCH or stochastic volatility models, which rapidly become intractable as the

number of assets grows.

3 Inarelated analysis of monthly U.S. stock market volatility, Campbell et a . (2000) augment the time series of
monthly sample standard deviati ons with various alternative volatility measures based on the dispersion of the returns on
individual stocks in the market index.

4 schwert (1990a), Hsieh (1991), and Fung and Hsieh (1991) also study daily standard deviations based on 15-minute
equity retums. However, their analysis is strictly univariate and decidedly less broad in scopethan ours.
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Turning to the results, we find it useful to segment them into unconditional and conditional
aspects of thedistributions of volatilities and corrdations. As regards the unconditional distributions,
we find that the distributions of the realized daily variances are highly non-normal and skewed to the
right, but that the logarithms of the realized variances are approximately normal. Similarly, although
the unconditional distributions of the covariances are al skewed to the right, the realized daily
correlations appear approximately normal. Finally, although the unconditional daily return distributions
are leptokurtic, the daily returns normalized by the realized standard deviations are also close to
normal. Rather remarkably, these results hold for the vast majority of the 30 volatilities and 435
covariances/correl ations associated with the 30 Dow Jones stocks, as well as the 30 actively traded
stocks in our randomly selected control sample.

Moving to conditional aspects of the distributions, all of the volatility measures fluctuate
substantialy over time, and all display strong dynamic dependence. M oreover, this dependenceis
well-characterized by slowly mean reverting fractionally integrated processes with a degree of
integration, d, around 0.35, as further underscored by the existence of very precise scaling laws under
temporal aggregation. Although statistically significant, we find that the much debated leverage-effect,
or asymmetry in the relationship betw een past negative and positive returns and future voldtilities, is
relatively unimportant from an economic perspective. Interestingly, the sametype of asymmetry is also
present in the realized correlations. Finally, there is a systematic tendency for the variances to move
together, and for the correlations among the different stocks to be high/low when the variances for the
underlying stocks are highlow, and when the correlationsamong the other stocksare dso highflow.

Although several of these features have been documented previously for U.S. eguity returns,
the existing evidence relies almost exclusively on the estimation of specific parametric volatility
models. In contrast, the stylized facts for the thirty DJA stocks documented here are explicitly model-
free. Moreover, the facts extend the existing results in important directions and both solidify and
expand on the more limited set of results for the two exchange ratesin ABDL (1999a, 2000) and the
DJIA stock index in Ebens (1999a). As such, our findings set the stage for the development of
improved volatility models — possibly involving a simple factor structure, w hich appears consistent

with many of our empirical findings —and corresponding out-of-sample volatility forecasts, consistent



with the distributional characteristics of the retums.® Of course, the practical use of such modelsin
turn should allow for better risk management, portfolio allocation, and asset pricing decisions.

The remainder of the paper isorganized as follows. In section 2 we provide a brief account of
the diffusion-theoretic underpinnings of our realized volatility measur es, along with a discussion of the
actual data and volatility calculations. In section 3 we discuss the unconditional univariate return,
volatility and correlation distributions, and we move to dynamic aspects, including long-memory effects
and scalinglaws, in section 4. In section 5 we assess the symmetry of responses of realized volatilities
and correlations to unexpected shocks. We report on multivariate aspects of the volatility and
correlation distributions in section 6, and in section 7 we illustrate the consistency of several of our
empirical results with asimple model of factor structure in volatility. We conclude in section 8 with a

brief summary of our main findings and some suggestions for future research.

2. Realized Volatility Measurem ent

2.1 Theory

Here we provide a discussion of the theoretical justificationbehind our volatility measurements. For a
more thorough treatment of the pertinent issues within the context of special semimartingales we refer
to ABDL (2000) and the general discussion of stochastic integration in Protter (1992). To set out the
basic idea and intuition, assume that the logarithmic N x [ vector price process, p,, follows a

multivariate continuous-time stochastic volatility diffusion,

dp, = p,dt + QdW,, (1)

where 7, denotes a standard N-dimensional Brownian motion, the process for the N xN positive
definite diffusion matrix, Q,, is strictly stationary, and we normalize the unit time interval, or 4 = 1, to
represent one trading day. Conditional on the sample path realization of u, and Q,, the distribution of

the continuously compounded 4-period reurns, ., ,= p,., - p., isthen

rt+h.h ‘ O-{“‘H‘r’ Qt+‘r ";=() - N(j ﬁ [ dT, IZ Qt+‘r dT) ’ (2)

® Ebens (1999a), for example, makes an initial attempt at modeling univariate realized stock volatility for the DJIA
index.
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where o{p,.., Q... }*_, denotes the o-field generated by the sample paths of p,..andQ,. for O<t<h. The
integrated diffusion matrix thus provides a natural measure of the true latent 4-period volatility. This
notion of integrated volatility already plays a central role in the stochastic volatility option pricing
literature, where the price of an optiontypically depends on the distribution of the integrated volatility
process for the underlying asset over the life of the option.®

By the theory of quadratic variation, we have that under weak regularity conditionrs,

' h
Ejzl,...,[h/A] Vivina Vivjan - .[()QHT dv - 0 (3)

amost surely for al ¢ as the sampling frequency of the returns increases, or A - 0. Thus, by summing
sufficiently finely-sampled high-frequency returns, it is possible to construct ex-post realized volatility
measures for the integrated latent volatilities that are asymptotically free of measurement error.” This
contrasts sharply with the common use of the cross-product of the -period returns, r,, , 7,.,,, asa
simple ex-post volatility measure. Although the squared return over the forecast horizon provides an
unbiased estimate for the realized integrated volatility, it is an extremely noisy estimator, and
predictable variation in the truelatent volatility process is typically dwarfed by measurement error
Moreover, for longer horizons any conditional mean dependence will tend to contaminate this variance
measure. In contrast, as the length of the return horizon decreases the impact of the drift term
vanishes, so that the mean is effectively annihilated.

These assertions remain valid if the underlying continuous time process in equation (1) contains
jumps, so long as the price process is a special semimartingale, which will hold if it is arbitrage-free
(see, eg., Back, 1991). Of course, in this case the limit of the summation of the high-frequency returns

will involve an additional jump component, but the interpretation of the sum as the realized /-period

6 See, for example, the well-known contribution of Hull and White (1987).

" Consider the simple case of univariate discretely sampled i.i.d. normally distributed mean-zero returns; i.e., N=1, p,

(Ah)-26°~ 0, asA - 0.

8 n empiricaly realisti c Stuations, the variance of r,., ,r,,,, is easily twenty times the variance of the true daily
integrated volatility, [} Q,..dx ; see Andersen and Bdlerslev (1998) far some numerical results along these lines.
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return volatility remains intact; for further discussion adong these lines see ABDL (2000). Importantly,
in the presence of jumps the conditional distribution of the returns in equation (2) is no longer
Gaussian. As such, the corresponding empirical distribution of the standardized returns speaks directly
to the relevance of allowing for jumps in the underlying continuous time process when analyzing the
returns ove longer A-period horizons. Of course, viewed as anon-parametric omnibus test for jumps,
this may na be a very powerful procedure.’

