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     1
  For an early  survey, see Bollerslev, Ch ou and Kroner (19 92).  A selective an d incomplete list of studies since then

includes Andersen (199 6), Bekaert and Wu (20 00), Bollerslev and Mikkelsen (199 9), Braun, Nelson and S unier (1995),

Breidt, Crato and de Lima (1998 ), Campbell and H entschel (1992), Cam pbell et al. (2000), Canina a nd Figlewski (199 3),

Cheung  and Ng  (1992), C hristensen a nd Prabh ala (1998 ), Day and Lewis  (1992), D ing, Grang er and Engle (1 993), Du ffee

(1995), Engle and Ng (1993), Engle and Lee (1993), Gallant, Rossi and Tauchen (1992), Glosten, Jagannathan and

Runkle (1993), Hentsch el (1995), Jacquier, Polson and R ossi (1994), Kim and  Kon (1994), Kroner and Ng (199 8),

Kuwahara a nd Marsh  (1992), Lamoureux and Lastrapes  (1993), and Tauchen, Zha ng and Liu (1996).

     2
  Nelson (1990, 1992 ) and Nelson and Fos ter (1994) obtain a related by different result:  mis-specified ARCH models

may work as consistent filters for the latent instantaneous vola tili ty as  the retu rn horizon approaches  zero.  Simil arly,

Ledoit and Santa-Clara (1998) show that the Black-Scholes implied volatility for an at-the-money option provides a

consistent estim ate of the und erlying laten t instan taneous  volatility as t he time to m aturity approaches  zero.

1.  Introduction

Financial market volatility is central to the theory and practice of asset pricing, asset allocation, and risk

management.  Although most textbook models assume volatilities and corre lations to be constant, it is

widely recognized among both finance academics and practitioners that they vary importantly over

time.  This recognition has spurred an extensive and vibrant research program into the distributional

and dynamic properties  of stock market volat ility.1  Most of what we have learned from this burgeoning

literature is based on the estimation of parametric ARCH or stochastic volatility models for the

underlying returns, or on the analysis of implied volatilities from options or other derivatives prices. 

However, the validity of such volatility measures generally depends upon specific distributional

assumptions, and in the case of implied volatilities, further assumptions concerning the market pr ice of

volatility risk.  As such, the existence of multiple competing models immediately calls into question the

robustness of previous findings.  An alternative approach, based for example on squared returns over

the relevant return horizon, provides model-free unbiased estimates of the ex-post realized volatility. 

Unfortunately, however,  squared  returns are also a very noisy volatility indicator and hence do not

allow for re liable inference regarding the true underlying latent volatility.

The limitations of the traditional procedures motivate the different approach for measuring and

analyzing the properties of stock market volatility adopted in this paper.  Using continuously recorded

transactions prices, we construct estimates of ex-post realized daily volatilities by summing squares

and cross-products of intraday high-frequency returns .  Volatility estimates so constructed are model-

free, and as the sampling frequency of the returns  approaches  infinity, they are also, in theory, free from

measurement error (Andersen, Bollerslev, Diebold and Labys, henceforth ABDL, 2000).2  The need

for reliable high-frequency return observations suggests, however, that our approach will work most

effectively for actively traded stocks.  We focus on the thirty stocks in the Dow Jones Industrial



     3
  In a related  analysis  of monthly U.S . stock market volat ility, Cam pbell et al . (2000 ) augm ent the tim e series of

monthly sample s tanda rd deviati ons with various  alternat ive volatility mea sures b ased on  the disp ersion of the retu rns on

individu al stocks  in the ma rket index.

     4
  Schwert (1990a), Hsieh (199 1), and Fung an d Hsieh (1991) also stud y daily standard deviations based on 15-min ute

equity returns.  However, their analysis is strictly univariate and decidedly less broad in scope than ours.
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Average (DJIA), both for computational tractability and because of our intrinsic interest in the Dow,

but the empirical findings carry over to a random sample of thirty other liquid stocks.  In spite of

restricting the analysis to actively traded stocks, market microstructure frictions, including price

discreteness, infrequent trading, and bid-ask bounce effects, are still operative.  In order to mitigate

these effects, we use a five-minute retu rn horizon as the effective “continuous time record.”  Treating

the resulting daily time series of realized variances and covariances constructed from a five-year

sample of five-minute returns for the thirty DJIA stocks as being directly observable allows us to

characterize the distributional features of the volatilities without attempting to fit multivariate ARCH  or

stochastic volatility models.

Our approach is directly in line with earlier work by French, Schwert and Stambaugh (1987),

Schwert (1989, 1990a, 1990b), and Schwert and Seguin (1991), who rely primarily on daily return

observations for the construction of monthly realized stock volatilities.3  The earlier studies, however,

do not provide a formal justification for such measures, and the diffusion-theoretic underpinnings

provided here explicitly hinge on the length of the return hor izon approaching zero.   Intuit ively,

following the work of Merton (1980) and Nelson (1992),  for a continuous time diffusion process, the

diffusion coefficient can be estimated arbitrarily well with sufficiently finely sampled observations, and

by the theory of quadratic variation, this same idea carries over to estimates of the integrated volatility

over fixed horizons.  As such, the use of high-frequency returns plays a critical role in justifying our

measurements.  Moreover, our focus centers on daily, as opposed to monthly, volatility measures.   This

mirrors the focus of most of the extant academic and industry volatility literatures  and more clearly

highlights the important intertemporal volatility fluctuations.4  Finally, because our methods are trivial

to implement, even in the high-dimensional situations relevant in practice, we are able to study the

distributional and dynamic properties  of correlations in much greater depth than is possible with

traditional multivariate ARCH or stochastic volatility models, which rapidly become intractable as the

number of assets grows.
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Turning to the results, we find it useful to segment them into unconditional and conditional

aspects of the distributions of volatilities and correlations.  As regards the unconditional distributions,

we find that the distributions of the realized  daily variances are highly non-normal and skewed to the

right, but that the logarithms of the realized variances are approximately normal.  Similarly, although

the unconditional dis tributions of the covariances are all skewed to the right, the  realized daily

correlations appear  approximately normal.  Finally, although the unconditional daily return distributions

are leptokurtic, the daily returns normalized by the realized standard deviations are also close to

normal.  Rather remarkably, these results hold for the vast majority of the 30 volatilities and 435

covariances/correlations associated with the 30 Dow Jones stocks, as well as the 30 actively traded

stocks in our randomly selected control sample.

Moving to conditional aspects of the distributions, all of the volatility measures fluctuate

substantially over time, and all display strong dynamic dependence.  M oreover, this dependence is

well-characterized by slowly mean reverting fractionally integrated processes with a degree  of

integration, d, around 0.35, as further underscored by the existence of very precise scaling laws under

temporal aggregation.  Although statistically significant, we find that the much debated leverage-effect,

or asymmetry in the relationship between past negative and positive returns and future volatilities , is

relatively unimportant from an economic perspective.  Interestingly, the same type of asymmetry is also

present in the realized correlations.  Finally, there is a systematic tendency for the variances to move

together, and for the correlations among the different stocks to be high/low when the variances for the

underlying stocks are high/low, and when the correlations among the other stocks are also high/low.

Although several of these features have been documented previously for U.S. equity returns,

the existing evidence relies almost exclusively on the estimation of specific parametric volatility

models.  In contras t, the stylized facts for the thirty DJIA stocks documented here are explicitly model-

free.  Moreover , the facts extend the existing results in important directions and both solidify and

expand on the more limited set of results for the two exchange rates in ABDL (1999a, 2000) and the

DJIA stock index  in Ebens (1999a).  As such, our findings set the stage for the development of

improved volatility models – possibly involving a simple factor structure, w hich appears consistent

with many of our empirical findings – and corresponding out-of-sample volatility forecasts, consistent



     5 Ebens (1999a), for example, makes a n initial attempt at modeling univaria te realized stock volatility for the DJIA

index.
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with the distributional characteristics of the returns.5  Of course,  the practica l use of such models in

turn should allow for better risk management, portfolio allocation, and asset pricing decisions.

