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1 Introduction

The process by which new products embodying technological advances di®use through mar-

kets is fascinating and exceedingly complex. In his classic study of factors a®ecting the

di®usion of hybrid seed corn in the U.S., Griliches (1957) distinguished three components

of the di®usion process: origins (supply, depending on the potential pro¯tability of entry),

ceilings (demand, the long-run equilibrium pro¯tability di®erential from adopting the inno-

vation), and slopes (the rate of approach to market saturation).

In this paper we focus on the di®usion process characterizing a set of pharmaceutical

innovations | H2-antagonist antiulcer drugs, which avoid costly hospitalizations and surg-

eries, and also are e®ective in treating rather common ailments such as heartburn. We

treat the origins of this innovation as predetermined and largely exogenous, since in the

United States the ability to obtain exclusive rights to bring medical innovations to the mar-

ket depends not only on successful research and development, but also on the vicissitudes

of obtaining approval from the U.S. Patent O±ce1 and the U.S. Food and Drug Adminis-

tration, approvals that are the outcome of lengthy stochastic administrative and regulatory

proceedings.2 Thus, within the larger context of the di®usion process, we focus our atten-

tion on demand-side phenomena involving factors that a®ect rates of di®usion and long-run

market saturation. We consider not only the overall therapeutic class, but also particular

brand-name products within the class.

Speci¯cally, we examine consumption externalities, i.e., the ways in which the demand

for a branded pharmaceutical by patients and physicians depends on the number of other

patients that have taken or are taking the drug. Consumption externalities arise when the

use of a drug by others in°uences one's perceptions about its e±cacy, safety, and \accept-

ability," and thus a®ects its valuation and rate of adoption. Consumption externalities can

be reputational in nature; the greater a drug's perceived e±cacy and safety, the better its

1For a discussion of factors a®ecting the level and rate of patent approvals, see Griliches (1990).

2The pharmaceutical innovations on which we focus here were patented by private sector organizations.
Griliches (1958) has argued that for hybrid corn, the ideas underlying the innovations were di±cult to patent,
public sector research predominated, and social rates of return to R&D were much larger than private rates.
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reputation. Unlike computer software and telecommunications systems, however, where con-

sumption externalities stem from direct external bene¯ts, in pharmaceutical markets these

externalities are largely informational in nature.

A priori , we would expect consumption externalities to exist because the widespread use

of a prescription drug may convey information to physicians and patients about its safety

and e±cacy, and, for physicians, may imply \accepted practice" and hence greater immunity

to malpractice lawsuits.3 Thus the use of a drug by others could re°ect an informational

externality in which physicians and patients process data on past and current usage to

rationally assess a drug's e±cacy and risks. For example, the fact that a drug is currently

used by, say, a million patients is evidence that it is at least somewhat e±cacious relative

to its side e®ects and risks. Or, it could re°ect a physician's assessment that other things

equal, the probability of a malpractice suit is lower when a widely used drug is prescribed,

whatever the actual e±cacy and risks of the drug.

If they are strong enough, consumption externalities could lead to herd behavior, where

a particular drug | not necessarily the most e±cacious or safest | comes to dominate the

market despite the availability of close substitutes. They also a®ect the rate at which a new

product di®uses into the market. Even if there were no externalities a®ecting individuals'

valuations of a product, as more people use the product, word-of-mouth communication

increases, accelerating the rate at which others become aware of it. In either case, the result

can be a market outcome that is ine±cient.4

We distinguish between externalities that in°uence consumers' valuations of a drug, and

3There is also qualitative evidence of this dependence from early sociological studies of the di®usion of
new drugs and medical technologies; see, e.g., Coleman, Katz, and Menzel (1966). For a more recent study
of the e®ects of potential malpractice liability on physician behavior, see Kessler and McClellan (1996).