2.2 Data

Our empirical analysis is based on data from the TAQ (Trade And Quotation) database. The TAQ
data files contain continuously recorded information on thetrades and quotations for the securities
listed on the New Y ork Stock Exchange (NY SE), American Stock Exchange (AMEX), and the
National Association of Security Dealers A utomated Quotation system (NASDAQ). Thedatabaseis
published monthly, and has been available on CD-ROM from the NY SE since January 1993; we refer
the reader to the corresponding data manual for a more complete description of the actual data and the
method of data-capture. Our sample extends from January 2, 1993 until May 29, 1998, for atotal of
1,366 tradingdays. A complete andysis based on all trades for all stocks, athough straightforward
conceptually, isinfeasible in practice. We therefare restrict our analysis to the thirty DJIA firms, which
also helps to ensure areasonable degree of liquidity. A list of the relevant ticker symbols as of the
reconfiguration of the DJIA index in March 1997 is contained in Andersen, Bollerslev, Diebold and
Ebens (2000) (henceforth, ABDE).

Although the DJIA stocks are among the maost actively traded U.S. equities, the median inter-
trade duraionfor all stocks acrass the full sampleis 23.1 seconds, ranging from alow of 7 seconds for
Merck & Co. Inc. (MRK) to ahigh of 54 seconds for United Technologies Corp. (UT X). Assuch, itis
not practically feasible to push the continuous record asymptotics and the length of the observation
interval A in equation (3) beyond thislevel. Moreover, because of the organizational structure of the
market, the avail able quotes and transaction prices are subject to discrete clustering and bid-ask bounce
effects. Such market microstructure features are generally nat important when analyzing longer
horizon interdaily returns but can seriously distort the distributional properties of high-frequency

intraday returns; see, e.g., the textbook treatment by Campbdl, Lo and MacKinlay (1997). Thus,

° A similar idea underlies thetest for jumpsin Drost, Nijman and Werker (1998), basad on a comparison of the
sample kurtosis and the population kurtosis implied by a continuous time GA RCH(1,1) model; see also A BDL (1999a).
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following the analysis in Andersen and Bollerslev (1997), we rely on artificially constructed five-
minutereturns.’® With the daily transaction record extending from 9:30 EST until 16:05 EST, thereare
atotal 79 five-minute returns for each day, correspondingto A = 1/79 = 0.0127 in the notation above.
The five-minute horizonis short enough so that the accuracy of the continuous record asymptotics
underlying our realized volatility measures work well, and long enough so that the confounding
influences from market microstructure frictions are not overwhelming; see ABDL (1999b) for further
discussion along these lines™

2.3 Construction of Realized Equity Volatilities

The five-minute return series are constructed from the logarithmic difference between the prices
recorded at or immediately before the corresponding five-minute marks. Although the limiting result in
equation (3) is independent of the value of the drift parameter, ,, theuse of a fixed discretetime
interva may allow dependence in the mean to systematically bias our volatility measures. Thus, in
order to purge the high-frequency returns of the negative serial correlation induced by the uneven
spacing of the observed prices and the inherent bid-ask spread, we first estimate an MA(1) model for
each of the five-minute return series using the full five-yea sample. Consistent with the spurious
dependence that would be induced by non-synchronous trading and bid-ask bounce ef fects, al
estimated moving-average coefficients are negative, with a median value of -0.214 across the thirty
stocks. We denote the corresponding thirty demeaned MA(1)-filtered return series of 79x1,366 =
107,914 five-minutereturnsby r,,, ,.*> Finally, to avaid any confusion, we denote the daily unfiltered
raw returns by a single time subscript; i.e, r, wheret =1, 2, ..., 1,336.

The realized daily covariance matrix isthen

Cov, = X oanTigan Fijan s 4)

1 An alternative, and much more complicated approach, would be to utilize all of the observations by explicitly
modeling the high-frequency frictions.

1 As detailed below, the average dadly variance of the "typical” DJIA stock equals 3.709. Thus, in thecase of i.i.d.
normally distributed returns, it follows that a five-minute sampling frequency translates into a variance for the daily
variance estimates of 0.245.

12 weaso experimented with the use of unfiltered and linearly interpolated five-minute returns, which produced very
similar results.

-7-



wheret =1, 2, .., 1,366 and A = 1/79. For notational simplicity we refer to realized daily variances

given by the diagond elements asv;, = { Cov, },,, and the corresponding daily logarithmic standard

7!
devidionsaslv,, = log(v;,). Smilarly, we denote the realized daily correlationsby Corr,,, = { Cov, },,/(
v,/ v;,). Inaddition tothe daily measures, we also briefly consider the statistical properties of various
multi-day volatility measures, whose construction follows in straightforward fashion from equation (4)
by extending the summation to cover 4/A intervals, where 4 > [ denotes the multiday horizon.

Because volatility is now effectively observable, we may rely on conventional statistical
procedures for characterizing its distributiond properties. In the next section weproceedto do so. Of
course, it is possible the thirty DJA stocks analyzed here do not provide a repr esentative picture of the
return volatility for ather actively traded stocks. As arobustness check we replicated the empirical
analysis for a set of thirty randomly selected liquid stocks, picked from the 274 stocks with at least 758
trades per day at the beginning, middle and end of the sample period. Importantly, al of the results for
thisrandomly selected sample match dosely those reported below for the DJIA stocks, thus
underscoring the general nature of our findings. However, for reasons of space conservation, w e shall
not discuss the parallel empirical findings here; instead, we refer the interested reader to ABDE (2000)

for detailed discussion and a full set of tables.

3. Univariate Unconditional Return and V olatility Distributions
3.1 Returns
A voluminous literature, seeking to characterize the unconditional distribution of speculative retums,
has evdved over the past three decades.”® Consistent with this literature, the summary statisticsin
Table 1 show that the daily DJIA returns, r, , have fatter tails than the normal and, for the majority of
the stocks, are also skewed to the right.**

Quite remarkably, however, the next set of numbersin Table 1 indicate that al of the thirty

standardized return series, ; /v,

Jt?

are approximately unconditionally normally distributed. In particular,

Bin early contributions, M andelbrot (1963) and Fama (1965) argued that the Stable Paretian distributions provide a
good approximation. Subsequently, howvever, Praetz (1972) and Blattberg and Ganedes (1974), among many others, found
that finitevariance-mixtures of normal's, such as thestudent-t distribution, generally afford better characterizations.

14" Under the null hypothesis of i.i.d. normally distributed returns, the sample skewness and kurtosis are asymptotically
normal with means of 0 and 3, and variances of 6/T and 24/T, where T denotes sample size. Thusfor T'= 1,366 the two

standard errors are 0.066 and 0.133.
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the median value of the sample kurtosis is reduced from 5.416 for the raw returnsto only 3.129 for the
standardized returns. Thisis also evident from Figure 1, which plots the kernel density estimate for the
mean-zero and unit-variance standardized returns for Alcoa Inc. (AA), the first of the thirty DJA
stocks, alphabetically by ticker symbol . The close approximation afforded by the normal reference
density is striking.”> This result stands in sharp contrast to the leptokurtic distributions for the
standardized daily returns that typically obtain when relying on an estimate of the one-day-ahead
conditiona variance from aparametric ARCH or stochastic volatility model; see e.g., Ballerslev, Engle
and Nelson (1994) for a general discussion, and Kim and Kon (1994) for explicit results related to the
distributions of the DJIA stocks over an earlier time period. Theresultsin Table 1 also imply that the
unconditional distribution for the returns should be well approximated by a continuous variance
mixture of normals, as determined by the unconditional distribution for the mixingvariable, v ,. The
following section details this distribution.

