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The Dynamics of Car Sales: A Discrete Choice
Approach

Jérome Adda and Russell Cooper

1 Introduction

‘This paper focuses on understanding the behavior of durable consumption
expenditures. As is well known, spending on durables is an important com-




ponent of aggregate spending and one that fluctuates considerably over the
business cycle.

From the aggregate perspective, Mankiw [1982] presents evidence that
the permanent income hypothesis (PIH) model of durable expenditures is
inconsistent with observed data. In particular, he argues that in a single
agent choice problem in which utility is a quadratic function of the stock
of durables, the optimal choice of the agent implies that expenditures on
durables will follow an ARMA(1,1) process, where the MA component is pa-
rameterized by the rate of durable goods depreciation. Mankiw estimates an
ARMA(L,1) time series representation of quarterly durable goods expendi-
tures for the US. In contrast to the predictions of the theory, he finds that
durable goods expenditures follow an AR(1) process. Put differently, Mankiw
estimates the rate of depreciation of durable goods to be 100%. We call this
finding the "Mankiw puzzle”.

From the household perspective, Lam [1991] reports that households only
occassionally adjust their stock of durables. Consistent with this finding,
Bar-Tlan and Blinder [1988,1992], Bertola and Caballero [1990] and Caballero
[1590.1993] view aggregate ahservations on durable purchases as the outcome
of the aggregation over heterogeneous micrceconomic agents. Taken together,
these papers certainly suggest that a model of heterogeneity and discrete
adjustment can qualitatively match relevant parts of the data.

However, there is no characterization of the time series properties of
durable purchases offered in these papers and thus the "Mankiw puzzle”
remains open.! So, the goal of this paper is to study the determinants of the
time series representation of durable expenditures in an explicit dynamic,
discrete choice framework: ean a dynamic discrete choice representation of
nousehold durable purchases produce the observed time series behavior of
durable expenditures?

We address this question by looking specifically at two distinct features

'For example, the final section of Caballero [1993], entitled "ARMA Representation
and Impulse Responses” displays impulse response funcitons for Cars and Furniture and
states that "The shapes are broadly consistent with the description given in the paper.”
Whether or aot the estimated model can produce an ARMA representation close to that
reported by Mankiw is not specifically addressed.

In a related, independent study, Attanasio [1997] estimates (S,s) rules for automobile
purchases using microeconomic data. After estimating the model, he undertakes an eval-
uation of the aggregate time series implications of the model, as we do in this paper. He
finds that if there is more persistence in the shocks to the target relative to the persistence
in the shocks to the band, then the model is able to match observed aggregate behavior.




of spending on an important component of consumer durables, aggregate
car sales. First, we confirm the ARMA(1,1) representations that underlie
the "Mankiw puzzle” for our various measures of automobile sales. Second,
we estimmate and study a VAR representation of automabile sales, prices and
income. Here we find that the impulse response function displays dampenned
oscillations in response to ap innovation in income. So, besides confronting
the Mankiw puzzle for car sales, we ask whether an aggregated discrete choice
model can match and explain this rich time series response to an income
shock.

This paper builds upon the framework of Adda and Cooper [2000] who
investigate the effects of scrapping subsidies on car purchases. An important
difference between this paper and the existing literature is that the ermpiri-
cal implications are drawn directly from the dynamic optimization problem
without imposing any structure directly on agents’ decision rules. In par-
ticular, while our medel of durable replacement is of the optimal stopping
variety, we do not specify (S,5) bands directly nor do we find it necessary to
specify a "desired” stock of durables in our estimation. We do this for two
reasons. First, we find that empirically the PIH assumptions which under-
lies this "desired stock” approach are not supported by the data.? Second,
deriving the optimal durable expenditure policy from a dynamic optimiza-
tion framework and then using this same structure for estimation is more
consistent theoretically.?

We find that the aggregate model based upon the dynamic optimization
of heterogeneous microeconomic units can "explain” both the AR and MA
parts of Mankiw’s regression results. Further, a comparison of the impulse
response functions generated by the models with that obtained through an
unrestricted VAR reveals why a PIH model has difficulty matching the data.
Suppose that there is an income shock. In the data, the initial burst of sales
is followed by a reduction in sales and then dampened oscillations (relative
to the initial level). It is precisely these endogenous fluctuations in sales

?We argue that the finding, reported in Caballero [1990], that an ARMA(1,q) repre-
sentation of durable expenditures reconciles the evidence and the PIH model is not robust
across samples and the choice of q.

3These two points are, of course, related. Since we do not have convincing evidence
that the PIH prediction holds even in the "long-run”, linking the estimation to a target
seems unwarranted. Qur approach to estimation through a characterization of the com-
plete household dynamic optimization overcomes this problem as we do not require the
specification of a target.




that the estimated PIH model misses. It is captured in our model by the
interaction of a state dependent hazard function and the evolution of the
¢ross sectional distribution of car vintages. ‘

We then use our structure to uncover the sources of these dynamics. In
general, the dynamic discrete choice structure generates variations in aggre-
gate sales from two sources: fluctuations in the replacement probability and
the evolution of the cross sectional distribution of car vintages. We find
that most of the variation in car sales is due to shocks which influence the
probability of replacement. Put differently, the endogenous evolution of the
cross sectional distribution contributes surprisingly little to the time series
variation of car sales.*

2 Evidence on Aggregate Durables Dynamics

This section presents evidence on the behavior of aggregate durables. We
extend the ARMA(1,1) representation stressed by Mankiw in three ways.
First our sample period is longer. Second we study both the U.S. and France.
Third, we focus on both total durables and cars. In addition, we estimate a
VAR for both the U.5. and France and thus characterize the joint behavior of
prices, income and car sales. These two pieces of evidence provide empirical
motivation for our work and are then used in assessing our model.

2.1 ARMA(1,1) Representation

The starting point of the analysis is the representative agent model in which
durables expenditures is a continuous choice variable. This model provided
the basis for the initial empirical literature. Following Hall [1978], Mankiw
[1982] extended the permanent income hypothesis model to account for dura-
bility. In this model, the agent only consumes a durable good and faces an
uncertain income. If the utility function is quadratic, then expenditures on
durables e; by the representative household follow:

rr1 = Ocrg + 18, + £¢41 — (1 — &)z (1)

4This is similar to the findings reported in Cooper, Haltiwanger and Power [1999)
which studied the implications of machine replacement for aggregate investment. This
finding i nof invonsisteny with the emphasis placed on the movement of the cross sectional
distribution in Adda and Cooper [2000] since in that exercise there was a policy action
that had & significant effect on the cross sectional distribution of vintages.
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where § is the depreciation rate of the stock of durables and £, is the inno-
vation to income. Using aggregate quarterly U.S. data on durables, Mankiw
[1982] shows that the series are better described by an AR(1) process than
an ARMA(1.1).