4This is analogous to ine±cient herd behavior resulting from informational externalities in technology
adoption and investment decisions. The ine±ciency arises when agents rationally try to free ride on the
information generated by the adoption decisions of others, as in the models of Banerjee (1992), Choi (1997),
and Scharfstein and Stein (1990). For a discussion of these and related models, see Bikhchandani, Hirshleifer,
and Welch (1998). Besen and Farrell (1994) provide a good overview of such e®ects and some of their
implications for market structure and evolution. Goolsbee and Klenow (1999) present evidence of very similar
spillover e®ects in consumers' purchases of home computers. Gandal, Kende, and Rob (2000) estimate a
dynamic demand model of technology adoption for compact disc players and CD titles.
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those that in°uence the rate of di®usion in the market.5 Consumers' valuations are a®ected

when the use of a drug by others in°uences its perceived e±cacy and safety. One of our

goals is to determine the magnitude of this e®ect. A second goal is to assess the importance

of cumulative sales and/or market share as a determinant of the rate of product di®usion.

Pharmaceutical markets are usually bounded in terms of therapeutic classes of drugs, the

members of which often are therapeutic substitutes. Hence it is also important to distinguish

between consumption externalities at two levels. The ¯rst is with respect to a therapeutic

class, e.g., H2-antagonist antiulcer drugs, SSRI antidepressants, or cholesterol-lowering drugs.

We expect that physicians may be more willing to prescribe and patients to take a drug the

more the therapeutic class of which that drug is a member has been \accepted," where

\acceptance" can be measured at least in part by the number of other people that have

taken drugs in that class. The second is with respect to a speci¯c brand of drug within a

therapeutic class. We might expect that physicians and patients are more willing to use

Zantac (as opposed to, say, Tagamet, Axid, or Pepcid) the greater is its \acceptance," which

might be measured by its market share, total sales, or cumulative sales.

Although our focus is on the demand side of pharmaceutical markets, the issues we

examine have broad implications for market structure and performance. For example, the

fact that consumption externalities can lead to \tipping" may give ¯rms the incentive to

compete very aggressively in the early stages of market evolution, as they struggle to win a

future position with substantial market power. When the willingness of consumers to buy a

new product depends on the number of other consumers who have purchased the product,

sales may never take o®, or, if stimulated by initially low prices, might grow very rapidly.

Even with no externalities a®ecting consumers' valuations of a product, an initially large

market share can lead to \tipping" by a®ecting the rate of di®usion. Suppose there are two

competing products and switching costs are high. If the rate of di®usion for each product

depends positively on the number of consumers already using the product, the ¯rm with an

5The decision to utilize a drug can be made or in°uenced by both the patient and the physician, and we
do not try to di®erentiate their roles in the adoption decision. We include both groups when we refer to
\consumers."
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initial market share advantage could increase that advantage as the market saturates, and

win a future near-monopoly position.

When they occur at the brand level, consumption externalities have implications for pric-

ing, advertising, and R&D decisions. They can create an incentive to price low initially and

advertise heavily, and later provide the owner of a dominant brand the ability to raise price

above those for other brands. They also a®ect the reward for being the ¯rst drug in a new

therapeutic category. A strong brand-speci¯c e®ect creates a ¯rst-mover advantage, making

it worthwhile to invest heavily to accelerate the development of a new drug. Conversely, a

strong therapeutic class e®ect can create second-mover advantages, whereby later entrants

free-ride on the information and awareness generated by the pioneering brand. If this e®ect

dominates, ¯rms might ¯nd it optimal to arrive second on the market, if that can provide

an opportunity to develop a drug with slightly better attributes (e.g., requiring less frequent

dosing or having fewer side e®ects) than those of the ¯rst mover.6

In this paper, we focus on a particular therapeutic class, namely the H2-antagonist antiul-

cer drugs, which includes four competing products: Tagamet (manufactured by SmithKline-

Beecham), Zantac (GlaxoWellcome), Pepcid (Merck), and Axid (Eli Lilly).7 These four

drugs comprise a well-de¯ned market because they all work in roughly the same way | they

cause the stomach to produce less hydrochloric acid than it would otherwise. They di®er in

terms of dosing frequency, side e®ects, and their interactions with other drugs, but for most

patients they could readily be substituted for each other.8 Our analysis covers the time pe-

6Indeed, as we will see, this appears to be the case with H2-antagonist antiulcer drugs. Zantac arrived
second but with better attributes than ¯rst-mover Tagamet, and soon attained a dominant share of the
market. For discussions of ¯rst-mover advantages in prescription drug markets, see Bond and Lean (1977),
and Berndt, Bui, Reilly, and Urban (1995, 1997). For an empirical study of pricing strategies in these
markets, see Lu and Comanor (1998).