The remainder  of the paper is organized as follows.  In section 2 we provide a brief account of

the diffusion-theoretic underpinnings of our realized  volatility measures, along with a discussion of the

actual data and volatility calculations.  In section 3 we discuss the unconditional univariate return,

volatility and correlation distributions, and we move to dynamic aspects, including long-memory effects

and scaling laws, in section 4.  In section 5 we assess the symmetry of responses of realized volatilities

and correlations to unexpected shocks.   We report on multivariate aspects of the volatility and

correlation distributions in section 6, and in section 7 we illustrate the consistency of several of our

empirical results with a simple model of factor structu re in volatility.  We conclude in section 8 with a

brief summary of our main findings and some suggestions for future research.

2.  Realized Volatility Measurement

2.1  Theory

Here we provide a discussion of the theoretical justification behind our volatility measurements.  For a

more thorough treatment of the pertinent issues within the context of special semimartingales we refer

to ABDL (2000)  and the general discussion of stochastic integration in Protter (1992).  To set out the

basic idea and intuition, assume that the logarithmic N×1 vector price process, pt , follows a

multivariate continuous-time s tochastic volatility diffusion,

dpt  =  : t dt  +  S t dWt , (1)

where Wt denotes a standard N-dimensional Brownian motion, the process for the N×N positive

definite diffusion matrix, S t , is strictly stationary, and we normalize the unit time interval, or h = 1, to

represent one trading day.  Conditional on the sample path realization of : t and S t , the distribution of

the continuously compounded h-period returns, rt+h,h/ pt+h - pt , is then

rt+h,h   * F{ :t+J , St+J }J
h

=0   -   N( I 0
h :t+J dJ ,  I0

h St+J dJ ) , (2)



     6
  See, for example, the well-known contribution of Hull and White (1987).

     7
  Consider the simple case of univariate discretely sampled i.i.d. normally distributed mean-zero returns; i.e., N  =  1, : t

=  0, and S t =  F
2.  It follows by standard arguments that E( h

-1AE j=1,. . . ,[h/)]  r t
2

+jA),) ) = F2, while Var( h
-1AE j=1,. . . ,[h/)]  r t

2
+jA),) ) =

()/h)A2AF4 6 0 , as ) 6 0.

     8
  In empirically rea listi c situ ation s, the varia nce of rt+1,1 rt

N
+1,1  is easily twenty times the variance of the true daily

integrated volatility, I0
1

 S t+J dJ  ; see Andersen and Bollerslev (1998) for some numerical results along these lines.

- 5 -

where F{ :t+J , St+J }J
h

=0 denotes the F-field generated by the sample paths of  : t+J and S t+J for 0#J#h. The

integrated diffusion matrix thus provides a natural measure of the true latent h-per iod volat ility.  This

notion of integrated volatility already plays a central role in the stochastic volatility option pricing

literature, where the price of an option typically depends on the distribution of the integrated volatility

process for the underlying asset over the life of the option.6

By the theory of quadratic variation, we have that under weak regularity conditions,

E j=1, .. . ,[h/)]  rt + jA),) A rt
N
+ jA),)  -  I0

h
 S t+J dJ   6   0 (3)

almost surely for all t as the sampling frequency of the returns increases, or ) 6 0.  Thus, by summing

sufficiently finely-sampled high-frequency returns, it is possible to construct ex-post realized volatility

measures for the integrated latent volatilities that are asymptotically free of measurement error.7  This

contrasts sharply with the common use of the cross-product of the h-period returns, rt+h,h A rt
N
+h,h , as a

simple ex-post volatility measure.  Although the squared return over the forecast horizon provides an

unbiased es timate for the realized integrated volatility, it is an extremely noisy estimator, and

predictable variation in the true latent volatility process is typically dwarfed by measurement error.8 

Moreover, for longer horizons any conditional mean dependence will tend to contaminate this variance

measure.  In contrast, as the length of the return horizon decreases the impact of the drift term

vanishes, so that the mean is effectively annihilated.

These assertions remain valid if the underlying continuous time process  in equation (1) contains

jumps, so long as the price process is a special semimartingale, which will hold if it is arbitrage-free

(see, e.g., Back, 1991).  Of course , in this case the limit of the summation of the high-frequency returns

will involve an additional jump component, but the interpretation of the sum as the realized h-period



     9
  A similar idea underlies the test for jumps in Drost, Nijman and Werker (1998), based on a comparison of the

sample kurtosis an d the population kurtosis implied by a continuous time GA RCH(1,1) model; see also A BDL (1999a).
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return volatility remains intact; for fur ther discuss ion along these lines  see ABD L (2000).  Importantly,

in the presence of jumps the conditional distribution of the returns in equation (2) is no longer

Gaussian.  As such, the corresponding empirical distr ibution of the s tandardized returns speaks directly

to the relevance of allowing for jumps in the underlying continuous time process when analyzing the

returns over longer h-period horizons.  Of course, viewed as a non-parametric omnibus test for jumps,

this may not be a very powerful procedure.9

2.2  Data

Our empirical analysis is based on data from the TAQ (Trade And Quotation) database.  The TAQ

data files contain continuously recorded information on the trades and quotations for the securities

listed on the New York Stock Exchange (NYSE), American Stock Exchange (AMEX), and the

National Association of Secur ity Dealers Automated Quotation system (NASDAQ).  The database is

published monthly, and has been available on CD-ROM from the NYSE since January 1993; we refer

the reader to the corresponding data manual for a more complete description of the actual data and  the

method of data-capture.  Our sample extends from January 2, 1993 until May 29, 1998, for a total of

1,366 trading days.  A complete analysis based on all trades for all stocks, although straightforward

conceptually, is infeasible in practice.  We therefore restrict our analysis to the thirty DJIA firms, which

also helps to ensure a reasonable degree of liquidity.  A list of the relevant ticker symbols as of the

reconfiguration of the DJIA index in March 1997 is contained in Andersen, Bollerslev, Diebold and

Ebens (2000) (henceforth, ABDE).

Although the DJIA stocks are among the most actively traded U.S. equities, the median inter-

trade duration for all stocks across the full sample is 23.1 seconds , ranging from a low of 7 seconds for

Merck & Co. Inc.  (MRK) to a high of 54 seconds for United Technologies Corp. (UTX).   As such, it is

not practically feasible to push the continuous record asymptotics and  the length of the observation

interval ) in equation (3) beyond this level.  Moreover, because  of the organizational structure of the

market, the available quotes and transaction prices are subject to discrete clustering and bid-ask bounce

effects.  Such market microstructure features are generally not important when analyzing longer

horizon interdaily returns but can seriously distort the distributional properties of high-frequency

intraday returns; see, e.g., the textbook treatment by Campbell, Lo and MacKinlay (1997).  Thus,



     10
  An alternative, and much m ore complicated approach, would be to utilize all of the observations by explicitly

modeling the high-frequency frictions.

     11
  As detailed below, the average daily variance of the "typical" DJIA stock equals 3.109.  Thus, in the case of i.i.d.

normally distributed returns, it follows that a five-minute sampling frequency translates into a variance for the daily

varia nce es tima tes of 0.245.

     12
  We also experimented with the use of unfiltered and linearly interpolated five-minute returns, which produced very

similar results.
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following the analysis in Andersen and Bollerslev (1997), we rely on artificially constructed five-

minute returns.10  With the daily transaction record extending from 9:30 EST until 16:05 EST, there are

a total 79 five-minute returns  for each day, corresponding to ) = 1/79 . 0.0127 in the notation above. 