3.2 Variances and Logarithmic Standard Deviations

The first four columns in Table 2 provide the same set of summary statistics for the unconditional
distribution of the realized daily variances. The medianvaluefor the sample means is 3.109, implying
an annualized standard deviaionfor the typical stock of around 28 percent. However, there is
considerable variation in the average volatility across the thirty stocks, ranging from a high of 42
percent for Wamart Stores Inc. (WM T) to alow of 22 percentfor UTX.** The standard deviations
given in the second column also indicate that the redized daily volatilities fluctuate significantly
through time. Finally, it is evident from the third and the fourth columns that the distributions of the
realized variances are extremely right-skewed and leptokurtic. This may seem surprising, as the
realized daily variances are based on the sum of 79 five-minute return observations. However, as
emphasized by Andersen, Bollerdev and D as (2000), intraday speculative returns are strongly
dependent so that, evenwith much larger samples, standard Central Limit Theorem arguments often
provide very poor approximations in the high-frequency data context.

The next part of Table 2 refers to the realized logarithmic standard devidions, /v;,.

% The kernel density estimates are based on a Gaussian kernel and Silverman’s (1986) bandwidth. Similar plots for
all of the other stocks are available in ABDE (2000).

% Details regarding the individual stocks are again available in ABD E (2000).

-9-



Interestingly, the median value of the sample skewness across al of the thirty stocksis reduced to only
0.192, compared to 5.609 for the realized variances and, although the sample kurtosis for all but one of
the stocks exceed the normal vaue of three, the assumption of normality is obviously much better in
thiscase. Thisisalso illustrated by Figure 2, in which we show estimates of the standardized
unconditional density for /v,,,, dong with the standard normal density. The normal approximation is
very good.

This evidence is consistent with Taylor (1986) and French, Schwert and Stambaugh (1987),
who find that the distribution of logarithmic monthly standard deviations constructed from the daily
returns within the month iscloseto Gaussian. Itisalso directly in line with the recent evidence in
ABDL (2000) and Zumbach et al. (1999), which indicates that realized daily foreign exchange rate
volatilities constructed from high-frequency data are approximately log-normally distributed. Taken
together, the resultsin Tables 1 and 2 imply that the unconditional distribution for the daily returns
should be well described by a continuous lognormal-normal mixture, as advocated by Clark (1973) in
his seminal treatment of the M ixture-of-Distributions-Hypothesis (M DH). The results for the foreign
exchange ratesin ABDL (1999c) corroborate this idea.

Our discussion thus far has centered on univariate return and volatility distributions. However,
asset pricing, portfolio selection, and risk management decisions are invariably multivariate, involving
many assets, with correlated returns. The next section summarizes the unconditional distributions of
the pertinent realized covariances and carrel ations.

3.3 Covariances and Correlations

The realized covariance matrix for the thirty DJIA stocks contains atotal of 435 unique elements. In
Table 3 we report the median value of the sample mean, standard deviation, skewness, and kurtosis for
the covariances and correlations for each of the thirty stocks with respect to all of the twenty-nine other
stocks; i.e., the median value of the particular sample statistic across the 29 time series for stock i as
defined by Cov,

The median of the mean covariance across all of the stocks equals0.373, while thetypical

and Corr,

ij.t?

i wherej =1, 2, .., 30,and; # i.

correlation amongthe DJIA stocks is around 0.113. However, the realized covariances and
correlations exhibit considerable variation across the different stocks and acrosstime. For instance, the
median of the average correlations for Union Carbide Carp. (UK) equals 0.080, whereas the median
for General Electric (GE) isashigh as0.150.

-10-



Aswith therealized variances, the distributions of the realized covariances are extremely right
skewed and leptokurtic. Interestingly, however, the realized correlations appear approximately
normally distributed. Inparticular, the median kurtosis for all of the 435 realized covariances equals
61.86, whereas the median kurtosis for therealized correlations equals 3.037. To illustrate this result,
Figure 3 graphs the unconditional distribution of the standardized realized correlations for AA with
respect to Exxon Corp. (XON), thealphabetically last ticker symbol of thethirty DJIA stocks."” Itis
obvious that the standard normal reference density affords a close approximation.

The unconditional distributions detailed above captureimportant aspects of the return
generating process, and they indicate that all of the realized volatilities vary importantly throughtime.
In the next section, we explore the associated dynamic dependence. Again, the use of realized
volatilities allows us to do so in a model-free environment, without reliance on complicated and

intractable parametric latent volatility models.

4. Temporal Dependence, Long-Memory and Scaling
The conditional distribution of stock market volatility has been the subject of extensive research efort
during the past decade. Here we solidify and extend the findings in that literature; in particular, we
reinforce the existence of pronounced long-run dependence in volatility and show that this effect is also
present in correlations. Motivated by the results of the previous section, we focus on the logarithmic
volatilities and correl ations.
4.1 Logarithmic Standard Deviations
It isinstructive first to consider therepresentative time series plat for /v,,, in Figure 4. It is evident
that the seriesis positively serially correlated, with distinct periods of high and low volatility readily
identifiable. Thisis, of course, a manifestation of the well documented volatility clustering effect, and
directly in line with the results reported in the extant ARCH and stochastic volatility literatures; see,
e.g., Lamoureux and L astrapes (1990) or Kim and K on (1994) for estimation of GARCH models for
individual daily stock returns.

To underscore the significance of this effect more generdly, the first column in Table 4

summarizes the values of the standard Ljung-Box portmanteau test for thejoint significance of the first

Y Similar graphs for all of the other correlations with respect to XON are available in ABDE (2000).
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22 autocorrelations of /v,, (about one month of trading days). The hypothes's of zero autocorrelaionsis
overwhelmingly rejected for al thirty stocks. The correlogram for AA in Figure 5 shows why. The
autocorrel ations are systematically above the conventional Bartl ett ninety-five percent confidence band,
the upper range of which is given by the flat dashed line, even at the longest displacement of /20 days
(approximately half ayear). Similarly slow decay rates have been documented in the literature with
daily time series of absolute or squared returns spanning several decades (e.g., Crato and de Lima,
1993, and Ding, Granger and Engle, 1993), but the resultsin Figure 5 are noteworthy in that the
sample “only”’ spans five-and-a-half years. Inspite of this slow decay, the augmented Dickey-Fuller
tests, reported in the second columnin Table 4, reject the null hypothesis of a unit root for all but four
of the stocks when judged by the conventional -2.86 five-percent critical value.*

In response to such findings, a number of recent studies have argued that the long-run
dependence in finand al market volatility may be conveniently modeled by fractional integrated ARCH
or stochastic volatility models; see, e.g., Baillig Bollerslev and Mikkelsen (1996), Bredt, Crato and de
Lima (1998) and Robinson and Zaffaroni (1998). The log-periodogram regression estimates for the
degree of fractional integration, or d, for therealized logarithmic volailities, given in thethird column
in Table 4, are directly in line with these studies, and all thirty estimates are very close to the median
value of 0.349 (see Gew eke and Porter-Hudak, 1993, and Robinson, 1995, for formal discussion of the
log-periodogram regression, often called GPH , technique), and highly statistically significantly different
from both 0 and 1."° It is also evident that the implied hyperbolic decay rate, /', superimposed in
Figure 5, affords a close approximation to the correlogram for /v, ,, and equally good fits obtain for

each of the29 other stocks.