Working with annual series for France and the US, we report very similar
results in Table 1. The rows pertain to both aggregated durable expenditures
and estimates based on cars. For the latter, we have data on both total
expenditures on cars (for France) and new car registrations. The columns
refer to estimates with and without the removal of a linear trend.

Table 1. ARMA(1,1) Estimates on US and French Data

Specification No trend Linear trend

o1 [ a; [
US durable expenditures 1.00(.03) 1.5 {.15) 0.76 (0.12)  1.42(0.17)
US car registration 0.36{.29) 1.34 (.30) 0.33 {0.30)  1.35(0.31)
France durable expenditures  0.98 (0.04] 1.20 {0.2) 0.56 (0.24) 1.2 (0.36)
France car expenditures COF{006] 1.3 (0.2) 0.49 (0.28)  1.20 (0.32)

France car registrations 0.85{0.13}] 1.06 (0.26) 0.41 (0.4) 1.20 (0.41}

Notes: Annwal data. For the US, source TRED database, 195%1-1907:3. French data: source
INSEE, 1970:1-199%:2. US registration: 19638.1995.

For both countries, the estimated rate of depreciation is quite high. Clearly
the hypothesis that the rate of depreciation is close to 100% per year would
not be rejected for most of the specifications. Further, the results are ro-
bust to the detrending method (we have also tried exponential trends and
obtained very similar results). For France, the data exhibit a trend so we
get different values for the AR coefficient.® Thus Mankiw’s " puzzle” seems
to be robust across categories of durables, countries, time periods and the
method of detrending. That is, under the null hypothesis of the PTH model,
the estimated rate of depreciation is quite high.

SNote that contrary to the argument in Bar-Ilan and Blinder [1988,1992], sales and
expenditures have very similar time series properties.This may reflect the fact that varia-
tions in expenditures are largely a consequence of the extensive margin (to buy a car or
not) rather than the intensive margin (how much to spend on a given car). Leahy and
Zeira [1999] present a model in which income variations lead solely to changes in decisions
on the extensive margin.




2.2 Unrestricted VAR

A second and more general way of representing durable expenditures is
through a VAR. While focusing on ARMA representations, much of the lit-
erature on durable expenditures has ignored the joint dynamics of durables,
income and prices over time. Here we present results using a VAR composed
of automobile sales, automobile prices and income. While this representation
has no structural interpretation, it provides a beiter characterization of the
dynamics of sales. We estimate VAR models for sales for both the US and
France. The optimal number of lags were chosen with an Akaike criterion.
The optimal lag lengths are one for the US and three for France. All series
were detrended by filtering logged variables with a Hodrick-Prescott filter.
For the US, the sample period is 1960-1994, and for France, 1968-96. From
the estimated VAR, we compute the impulse response functions of sales,
prices and income to a shock to income. The variables have been ordered in
the following way: income, prices and sales.

The impulse responses for new car registrations, prices and income, both
for France and the US are reported in Figure 1. The first two graphs dis-
plays the Tesponse of sales to a shock on income. In both countries, after an
initial increase, the sales are characterized by dampened oscillation around
the baseline. These oscillations could arise for two reasons. First, as em-
phasized in the literature on non-convex adjustment costs with heterogenous
agents, the endogenous evolution of the stock of cars can potentially produce
replacement cycles and thus oscillations in sales. A second explanation is
that income and prices are serially correlated and have some cross dynam-
ics. Indeed, the next four graphs of Figure 1 show that prices and income
also oscillate around baseline. We return to an evaluation of the relative
importance of these two sources of dynamics later.

2.3 Summary of Evidence

We use the facts reported thus far in two ways. First, in the estimation of
our model, we use the ARMA(1,1) representation as one means of charac-
terizing the aggregate behavior of durables. Second, we use the VAR in an
informal overidentification test of our model: can our estimated model pro-
duce impulse response functions that are similar to those from an estimated
VAR?

There are other attempts to analyze the time series of durables. Bernanke




[1985] examines a model which includes nondurable goods, convex adjust-
ment costs for the stock of durables and price variations. For his specifi-
cation, Bernanke assumes that utility is quadratic in both nondurables and
durables. Bernanke argues that in the presence of adjustment costs, the
stock of durables will follow an AR(2) process.5 This implies that durable
expenditures are given by an ARMA(2,1) process. As reported in the Data
Appendix, we again find that the rate of depreciation is generally quite high.

A final representation of durable expenditures follows from Caballero
[1990], who extends Mankiw’s analysis by considering a model with addi-
tional MA components. The idea is that perhaps the PIH is a valid rep-
resentation of the data in the long-run. In the short-run, because agents
are characterized by inertia, the response of sales to income innovations is
slow. By allowing additional moving average terms the PTH might be recon-
ciled with the data. Inference about the underlying rate of depreciation from
the MA coefficients is made possible by a simple model of sluggish adjust-
ment that Caballero [1990] postulates. This approach then forms the basis
of Caballero {1993} where the idea that agents eventually abide by the PIH
prediction is central to the formulation of the nonlinear target adjustment
structure.

Our attempts at fitting an ARMA(1,q) model to our series are reported
in the Data Appendix. In constrast to ARMA(1,1) representation, the re-
sults are quite sensitive to the nature of detrending, the choice of series, the
frequency of observation, etc. Owing to the lack of robustness and preci-
sion in the ARMA(1,q) representations, we cannot use these results in the
estimation or evaluation of our model.

3 Dynamic Discrete Choice Model

The representative agent models discussed in the previous section must deal
with the aggregation of durable goods of different vintages. For these speci-
fications, the aggregation is achieved by the creation of a durable aggregate
stock that is diminished by depreciation and increased by expenditures. One
possible extension of this representative agent structure would be to view
expenditures on goods in different periods simply as different goods. In this

®His AR(2) representation, equation 4.2, is a quasi-differenced version of the optimal
decision rule.




way, the entire spectrum of different vintages would be reflected in the rep-
resentative agent’s utility function.

However, this specification goes only part way to fully modeling the im-
plications of heterogeneity. The model we propose in this section goes a step
farther as it allows for heterogeneity across the decision making units due
to taste and income shocks and also recognizes that households may have
durables of different vintages.