7Tagamet (the chemical compound cimetidine) went o® patent in May 1994, and Zantac (ranitidine) in
July 1997. More recently, the market was enlarged by the introduction of Prilosec, a proton pump inhibitor,
which in 1996 became the world's top-selling drug. Here we con¯ne our attention to the period prior to
Tagamet patent expiration.

8There are many other examples of well-de¯ned pharmaceutical markets. Anti-cholesterol \statin" drugs
are one, with ¯ve major products: Lipitor (Warner Lambert), Mevacor and Zocor (Merck), Pravachol
(Bristol-Myers-Squibb) and Lescol (Novartis). These drugs all do much the same thing (reduce blood choles-
terol levels) in much the same way, and while their side e®ects and interactions di®er somewhat, they are
all therapeutic substitutes. Sometimes pharmaceutical market boundaries are more ambiguous. Consider
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riod from 1977, when Tagamet was ¯rst introduced, through 1993, the year before Tagamet

lost patent protection and two years before over-the-counter versions of the H2-antagonist

drugs were introduced. Prilosec, a proton-pump inhibitor used to treat similar disorders,

was introduced in the United States in 1989. However, until 1995 the FDA required Prilosec

to carry a warning on its label concerning safety in long-term treatment, so that it was not

a strong substitute for the H2-antagonist drugs.

Because the four drugs were introduced sequentially, this data set allows us to address a

variety of important issues related to brand di®usion and competition. How important, for

example, is the ¯rst-mover advantage resulting from an \installed base" of patients? How

does that installed base a®ect the rate of di®usion for a new brand, as well as substitution

across brands? What portion of a drug's value can be attributed to brand-level versus thera-

peutic class-level consumption externalities? We can also examine strategic issues speci¯c to

this industry. Zantac was introduced in the market at a higher price than Tagamet and had

the disadvantage of being a \second mover," but overtook Tagamet in sales after about ¯ve

years. To what extent was this due to Zantac's better attributes and substantially higher

level of marketing?

Our model has three components. We ¯rst estimate an hedonic price equation that

adjusts prices for quality by accounting for the price impacts of objective attributes such as

the number of side e®ects, dosing, etc. We also include cumulative lagged sales of a brand

and/or the therapeutic class as additional attribute variables. This allows us to measure

the importance of a drug's past usage, as well as conventional attributes, as components of

value.

We then use the quasi-residuals from this hedonic price index as a quality-adjusted price,

painkillers, of which there are many types, with varying e±cacy and side-e®ect pro¯les. Examples include
nonsteroidal anti-in°ammatory drugs, such as aspirin, acetaminophen, ibuprofen, naproxen, and voltaren.
NSAIDs have both anti-in°ammatory and analgesic e®ects, and may cause gastro-intestinal bleeding as a
side e®ect. Another class of painkillers is the new cyclooxygenase-2 (COX-2) inhibitors, Celebrex and Vioxx.
While some types of painkillers are used more frequently than others for certain symptoms or conditions,
there is considerable spillover. For example, depending on the severity of the pain, osteoarthritis might be
treated with many of the painkillers mentioned above. Hence the boundaries of a \painkiller market" can
be di±cult to de¯ne.
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and, based on data for the last four years of our sample, estimate an equilibrium model

of brand shares. During this period we can reasonably expect that all four brands have

fully di®used through the market, so we can measure the equilibrium dependence of sales on

relative (quality-adjusted) prices and marketing levels.