38 Itiswell known, however, that the outcome of standard unit root tests should be carefully interpreted with slowly
decaying processes; see, e.g., Schwert (1987).

% The dow hyperboli c decay of the long-lag autocorrelations, or equival ently the log-linear explosion of the low-frequency
spectrum, are both distinguishing features of a covariance stationary fractionally integrated, or 1(d), process with 0 <d <%.
Acaordingy, let/(w,) denote the sample periodogram estimate for the spectrum at the;th Fourier frequency, o, = 2j/7T, j=1,
2,...,[T/2]. The GPH egdimator for d is then based on the least squares regression,

log[I(w;)] = By + B,log(w;) + u,

wherej=1,2,..,m,and d = -%-p, is asymptotical ly normal with a standard error of =-(24-m)"”. For the estimaesin Table 4
wetookm = [1,366]°° = 76, thusimplying an asymptotic standard error of 0.074. This particular choice was motivated by
Deo and Hurvich (1999), who show that the GPH estimatar is corsistent and asymptaically normal provided that m = O(T ),
where 8 < 4d-(1+4d)".
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Another implication of the long-memory associated with fractional integration concerns the
behavior of the variance of partial sums. In particular, let/x,/, = Z,_, ,x,...,,,, denote the h-fold
partial sum process for x,. If x, isfractionally integrated, the partial sums will obey ascaling law of the
formVar([x,],) = ch’*'. Thus, given d and the unconditional variance at one aggregation level, it is
possible to calculate the implied variance for any other aggregation level. T o explore whether this
implication of fractional integration is satisfied by our equity volatilities, we plotin Figure 6 the
logarithm of the varianceof thepartial sum o the daily realized logarithmic standard deviations,
log(Var[lv,,,],), agairst thelogarithmof the aggregationlevel, log(h), forh=1, 2,..., 30. The accuracy
of the fittedline, ¢ + (2d+1)-log(h), is 2riking.*® Moreove, thecorresponding regression estimatesfor d
for all of stocksreported in the fourth cdumn in Table 4, are generally very closeto the GPH estimates.
4.2 Correlations
The estimation of parametric multivariate volatility models is notoriously difficult and, as aresullt,
relatively little is known about the temporal behavior of individual stock return correlations.** The last
four columns of Table 4 provide our standard menu of summary statistics for the 435 series of daily
realized correlations. In accordance with our convention in section 3.3 above, each entry gives the
median valueof that particular statistic across thethirty stocks.

Turning to the results, the time series plot for Corr,, v,y . in Figure 7 suggests important
dependence and hence predictability in the correlations. Thisimpression is confirmed by the
correlogram in Figure 8 and the Ljung-Box portmanteau statistics for up to 22™ order serial correlation
reported in cdumn 5 of Table 4. Moreover, as with the ADF tests for /v,, , the tests for Corr,,
reported in the sixth column systematically reject the unit root hypothesis Accordingly, the GPH
estimates for d are significantly different from zero (and unity), with typical values around 0.35. The
corresponding hyperbolic decay rate for Corr,, v,y , Superimposed in Figure 8 and the scaling law in

Figure 9, in which we plot log(Var[Corr,, voy . ],) 8Qainst log(h), forh=1, 2,..., 30, also reved highly

2 | eBaron (1999) has recently demonstrated that apparent scaling laws may arise for short-memory, but highly
persistent processes. In the present context, the hyperbolic decay in Figure 5 further buttresses the long-memory argument.

2L n arecent paper, Campbell et al. (2000) argue that although the number of stocks required to achieve agiven level
of diversificaion has increased noticeably over the past two decades, firm-specific volatility has also gone up, sothat
individual stock return correlations have actually decreased over the same time period.

2 Asin Figure 5, the flat dashed line denates the upper range of the ninety-five percent Bartlett confidence band.
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accurate fits.

Overall, our results thus far suggest that the univariate unconditional and conditiona distributions
for the red ized correlations closely mimic the qualitative characteristics of the redized volatilities
discussed earlier. We now turn to multivari ate aspects of the distributions, focusing first on issues related
to asymmetry inthe distributions o the volatilities.

5. Asymm etric Responses of Volatilities and Correlations

A number of previous studies have documented an asymmetry in the relationship between equity
volatility and returns, i.e., positive returns have a smaller impact on future volatility than negative
returns of the same absolute magnitude. Two competing explanations have been put forth to
rationalize this phenomenon. According to the so-called leverage effect, alarge negative return
increases financial and operating leverage, in turn raising equity return volatility (e.g., Black, 1976, and
Christie, 1982). Alternatively, if the market risk premium is an increasing function of volatility, large
negativereturns increase the future volatility by more than positive returns due to avolatility feedback
effect (e.g., Campbell and Hentschel, 1992). W e now re-evaluate the underlying empirical evidence on
the basis of our realized vdatility measures.

5.1 Logarithmic Standard Deviations

The use of realized volatilities allows for direct tests of asymmetries in the impact of past returns.
However, in order to avoid confusing such effects with the strong serial correlation documented in the
previous section, it is imperative tha dynamic dependence be modeled properly. The first four

columnsin Table 5 report the regression estimates based on the fractionally differenced series,

(]-L)dilvi,t =w;, t Yi.lvi,t—l + d)i.lvi,t—l I(Vi,t—1<0) +u, (5)

where I(-) refers to the indicator function, and the values for d, are fixed at the d;,,,, estimates reported
in Table 4. Also, to accommodate any additional short-run dynamics, the t-statistics are based on a
Newey-West robust covariance matrix estimator using 22 lags.

The median estimated value of v, equals-0.023, and only oneof thethirty t-statistics for vy, is
statistically significantly greater than zero, when judged by the standard 95-percent critical value of
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1.645.2 Simultaneously, the median estimate for ¢, equals0.053, and 22 of the thirty t-statistics
exceed the five percent critical value. These results are broadly consistent with the EGARCH model
estimates for daily individual stock returns reported by Cheung and Ng (1992) and Kim and Kon
(1994), indicating a differential impact, or asymmetry, in the influence of past negative and positive
returns.