The next section discusses the theoretical specification of the discrete
choice model. We then present our estimation results for this model. The
final sections return to the results reported for the representative agent model
to discuss the extent to which the dynamic discrete choice model can capture
the aggregate behavior of durable expenditures.

3.1 Theory
3.1.1 Household Behavior

The starting point for this analysis is the dynamic programming problem
explored in Adda and Cooper [2000]. Consider an agent with a car of age ¢
in state z=(p,Y,y,e). As above, p is the price of the durable good. Current
income is given by the sum Y +y where Y represents aggregate income and ¥
represents idiosyncratic shocks to nondurable consumption that could reflect
variations in household income, tastes or expenditures on car maintenance
and other necessities.” Finally, every household experiences a taste shock
which is represented by e. At every point in time, the household decides
whether to retain a car of age i or scrap it. If the household decides to scrap
the car, then it receives the scrap value of 7 and has the option to purchase a
new car. If the household retains the car, then it receives the flow of services
from that car and cannot, by assumption, purchase another car. Thus the
household is constrained to own at most a single car.

For tractability, we place a number of restrictions on this household op-
timization problem. First, we do not explore the operation of a second-hand
market: cars are either kept or scrapped.® Second, the household is forced

7Adda and Cooper [2000] explicitly views this as a household specific income shock but
a broader interpretation is acceptable, particularly in light of the iid assumption associated
with this source of variation.

8 Adda-Cooper (2000} compute a no trade equilibrium for the case in which households
are homogenous. Computing an equilibrium with a second hand market as part of the




to finance the durable purchase from current income: there is no borrowmg
or lending in the model.® :

Formally, let V,(z) represent the value of having a car of age i to a house-
hold in state z. Further, let V¥(z) and V7(z) represent the values from keeping
and scrapping an age i car in state z. Then,

Vi{z) = max([V}*(z), V7 (2)]

where
VE(2) = ulsi,y+Ye)+58(1— SEVi (2 + (2)
BS{EVI(#") —ulsy,y' + Y, &) +uls1, ¥ +Y' = p' 4+ 7,€")}
and

Vi(z) = wlspy+Y —p4r.e)+ 8(1—38)EVy(2) +
BHEN(Z) — ul(s, 3’ + Y, &) +u(s,y + YV — ¢/ +7,€)}.

In the definition of V}*(z), the car is assumed to be destroyed (from ac-
cidents and breakdowas} with probability § leading the agent to purchase a
new car in the next period. The cost of a new car in numeraire terms is p’ — ,
which is stochastic since the price of a new car in the next period is random.

Further, since we assume that there is no borrowing and lending, the utility’

cost of the new car is given by u(s1,y" +Y",¢') — u(s,y' + ¥ = p' + 7,¢)
which exceeds p’ — 7 as long as u(-) is strictly concave in nondurable con-
sumption. [t is precisely at this point that our borrowing restriction appears
as an additional transactions cost.

estimation of a discrete choice non-representative household model is beyond the scope
of this paper as ihis would require the characterization of an equilibrium as part of our
estimation. However, given that onr focus is on the decision to scrap a car and purchase
a new one, the basis of new car sales, perhaps our omission of resale opportunities is not
too unfortunate.

9This then implies that the cost of buying a durable good cannoct be spread over time,
thus implicitly increasing the cost of such expenditures. To control for these effects, we
also estimate a model in which utility is assumed to be a linear function of nondurable
consumption. See Campillo {2000] for simulation results of a model with durables and
borrowing restrictions. We omit savings in our approach for two reasons. First, solving
the model with savings is very demanding computationally as it requires an addltlonal
continuous state variables. Second, we would need data on the joint distribution of car
vintages and savings, which are difﬁcult or even impossible to get for all years and countries
nnder =tudy.




For the application we define the utility function to be additively separa-
ble between durabies and nondurables:

oo = [+ L0

where ¢ is the consumption of non-durable goods, 7 is the curvature for the
service flow of car ownership, £ the curvature for consumption and A is a scale
factor. In this specification, the taste shock (¢) influences the contempora-
neous marginal rate of substitution between car services and nondurables.

In order for the agent’s optimization problem to be solved, a stochastic
process for income, prices and the aggregate taste shocks must be specified.
We assume that aggregate income, prices and the unobserved preference
shock follow a VAR(1) process given by:!?

Yi=py +ovyYioi + py pPi-1 + tyt
Pt =ty F Py Yio1 + Pt + Upe
£1 = fle + Py Yio1 + PepPro1 + U

The covariance matrix of the innovations u = {uyy, Upt, Uer } 18

Q=] wpy wp, 0
0 0 Wy

As the aggregate taste shock is unobserved, we impose a block diagonal
structure on the VAR, which enables us to identify all the parameters in-
volving prices and aggregate income in a simple first step regression. This
considerably reduces the number of parameters to be estimated in the struc-
tural model. We allow prices and income to depend on lagged income and
lagged prices.

The aggregate taste shock potentially depends on lagged prices and in-
come. The coefficients of this process along with w, are estimated within the
structural model. By allowing a positive correlation between the aggregate
taste shock and lagged prices, given that prices are serially correlated, we can
reconcile the model with the fact that sales and prices are positively corre-
laied in the data. This allows us to better capture some additional dynamics
of sales and prices in the structural estimation. An alternative way would

1%Here we have only a single lag to economize on the state space of the agents’ problem.
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be to model jointly the producer and consumer side of the economy, to get
an upward slopping supply curve. However, solving for the equilibrium is
computationally very demanding.

The policy functions that are generated from this optimization problem
are of an optimal stopping variety. That is, given the state of the household,
the car is scrapped and replaced iff the car is older than a critical age. Letting
Hy(z;0) represent the probability that a car of age k is scrapped, the policy
functions imply that Hy(z2,;6)=6 if k < J{z;#) and Hy(2;6) = 1 otherwise.
Here J(z:;0) is the optimal scrapping age in state z; when  is the vector of
parameters describing the economic environment.

The remaining part of the model is firm behavior. As in Adda and Cooper
[2000], we assume that the costs of production are independent of the level of
production. Combined with an assumption of constant mark-ups, this implies
that the product price is independent of the cross sectional distribution of
car vintages.

This assumption of an exogenous price process greatly simplifies the em-
pirical implementation of the model since we do not have to solve an equi-
librium problem. In fact, we have found that adding information on the
moments of the cross sectional distribution of car vintages has no explana-
tory power in forecasting car prices in the French case. Results are mixed for
the US case, as the average age of cars significantly predicts future prices.