The third part of our model is a set of dynamic di®usion equations that explains the

adjustment of sales to their equilibrium, or saturation, levels. These saturation levels depend

on prices, advertising levels, and population, and thus change over time as these variables

evolve. In these di®usion equations, the adoption of the therapeutic class, and the adoption

of a particular brand of drug within that class, depends indirectly on drug attributes through

the hedonic residuals, as well as on prices and marketing e®orts. But rates of di®usion also

depend directly on past sales of the therapeutic class and/or the particular brand, re°ecting

learning and word of mouth e®ects. Thus variables re°ecting past sales can a®ect rates of

di®usion and equilibrium market shares through multiple channels.

This modelling approach imposes structural assumptions (e.g., that the last four years

of our sample represents a period of market equilibrium) as a means of identifying key

parameters, and is discussed in more detail in the next section. Section 3 discusses the

data and estimation methods. Estimates of the hedonic price equations are presented and

discussed in Section 4, and in Sections 5 and 6 we present the results of estimating the

dynamic di®usion models, ¯rst at the industry level, and then at the brand level. Section 7

presents the results of several simulation experiments, and Section 8 concludes.

2 Modelling Pharmaceutical Demands

Relative to other goods, modelling the demands for pharmaceutical products is complicated

by the presence of consumption externalities and dynamic di®usion, both of which create

hysteresis (i.e., history dependence). Speci¯cally, the past sales of a drug can a®ect its

current demand by directly a®ecting its value to consumers, and by increasing awareness

of the drug's existence and thereby accelerating its rate of di®usion. Our model, which has

three components, accounts for these two mechanisms, both at the therapeutic class and

6



brand levels.

First, perceptions of a drug's e±cacy, safety, and medical \acceptability" are essentially

perceptions of its quality. Hence if the use of a drug by others a®ects these perceptions, it

should a®ect the drug's quality-adjusted price. This suggests that one could estimate the

perceived value of a drug's past sales or market share from an hedonic price regression that

includes such a variable in addition to other product attributes. Therefore we begin by esti-

mating an hedonic price equation for the therapeutic category, using an (unbalanced) panel

of prices and attributes for the four H2-antagonist drugs. Included among those attributes

are measures of the numbers of patients that are taking the drug or have taken it during

some previous time interval.9 Thus we can test whether variables that re°ect the acceptance

of a drug help to explain prices as expected, and we can estimate their relative contribution

to perceived value. Also, we employ the quasi-residuals of this hedonic price regression as a

quality-adjusted price in the other two components of our model.

Second, using the hedonic quasi-residuals, along with data on brand advertising, we

estimate equations for the equilibrium market shares of the four brands. To do this, we

use data only for the last 4 1/2 years of our sample, a period for which the market was

mature so that adjustment to equilibrium was largely complete. Because the number of

drugs on the market was changing during the years prior to this equilibrium period, we use

a multinomial logit model. This restricts the equilibrium cross-price elasticities to be the

same for drugs with equal shares, but yields partial (i.e., subject to a constant total industry

demand) own-price and advertising elasticities that depend on market shares but not on the

number of drugs in the market. Using these equilibrium share equations, we calculate ¯tted

equilibrium brand shares for the entire sample period. For example, we calculate what the

Tagamet and Zantac shares would have been in, say, 1985, when these were the only two

drugs on the market, but were not yet in equilibrium.

As explained earlier, past sales can in°uence the rate of product di®usion through word

9Gandal (1994) and Brynjolfsson and Kemerer (1995) employed such an approach to estimate the magni-
tude and value of network e®ects in spreadsheet software programs. Berndt, Cockburn, and Griliches (1996),
Cockburn and Anis (1998), and Suslow (1996) have estimated hedonic price indexes of pharmaceutical prod-
ucts, but did not test for the presence of consumption externalities.
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of mouth and related communication channels. When more people have used a drug, there

will be a greater knowledge of its existence and attributes, and thus a more rapid response

by physicians and patients who are potential adopters. If past sales are indeed a product

attribute that a®ects the quality-adjusted price, there will be indirect e®ects on the rate of

di®usion, and on equilibrium sales, through price. In particular, a greater acceptance of a

drug will imply that, ceteris paribus, the quality-adjusted price is lower, which can make

the level of sales at which the market ultimately saturates higher, and also make the rate of

new product trials higher. These indirect e®ects are simply implications of a negative price

elasticity of demand.