However, although statistically significant for most of the stocks, the economic importance of
this effect is marginal. Consider Figure 10, which displays the scatterplats for the logarithmic standard
deviation for AA, Iv,,, , against the lagged standardized returns, r,, , ,/v,,,,. Forvisual reference, we
have superimposed the two regression lines corresponding to negative and positive returns. This figure
provides a direct analogy to the news impact curves for parametric ARCH models previously studied
by Pagan and Schwert (1990) and Engle and Ng (1993). Although the news impact curve is more
steeply sloped to the left of the origin, the systematic effect is obviously not very strong; similar plots
for each of the 29 other stocksare available in ABDE (2000). This parallels the findings for the four
individua stocksin Tauchen, Zhang and Liu (1996), who note that w hile asymmetry is a characteristic
of the point estimates, the magnitude is quite small. In contrast, the parametric volatility model
estimates reparted in Nelson (1991), Glosten, Jagannathan and Runkle (1993) and Hentschel (1995),
among others, all point toward important asymmetries in market-wide equity index returns, which calls
into question the leverage explanation and instead suggests that the significant asymmetries for the
aggregate market returns reported in these studies are most likely due to a volatility feedback effect
(see also the recent discussion of Bekaert and Wu, 2000).

5.2 Correlations

As noted above, little is known about the distributions of individua stock return correlations. If the
volatility asymmetry at the individual stock level is caused by aleverage effect, then a change in
financial leverage is likely to also affect the covariances between different stocks, which in turn may
impact thecorrdations. Inthisregard itis interesting to notethat the different multivariate ARCH
models estimated in Kroner and Ng (1998) generally result in statisticaly significant asymmetries in

the conditional covariance matrices for the weekly returns on a pair of well diversified small- and

2 Note that, as long as -y, <d, , anegative value for v, is fully consistent with the strong volatility clustering effect
documented above, as a series expansion of the fractional differencing operator in equation (5) would i mply that terms of
theform d,-Iv,,,, Y2d;(1-d,)lv,,,, ... so enter the right-hand-side in the corresponding equation for /v,,.
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large-stock portfolios.** Similarly, Ang and Chen (2000) have recently demonstrated significant
asymmetries in the correlations between the market and various industry, size, and book-to-market
sorted portfolios. At the same time, the bivariate EGARCH models in Braun, Nelson and Sunier
(1995) indicate that while the overall market volatility responds asymmetrically to positive and
negative shocks, monthly conditional (time-varying) betas for size- and industry-sorted portfdics are
mostly symmetric. M ore recently, however, Cho and Engle (1999) report statistically significant
asymmetriesin daily EGARCH betas for a small set of individual stocks, suggesting that the apparent
symmetry in the monthly portfolio betas in Braun, Nelson and Sunier (1999) may be due to cross-
sectional and/or temporal aggregation effects.

In light of these findings, we now extend the analysis above to test for asymmetriesin the
realized daily correlations. In particular, the last three columnsin Table 5 report the results from the

regressions,

(I'L)di"/corri,j,/ =w, * Y;,j'(lvi,z.l + lV/,z.J) + ei,j '(Zvi,z.l + lvj,t-]).[(ri,t-llr/,t-1>0)
(6)
+ d)i,j.(lvi,t-l + lvj,t-]). I(Vi,1-1<01r/,r—1<0)} T,

where, as before, thed,; are fixed at the d,;,,, estimates reported inTable 4, and the t-statistics are
based on a N ewey-West HAC covariance matrix estimator using 22 lags. Note that y,; captures the
impact of the past realized volatilities on the correlations, 6, ; gives the additional influence when the
past returns are of the same sign, while the overall impact of thepast volatility if both of the returns are
negativeis measured by y,; + 6, +¢,,. This particular formulation therefore facilitates a direct test of
asymmetry based on thet-statistic for ¢, .

Turning to the results, most of the 435 estimates for ¢,; are indeed positive. However, less
than half are significant at the usua 95-percent level when judged by the ¢ -statistics. This relatively
weak asymmetry is underscored by Figure 11, which plots the daily realized correlations for AA and

24 | n the context of internatianal equity markets, Erb, Harvey and Viskanta (1994) and Longinand Solnik (1998) have also
argued that the cross-country correlationstend to be higher when the returns are neggtive.

% Because of the fractional differenci ng operator onthe left side of the equation, the actual coeffident values should be
carefully interpreted.
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XON, Corr,, von,, @gainst the average lagged standardized returns, %- (., . /Vii it Pronii/Vion 1)
Aswith therealized volatility news impact curve in Figure 10, the line corresponding to the sum of the
two lagged returns being negative is slightly more steeply sloped than the line corresponding to the
sum of the lagged returns being positive. However, the systematic influence of this effect is clearly not

very important. Similar graphs obtain for all of the other stocks (see ABDE, 2000).

6. Multivariate Unconditional Volatility Distributions

Here we investigate various aspects of the multivariate unconditional vaatility distributions. Many key
economic and financial, as well as regulatory, questions depend upon the perceived commonadlity in
volatility movements across assets and markets. Most of the existing evidence concerning the extent of
such co-movements relies on very specific parametric volatility models. The realized volatility
measures, in contrast, allow for a direct assessment of the relationship between the individual standard
deviaions and correlations.

We begin in Figure 12 with a scatterplot of the realized daily logarithmic standard deviation of
AA, Iv,,,, against the logarithmic standard deviaion of XON, /v,,,,. Itisevidenttha the two
volatilities move together. This feature aso holds for the other stocks. From thefirst columnin Table
6, the median correlation between /v, and /v,, across the 435 unique pairwise combinations equals
0.205.% Asdiscussed further below, this tendency of return volatility to vary in tandem acrass
individual stocksis consistent with factor structure, as in Diebold and Nerlove (1989), Tauchen and
Tauchen (1999), and others.

Next, in Figure 13 and the second column of Table 6, we document the presence of what
might be termed a volatility-in-correlation effect. In particular, in Figure 13 we plot the average
realized daily correlations for AA, (1/29)-3, Corr,,,  for i AA, against the logarithmic standard
deviation for AA, Iv,,,. Asfor the foreign exchange rates analyzed in ABDL (1999a), a strong
positive association isevident. Thisis further underscored by the resultsin the second columnin
Table 6. The median correlation between all of the individual correlations, Corr,, ,, and the

corresponding logarithmic standard deviations, /v, for i=h or j=h, equals 0.150. While similar

® Embrechts, McNeil and Strauman (1999) have recently advocated the use of mpulas and rank statistics when
measuring dependence in non-normally distributed financial data. However, because the unconditional distributions that we
explorein Table 6 are all approximately Gaussian, the linear correlation affords the most natural measure in the present
context.
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volatility-in-correlation effects have been documented for other broadly defined market indexes, our
direct model-free measurements of realized correlations and volatilities are very different from the
procedures previously entertained in the literature, and as such our findings provide additional
empirical support for the phenomenon.”” As shown bdow, a volatility effect in corrdation is also to be
expected withina factor structure, jug as with the positive correlation acrass volatilities (see also
Ronn, Sayrak, and Tompaidis, 1998). At the same time, the specific manifestation of the effect is
model dependent, whichrenders direct predictions about magnitudes impassi blewithin our
nonparametric setting. Nonetheless, the strength of the effect is noteworthy and provides a benchmark
measure that candidate models should be able to accommodate. At the least, it suggests that standard
mean-variance efficiency cal culations based on constant correlations may be misguided.