Before proceeding further, note that the underlying model stresses the
replacement of older cars with new ones. Actual data presumably includes
a component of car sales to agents who do not scrap a car before buying a
new one. Further, there are surely instances where an agent scraps a car
but does not buy another. Clearly movement of this type on the ”extensive
margin” creates a variation in sales not included in our model. To deal with
this issue, we have detrended the data to remove the effects of population
growth on sales. Further, from our investigation of some additional panel
data on ¥rench households, we find that less than 2% of the sales are by
households which have no cars.

3.1.2 Apggregate Sales

Aggregating over all possible types of individual leads to a prediction of the
aggregate demand for cars and a prediction of the cross section distribution
of car vintages. Letting f;(k) the period ¢ cross sectional distribution of &,
aggregate sales are given by
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Sy = Zk:Hk(ztE 6)fi(k) (3)

where 4 is a vector of parameters. From an initial condition on the cross
sectional distribution, it is possible to generate a time series for the cross
sectional distribution given a particular parameterization of the hazard func-
tion. The evolution of f(k) is given by:

frar(k) = [1 — Hi(zy;0)) ik — 1) for k>1 (4)

and
ft+1(1) =S5

Thus for a given § we can simulate both sales and the cross sectional distri-
bution.

3.2 Estimation

‘The parameters describing the joint process of aggregate imcome and prices
are estimated i a first step, to reduce the number of parameters in the
structural estimation. The estimation results are displayed in appendix A.2.
After several trials, we imposed p,y = 0 as the results were not sensitive
to this parameter. The remaining parameters, 6 = {v,4,A,£, 0y, p,,, w.},
are estimated from the policy functions generated by the solution of the
households’ optimization problem.

A natural estimation strategy is to find the parameters that bring the sim-
ulated model as close as possible to the data. In our estimation, we make use
of different. tvpes of observations. First, we use time series observations on
sales. prices and income to maich. the sales predicted by our model. Second,
we use moments of the cross sectional distribution.!' Third, we capture the
dynamics of sales using the autoregressive and moving average coefficients
from an ARMA(1,1) model to match up with the one generated on pre-
dicted data.’? These additional moments are used to help the identification

For the U.S. data on the cross sectional distribution comes from issues of Ward’s
Automotive. For France, this information comes from the CCFA.

1?Here we focus on the ARMA (1,1) rather than the VAR representation for two reasons.
First, the ARMA(1,1) representation has been the focus of the literature since Mankiw
[1982). Second, we can then investigate how well our estimated model matches the VAR
representation as part of an informal evaluation of our model.
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of the parameters characterizing the dynamic programming problem. The
price, income and sales series were linearly detrended prior to the structural
estimation since the model itself has no trends.

Given a vector of parameters ¢ and a realized path of preference shocks
g, the model predicts aggregate sales and the evolution of the cross sectional
distribution. These simulated series can be compared to their empirical coun-
terparts. The estimation strategy is to find # to minimize the "distance”
between the actual and simulated data.

Formally, the criterion we minimized, via the simplex algorithm, was a
weighted average of the difference between actual and predicted sales and
between actual and simulated moments characterizing the cross sectional
distribution of car ages and ARMA coefficients, weighted by their actual
variance. Concentrating on sales exclusively does not identify the parameters
of the model such as the depreciation rate. Sales are the results of the
interaction of a hazard function and the cross section distribution, both to
be estimated. If the shape of the cross section distribution is not pinned
down, there are several sets of parameters that would produce the same level
of sales. Therefore, we also makch three moments characterizing the cross
sectional distribution and the ARMA coefficients described above.

So, the parameters were estimated by minimizing the overall criterion:

L(8) = aLl(8) + £2(8)

where « is a scale parameters defined to be equal to the inverse of the variance
of sales. The minimization of the overall criterion yields a root-T consistent
estimate for any fixed number of simulations. We discuss the two components
of this objective funciion in turn.
The first component of the criterion is:
1 1 & & (112 | i = & ()2
L8 == S5 —&50)f - ———— S (6) — S:(6))*} .
0= 7 (5= 5400 - 57—y X (5e(6) ~ S0

n=1

Thus £!(#) contains two terms. The first one is the standard nonlinear least
square criterion which measures the squared distance between observed and
average predicted values of the variables. For the sales series, the estimation
1s conditicnal on the realization of aggregated income and prices at each date,
as well as on the initial cross sectional distribution. Given these realizations
and the initial condition, for each value of the parameters, we can see how
close our simulated sales is to observed sales.
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Specifically, Let S, be the observed aggregate sales for the year t. Let
Sin(0) = S(Y, pr, €10, ) be the predicted sales for year ¢ and for the draw n
of the unobserved aggregate shock, (n = {1,...,N }). The first component
of the objective is essentially the squared distance between S, and an average
measure {over the taste shocks) of 5,(f) = ¥, S,.(¢)/N. However, such a
criterion produces an inconsistent estimator for a fixed number of simulation.

To overcome this problem, we follow Laffont, Ossard and Vuong [1995]
by including the second term which is a second order correction for the in-
consistency bias introduced by the random draws of the preference shocks.
Under standard regularity conditions, the asymptotic distribution of the esti-
mators is normal and root-T consistent, for any fixed number of simulations
N, (see Laffont, Ossard and Vuong [1995]). In practice, we fix the number of
random draws to 50. We find that the correction for simulation error is then
negligible.

The second piece of the objective contained additional moments and is
specified as; :

£2(6) = 3 o F' — F'(6))*
i=15,10,15,AR,M A}

where o; 1s & weight equal to the empirical inverse of the variance of each
moment.'”® The moments of the cross sectional distribution we match are
the average (over the 1981-95 sample for the US, over the 1972-92 sample
period for France) fraction of cars of ages 5, 10 and 15. The idea is to use
these critical ages to characterize the average cross sectional distribution.
The ARMA(1,1) model was run on observed annual sales for both countries.
The predicted counterparts were obtained on simulated data from the model,
for a similar sample size.