Thus the third step is to estimate a set of dynamic di®usion equations for the four

individual brands. These equations explain changes in the sales of a particular brand in

terms of adjustment to that brand's equilibrium share of an industry saturation level (which

is estimated), where the adjustment is partly due to the in°uence of an \installed base"

of patients that are using or have used the drug, and partly independent of that base.

Furthermore, the installed base is measured with respect to the entire therapeutic category

and with respect to the individual brand. In this way we can estimate the relative importance

of category-speci¯c versus brand-speci¯c spillover e®ects on the rate of di®usion.

This three-step approach has the distinct disadvantage that it imposes strong structural

assumptions | most notably that we can identify a period of market equilibrium. An

alternative approach would be to substitute functional expressions for the brands' equilibrium

shares directly into the di®usion equations, and then estimate those equations over the entire

sample. We have examined that approach, but found that it is not possible to identify key

parameters. By imposing identifying assumptions, our three-step approach has a number of

advantages. First, it lets us measure the importance of spillover e®ects as a component of

perceived value, and in terms of its in°uence on the rate of product di®usion. Second, we can

model the structure of interbrand competition in a parsimonious way (namely, through the

use of a logit model), without the usual problem of having to sacri¯ce the dynamic aspects of

demand. Third, the three parts of the model each provide information regarding a di®erent

aspect of demand, and by simulating the model as a whole, we can address questions raised
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in the Introduction, such as the extent to which Zantac's performance can be attributed to

its better attributes and higher rate of advertising.

2.1 Hedonic Price Equation

In order to model equilibrium brand shares, as well as the di®usion process, we require

prices that take into account quality variations across products and over time. We therefore

estimate hedonic price equations that relate the price of product i at time t; pit, to a set of

measured quality characteristics, Cit, a set of time dummy variables, Dt, and two measures of

product acceptance: the depreciated stock of cumulative patient days of therapy of brand i

to time t;XSit, and the corresponding depreciated stock for the therapeutic class as a whole,

XSt.

The theoretical literature provides little guidance on the appropriate functional form for

estimating quality adjusted prices.10 Following numerous others, we employ both linear and

semi-log speci¯cations. For the linear form, the hedonic price equation is

pit = C
0
it¯ +D

0
t° + !1XSi;t¡1 + !2XSt¡1 + ´it ; (1)

where ¯, °, and ! contain parameters to be estimated, and ´ is a stochastic disturbance

term. The depreciated stock of cumulative patient days of therapy to time t is computed as

XSit =
tX

¿=0

(1¡ ±)¿Xi;t¡¿ ; (2)

and similarly for XSt, but using Xt =
P
iXit. Here, ± is a monthly rate of depreciation and

Xi;t¡¿ is sales of patient days of therapy of drug i in month t¡ ¿ . As discussed in Section 6,
we set ± = :04.

To obtain measures of quality-adjusted prices, we re-arrange eqn. (1) and compute a

quasi-residual as follows:

Pit = pit ¡ C 0it ^̄¡ !̂1XSi;t¡1 ¡ !̂2XSt¡1 ; (3)

where ^̄ and !̂ are parameter estimates. Notice that variations in Pit over time and across

products net out the impacts of quality di®erences, including valuations of past sales as

10For a discussion, see Chapter 4 in Berndt (1991) and the references cited therein.
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measured by the depreciated stock of cumulative patient days of therapy, among drugs and

over time.

2.2 Equilibrium Shares

We use a simple multinomial logit model to describe equilibrium brand shares. Denoting the

quantity share of brand i at time t by s¤it, equilibrium shares are given by:

log(
s¤it
s¤T;t

) = ai0 + a1(Pit ¡ PT;t) + a2(MINSTKit ¡MINSTKT;t) + ²it ; (4)

where i = Z (Zantac), A (Axid), and P (Pepcid), s¤T;t is the equilibrium share of Tagamet,

Pit is the quality-adjusted price from eqn. (3), and MINSTKit is the depreciated stock of

detailing minutes, our measure of marketing. Variation in patient and physician \tastes"

occurs through the error term, ²it.