The five-minute horizon is short enough so that the accuracy of the continuous record asymptotics

underlying our realized volatility measures work well, and long enough so that the confounding

influences from market microstructure frictions are not overwhelming; see ABDL (1999b) for further

discussion along these lines.11

2.3  Construction of Realized Equity Volatilities

The five-minute return series are constructed from the logarithmic difference between the prices

recorded  at or immediately before the corresponding five-minute marks.  Although the limiting result in

equation (3) is independent of the value of the drift parameter, : t, the use of a fixed discrete time

interval may allow dependence in the mean to systematically bias our volatility measures.   Thus, in

order to purge the high-frequency returns of the negative serial correlation induced by the uneven

spacing of the observed prices and the inherent bid-ask spread, we first estimate an MA(1) model for

each of the five-minute return series using the full five-year sample.  Consistent with the spurious

dependence that would be induced by non-synchronous trading and bid-ask bounce effects , all

estimated moving-average coefficients are negative, with a median value of -0.214 across the thirty

stocks.   We denote the corresponding thirty demeaned MA(1)-filtered re turn ser ies of 79×1,366 =

107,914 five-minute returns by rt+),).12  Finally, to avoid any confusion, we denote the daily unfiltered

raw returns by a single time subscript; i.e., rt where t = 1, 2, ..., 1,336.

The realized daily covariance matrix is then

Covt  /  E j=1, .. ,1 /) rt + jA),) A rt
N
+ jA),) , (4)



     13
  In early contributions, M andelbrot (19 63) and F ama (19 65) argued  that the Stab le Paretian dis tributions provide a

good approximation.  Subsequently, however, Praetz (1972) and Blattberg and Gonedes (1974), among many others, found

that finite variance-mixtures of normals, such as the student-t distribution, generally afford better characterizations.

     14
  Under the null hypothesis of i.i.d. normally distributed returns, the sample skewn ess and kurtosis are as ymptotically

normal with m eans  of 0 and 3, and  varia nces  of 6/T and 24/T, where T denotes sample size.  Thus for T = 1,366 the two

standard errors are 0.066 and 0.133.
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where t = 1, 2, ..., 1,366 and ) = 1/79.  For notational simplicity we refer to realized daily variances

given by the diagonal elements as v j
2

,t / { Covt }j,j, and the corresponding daily logarithmic standard

deviations as lvj,t / log(v j,t ).  Similarly, we denote the realized  daily correlations by Corri,j,t / { Covt  }i,j /(

vi,tAvj,t ).  In addition to the daily measures, we also briefly consider the statistical properties of various

multi-day volatility measures, whose construction follows in straightforward fashion from equation (4)

by extending the summation to cover h/) intervals, where h > 1 denotes the multiday horizon.

Because volatility is now effectively observable, we may rely on conventional statistical

procedures for characterizing its distributional properties.  In the next section we proceed to do so.  Of

course, it is poss ible the thirty DJIA stocks analyzed here do not provide a representative picture of the

return volatility for other actively traded stocks.  As a robustness check we replicated the empirical

analysis for a set of thirty randomly selected liquid stocks, picked from the 214 stocks with at least 158

trades per day at the beginning, middle and end of the sample period.  Importantly, all of the results for

this randomly selected sample match closely those reported below for the DJIA stocks, thus

underscoring the general nature of our findings.  However, for reasons of space conservation, w e shall

not discuss the parallel empirical findings here; instead, we refer the interested reader to ABDE (2000)

for detailed discussion and a full set of tables.

3.  Univariate Unconditional Return and Volatility Distributions

3.1  Returns

A voluminous literature, seeking to characterize the unconditional distribution of speculative returns,

has evolved over the past three decades.13  Consistent  with this litera ture, the summary statistics in

Table 1 show that the daily DJIA returns, rj,t, have fatter tails than the normal and, for the majority of

the stocks, are also skewed to the right.14

Quite remarkably, however, the next set of numbers in Table 1 indicate that all of the thirty

standardized return series, rj,t/vj,t , are approximately unconditionally normally distributed.  In particular,



     15
  The kernel density estim ates are b ased on  a Gaus sian k ernel and  Silverma n’s (19 86) bandwid th.  Similar plots  for

all of the other stocks are available in ABDE (2000).

     16
  Details regarding the individual s tocks are again available in ABD E (2000).
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the median value of the sample kurtosis is reduced from 5.416 for the raw re turns to only 3.129 for the

standardized returns .  This is also evident from Figure 1, which plots the kernel density estimate for the

mean-zero and unit-variance s tandardized returns for Alcoa Inc. (AA), the first of the thirty DJIA

stocks, alphabetically by ticker symbol .  The close approximation afforded by the normal reference

density is striking.15  This result stands  in sharp contrast to the leptokurtic distributions for the

standardized daily returns that typically obtain when relying on an estimate of the one-day-ahead

conditional variance from a parametric ARCH or stochastic volatility model; see e.g., Bollerslev, Engle

and Nelson (1994) for a general discussion, and Kim and Kon (1994) for explicit results related  to the

distributions of the DJIA s tocks over an earlier time period.   The results in Table 1 a lso imply that the

unconditional distribution for the returns should be well approximated by a continuous variance

mixture of normals, as determined by the unconditional distribution for the mixing variable, v j
2

,t .  The

following section details this distribution.

3.2  Variances and Logarithmic Standard Deviations

The first four columns in Table 2 provide the same set of summary statistics for the unconditional

distribution of the realized daily variances.  The median value for the sample means is 3.109, implying

an annualized standard deviation for the typical stock of around 28 percent.  However, there is

considerable variation in the average volatility across the thirty stocks, ranging from a high of 42

percent  for Walmar t Stores  Inc. (WMT) to a low of 22 percent for UTX.16  The standard  deviations

given in the second column also indicate that the realized daily volatilities fluctuate significantly

through time.  Finally, it is evident from the third and the fourth columns that the distributions of the

realized variances are extremely right-skewed and leptokur tic.  This may seem surprising, as the

realized daily variances are based on the sum of 79 five-minute return observations.  However, as

emphasized by Andersen, Bollerslev and Das (2000), intraday speculative returns are strongly

dependent so that, even with much larger samples, standard Central Limit Theorem arguments often

provide very poor approximations in the high-frequency data context.

The next part of Table 2 refers to the realized logarithmic standard deviations, lvj,t . 
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Interestingly, the median value of the sample skewness across all of the thirty stocks is reduced to only

0.192, compared  to 5.609 for the realized variances and, although the sample kurtos is for all but one of

the stocks exceed the normal value of three, the assumption of normality is obviously much better in

this case.  This is also illustrated by Figure 2, in which we show estimates of the standardized

unconditional density for lvAA,t , along with the s tandard normal density.  The normal approximation is

very good.

This evidence is consistent with Taylor (1986) and French, Schwert and Stambaugh (1987),

who find that  the dis tribution of logarithmic monthly standard deviations cons tructed from the daily

returns within the month is close to Gaussian.  It is also directly in line w ith the recent evidence in

ABDL (2000) and Zumbach et al. (1999), which indicates that realized daily foreign exchange rate

volatilities constructed from high-frequency data are approximately log-normally distributed.  Taken

together, the results in Tables 1 and 2 imply that the unconditional distribution for the daily returns

should be w ell described by a continuous lognormal-normal mixture, as  advocated by Clark (1973) in

his seminal treatment of the Mixture-of-Distr ibutions-Hypothesis (M DH).   The results for the foreign

exchange rates in ABDL (1999c) corroborate this idea.

Our discussion thus far has centered on univariate return and volatility distributions.  However,

asset pricing, portfolio selection, and risk management decisions are invariably multivariate, involving

many assets,  with correlated returns.  The next section summarizes the unconditional distributions of

the pertinent realized covariances and correlations.

3.3  Covariances and Correlations

The realized covariance  matrix for the  thirty DJIA stocks contains  a total of 435 unique elements.  In

Table 3 we report the median value of the sample mean, s tandard deviation, skewness, and  kurtosis for

the covariances and correlations for each of the thirty stocks with respect to all of the twenty-nine other

stocks; i.e., the median value of the particular sample statistic across the 29 time series for stock i as

defined by Covi,j,t and Corri,j,t , where j = 1, 2, ..., 30, and j � i.