Our final look at the multivariate volatility distributions in Figure 14 shows the scatter plot of
average realized daily correlations for AA against the average realized correlations for XON;; i.e.,
(1/28) X,Corr,,, versus(1/28) ,Corry,,,, fori # A4 andi  XON. The strong association between
the realized daily correlationsistruly striking. Clearly, thereis a powerful commonality inthe co-
movements acrossthe individual stocks. The last column of Table 6 tells the samestory. The smallest
correlation among the 82,215 (=30-29-28-27/8) unique correlations is ashigh as 0.093, and the median
correlation between the daily time series of realized correlations equals 0.308. Again, this seemsto
suggest that there is alower dimensional factor structure driving the second moment characteristics of

the joint distribution, to which we now turn.

7. Latent Factor Structure in Volatility

The notion of alow-dimensional factor structure is central to modern asset pricing theory (e.g.,
Cochrane, 2000). W e briefly explore the properties of reaized volatility in the context of asimple
multivariate model with anexplicit factor structure. We focus on three of the empirical results noted
above: the tendency for volatilities to move together, the tendency for correlations to be high when the
corresponding volatilities are high, and the tendency for anarbitrary correlationto be highwhen other

correlations are also high.

27 Similar dbservations have recently been madein the context of international equity index returrs by Solnik, Baucrelle
and Le Fur (1996). This also motivates the switching ARCH model estimated by Ramchand and Susmel (1998), who argue
that the carelationsbetween theU.S. and aher world markets are on average 2 t03.5 times higher when the U.S. market is
in a high variance state as compared to alow variance state.
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Consider an N-dimensional diffusion for log price p, with the single-factor representation
dp, = Lo, dW, + QdV,, (7)

where A isan N-dimensional vector of loadings on the common volatility factor o,dW,, V, is an N-
dimensional standard B rownian motion with mutually-independent elements, and the diagonal matrix
Q contans N individual asset-specific volatilities. Note that each element of the N-vector of retums dp,
isdriven in part by a single latent factor with stochastic volatility, and in part by an orthogoral
idiosyncratic noise.

Given the simple model (7), the N-dimensional vector of daily returnsis
F,HEp,H—p,:J.AO,dVV,'i‘J.QdV,. (8)

Letting X, denote the corresponding N xN covariance matrix conditional on the sample path filtration
generated by the latent volatility process, {o,, r}izo, the element of X, corresponding to the covariance

between the ith and jth elements of r,. ,, say (., and {r,., };, is
{Z.},; = {}“}“'}m‘f 0. dt + Q. ©)

Hence, the conditional variancesand covariancesinherit their dynamicsfrom o, a fact with important
implications for comovements among vdatilities and correlations.

In order to relate this factor model directly to daily realized volatilities and correlations, it is
convenient to restate the system in discrete time. The continuous-time latent factor volatility model (7)-
(9) maps directly into a discrete-time model that has been studied by a number of authors, including
Diebold and Nerlove (1989), Harvey, Ruiz and Shephard (1994), King, Sentana and Wadhw ani
(1994), Fiorentini, Sentana and Shephard (1998), and Jacquier and Marcus (2000):

Vi = )"ifz: t oV
fil1, - (0, h)
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10
iid ) (10)
v, ~ (0, w)

— f g /
cov(vl.tvjt,) = 0, Vi#j, t#t',

wherei,j = 1, .., N,andt=1, ..., T.
It isreadily established that volatilities tend to move together in such afactor model.
Concretely, the i and | time-t conditional variances, for arbitrary i and j, are
2 2
h,= A h + o,
(11)
2 2
= A h + W
Note in particular that the conditional variances, which are themselves covariance stationary stochastic
processes, are linear functions of latent volatility h, and are therefore driven entirely by movements in

volatility. The unconditional covariance between h,, andh].t is
covih, ) = Bk + @)~ (ME(R)+ @) (Wh+ &) - (WE(RY+ @) = A (k- E()),(12)

which is unambiguously positive. Hence the unconditional correlation between k., and hﬂ isalso
unambiguously pasitive.
It is also readily seen why afactor structure induces high correlations in situations of high

volatility. Theij" time-t conditional covarianceis
cov,, = A.l)\.j h, (13)

<0 the conditional correlationis

A A h,
corr, = — : (14)

ijt
\/)\.? h, + o)f \/A]Z h, + o)]2
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Note the conditional variance effect in conditional correlation: if Xl., XJ, h, > 0, then

acorrl.].t

P >0. Moreover, }112 corr,, = 1 and }?ug corr,, = 0.
t t t

Finally, it is straightforward to verify that a factor structure impliesthat if the correlation
between an arbitrary pair of stocksis high, the correlations between other stocks tend to be high also.
In fact, equation (14) makes clear that, so long as all stocks load positively off the common factor, all
pairwise correlations are increasing in volatility. Hence, as volatility moves, the pairwise correlations
al move as well, and in the same direction.

In closing, we note that it is easy to extend these results to richer factor structures, including
models with dynamics in Q and models with multiple factors, as in recent work by Lo and Wang

(2000) on modding volume, which isintimately related to the modeling of voldtility.

8. Conclusions

We exploit direct model-free measures of realized daily volatility and correlation obtained from high-
frequency intraday stock prices to confirm, solidify and extend existing characterizations. Our findings
are remarkably consistent with existing work such as ABDL (19994a, b) and Ebens (1999a). This is
true of the right-skewed distributions of the variances and covariances, the normal distributions of the
logarithmic standard deviaions and correlations, the normal distributions of daily returns standardized
by realized standard deviations, and the strongly persistent dynamics of the realized volatilities and
correlations, well-described by a stationary fractionally integrated process and conforming to scaling
laws under temporal aggregation. The striking congruence of all findings across asset classes (equity
vs. forex) and underlying method of price recording (transaction pricesvs. averages of logarithmic bid
and ask quotes) suggests that theresults reflect fundamental attributes of speculative returns.

Our analysisis nateworthy nat only far confirming and checking robustness of existing results,
but also for achieving significant extensions, facilitated throughout by the model-free measurement of
realized volatility and correlation afforded by high-frequency data, and the simplicity of our methods,
which enable straightforward high-dimensional corrdation estimation. We shed new light on some
distinct properties of equity return dynamics and illustrate them, for example, via the news impact

curve. We confirm the existence of an asymmetric relation between returns and volatility, with
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negdive retums being associated with higher volatility innovations than pasitive returns of the same
magnitude. However, the effect is much weaker at the individual stock level than at the aggregate
market level, thus lending support to avolatility risk premium feedback explanation rather than a
financial leverage effect. Moreover, we find a pronounced volatility-in-correlation effect, thus limiting
the benefits of portfolio diversification when they are needed most. The strength of this relation
suggests that suboptimal decisions will result from analysis based on the premise of a constart or fixed
variance-covariance structure. Finally, the volatility-in-correlation effect, the strong positive
association between individual stock volatilities, and the corresponding strong relationship between
contemporaneous stock correlations should motivate additional work on the devel opment of
parsimonious factor models for the covariance structure of stock returns.