Formally, let I = (1/T) Y. Fli = 510,15 be the average fraction of
cars of age 3, 10 or 15 during the sample period. Let FAR and FMA be the
AR and MA coefficients in an ARMA(1,1) regression of sales of new cars.
Similarly let F}.(6),7 = 5,10,15 be the predicted fraction of cars of age 5,
10 or 15, in period ¢ and given draw n of the unohserved taste shock. Let
Fr=73,. FL81/(TN), i = 5,10,13 be the average predicted fraction of
cars of age 5, 10 or 13. Let F4#{¢) and FMA(6) be the average AR and MA
coefficients from an ARMA(1,1} regression on simulated sales,

¥Note that the use of an ARMA representation as an auxiliary model can be seen as
an indirect inference method as in Gourieroux et al [1993].
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3.3 Estimation Results

Table 2 provides a summary of our estimated parameters, for both countries
and for two different specifications of the utility function. The linear case
refers to a model where the utility is linear (i.e. £ = 0). The lincar model
provides a framework where income fluctuations do not matter, but also
removes the effect of idiosyncratic shocks to income. However, idiosyncratic
shocks are needed to provide a smooth upward sloping hazard function. To
keep idiosyncratic shocks in the model, we specify a taste shock which affect
the contemporaneous marginal rate of substitution between car services and
nondurables. This shock is individual specific, with mean one and variance
ay.

From this table, note that the rate of physical depreciation of cars is
about 6 percent for France and 4 percent for the US. * This might reflect
the greater number of car accidents in France. The rate of depreciation of the
service flow is lower, about 2 percent on an annual basis for both countries.
Further, we find that there is some curvature in the atility function for both
countries, with a parameter around 1.5. which is in the usual range for this
kind of utility functions. The variance of the idiosyncratic shock seems to be
higher in France than in the US. The distribution of the idiosyncratic shock
1s important for the slope of the aggregate hazard function, as we aggregate
out the individual component. A high variance means that the shape of the
hazard function is flatter. This is needed for France as, in the data, the stock
of cars is older. 1°

All models are able to match rather closely the aggregate sales as the
R? vary from 0.52 to 0.69. By comparison, the R? obtained from an QLS
regression of sales on lag sales, prices and income is 0.46 for France and 0.6 for
the US. Our model also predicts rather well the cross sectional distribution of
car vintages, as shown in Table 3. Both the linear models and the nonlinear
ones do a good job of predicting the fraction of cars of age 5 and 10, but
underpredict the fraction of age 15 cars. Anticipating the results of next
section, the models do a relatively good job as well in matching the AR and
MA parameters for aggregate sales for both countries.

“The results for France are close to those reported in Adda and Cooper [2000)].

13The standard errors were computed using a bootstrapping method. Given a value of
we, we simulated 100 series and reestimated the model on the simulated data. This gives
us a distritaation for each parameter. Given that the fit of the model is relatively good,
the standard errors of the parameters are small.
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However, when testing the over-identifying restrictions of the model, we
reject them at the 5% level. At the 10% level, the restrictions for the non-
linear model for France are accepted. For the US, the test is rejected mainly"
because the predicted fraction of cars of age 15 is too low. Without this
moment. the restrictions for the nonlinear model would be valid. The fail-
ure to accept the over identifying restrictions, which is a common feature of
structural models, also reflects the inability of the model to match the ob-
served (positive) correlations between car prices and sales without an upward
sloping supply curve, as discussed in Adda and Cooper {2000].

In terms of these chi-square tests, the nonlinear models seem to better
match the data than the linear ones. Consequently, we concentrate on the
nonlinear specifications from now on. Given the no borrowing assumption,
the nonlinear model provides a framework with liquidity constraints where
purchase decisions are sensitive to income shocks. Given that aggregate sales
appear to be correlated with income, the nonlinear models are preferred by
the data. On micro data, Eberly [1994] and Attanasio et al. [2000] also
provide empirical evidence of borrowing constraints using data for the US.

4 Time Series of Car Expenditures

Our motivation in this section is to compare the aggregate time series impli-
cations of the model estimated in section 3 with observed car sales in France
and the US. More specifically, we compare the ARMA representations of the
actual sales series with those created by simulating our estimated discrete
choice model. We find that our estimated model is able to reproduce the
observed time series behavior of car expenditures.!®

The second part of this section provides an interpretation of these find-
ings by looking at the impulse response functions produced by the model
and investigating a decomposition of car expenditures into two components:
variations in the cross sectional distribution and shocks to the hazard func-
tion. Here we find that most of the variations in car sales reflects shifts in the
hazard function (representating time series variations in the probability of
car replacement) rather than movements in the cross sectional distribution.

1$Note that while the ARMA coefficients were used in the estimation procedure, the
model was overidentified. Thus it is by no means "automatic” that we reproduce the
ARMA representation. Removing the ARMA coefficients from the objective function did
not change the results.
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Table 2: Estimated Parameters for Discrete Choice Model

U.S.
Non Linear Case Linear Case
Parameters Estimates S.E.  Estimates S.E.
¥ 0.02 0.0015 0.02 0.002
8 0.038 0.0025 0.03 0.003
¢ 1.49 0.0037 0 -
A 483.5 10.5 1.6e-5 1.4e-06
We 0.085 0.015 0.03 0.097
Oy 0.52 0.016 0.26 0.013
Pe p 1.14e-4 4.2e-05 -3.9¢-5 1.9¢-05
Pseudo-R*: 0.69 0.52
P(Overidentification test) (.84 0.60
FRANCE
Non Linear Case Linear Case
Parameters Estimates S.E.  Estimates S.E.
¥ 0.017 0.003 0.028 0.014
) 0.061 0.016  0.06 0.03
¢ 1.46 0.007 © -
A 108.0 12.5 6e-6 2.8e-06
We 0.215 0.09 0.06 0.037
Ty 0.99 0.003 0.44 0.22
Pep 1.2e-4 4.3e-05 -2.9e-5 1.5e-05
Pseudo-R*: 0.61 0.52
P(Ovenridentification test) 0.91 0.67

Note: Estimates obtained on annual data, France: 1972:1994, UB:
1968:1995. The Pseudo R? measure the fraction of the variance of ag-
gregate sales explained by the model. Probability values are displayed
for the over identification tests.

4.1 ARMA Representation

Our interest is in the aggregate time series of new car sales produced by our
estimated model. ARMA(1,1) representations of the sales series are reported
in Table 4. We use 100 series simulated over 21 periods {years) for France and
28 years tor US, so that the results are comparable with the observed data.
We estimate ARMA representations for new car sales. The table reports the
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Table 3: Observed and Predicted Moments from CDF

Fraction of cars of age 5
Fraction of cars of age 10

Fraction of cars of age 15

Fraction of cars of age 5
Fraction of cars of age 10

Fraction of cars of age 15

Us
Observed Non Linear Linear
8.6 8.5 8.4
(1.1) (1.4) (1.3)
6.8 6.0 5.9
(1.0} (1.1) (1.1)
2.7 1.7 1.8
(0.6) (0.3) (0.3)
FRANCE
Observed Non Linear Linear
8.9 9.0 9.7
(0.8) (0.8) (0.6)
5.0 4.7 4.2
(0.7) (0.5) (0.3)
1.2 1.4 0.9
(0.3) {0.2) (0.1)
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averages and the standard deviations of the coefficients.