The median of the mean covariance across all of the stocks equals 0.373, while the typical

correlation among the DJIA stocks is around 0.113.  However , the realized covariances  and

correlations exhibit considerable variation across the different stocks and across time.  For instance, the

median of the average correlations for Union Carbide Corp. (UK) equals 0.080, whereas the median

for General Electric (GE) is as high as 0.150.



     17
  Similar graphs for all of the other correlations with respect to XON are available in ABDE (2 000).
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As with the realized variances, the distributions of the realized covariances are  extremely right

skewed and leptokurt ic.  Interestingly, however, the realized correlations appear  approximately

normally distributed.  In particular, the median kurtosis for all of the 435 realized covariances equals

61.86, whereas the median kurtosis for the realized correlations equals 3.037.  To illustrate this result,

Figure 3 graphs the unconditional distribution of the standardized realized correlations for AA with

respect to Exxon Corp. (XON), the alphabetically last ticker symbol of the thirty DJIA stocks.17  It is

obvious that the standard normal reference density affords a close approximation.

The unconditional distributions detailed above capture important aspects of the return

generating process, and they indicate that all of the realized volatilities vary importantly through time. 

In the next section, we explore the associated dynamic dependence.  Again, the use of realized

volatilities allows us to do so in a model-free environment, without reliance on complicated and

intractable parametric latent volatility models.

4.  Temporal Dependence, Long-Mem ory and Scaling

The conditional distribution of stock market volatility has been the subject of extensive research effort

during the past decade.  Here we solidify and extend the findings in that literature; in particular, we

reinforce the existence of pronounced long-run dependence in volatility and show that this effect is also

present in correlations.  Motivated by the results of the previous section, we focus on the  logarithmic

volatilities and correlations.

4.1  Logarithmic Standard Deviations

It is instructive first to consider the representative time series plot for lvAA,t  in Figure 4.  It is evident

that the ser ies is positively serially correlated, with distinct periods of high and low volatility read ily

identifiable.  This is, of course, a manifestation of the well documented volatility clustering effect, and

directly in line with the results reported in the extant ARCH and stochastic volatility literatures; see,

e.g., Lamoureux and Lastrapes  (1990)  or Kim and Kon (1994) for es timation of GARCH models for

individual daily stock returns.

To underscore the significance of this effect more generally, the first column in Table 4

summarizes the values of the standard Ljung-Box portmanteau test for the joint significance of the first



     18
  It is well known, however, that the outcome of standard unit root tests should be carefully interpreted with slowly

decaying processes; see, e.g., Schwert (1987).

     19
  The slow hyperbolic decay of the long-lag autocorrelat ions, or  equivalently the log-linear explosion of the low-frequency

spectrum, are both distinguishing features of a covariance stationary fractionally integrated, or I(d), process with 0 < d <½. 
Accordingly, let I(T j ) denote the sample periodogram estimate for the spectrum at the jth Fourier frequency, T j = 2Bj/T, j = 1,
2, ..., [T/2].  The GPH estimator for d is then based on the least squares regression,

log[ I(T j ) ]  =  $0  +  $1Alog(T j )  +  uj ,

where j = 1, 2, ..., m, and $d / -½A$$1 is asymptotical ly normal with a s tandard  error of BA(24Am)-1/2 .  For the estimates in Table 4
we took m  =  [ 1,366 ]

3/5  = 76, thus implying an asymptotic standard er ror of 0.074.  This particular choice was motivated by
Deo and Hurvich (1999), who show that the GPH estimator is consistent and asymptotically normal provided that m = O(T  -*),

where * < 4d A(1+4d)-1.
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22 autocorrelations of lvj,t (about one month of trading days).  The hypothesis of zero au tocorrelations is

overwhelmingly rejected for all thirty stocks.  The correlogram for AA in Figure 5 shows why.  The

autocorrelations are systematically above the conventional Bartlett ninety-five percent confidence band,

the upper range of which is given by the flat dashed line, even at the  longest displacement of 120 days

(approximately half a year).  Similarly slow decay rates have been documented in the literature with

daily time series of absolute or squared returns spanning several decades (e.g., Crato and de Lima,

1993, and  Ding, Granger and  Engle, 1993),  but the results in Figure 5 are noteworthy in that the

sample “only” spans five-and-a-half years.  In spite of this slow decay, the augmented Dickey-Fuller

tests, reported in the second column in Table 4, reject the null hypothesis of a unit root for all but four

of the stocks when judged by the conventional -2.86 five-percent critical value.18

In response to such findings, a number of recent studies have argued that the long-run

dependence in financial market volatility may be conveniently modeled by fractional integrated ARCH

or stochastic volatility models; see, e.g., Baillie, Bollerslev and Mikkelsen (1996), Breidt, Crato and de

Lima (1998) and Robinson and Zaffaroni (1998).  The log-periodogram regression estimates for the

degree of fractional integration, or d, for the realized logarithmic volatilities, given in the third column

in Table 4, are directly in line with these studies, and all thirty estimates are very close to the median

value of 0.349 (see Gew eke and Porter-Hudak, 1993, and  Robinson, 1995 , for formal discussion of the

log-periodogram regression, often called GPH, technique), and highly statistically significantly different

from both 0 and 1.19  It is also evident that the implied hyperbolic decay rate, j2 Ad-1, superimposed in

Figure 5, affords a close approximation to the correlogram for lvAA,t , and equally good fits obtain for

each of the 29 other stocks.



     20
  LeBaron (1999) has recently demonstrated that apparent sca ling laws ma y arise for short-memory, but highly

persistent processes.  In the present context, the hyperbolic decay in Figure 5 further buttresses the long-memory argument.

     21
  In a recent paper, C ampbell et a l. (2000) arg ue that althou gh the num ber of stocks required to ach ieve a given level

of diversification has increased noticeably over the past two decades, firm-specific volatility has also gone up, so that

individual stock return correlations have actually decreased over the same time period.

     22
  As in Figure 5, the flat dashed line denotes the upper range of the ninety-five percent Bartlett confidence band.
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Another implication of the long-memory associated with fractional integration concerns the

behavior of the variance of partial sums.  In particular, let [ xt ]h / Ej=1, .. ,h  xh A(t-1 )+ j , denote the h-fold

partial sum process for xt .  If xt is fractionally integrated, the partial sums will obey a scaling law of the

form Var( [ xt ]h ) = cAh2 d + 1.  Thus, given d and the unconditional variance at  one aggregation level, it is

poss ible to calculate the implied  variance for any other aggregation level.  To explore whether this

implication of fractional integration is satisfied by our equity volatilities, we plot in Figure 6 the

logarithm of the variance of the partial sum of the daily realized logarithmic standard deviations,

log(Var[lvAA,t ]h ), against the logarithm of the aggregation level, log(h), for h = 1,  2,..., 30.  The accuracy

of the fitted line, c + (2d+1)Alog(h), is striking.20  Moreover, the corresponding regression estimates for d

for all of stocks reported in the fourth column in Table 4, are generally very close to the GPH estimates.

4.2  Correlations

The estimation of parametric multivariate volatility models is notoriously difficult and, as a result,

relatively little is known about the temporal behavior of individual stock return correlations.21  The last

four columns of Table 4 provide our standard menu of summary statistics for the 435 series of daily

realized correlations.  In accordance with our convention in section 3.3 above,  each entry gives the

median value of that particular statistic across the thirty stocks.

Turning to the results, the time series plot for CorrAA,XON,,t  in Figure 7 suggests important

dependence and hence predictability in the correlations.  This impression is confirmed by the

correlogram in Figure 8 and the Ljung-Box portmanteau s tatistics for up to 22nd order serial correlation

reported in column 5 of Table 4.22  Moreover, as with the ADF tests for lvj,t , the tests for Corri,j,t 

reported in the sixth column systematically reject the unit root hypothesis.  Accordingly, the GPH

estimates for d are significantly different from zero (and unity), with typical values around 0.35.  The

corresponding hyperbolic decay rate for CorrAA,XON,,t  superimposed in Figure 8 and the scaling law  in

Figure 9, in which we plot log(Var[CorrAA,XON,,t ]h ) against  log(h), for h = 1,  2,..., 30, also reveal highly
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accurate fits.