We envision several applications of the approach adopted in this paper. For example, the
direct measurement of vdatilities and carrelations should alleviate the errors-in-variables problem that
plagues much work on the implementation and testing of the CAPM, because redized betas may be
constructed directly from the corresponding realized covariances and standard deviations. M ulti-factor
models based on factor replicating portfolios are similarly amenable to direct analysis. Asasecond
example, the effective observability of volatilities and correlations facilitates direct time-series
modeling o portfolio choice and risk management prablems under realistic and testable distributional
assumptions. Work along these lines is currently being pursued in Andersen, Bollerslev, Diebold and
Labys (1999d). Finally, our methods will also facilitate direct comparisons of volatility forecasts
generaed by altemative models and procedures. Such explorations are underway in Ebens (1999b)
and Ebens and de Lima (1999).
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Table 1
Unconditional Daily Return Distributions

Vi ri,t/vi,l
Stock Mean St.Dev.  Skew. Kurt. Mean St.Dev.  Skew. Kurt.
Min. -0.059 1.149 -0.221 3.810 -0.033 0.623 -0.054 2734
0.10 -0.024 1.222 -0.022 3.964 -0.013 0.697 0.037 2.821
0.25 0.007 1.275 0.035 4.236 0.002 0.772 0.081 3.005
0.50 0.041 1.419 0.159 5.416 0.024 0.806 0.113 3.129
0.75 0.071 1.538 0.231 6.587 0.048 0.852 0.164 3.302
0.90 0.084 1.704 0.487 8.462 0.060 0.928 0.228 3.414
Max. 0.140 1.833 0.564 11.98 0.099 0.960 0.322 3.848
Mean 0.036 1.438 0.172 5.908 0.025 0.808 0.125 3.156
St.Dev. 0.046 0.181 0.192 2.016 0.030 0.080 0.081 0.251

Note: T he table summarizes the daily return distributions for the 30 DJIA stocks, r,,. Thesamplecovers
the period from January 2, 1993 through May 29, 1998, for atotal of 7,366 observations. Theredized
daily vdatilities, v,,, are calaulated from fivemirute intraday returns, as detailed inthe main text.

Table 2
Unconditiona Daily Volatility Distributions

W,
Stock Mean St.Dev.  Skew. Kurt. Mean St.Dev.  Skew. Kurt.
Min. 1.899 1.159 1.451 5.789 0.239 0.225 -0.537 2.282
0.10 2.009 1.348 2.306 11.98 0.280 0.228 -0.308 3.245
0.25 2.539 1.665 3.516 27.84 0.403 0.238 -0.015 3.475
0.50 3.108 1.988 5.609 66.16 0.476 0.264 0.192 3.885
0.75 3.390 2.458 8.322 142.6 0.544 0.280 0.465 4.758
0.90 4.315 4.346 18.89 518.0 0.664 0.294 0.777 5.136
Max. 6.854 6.319 20.70 567.8 0.894 0.353 1.023 6.620
Mean 3.178 2.355 7.433 143.6 0.478 0.263 0.222 4.101
St.Dev. 1.146 1.203 5.664 176.8 0.150 0.029 0.388 0.870

Note: T hetable summarizes the distributions of the daily volatilities for the 30 DJIA stocks. Theredized
daily variances, v’ ,, and logarithmic standard deviatiors, Iv,, = log(v, ), are calculated from five-minute
intraday returns asdetailed in the main text.



Table 3
Unconditiona Daily Covariance and Correation Distributions

Cov,;, Corr,;,
Stock Mean St.Dev. Skew. Kurt. Mean St.Dev.  Skew. Kurt.
Min. 0.217 0.362 -4.714 8.411 0.062 0.128 0.008 2.552
0.10 0.284 0.508 2.843 22.49 0.085 0.138 0.123 2.832
0.25 0.318 0.580 3.738 33.97 0.098 0.142 0.180 2.939
0.50 0.372 0.695 5.223 61.86 0.117 0.149 0.253 3.044
0.75 0.426 0.819 7.704 120.6 0.136 0.157 0.312 3.177
0.90 0.492 0.968 12.21 258.3 0.159 0.167 0.381 3.321
Max. 0.697 1.899 24.91 773.4 0.221 0.196 0.568 3.668
Mean 0.379 0.727 6.462 108.1 0.120 0.151 0.251 3.068
St.Dev. 0.081 0.206 4.195 125.4 0.029 0.012 0.099 0.199

Note: T he table summarizes the distributions of the 435 (=30-29/2) unique redized covariances and
correlations for the 30 DJA stocks. The realized daily covariances and corr elations ar e caculated from
fiveminute intraday returns, as ddailed inthe main text.

Table 4
Dynamic Volatility Dependence

b, Corr,;,

Stock 0., ADF depy ds 0., ADF depn ds

Min. 982 -4.850 0.263 0.286 155 -5.351 0.117 0.177
0.10 2080 -4.466 0.284 0.334 395 -4.566 0.278 0.240
0.25 2966 -3.918 0.317 0.359 660 -4,065 0.326 0.271
0.50 4715 -3.327 0.349 0.386 1169 -3.542 0.380 0.308
0.75 6075 -2.992 0.392 0.400 2167 -2.983 0.439 0.347
0.90 6921 -2.676 0.409 0.412 3431 -2.571 0.486 0.376
Max. 14254 -2.178 0.416 0.463 7209 -1.917 0.600 0.422
Mean 4729 -3.450 0.350 0.377 1267 -3.548 0.381 0.308
St.Dev. 2556 0.665 0.046 0.038 1267 0.746 0.081 0.051

Note: T he table summarizes the time series dependence in the 30 redized logarithmic standard deviations
and 435 redlized correlations for the DJA stocks. The table reports the Ljung-Box portmanteau test for
up to 22nd arder autocarrelation, Q,,, the Augmented Dickey-Fuller test for a unit root involving 22
augmentationlags, ADF, the Geweke Porter-Hudak estimatefor the degreeof fradioral integraion, d,,,,,
and the estimate for the degree of fradional integration based on the scaling-law, d.



Table 5
News Impact Functions

v, Corr,;,

Stock Y t, ¢ ty t, to ty

Min. -0.092  -4.098 0.007 0.236 -5.198 -2.060 -1.299
0.10 -0.067  -2.930 0.022 0.908 -3.015 -0.911 0.162
0.25 -0.049  -1.737 0.028 1.224 -2.451 -0.288 0.840
0.50 -0.023  -0.754 0.053 2.277 -1.660 0.333 1.406
0.75 0.000  0.008 0.067 2.874 -0.929 1.051 2.061
0.90 0.026 1.039 0.081  3.753 -0.118 1.646 2.815
Max. 0.051 1.833 0130 4314 2.444 3.727 4.395
Mean -0.021  -0.825 0.051 2.246 -1.636 0.387 1.450
St.Dev. 0.035 1.455 0.027 1.067 1.180 0.988 1.026

Note: The table reports the OL S regression estimates for the news impact functions for the fractionaly
differenced logarithmic standard deviatiors, (1-L)"lv,, = w, + y;lv,; + &slv,,.,1(r;,,<0) + u,,, and
corrdations, (]'L)di'jco”’i,j,t =w,; t ’Yi,j.(lvi,r-l Jrle,r-/) + ei,j'(lvi,t-l +lvj,t-/)'[(”i,z-l"’j,z-1>0) + d)i,j' (Ivi,t-l +Ivj,t-
A, <0, r,.,<0)} +u,, wherethevalves for d, and d,; are fixed a the d;,,, estimates reported in Table
4. Thet-satigtics are based on a N ewey-West HAC covariance matri x estimator with 22 lags.