Our principle finding is that our model is able to reproduce the abnor-
mally high value for the “rate of depreciation” inferred from the MA(1)
coefficient, when the estimation is done through an ARMA(1,1) representa-
tion as in Mankiw [1982]. To this extent, our model is able to reconcile a
low depreciation rate at the micro level (7%) with a coefficient close to one
at the macro level, as viewed through the PIH model. The autoregressive
coefficient is also estimated quite close to its value in the annual data once
the time series is detrended.

Table 4: ARMA Coeflicient Observed and Predicted.

us Observed 0.33  -0.35
(0.30) (0.30)
s Predicted 0.23 -0.30
{0.36) {0.38)
AR,  MA,
France Observed 0.51 -0.16
(0.27) (0.31)
France Predicted 0.06 -0.05
(0.63) (0.72)
Note! Monte Carlo results obtained over 100 replications with sample
length 21 (France), 28 (US). French estimates on annual car registration,
1972-1994. US estimates on annual car registrations 1968-1995. All
ARMA models included a linear trend.

4.2 VAR Representatioris

In this subsection, we return to the VAR representations reported in Section
2.2. Our purpose is first to explore how well our model fits the impulse
response functions estimated for our data and then to use these impulse
response functions to explain our results.

19




4.2.1 Matching Impulse Response Functions

A final check of our model is its ability to reproduce the impulse response
functions presented in section 2.2. Given the estimated models for the two
countries, we simulate data on prices, income and compute the predicted
sales. We simulate 100 series of length 30 years to be comparable to the
observed data. For each simulated series, we compute an impulse response
by estimating an unrestricted VAR and these are then averaged. Figure 2
displays the results of a one standard deviation shock to income, with the
variables ordered as income, prices and sales. The first graph is the response
of US sales to a shock to income. The predicted response is plotted against
the one estimated from the observed data between 1960 and 1995 (and dis-
played in Figure 1). For the US, the model predicts an increase in sales in the
first period, followed by a fall below baseline. The predicted response differ
in two ways from the observed one: the initial response is much higher and
the dampened oscillations do not have the same periodicity. However, when
we restrict the sample period to be the one used in the structural estimation
{1975-1995), the observed and predicted responses are very close. This in-
dicate that the match of the estimated model is good, but that the impulse
Tesponses are semsitive to the sample period, which is not very surprising.
For France, the predicted response is close to the observed one. Here the
sample periods are roughly the same.

4.2.2 Explaining the mechanism through IRFs

So, the estimated model has the ability to match an ARMA(1,1) time series
representation of car expenditures, as well as impulse response functions
of sales. Given this "empirical success”, we now turn to a more intuitive
discussion/evaluation of the model.

Using our estimates of the parameters of the agent’s optimization prob-
lem, we can simulate the effect on aggregate car sales of an income shock. For
example, consider the model estimated off the U.S. data which allowed for
curvature in the utility function. We start with an initial cross section dis-
tribution in year 1981. We then introduce a shock to income of one standard
deviation, and simulate aggregate sales over time (we assume here for sim-
plicity that the covariance matrix for the innovations is diagonal). Figure 3
shows the response in new car sales.

The picture also displays two more impulse responses. First we graph the
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impulse response obtained by fitting an ARMA(1,1) to the data. This simple
PIH model is not able to pick up the dynamics of car sales over time. Using
an ARMA(1,1), the impact of a shock on sales is p!~!{p — @), ¢ periods after
the shock, where p is the AR coefficient and « is the MA one. First, as p is
positive in the estimation, there is no way the ARMA(1,1) can reproduce the
oscillations in the impulse response function. Second, in order to match the
patterns of response over time, (p — «) has to be positive. As p is estimated
between 0.4 and 0.8 on aggregate data (see Table 1), this means that the
implied depreciation rate § cannot be lower than 0.2 to 0.6. We see here an
important point about the ARMA(1,1) model: it is structurally unable to
deliver a depreciation rate low enough to be credible.

The last impulse response displayed in Figure 3 has been obtained by
fitting an unrestricted linear VAR to the observed data (sample period 1975-
1996) as in Figure 2. When using a linear VAR, the impulse response is
qualitatively closer to the one obtained from our structural model. However,
the cycles do not have the same frequency. This can arise for two reasons,
either because our model better picks up the dynamics of sale through the
modelling of the cross-section distribution of cars, or because the VAR is less
restricted in its price and income effects and is thus a better representation
of the data.

However, given the exercise in the previous section, our model is able
to reproduce the results of a linear VAR, for that particular sample period.-
This suggests that our model is correctly specified, and that an unrestricted
VAR model might be too linear to pick up the dynamics of car sales.

The results of the impulse responses, of course, may depend on the cross
sectional distribution of car ages at the time of the shock. To illustrate,
Figure 4 shows the impulse response computed using the same shocks but
comparing 1981 and 1995 as initial cross section distributions. In 1981, the
average age of cars is higher, thus an income shock has a bigger instantaneous
effect as more household replace their cars. This effect is then propagated
through time.

4.3 Decompositions

Caballero [1993] explains why a dynamic discrete choice model might explain
the response of durable expenditures to an income shock. The key point is
that a shock to income produces a dynamic in durable expenditures as agents
respond differentially. While agents may differ along a number of dimensions,
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our analysis focuses on the cross sectional distribution of car vintages. Es-
sentially agents with relatively old cars will respond to the income shock by
replacing their car first and then agents with younger cars will respond later. -
The delayed response simply reflects the upward sloping adjustment hazard:
all else the same, agents with younger cars are less likely to respond to in-
come variations than are agents with older cars. The evolution of the cross
section distribution through time can be a source of fluctuations, which are
picked up by the impulse responses. As the distribution evolves, following
(4), sales will respond. In fact, the magnitude of this response depends on
the slope of the hazard function: the flatter is the hazard, the less responsive
will sales be to the evolution of the cross sectional distribution.

A second source of movement is the dynamics induced by prices and in-
come as these processes are serially correlated. Movements in these variables
are represented by shifts in the probability of adjustment (hazard).