Overall, our results thus far suggest that the univariate unconditional and conditional distr ibutions

for the realized correlations closely mimic the qualitative characteristics of the realized volatilities

discussed earlier.  We now turn to multivariate aspects of the distr ibutions, focusing first on issues related

to asymmetry in the distributions of the volatilities.

5.  Asymm etric Responses of Volatilities and Correlations

A number of previous studies have documented an asymmetry in the relationship between equity

volatility and returns,  i.e., positive returns have a smaller impact on future volatility than negative

returns of the same absolute magnitude.  Two competing explanations have been put forth to

rationalize this phenomenon.  According to the so-called leverage effect, a large negative return

increases financial and operating leverage, in turn raising equity return volatility (e.g., Black, 1976, and

Christie, 1982).  Alternatively, if the market risk premium is an increasing function of volatility, large

negative returns increase the future volatility by more than positive returns due to a volatility feedback

effect (e.g., Campbell and Hentschel, 1992).  We now re-evaluate  the underlying empirical evidence on

the basis of our realized volatility measures.

5.1  Logarithmic Standard Deviations

The use of realized volatilities allows for direct tests of asymmetries in the impact of past returns. 

However , in order to avoid confusing such effects w ith the strong serial correlation documented  in the

previous section, it is imperative that dynamic dependence be modeled properly.  The first four

columns in Table 5 report the regression estimates based on the fractionally differenced series,

 (1-L)dilvi,t = Ti + ( iAlvi,t-1 + NiAlvi,t-1 I(ri,t-1<0) + ui,t, (5)

where I(A) refers to the indicator function, and the values for di are fixed at the dGPH  estimates reported

in Table 4.  Also, to accommodate any additional short-run dynamics, the t-statistics are based on a

Newey-West robust covariance matrix estimator using 22 lags.

The median estimated value of ( i equals -0.023, and only one of the thirty t-statistics for ( i is

statistically significantly greater than zero, when judged by the standard 95-percent critical value of



     23
 Note that, as long as -( i <di , a negative value for ( i is fully consistent with  the strong volatility clusterin g effect

documen ted above, a s a series  expans ion of the fractiona l differencing op erator in equation (5 ) would imply tha t terms of

the form  di Alvi,t-1,  ½AdiA(1-di )Alvi,t-2, ... also enter the right-hand-side in the corresponding equation for lvi,t.
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1.645.23  Simultaneously, the median estimate for Ni equals 0.053, and 22 of the thirty t-statistics

exceed the five percent critical value.  These results are broadly consistent with the EGARCH model

estimates for daily individual stock returns reported by Cheung and Ng (1992) and Kim and Kon

(1994) , indicating a differential impact, or asymmetry, in the influence of past negative and positive

returns.

However , although statistically significant for most of the stocks, the economic importance of

this effect is marginal.  Consider Figure 10, which displays the scatterplots for the logarithmic standard

deviation for AA, lvAA,t  , against the lagged standardized returns, rAA,t-1 /vAA,t-1.  For visual reference, we

have superimposed the two regression lines corresponding to negative and positive returns. This figure

provides a direct analogy to the news impact curves for parametric ARCH models previously studied

by Pagan and Schwert (1990) and Engle and Ng (1993).  Although the news impact curve is more

steeply sloped to the left of the origin, the systematic effect is obviously not very strong; similar plots

for each of the 29 other stocks are available in ABDE (2000).  This parallels the findings for the four

individual stocks in Tauchen, Zhang and Liu (1996), who note that while asymmetry is a characterist ic

of the point estimates, the magnitude is quite small.  In contrast, the parametric volatility model

estimates reported in Nelson (1991), Glosten, Jagannathan and Runkle (1993) and Hentschel (1995),

among others, all point toward important asymmetries in market-w ide equity index returns , which calls

into question the leverage explanation and instead  suggests that the s ignificant asymmetries for the

aggregate market returns reported in these studies are most likely due to a volatility feedback effect

(see also the recent discussion of Bekaert and Wu, 2000).

5.2  Correlations

As noted above,  little is known about the distributions of individual stock return correlations.  If the

volatility asymmetry at the individual stock level is caused by a leverage effect , then a  change in

financial leverage is likely to also affect the covariances between different stocks, which in turn may

impact the correlations.  In this regard it is interesting to note that the different multivariate ARCH

models estimated in Kroner  and Ng (1998) generally result in statistically significant asymmetries in

the conditional covariance matrices for the weekly returns on a pair of well diversified small- and
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  In the context of international equity markets, Erb, Harvey and Viskanta (1994) and Longin and Solnik (1998) have also

argued that the cross-country correlations tend to be higher when the returns are negative.

     25
  Because of the fractional differencing operator on the left side of the equation, the actual coefficient values should be

carefully interpreted.
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large-stock portfolios.24  Similarly, Ang and Chen (2000) have recently demonstrated significant 

asymmetries in the correlations between the market and various industry, size, and book-to-market

sorted portfolios.  At the same time, the bivariate EGARCH models in Braun, Nelson and Sunier

(1995)  indicate that while the overall market volatility responds asymmetrically to positive and

negative shocks, monthly conditional (time-varying) betas for size- and industry-sorted portfolios are

mostly symmetric.  More recently, however, Cho and Engle (1999) report statistically significant

asymmetries in daily EGARCH betas for a small set of individual stocks, suggesting that the apparent

symmetry in the monthly portfolio betas in Braun, Nelson and Sunier (1999) may be due to cross-

sectional and/or temporal aggregation effects.

In light of these findings, we now extend the analysis above to test for asymmetries in the

realized daily correlations.  In particular, the last three columns in Table 5 report the results from the

regressions,

(1-L)di,jCorri,j,t = Ti,j + ( i,jA( lvi , t-1  + lvj,t-1 ) + 2i,j A( lvi , t-1  + lvj,t-1 )AI(ri,t-1Arj,t-1>0)

 (6)

   + Ni,jA( lvi , t-1  + lvj,t-1 )A I(ri,t-1<0,rj,t-1<0)} + ui,j,t ,

where, as before, the di,j are fixed at the dGPH   estimates reported in Table 4, and the t-statistics are

based on a Newey-Wes t HAC covar iance matrix estimator  using 22 lags.  Note that ( i,j captures  the

impact of the past realized volatilities on the correlations, 2i,j gives the additional influence when the

past returns are of the same sign, while the overall impact of the past volatility if both of the returns are

negative is  measured by ( i,j + 2i,j +Ni,j.  This particular formulation therefore facilitates a direct test of

asymmetry based on the t-statistic for Ni,j.
25

Turning to the results, most of the 435 estimates for Ni,j are indeed positive.  However, less

than half are s ignificant at the usual 95-percent level when judged by the tN-statistics .  This relatively

weak asymmetry is underscored by Figure 11,  which plots the daily realized correlations for AA and
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  Embrechts, McNeil and Strauman (1999) have recently advocated the use of copulas and rank statistics when

measuring dependence in  non-normally distributed financia l data.  However, because the unconditional distr ibutions that we
explore in Table 6 are all approximately Gaussian, the linear correlation affords the most natural measure in the present
context.
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XON, CorrAA,X ON,t , against the average lagged standardized returns, ½A(rAA,t-1/vAA,t-1 + rXON,t-1/vXON,t-1). 

As with the realized volatility news impact curve in Figure 10,  the line corresponding to the sum of the

two lagged returns  being negative is slightly more steeply sloped than the line corresponding to the

sum of the lagged returns being positive.  However, the systematic influence of this effect is clearly not

very important.  Similar graphs obtain for all of the other stocks (see ABDE, 2000).