This parsimonious model imposes restrictions on equilibrium demands | for any two

drugs, cross-price elasticities with respect to a third drug can di®er only to the extent

that the ¯rst two drugs have di®erent market shares. The restrictive substitution patterns

generated by logit errors in demand models are well documented; see, e.g., McFadden (1984)

and Berry (1994). In our case, however, these restrictions are less problematic. First, there

are only four di®erent products in the market. Second, the products are all close substitutes.

The di®erence between any two H2 drugs is far smaller than the di®erence between, say,

a Ford Escort and a Lexus, so there is less need to use the more complex approach of

Berry, Levinsohn and Pakes (1995). Also, note that this demand model does not include

an outside good. The reason is that our dynamic di®usion models explain the adjustment

to an endogenous saturation level X¤
t (see below), and thus account for consumers' outside

treatment options.

2.3 Saturation Levels

The model described above provides estimates of equilibrium shares. These shares can in

turn be used to determine saturation levels for each brand, i.e., the level of sales that a brand

would reach once in equilibrium. Note that these saturation levels are not constant | they
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depend on the equilibrium market shares, which will change as relative prices and advertising

levels change, and they also depend on the saturation level for sales of the overall therapeutic

category, which will also change as the population grows and as the average industry price

changes.

We denote the industry saturation level by X¤
t , and we model it as a function of the

average industry quality-adjusted price P t, the total stock of depreciated detailing minutes

for the industry MINSTKTOTt, and population POPt. In its linear form, it is given by

X¤
t =

¡
b0 + b1P t + b3MINSTKTOTt

¢
POPte

¯t (5)

and in log form by

logX¤
t = b0 + b1 logP t + b2 log POPt + b3 logMINSTKTOTt (6)

Given the equilibrium shares s¤it and this industry saturation level, the saturation level for

each brand is just X¤
it = s

¤
itX

¤
t .

2.4 Dynamic Di¤usion Equations

The third part of our model is a set of equations that describes the evolution of demand

over time. We use a model of product di¤usion at the brand level, where the sales of each

brand approach a saturation level equal to the brand’s equilibrium market share times the

saturation level for total sales of the therapeutic category. The speci…cation of our di¤usion

model is not derived from a formal dynamic optimization model, in part because of di¢culties

of dealing with the impact of moral hazard (due to insurance) and principal-agent issues (the

physician-patient relationship). Nonetheless, models of this kind have been widely used in

marketing studies of new product di¤usion, and allow us to distinguish among alternative

sources of sales growth.11 Two basic versions of this equation have permeated the literature.

The …rst is the generalized logistic equation:

dXt
dt

= ®(X¤
t ¡Xt) + ¯Xt(X¤

t ¡Xt); (7)

and the second is the generalized Gompertz equation:

dXt
dt

= ®(logX¤
t ¡ logXt) + ¯Xt(logX¤

t ¡ logXt): (8)

11Bass (1969) developed one of the …rst of these models. For an overview of di¤usion models of this type
and their application, see Mahajan and Muller (1979) and Mahajan, Muller, and Bass (1990).
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The ¯rst term on the right-hand side of eqns. (7) and (8) represents sales growth (towards

the saturation level) that is independent of usage of the drug by others. (It may be due

purely to advertising, a willingness by physicians to experiment with a new drug, etc.) The

second term in these equations represents sales growth that is due to the in°uence of current

sales. As discussed above, the saturation level X¤
t can depend on prices, demographics (such

as changing disease prevalence due to variations over time in the age distribution of the

population), and \events" such as the approval of a drug for treatment of some condition,

and hence will vary over time.

If ® = 0 and X¤
t is constant, the solutions to both of these equations are S-shaped

\saturation" curves, where sales begin increasing slowly, then accelerate, and ¯nally level

out as Xt approaches X
¤
t . If ® > 0, sales can accelerate faster early on, because sales growth

is not dependent solely on the current level of sales. If X¤
t is not constant, i.e., the saturation

level is varying over time (perhaps in response to changing prices, medical information, or

demographics), sales pursue a moving target.