We study the relative importance of these two influences (hazard and CDF
shifts) in two ways. First, we recompute the impulse response functions either
by holding the CDF fixed or by limiting the shifts in the hazard function.
Second, we decompose the time series of sales into these two influences.

4.3.1 Impulse Response Functions

Figure 5 shows the impulse response functions from two exercises. In the
first, we hold the CDF fixed at its value in 1981 and consider the effects of
an innovation to income. In the second case, we allow the CDF to evolve but
impose that the income variation be temporary. Thus the hazard function
shifts out for one period only.

We find that with a fixed CDF’, the impulse response is close to the global
impulse response reported in Figure 3 and reproduced in Figure 5. Thus the
dynamic is mainly due to the evolution of the prices and income. The dy-
namics induced by the evolution of the cross section distribution contributes
surprisingly little. Evidently, the depreciation of cars along with the house-
hold specific shocks are significant enough to eliminate replacement cycles.

Narrowing down our search for an explanation of these oscillations, we
simulate the model with a fixed CDF, but we eliminate the cross effect of
prices and income (we set py, = p,y = 0). Figure 6 displays the impulse
response functions. We then find that all the oscillations are gone. From this
we conclude that the oscillations in sales are mainly due to the dynamics of
prices and income, and more particularly to the cross effects.
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4.3.2 Time Series Decompositions

For the time series of sales, using (3), the change in aggregate sales can be
decomposed into two terms. The first term is the change due to shifts in the
hazard functions, such as price or income movements against a fixed cross-
section distribution. The second term is the contribution of the shifts in the
cross-section distribution, holding the hazard function fixed:

Si—S5i1 = Zk:[Hk(Zt;H)—Hk (Z:—l; 9)]ft—1(k)+zk: Hk(zt§8)[ft(k)—ft—l(k)]+ut
(3)

For our simulated data, this decomposition is exact. The error term reflects
the fact that, in the actual data, there are measurement problems and not
all sales variations are a consequence of replacement. Inspection of the time
series of the error process indicates little structure to this error supporting
the view that it is mainly due to measurement problems.

Given data on the cross section distributicn, we can compute the con-
tributions to the change in sales of the fixed hazard and fixed cross-section
distribution componeuts. The fixed cdf component tracks the change in sales
very closely both for the US and for France, whereas the other component
has a much smaller variance and have a low correlation with the change in
sales. In particular, the R? associated with shifts in hazards is equal to 0.93
both for the US and for France and the one associated with shifts in the cross
section distribution is only 0.25 for the US and 0.16 for France. Thus in
the actual data hazard shifts are the main source of fluctuations.

From the simulated data of our estimated model, we can also evaluate
the contribution of each term to the variability in aggregate sales. From
a simulated sample of length 400, we find very similar results to the real
data: shifts in hazards are the most important determinant of sales. The R®
associated with shifts in hazard is equal to 0.97, whereas the R? associated
with shifts in the cross-section distribution is only 0.1.

Spectral analysis using the series for the fixed c¢df and the fixed hazard
gives more insights on the relative contributions of both series. The shifts in
the cross section distribution have an overall low contribution, but has more
long run effects at a frequency corresponding to a period of approximately 8
years for the US and 13 years for France. The spectrum for the shifts in the
hazard function peaks at a period of about 5 years for the US and 2 years
for France. Here again, the results for the simulated data are very similar to
the results obtained on real data.
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5 Conclusions

We have found that a model which stresses the dynamic optimizing behavior
of households over the choice of purchasing a new car goes a considerable
way towards solves the "durables puzzle” of Mankiw [1982]. The point that
this type of model might explain this puzzle is certainly not new.!”

Our approach to the problem follows a methodology that is quite dif-
ferent from that put forth by Bar-llan and Blinder and utilized in much of
the subsequent work. We specifically avoid the specification of individual
optimization in terms of (8,s) bands and instead focus on the underlying
parameters of the individual’s dynamic discrete choice problem. Further,
our model was estimated using data which emphasized the cross sectional
variations in the data. Still, we find that this modelling approach delivers
time series implications that match certain features of the data. In contrast
to other studies, are results come from a regression on simulated data that
essentially mimics Mankiw [1982].

In trying to understand our finding, we are naturally led to a decompo-
sition of the movements in sales into two components: shifts in the hazard
function and the evolution of the cross sectional distribution. We report
that most of the variation in the change in sales can be attributed to shifts
in the hazard function though the evolution of the cross sectional distribu-
tion is certainly present. This leads us to one of our main findings: the
ARMA representation can be reproduced by a dynamic discrete
choice model.

In terms of further work, there are two elements of our basic model that
deserve additional attention. First, as in Caplin-Leahy [1998] there is un-
doubtedly some room for endogenous price variations due to upward sloping
supply te explain some of the results. This assumption dramatically simplifies
our numerical analysis since the cross sectional distribution of car vintages
would then be an element in households’ state vector. Second, the model
we have studied imposes borrowing restrictions. This assumption certainly
simplifies our analysis by reducing the dimensionality of our state space. Fur-
ther, we found that a model with linear utility where borrowing is irrelevant
does not fit the data as well. Understanding the robustness of our findings
to relaxing these assumptions is of considerable interest.

YTy our knowledge, Bar-Ilan and Blinder [1988) deserve credit for drawing the attention
of the profession to this point.
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A Data Appendix

In this appendix, we report additional time series represenations of the data
that are useful in evaluating our results and models.

A.1 ARMA(2,1) Representation

Bernanke [1985] argues that durable expenditures are given by an ARMA(2,1)
process:

€141 = €5 + O0€_1 + Et41 — (1 — (5)515

where the coeflicient a; and as on the lagged expenditures sum to 1, and are
functions of the discount factor and parameters of the utility function (see
the appendix in Bernanke[1985] for more details). * As in Mankiw’s speci-
fication, the MA coefficient implies an estimate of the rate of depreciation.

Motivated by this analysis, Table 5 presents ARMA(2,1} representations
for the same series analyzed in Table 1.

Table 5: ARMA(2,1) Estimates on US and French Data

Specification No trend Linear trend

ey oz 3 ai az [
US durable expenditures 1.85 (0.07) -0.95(0.07) 013 (0.1) 062(0.7) 0.33(0.7) 1.24 (0.7}
US car registration 0.89 (0.31) -0.04(0.21) 05(0.3)  0.89(0.31)  -0.04(0.21) 0.5 (0.3)
France durable expenditures  0.7(0.4) 0,3{0.4} 1.03 (04) 0.7(0.4) 0.2{(0.4) 1.0 {0.45}
France car expenditures 0.8 {0.3) 0.2(0.3) 0.9(0.3) 0.65 {0.2) 0.2 {0.3) 0.96 (0.4)
France car registrations 0.85 (0.24) 0.09 (0.22)  1.43(0.23) ©0.72 {0.36) 0.09 (0.23)  1.35 (0.35)

Notes: Estimation done on quarterly data. For the US, source FRED database, 1959:1-1097:3. French data: source
INSEE, 1970:1-1997:2. US Registration: 1968-1995.