6.  Multivariate Unconditional Volatility Distributions

Here we investigate various aspects of the multivariate unconditional volatility distributions.  Many key

economic and financial, as well as  regulatory, questions  depend upon the  perceived commonality in

volatility movements across assets and markets.  Most  of the existing evidence concerning the extent of

such co-movements relies on very specific parametric volatility models.  The realized volatility

measures, in contrast, allow for a direct assessment of the relationship between the individual standard

deviations and correlations.

We begin in Figure 12 w ith a scatterplot of the realized daily logarithmic standard deviation of

AA, lvAA,t , against the logarithmic standard deviation of XON, lvXO N,t.  It is evident that the two

volatilities  move together.  This  feature also holds for the other stocks.  From the first column in Table

6, the median corre lation between lvi,t and lvj,t across the 435 unique pairw ise combinations equals

0.205.26  As discussed further below, this tendency of return volatility to vary in tandem across

individual stocks is consistent with factor structure, as  in Diebold and Nerlove (1989), Tauchen and

Tauchen (1999), and others.

Next, in Figure 13 and the second column of Table 6, we document the presence of what

might be termed a volatility-in-correlation effect.  In particular, in Figure 13 w e plot the average

realized daily correlations for AA, (1/29)AE i CorrAA,i ,t for i� AA, against the logarithmic standard

deviation for AA,  lvAA,t .  As for the foreign exchange rates  analyzed in ABDL (1999a), a strong

positive association is evident.   This is  further underscored by the resu lts in the second column in

Table 6.  The median correlation between all of the individual correlations, Corri,i,t, and the

corresponding logarithmic standard deviations, lvh,t for i=h or j=h, equals 0.150.  While similar
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 Similar observations have recently been made in the context of international equity index returns by Solnik, Boucrelle

and Le Fur (1996).  This also motivates the switching ARCH model estimated by Ramchand and Susmel (1998), who argue
that the correlations between the U.S. and other world markets are on average 2 to 3.5 times higher when the U.S. market is
in a high variance state as compared to a low variance state.
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volatility-in-correlation effects have been documented for other broadly defined market indexes, our

direct model-free measurements of realized correlations and volatilities are very different from the

procedures previously entertained in the literature, and as such our findings provide additional

empirical support for the phenomenon.27  As shown below, a volatility effect in correlation is also to be

expected within a factor structure, just as with the positive correlation across volatilities (see also

Ronn,  Sayrak, and Tompaidis,  1998).  At the same time, the specific manifestation of the effect is

model dependent, which renders direct predictions about magnitudes impossible within our

nonparametric setting.  Nonetheless, the strength of the effect is noteworthy and provides a benchmark

measure that candidate models should be able to accommodate.  At the least, it suggests that standard

mean-variance efficiency calculations based on constant correlations may be misguided.

Our final look at the multivariate volatility distributions in Figure 14 shows the scatter plot of

average realized daily correlations for AA against the average realized correlations for XON; i.e.,

(1/28)A E i CorrAA,i ,t versus (1/28)A E i CorrXO N,i,t for i � AA and i � XON.  The strong association between

the realized daily correlations is truly striking.  Clearly, there is a powerful commonality in the co-

movements across the individual stocks.  The last column of Table 6 tells the same story.  The smallest

correlation among the 82,215 (=30@29@28@27/8) unique correlations is as high as 0.093, and the median

correlation between the daily time series of realized correlations equals 0.308.  Again, this seems to

suggest that there  is a lower dimensional factor structure driving the second moment character istics of

the joint distribution, to which we now turn.

7.  Latent Factor Structure in Volatility

The notion of a low-dimensional factor structure is central to modern asset pricing theory (e.g.,

Cochrane, 2000).  We briefly explore the properties of realized  volatility in the  context of a s imple

multivariate model with an explicit factor structure. We focus on three of the empirical results noted

above: the tendency for volatilities to move together, the tendency for correlations to be high when the

corresponding volatilities are high, and the tendency for an arbitrary correlation to be high when other

correlations are also high.



- 19 -

Consider an N-dimensional diffusion for log price pt with the single-factor representation

dpt  =  8 Ft dWt   +  S dVt ,  (7)

where 8 is an N-dimensional vector of loadings on the common volatility factor Ft dWt , Vt is an N-

dimensional standard Brownian motion with mutually-independent elements, and the diagonal matrix

S contains N individual asset-specific volatilities.  Note that each element of the N-vector of returns dpt

is driven in part by a single latent factor with stochastic volatility, and in part by an orthogonal

idiosyncratic noise.

Given the simple model (7), the N-dimensional vector of daily returns is

 rt + 1 / pt + 1 - pt = I8 Ft dWt + IS dVt . (8)

Letting E t denote the corresponding N×N covariance matrix conditional on the sample path filtration

generated by the latent volatility process, , the element  of E t corresponding to the covariance

between the ith and jth elements  of rt + 1, say { rt+1 }i and { rt+1 }j , is

{ E t }i,j   /  { 8 8' }i,j I F t
2

+J dJ +  S ij. (9)

Hence, the conditional variances and covariances inherit their dynamics from Ft, a fact with important

implications for comovements among volatilities and correlations.

In order to relate this factor model directly to daily realized  volatilities  and correlations, it is

convenient to restate the system in discrete time. The continuous-time latent factor volatility model (7)-

(9) maps directly into a discrete-time model that has been studied by a number of authors, including

Diebold and Nerlove (1989) , Harvey, Ruiz and Shephard (1994), King, Sentana and Wadhwani

(1994), Fiorentini, Sentana and Shephard (1998), and Jacquier and Marcus (2000):
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(10)

where , and t = 1, ..., T.

It is readily established that volatilities tend to move together in such a factor model. 

Concretely, the ith and jth time-t conditional variances, for arbitrary i and j, are

(11)

Note in part icular  that the conditional variances, which are themselves covariance stationary stochastic

processes , are  linear  functions of latent volatility  and are therefore driven entirely by movements in

volatility.  The unconditional covariance between  and  is

(12)

which is unambiguously positive.  Hence the unconditional correlation between  and  is also

unambiguously positive.

It is also readily seen why a factor structure induces high correlations in situations of high

volatility.  The ijth time-t conditional covariance is

(13)

so the conditional correlation is

 . (14)
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Note the conditional variance effect in conditional correlation:  if , then 

.  Moreover,  and .  

Finally, it is straightforward  to verify that a factor structure implies that if the correlation

between an arbitrary pair of stocks is high, the correlations between other stocks tend to be high also. 

In fact, equation (14) makes clear that, so long as all stocks load positively off the common factor, all

pairwise corre lations are increasing in volatility.  Hence, as volatility moves, the pairwise correlations

all move as well, and in the same direction.

In closing, we note that it is easy to extend these results to richer factor structures, including

models with dynamics in S and models with multiple factors, as in recent work by Lo and Wang

(2000) on modeling volume, which is intimately rela ted to the modeling of volatility.

8.  Conclusions

We exploit direct model-free measures of realized daily volatility and correlation obtained from high-

frequency intraday stock prices  to confirm, solidify and extend existing characterizations.  Our findings

are remarkably consistent with exis ting work such as ABDL (1999a, b)  and Ebens (1999a).  This  is

true of the right-skewed distributions of the variances and  covariances, the normal distributions of the

logarithmic standard deviations and correlations, the normal distributions of daily returns standardized

by realized standard deviations, and the strongly persistent dynamics of the realized volatilities and

correlations, well-described by a stationary fractionally integrated process and conforming to scaling

laws under temporal aggregation.  The striking congruence of all findings across asset classes (equity

vs. forex) and underlying method of price recording (transaction prices vs.  averages of logarithmic bid

and ask quotes) suggests that the results reflect fundamental attributes of speculative returns.