2.4.1 Di®usion of a Therapeutic Class

Although our focus is on the di®usion of individual brands, we will ¯rst specify and estimate

a model describing the di®usion of the entire therapeutic category. This is simpler, and

will allow us to obtain initial estimates of long-run own price elasticities for the therapeutic

categories. We work with the following discrete-time versions of the continuous-time di®usion

processes above:

Xt ¡Xt¡n = (X¤
t ¡Xt¡n)

Ã
c0 +

12X
k=2

µkmkt + d0XSt¡n

!
(9)

and

Xt ¡Xt¡n = (logX¤
t ¡ logXt¡n)

Ã
c0 +

12X
k=2

µkmkt + d0 log XSt¡n

!
(10)

where XSt is depreciated cumulative sales for the therapeutic category, and the lag n is one,

three, or six months. Note that in contrast to eqns. (7) and (8), sales growth is in°uenced

not by current sales but instead by the depreciated stock of past sales.
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Equations (9) and (10) are estimated after substituting in eqns. (5) for X¤
t and (6) for

logX¤
t respectively. Estimates of d0 measure the importance of consumption externalities in

driving the rate of market saturation at the level of the therapeutic class.

2.4.2 Brand-Level Di®usion

Here our main concern is with the process of di®usion for the individual brands. We adapt

the di®usion model described above by noting that the potential saturation level for brand i

is given by s¤itX
¤
t , where s

¤
it is the equilibrium share of brand i (which in turn is a function of

relative prices and advertising levels). In describing the di®usion process, we want to allow

for consumption externalities to occur at both the brand and the therapeutic category levels.

Hence we estimate the following two alternative discrete-time di®usion equations:

Xit ¡Xi;t¡n = [log(ŝ¤itX¤
t )¡ logXi;t¡n] ¢

"
Ci +

12X
k=2

µkmkt + d0XSt¡n + d1XSi;t¡n

#
(11)

and

Xit¡Xi;t¡n = [log(ŝ¤itX¤
t )¡ logXi;t¡n]¢

"
Ci +

12X
k=2

µkmkt + d0 log XSt¡n + d1 log XSi;t¡n

#
(12)

Note that the parameters d0 and d1 measure the e®ects of industry-level and brand-

speci¯c spillovers, respectively, on the rate of di®usion of each brand. When we estimate

these equations, we use both the in-sample and out-of-sample ¯tted values of the equilibrium

shares, ŝ¤it. The industry saturation level, X
¤
t , is endogenous, and is given by eqn. (6).

3 Measurement and Data

The data employed here are described in considerable detail in the Data Appendix of Berndt,

Bui, Reiley, and Urban (1997). To aggregate over the various strengths and presentational

formulations for each H2-antagonist, we divide monthly sales in total milligrams of active

ingredient by the recommended daily dosage, in milligrams, for duodenal ulcer treatment.

This yields patient days of therapy Xit, expressed in millions. By 1993, monthly sales

approximated 120 million patient days of therapy, which is roughly equivalent to 4 million

patients. Total revenue from sales of drug i in month t is divided by Xit, thereby yielding
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nominal price per day of patient therapy. We de°ate this nominal price by the Producer Price

Index for ¯nished goods (1982 = 1.00) to obtain the real price per day of therapy for drug

i, expressed in constant 1982 dollars. In 1993, the average real price of an H2 patient day of

therapy was about $1.50. Both price and quantity measures refer to sales from wholesalers

to retail drug stores, as computed by IMS America.

Marketing e®orts are important in the H2-antagonist therapeutic class. Using data from

IMS America, we employ as our measure of marketing the number of minutes that physicians

in the United States were \detailed" by pharmaceutical sales representatives. In the 1990s,

monthly minutes of detailing ranged from about 40,000 to 250,000, varying considerably by

product and over time. We construct a cumulative depreciated stock of detailing minutes,

MINSTKit, for each brand. This stock is expressed in millions of minutes, and is computed

analogously to eqn. (2), with ± = :05. This value for ± is chosen for two reasons. First, it

is approximately the rate estimated in Berndt et al. (1997) and King (1997). Second, we

performed a grid search for ± by repeatedly estimating the equilibrium share equations using

generalized method of moments estimation (GMM). The GMM objective function is quite

°at over values of ± between .02 and .08, and has two local minima; the value of .05 lies

midway between those minima.