Here we see that again the implied values of the depreciation rate are
close to 100%. Further, the coefficient on the second lag of expenditures
should be negative, according to the theory, while in the estimation this is
always positive. Finally, note that the sum of the estimated AR coefficients
is close to one, as predicted by the theory.

18Tf there are no adjustment costs, then as is equal to zero.




A.2 Estimation Results for joint Process of Income
and Prices

Table 6 displays the estimation results for the joint process of income and
prices, used in the structural model.

Table 6: VAR for prices and Income

Us France

Parameter Estimate standard error Estimate standard error
Pvy 0.75 0.12 0.67 0.12

Pyp 1.25 0.47 0.14 0.22

Pop 0.68 0.14 0.65 0.17

Py -0.10 0.03 -0.04 0.09

Wy 3.0eb - 2.6e6 -

Wy 2.7ed - 1.5e6 -

Wy p 2.6eb - -1.6ed -

Note: Regression done on detrended annua! series.

A.3 ARMA(1,q) Representations

Following Caballero [1990], we present estimates of the implied depreciation
rates using higher order moving average representations. Caballero [1990],
Table 1I, page 734, using US annual aggregate durable expenditures, finds
that the MA coefficients sums to -.95 implying a rate of depreciation of 5%.
Using the same method and series, but with a sample period 1959-97 instead,
we find an implied rate of depreciation of 10%. However, as we show below,
this result is not robust across series and countries, to the specification of
the ARMA model or to the detrending method.

Table 7 panel A displays the results for the US durables as well as for four
other series, US new car registrations, French durable expenditures, French
car expenditures and French new car registrations. As in Caballero {1990},
all series are annual and exponentially detrended. An MA(5) was fitted to
the changes in the series. Apart from the US durables, none of the series
seem consistent with a long run PIH model. Increasing the number of lags
beyond five did not produce any smaller implied depreciation rates.

The model fitted in Panel A imposes a coefficient of one on the lagged
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series and leads to an over-differencing if the process is not a unit root. This
over differencing could bias the results. Given that the series are exponen-
tially detrended, at the 5% level, a unit root is rejected for the following
detrended series: US durable expenditures and US car registrations. Thus a
preferred specification for both series should be an ARMA(1,5) model. Ta-
ble 7, panel B displays the sum of the MA coefficients for such a specification.
The implied depreciation rate for the US durables is now 96%. The results
for the other series are also sensitive to the model specification. None of the
point estimates are close to a reasonable annval rate of depreciation.

The results could also depend on the detrending method. Table 7, panel
C displays results for the series fitting an MA(5) on changes. An augmented
Dickey-Fuller test reveals that all the changes in these series are stationary,
so detrending is not necessarily . Here we find a depreciation rate for the US
durables of 51%. Two series have a low implied rate of depreciation, French
durable expenditures and French new car registrations, close to 20%. How-
ever, when extending the number of lags in the moving average structure to
seven, the implied depreciation rates are 74% and 58%. In general, extending
the number of lags in the moving average structure does not produce a lower
rate of depreciation, except for the US durable expenditures, when changes
in the series are considered.

As pointed out in Caballero [1990], a completely equivalent way of testing
whether the moving average coefficients sum to one is to test whether the’
sum of autocorrelations of the changes of the series converges to -0.5 as the
number of lags increases. The cumulative sum of the autocorrelations are
displayed in Figure 7 for four annual series: US durable expenditures, US
car registrations, French durable expenditures and French car registrations.
For US durables, when we consider lags up to 8 years, we obtain comparable
results with those depicted in Caballero (1990, Figure I}, as the cumulative
sum seems to converge to -.5 after 7 to 8 years (30 quarters). ' However,
when we extend the cumulative sum beyond this point, there is no longer
any evidence of convergence as the cumulative sum increases to around -
0.1, & value which is not consistent with a model of sluggish adjustment to
the PIH, even with slow adjustment. Similar results, although more mixed,
are found for the other series. Even after 8 years, the cumulative sums of

19Caballero [1990] reports evidence for both quarterly and annual series. His Figure
1 is for quarterly observations of durable expenditures. The sum of the autocorrelation
coefficients is near -.5 after 17 quarters, rises to nearly -.3 and then returns to -.5 by about
38 quarters.
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Table 7: ARMA(1,q) Representations for Annual Data

Series Sample Period Implied &
A. MA(5) on Changes. Exponentially Detrended Series.

US, Durable Expenditures 1959-97 0.1 (0.25)
US, New Car Registrations 1968-95 -0.8 (0.76)
France, Durable Expenditures 1970-97 1.07 (0.27)
France, Car Expenditures 1970-97 1.07 (0.25)
France, New Car Registrations 1968-97 0.44 (0.18)

B. ARMA(1,5) on Levels. Exponentially Detrended Series.

US, Durable Expenditures 1959-97 0.96 (0.17)
US, New Car Registrations 1968-95 0.54 (1.08)
France, Durable Expenditures 1970-97 1.58 {0.89)
France, Car Expenditures 1970-97 0.99 (1.01)
France, New Car Registrations 1968-97 0.71 (0.67)
C. MA(5}) on Changes. No Detrending. :
US, Durable Expenditures 1959-97 0.51 (0.11)
US, New Car Registrations 1968-95 -0.78 (0.73}
France, Durable Expenditures 1970-97 0.23 (0.32)
France, Car Expenditures 1970-97 -1.82 (1.32)
France, New Car Registrations 1968-97 0.21 (0.21)

Note: Estimation done on annnal data.
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autocorrelations displays variations and does not seem to converge, even if
they are closer to -.5. Similar results can be found on quarterly data.
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Figure 1: Impulse Response Functions To an Orthogonal Shock to Income
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Figure 2: Impulse Response of Sales, from Observed and Simulated Data
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Figure 3:

Impulse Response of Sales, US
To A One Stondard Deviotion Shock o Incame
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Figure 5:

Decompasition of Impulse Pesponse of Sales
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Figure 7: Cumulative Sum of Autocorrelations
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