Our analysis is noteworthy not only for confirming and checking robustness of existing results,

but also for achieving significant extensions, facilitated throughout by the model-free measurement of

realized volatility and correlation afforded by high-frequency data, and the simplicity of our methods,

which enable straightforward high-dimensional correlation estimation.  We shed new light on some

distinct properties of equity return dynamics and illustrate them, for example, via the news impact

curve.  We confirm the existence of an asymmetric relation between returns and volatility, with
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negative returns being associated with higher volatility innovations than positive returns of the same

magnitude.  However, the effect is much weaker at the individual stock level than at the aggregate

market level, thus lending support to a volatility risk premium feedback explanation rather than a

financial leverage effect.  Moreover, we find a pronounced volatility-in-correlation effect, thus limiting

the benefits of portfolio diversification when they are needed most.  The strength of this relation

suggests that suboptimal decisions will result from analysis based on the premise of a constant or fixed

variance-covariance structure.  Finally, the volatility-in-correlation effect, the strong positive

association between individual stock volatilities, and the corresponding strong relationship between

contemporaneous stock correlations should motivate additional work on the development of

parsimonious factor models for the covariance structure of stock returns.

We envision several applications of the approach adopted in this paper.  For example, the

direct measurement of volatilities and correlations should alleviate the errors-in-variables problem that

plagues much work on the implementation and testing of the CAPM, because realized betas may be

constructed directly from the corresponding realized  covariances and standard deviations.  Multi-factor

models based on factor replicating portfolios are similarly amenable to direct analysis.  As a second

example, the effective observability of volatilities and correlations facilitates direct time-series

modeling of portfolio choice and risk management problems under realistic and testable distributional

assumptions.  Work along these lines is currently being pursued in Andersen, Bollerslev, Diebold and

Labys (1999d).   Finally, our methods will also facilitate direct comparisons of volatility forecasts

generated by alternative models and procedures.  Such explorations are underway in Ebens (1999b)

and Ebens and de Lima (1999).
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Table 1
Unconditional Daily Return Distributions

_____________________________________________________________________________

            ri,t          ri,t /vi,t

_______________________________ _______________________________

  Stock Mean St.Dev. Skew. Kurt. Mean St.Dev. Skew. Kurt.
_____________________________________________________________________________
  Min. -0.059 1.149 -0.221 3.810 -0.033 0.623 -0.054 2.734
  0.10 -0.024 1.222 -0.022 3.964 -0.013 0.697  0.037 2.821
  0.25  0.007 1.275  0.035 4.236  0.002 0.772  0.081 3.005
  0.50  0.041 1.419  0.159 5.416  0.024 0.806  0.113 3.129
  0.75  0.071 1.538  0.231 6.587  0.048 0.852  0.164 3.302
  0.90  0.084 1.704  0.487 8.462  0.060 0.928  0.228 3.414
  Max.  0.140 1.833  0.564 11.98  0.099 0.960  0.322 3.848
 
  Mean  0.036 1.438  0.172 5.908  0.025 0.808  0.125 3.156
  St.Dev.  0.046 0.181  0.192 2.016  0.030 0.080  0.081 0.251
_____________________________________________________________________________

Note: The table summarizes the daily return distributions for  the 30 DJIA stocks, ri,t.  The sample covers
the period from January 2, 1993 through May 29, 1998, for a total of 1,366 observations.  The realized
daily volatilities, vi,t , are calculated from five-minute intraday returns, as detailed in the main text.

Table 2
Unconditional Daily Volatility Distributions

_____________________________________________________________________________

             v j
2

,t            lvi,t

_______________________________       ________________________________

  Stock Mean St.Dev. Skew. Kurt. Mean St.Dev. Skew. Kurt.
_____________________________________________________________________________
  Min. 1.899 1.159 1.451 5.789 0.239 0.225 -0.537 2.282
  0.10 2.009 1.348 2.306 11.98 0.280 0.228 -0.308 3.245
  0.25 2.539 1.665 3.516 27.84 0.403 0.238 -0.015 3.475
  0.50 3.108 1.988 5.609 66.16 0.476 0.264  0.192 3.885
  0.75 3.390 2.458 8.322 142.6 0.544 0.280  0.465 4.758
  0.90 4.315 4.346 18.89 518.0 0.664 0.294  0.777 5.136
  Max. 6.854 6.319 20.70 567.8 0.894 0.353  1.023 6.620

  Mean 3.178 2.355 7.433 143.6 0.478 0.263  0.222 4.101
  St.Dev. 1.146 1.203 5.664 176.8 0.150 0.029  0.388 0.870
____________________________________________________________________________

Note:  The table summarizes the distributions of the daily volatilities for the 30 DJIA stocks.  The realized
daily variances, v j

2
,t, and logarithmic standard deviations, lvi,t / log(vi,t), are calculated from five-minute

intraday returns as detailed in the main text.



Table 3
Unconditional Daily Covariance and Correlation Distributions

_____________________________________________________________________________

        Covi,j,t         Corri,j,t

________________________________     ________________________________

  Stock Mean St.Dev.  Skew.  Kurt. Mean St.Dev. Skew. Kurt.
_____________________________________________________________________________
  Min. 0.217 0.362 -4.714  8.411 0.062 0.128 0.008 2.552
  0.10 0.284 0.508  2.843  22.49 0.085 0.138 0.123 2.832
  0.25 0.318 0.580  3.738  33.97 0.098 0.142 0.180 2.939
  0.50 0.372 0.695  5.223  61.86 0.117 0.149 0.253 3.044
  0.75 0.426 0.819  7.704  120.6 0.136 0.157 0.312 3.177
  0.90 0.492 0.968  12.21  258.3 0.159 0.167 0.381 3.321
  Max. 0.697 1.899  24.91  773.4 0.221 0.196 0.568 3.668

  Mean 0.379 0.727  6.462  108.1 0.120 0.151 0.251 3.068
  St.Dev. 0.081 0.206  4.195  125.4 0.029 0.012 0.099 0.199
_____________________________________________________________________________

Note: The table summarizes the distributions of the 435 (=30@29/2) unique realized covariances and
correlations for the 30 DJIA stocks.  The realized daily covariances and correlations are calculated from
five-minute intraday returns, as detailed in the main text.

Table 4
Dynamic Volatility Dependence

_____________________________________________________________________________

          lvi,t        Corri,j,t

_______________________________       ________________________________

  Stock  Q22 ADF dGPH dS  Q22 ADF dGPH dS

_____________________________________________________________________________
  Min.   982 -4.850 0.263 0.286  155 -5.351 0.117 0.177
  0.10  2080 -4.466 0.284 0.334  395 -4.566 0.278 0.240
  0.25  2966 -3.918 0.317 0.359  660 -4.065 0.326 0.271
  0.50  4715 -3.327 0.349 0.386 1169 -3.542 0.380 0.308
  0.75  6075 -2.992 0.392 0.400 2167 -2.983 0.439 0.347
  0.90  6921 -2.676 0.409 0.412 3431 -2.571 0.486 0.376
  Max. 14254 -2.178 0.416 0.463 7209 -1.917 0.600 0.422

  Mean  4729 -3.450 0.350 0.377 1267 -3.548 0.381 0.308
  St.Dev.  2556  0.665 0.046 0.038 1267  0.746 0.081 0.051
_____________________________________________________________________________

Note: The table summarizes the time series dependence in the 30 realized logarithmic standard deviations
and 435 realized correlations for the DJIA stocks.  The table reports the Ljung-Box portmanteau test for
up to 22nd order autocorrelation, Q22, the Augmented Dickey-Fuller test for a  unit root involving 22
augmentation lags, ADF, the Geweke-Porter-Hudak estimate for the degree of fractional integration, dGPH,
and the estimate for the degree of fractional integration based on the scaling-law, dS.