Table 6
Multivariate Unconditional Volatility Distributions

Stock Corr(lv,,,lv,,) Corr(Corr,;,,lv,,) Corr(Corr,;,,Corr,,,)
Min -0.327 -0.209 0.093
0.10 -0.016 -0.086 0.230
0.25 0.081 0.032 0.265
0.50 0.205 0.150 0.308
0.75 0.321 0.236 0.358
0.90 0.439 0.296 0.407
Max. 0.641 0.536 0.601
Mean 0.206 0.130 0.314
S.Dev. 0.172 0.148 0.069

Note: The column labeled Corr(1v,,,1Iv,,) givesthedidribution of the 435 (=30-29/2) unique correlations
between the 30 daily realized |ogarithmic volatilitiesfor the DJIA stocks. The second cdumn, Corr(
Corr,; ,,Iv,,), refersto the digtribution of the 8§70 (=30-29) unique corr elai ons between the daily realized
correlations and the cor responding logar ithmic standard deviations. The last column denoted Corr( Corr,
,Cor,,,) givesthe distribution of the 82,215 (=30-29-28-27/8) unique corr elati ons between the realized
daily correlations.

ij.t



Figure Titles and Notes
Figure 1
Unconditional Distribution of Daily Standardized Returns
The figureshows theunconditiorel distributions of the standardized daily returnson AA, r,,,/v,,,. The
sample period extends from January 2, 1993 through May 29, 1998, for atotal of 1,366 daily

observations. The realized volétilities are calculated from five-minute intraday returns. The dotted line
refers to the standard normal density.

Figure 2
Unconditional Distribution of Standardized Daily Logarithmic Standard D eviations
Thefigure shows theuncondtional dstribution of thestandardized daily realized logarithmic standard

deviations far AA, Iv,,, = log(v,,,). Theredized vdatilities are calculated from five-minute intraday
returns. The dotted line refers to the standard normal density.

Figure 3
Unconditional Distribution of Standardized Daily Correlations
The figur e shows the unconditional digtribution of the standardized daily realized corr elations between AA

and XON, Corr,, vov - Therealized correlations are calculated from five-minute intraday returns. The
dotted line refers to the standard normal density.

Figure 4

Time Series of Daily Logarithmic Standard Deviations

The figureshows thetime sariesof the daily realized |ogarithmic standard deviations for AA, Iv,,, =
log(v,,,). Therealized volatilities are calculated from five-minute irtraday returns.

Figure 5

Sample Autocor relations for Daily L ogarithmic Standar d Deviations

The figur e shows the sample aut ocorr elations for the daily reali zed logarithmic standar d deviations for AA,
v, =logv,,,),out toadsplacement of 100 days. Theredized volatilities are caculated from five-
minute intraday returns. Thedotted linegives the minimum-diganceestimates of the hyperbdic decay

rate, c-h’"'. The dashed line give the upper range of the conventiona Bartlett ninety-five percent
confidence band.



Figure 6
Volatility Scaling Plots for Daily L ogarithmic Standar d Deviations

Thefigure shows thelogarithm of thevarianceof thepartid sumof thedaily realized logarithmic standard
deviations froAA, log(Var(lv,,,],), plotted against thelogarithmof the aggregationlevel, log(h), for h =
1, 2,...,30. The sample periad extends fromJanuary 2, 1993 through May 29, 1998, for atotal of 1,366
obsavations at the daily levd. Thedaily realized vdatilities are calculated from five-mirute intraday
returns. The dotted line refers to the least-squar es esti mates of the regression line ¢ + (2d+1)-log(h).

Figure 7
Time Series of Daily Correlations

The figureshows thetime saiesof daily realized corrd ations baween AA and XON, Corr,, von .- The
sample period extends from January 2, 1993 through May 29, 1998, for atotal of 1,366 daily
observations. The redlized correlations are cal culated from five-minute intraday returns.

Figure 8
Sample Autocor relations of Daily Correlations

The figure shows the sarmple autocorrelations for the daily realized correlations betwean AA and XON,
Corr,, .on.- Therealized correlations are calculated from five-minute intraday returns. The dotted line
gives the minimum-digance estimates of the hyperbdic decay rate c¢-#’*'. The dashed line give the upper
range of the conventional Bartlett ninety-five percent confidence band.

Figure 9
Volatility Scaling Plots for Daily Correlations

The figure shows the | ogarithm of the variance of the partial sum of the daily realized corr elati ons between
AA ard XON, i.e., log(Var[Corr,, vov..],), Plotted against thelogarithm of the aggregation level, log(h),
forh=1, 2,..., 30. The sample period extends from January 2, 1993 through May 29, 1998, for atotal of
1,366 obsavatiors at thedaily level. The daily realized corrdatiors are calaulated from fiveminute
intraday returns. The dotted line refers to the least-squar es esti mates of the regression line ¢ +
(2d+1)-log(h).

Figure 10

News Impact Functions for Daily Logarithmic Standard Deviations

The figureshows the scatterpl ot of the daily realized |ogarithmicvolatilitiesfor AA, Iv,, ,, against the
lagged sandard zed returns, r,, ,,/Iv,,,,. Thesolid lines refer to the estimated regression lines for the



lagged returns bang negativeor positive. Therealized volatilitiesare calculated from five-minute intraday
returrs.

Figure 11

News Impact Functions for Daily Correlations

The figureshows the scatterplots for the daily realized carrelations between AA and XON, Corr,, von 1»
agairst theaverage lagged standardized returns, - (ryoy. . Vyonr + 750/V; ). The solid linesrefer to the

estimated regression linesfor the sum of the lagged returns being negative or postive. Theredized
correlations are calculated from five-minute intraday returns.

Figure 12

Scatterplot of Daily Realized Logarithmic Standard D eviations

The figureshows the scatterplot of realized daily logarithmic standard deviations for AA, Iv,, ,, against the
logarithmic standard deviations for XON, /v,,,,. Therealized vdatilities arecalculated from five-mnute
intraday returns.

Figure 13

Scatterplot of Average Daily Realized Correlations versus Logarithmic Standard Deviations

The figur e shows the scatterplot of the average realized daily correationsfor AA, (1/29)-%,Corr,, ., and
i# A4, against thelogarithmic standard deviations for AA, Iv,,,. Therealized volatilities and correlations
are calculated from fiveminute intraday returns.

Figure 14

Scatterplot of Average Daily Realized Correlations

The figure shows the scatterplot of the average realized daily correlations for AA againg the average

realized corrdations for XON; i.e., (1/28)- %, Corr,,,;, againg (1/28)- 3, Corry,y,, fori » A4 and i +
XON. Therealized carelations are calculated from five-minute intraday returns.
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