Table 5
News Impact Functions

_____________________________________________________________________________

         lvi,t                       Corri,j,t

________________________________ ______________________________

  Stock  (  t(  N  tN    t(    t2    tN
_____________________________________________________________________________  
  Min. -0.092 -4.098 0.007 0.236  -5.198  -2.060  -1.299
  0.10 -0.067 -2.930 0.022 0.908  -3.015  -0.911   0.162
  0.25 -0.049 -1.737 0.028 1.224  -2.451  -0.288   0.840
  0.50 -0.023 -0.754 0.053 2.277  -1.660   0.333   1.406
  0.75  0.000  0.008 0.067 2.874  -0.929   1.051   2.061
  0.90  0.026  1.039 0.081 3.753  -0.118   1.646   2.815
  Max.  0.051  1.833 0.130 4.314   2.444   3.727   4.395

  Mean -0.021 -0.825 0.051 2.246  -1.636   0.387   1.450
  St.Dev.  0.035  1.455 0.027 1.067   1.180   0.988   1.026
_____________________________________________________________________________

Note: The table reports the OLS regression estimates for the news impact functions for the fractionally
differenced logarithmic standard deviations, (1-L)dilvi,t = Ti + (iAlvi,t-1 + NiAlvi,t-1 AI(ri,t-1<0) + ui,t, and
correlations, (1-L)di,jCorri,j,t = Ti,j + (i,jA( lvi,t-1 + lvj,t-1 ) + 2i,jA( lvi,t-1 + lvj,t-1 )AI(ri,t-1Arj,t-1>0) + Ni,jA (lvi,t-1 + lvj,t-

1)AI(ri,t-1<0, rj,t-1<0)} + ui,j,t , where the values for di and di,j are fixed at  the dGPH estimates reported in Table
4.  The t-statistics are based on a Newey-West HAC covar iance matrix estimator  with 22 lags.

Table 6
Multivariate Unconditional Volatility Distributions

_____________________________________________________________________________

  Stock Corr( lvi,t ,lvj,t ) Corr( Corri,j,t ,lvi,t ) Corr( Corri,j,t ,Corrh,k,t )
_____________ ________________ ___________________

  Min -0.327 -0.209 0.093
  0.10 -0.016 -0.086 0.230
  0.25  0.081  0.032 0.265
  0.50  0.205  0.150 0.308
  0.75  0.321  0.236 0.358
  0.90  0.439  0.296 0.407
  Max.  0.641  0.536 0.601

  Mean  0.206  0.130 0.314
  St.Dev.  0.172  0.148 0.069
_____________________________________________________________________________

Note:  The column labeled Corr( lvi,t ,lvj,t ) gives the distr ibution of the 435 (=30@29/2) unique correlations
between the 30 daily realized logarithmic volatilities for the DJIA stocks.  The second column, Corr(
Corri,j,t ,lvi,t ), refers to the distr ibution of the 870 (=30@29) unique correlations between the daily realized
correlations and the corresponding logarithmic standard deviations.   The last column denoted Corr( Corri,j,t

,Corh,k,t ) gives the distr ibution of the 82,215 (=30@29@28@27/8) unique correlations between the realized
daily correlations.



Figure Titles and Notes

Figure 1

Unconditional Distribution of Daily Standardized Returns

The figure shows the unconditional distributions of the standardized daily returns on AA, rAA,t /vAA,t.  The
sample period extends from January 2, 1993 through May 29, 1998, for a total of 1,366 daily
observations.  The realized volatilities are calcula ted from five-minute intraday returns.  The dotted line
refers to the standard normal density.

Figure 2

Unconditional Distribution of Standardized Daily Logarithmic Standard Deviations

The figure shows the unconditional distribution of the standardized daily realized logarithmic standard
deviations for AA, lvAA,t / log(vAA,t ).  The realized volatilities are calculated from five-minute intraday
returns.  The dotted line refers to the standard normal density.

Figure 3

Unconditional Distribution of Standardized Daily Correlations

The figure shows the unconditional distribution of the standardized daily realized correlations between AA
and XON, CorrAA,XON ,,t.  The realized correlations are calculated from five-minute intraday returns.  The
dotted line refers to the standard normal density.

Figure 4

Time Series of Daily Logarithmic Standard Deviations

The figure shows the time series of the daily realized logarithmic standard deviations for AA, lvAA,t /
log(vAA,t ).  The realized volatilities are calculated from five-minute intraday returns.

Figure 5

Sample Autocorrelations for Daily Logarithmic Standard Deviations

The figure shows the sample autocorrelations for the daily realized logarithmic standard deviations for AA,
lvAA,t / log(vAA,t ), out to a displacement of 100 days.  The realized volatilities are calculated from five-
minute intraday returns.  The dotted line gives the minimum-distance estimates of the hyperbolic decay
rate, cAh2d-1 .  The dashed line give the upper range of the conventional Bartlett ninety-five percent
confidence band.



Figure 6

Volatility Scaling Plots for Daily Logarithmic Standard Deviations

The figure shows the logarithm of the variance of the partial sum of the daily realized logarithmic standard
deviations fro AA, log(Var[lvAA,t ]h ), plotted against the logarithm of the aggregation level, log(h), for h =
1,  2,..., 30.  The sample period extends from January 2, 1993 through May 29, 1998, for a total of 1,366
observations at the daily level.  The daily realized volatilities are calculated from five-minute intraday
returns.   The dotted line refers to the least-squares estimates of the regression line c + (2d+1)Alog(h).

Figure 7

Time Series of Daily Correlations

The figure shows the time series of daily realized correlations between AA and XON, CorrAA,XON ,,t.  The
sample period extends from January 2, 1993 through May 29, 1998, for a total of 1,366 daily
observations.  The realized correlations are calculated from five-minute intraday returns.

Figure 8

Sample Autocorrelations of Daily Correlations

The figure shows the sample autocorrelations for the daily realized correlations between AA and XON,
CorrAA,xON ,t.  The realized correlations are calculated from five-minute intraday returns.  The dotted line
gives the minimum-distance estimates of the hyperbolic decay rate, cAh2d-1 .  The dashed line give the upper
range of the conventional Bartlett ninety-five percent confidence band.

Figure 9

Volatility Scaling Plots for Daily Correlations

The figure shows the logarithm of the variance of the partia l sum of the daily realized correlations between
AA and XON, i.e., log(Var[CorrAA,XON,,t ]h ), plotted against the logarithm of the aggregation level, log(h),
for h = 1,  2,..., 30.  The sample period extends from January 2, 1993 through May 29, 1998, for a total of
1,366 observations at the daily level.  The daily realized correlations are calculated from five-minute
intraday returns.   The dotted line refers to the least-squares estimates of the regression line c +
(2d+1)Alog(h).

Figure 10

News Impact Functions for Daily Logarithmic Standard Deviations

The figure shows the scatterplot of the daily realized logarithmic volatilities for AA, lvAA,t, against the
lagged standardized returns, rAA,t-1 /lvAA,t-1 .  The solid lines refer  to the estimated regression lines for the



lagged returns being negative or positive.  The realized volatilities are calculated from five-minute intraday
returns. 

Figure 11

News Impact Functions for Daily Correlations

The figure shows the scatterplots for the daily realized correlations between AA and XON, CorrAA,XON ,t,
against the average lagged standardized returns, ½A(rXON,t-1 /vXON,t-1  + rj,t-1/vj,t-1 ).  The solid lines refer  to the
estimated regression lines for the sum of the lagged returns being negative or positive.  The realized
correlations are calculated from five-minute intraday returns.

Figure 12

Scatterplot of Daily Realized Logarithmic Standard Deviations

The figure shows the scatterplot of realized daily logarithmic standard deviations for AA, lvAA,t, against the
logarithmic standard deviations for XON, lvXON,t .  The realized volatilities are calculated from five-minute
intraday returns.

Figure 13

Scatterplot of Average Daily Realized Correlations versus Logarithmic Standard Deviations

The figure shows the scatterplot of the average realized daily correlations for AA, (1/29)AE i CorrAA,i ,t and
i� AA, against the logarithmic standard deviations for AA,  lvAA,t.  The realized volatilities and correlations
are calculated from five-minute intraday returns.

Figure 14

Scatterplot of Average Daily Realized Correlations

The figure shows the scatterplot of the average realized daily correlations for AA against the average
realized correlations for XON; i.e., (1/28)A Ei CorrAA,i,t  against (1/28)A Ei CorrXON,i,t  for i � AA and i �
XON.  The realized correlations are calculated from five-minute intraday returns.