When computing the quality-adjusted average price for the H2 class, P t, we weight each

of the products on the market at that time by the average patient-day share during the

period. These average shares are computed separately for epochs when there were two,

three, and four H2 products on the market. We also compute a total level of advertising for

the therapeutic class, MINSTKTOTt, by summing MINSTKit over all four products.

For quality characteristics of each drug, a number of measures are available. DOSAGE is

the number of tablets per day required to attain the recommended daily consumption of the

active ingredient. When Zantac was introduced in 1983, it o®ered a twice-a-day dosage, in

contrast to the incumbent Tagamet's four-times-a-day version. Lower DOSAGE is generally

thought to indicate greater quality, for patient compliance is typically improved with lower

daily DOSAGE. Note that the DOSAGE variable changes over time as manufacturers ob-

tained FDA approval to market more convenient dosages, which ultimately became available
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in once-a-day formulations for all four brands.

H2-antagonist drugs have also competed on the basis of di®ering medical conditions

for which the product has obtained FDA marketing approval; these are called approved

indications. Zantac was the ¯rst H2-antagonist to obtain approval for the GERD (gastro-

esophageal re°ux disease) indication, a relatively common ailment whose symptoms vary

from mild heartburn to very intense pain. Although all four H2-antagonists had obtained

approval at product launch date for active duodenal ulcer treatment, FDA approval times

varied for active gastric ulcer treatment, duodenal ulcer maintenance treatment, and stress

ulcer prophylaxis. We compute the SUMATT variable as the sum of the indications, other

than GERD and active duodenal ulcer treatment, for which the drug had obtained FDA

approval.

Finally, an important quality attribute of prescription drugs is the extent to which they

might interact adversely with other medications. This is particularly important for the

elderly population, who often take several concomitant medications. The bodily absorption

of Tagamet, the ¯rst entrant, involved a metabolic process that adversely a®ected a number

of other medications, some of them used for treatment of common conditions such as those

involving blood coagulation, anxiety, and asthma. For each of the four H2-antagonists we

construct a variable named INTER that sums up the number of major drugs with which

that H2-antagonist had adverse interactions, as reported in annual editions of Physicians'

Desk Reference. By the end of our sample, in late 1993, Tagamet had registered ten adverse

interactions, while Zantac, Pepcid, and Axid had either zero or one.

The construction of other variables is as follows. TIME is a time counter taking on the

value of one in the ¯rst month of the sample time period, August 1977, and then proceeding

with the passage of time. The U.S. population data was taken from the U.S. Census Bureau

web site, www.census.gov, and is expressed in millions.

Growth of H2-antagonist industry sales was remarkably steady over the 1977{93 time

period, averaging about 15 percent per year. Monthly quantity data for the four H2 drugs

are given in Figure 1. Although Tagamet was the pioneer and only H2-antagonist drug from

1977 until Zantac entered in July 1983, Zantac captured a signi¯cant market share very
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rapidly | almost 25 percent within the ¯rst year. Total industry sales continued to increase

following the entry of Zantac, but soon after Zantac's entry sales of Tagamet began to fall,

peaking at about 46 million patient days in April 1984. Tagamet's share continued to decline

when Pepcid entered in October 1986, but Pepcid was less successful than Zantac; Pepcid's

market share one year after its entry was only about 8 percent. By January 1988, Zantac

sales overtook those of Tagamet, and at about the same time (April 1988), Axid entered.

As the fourth entrant, however, Axid faced considerable competition, and one year after its

launch, its market share was only about 4 percent. By the end of our sample in May 1993,

Zantac held about 55 percent of the quantity market share, Tagamet 21 percent, Pepcid 15

percent, and Axid 9 percent.

Figure 2 shows market shares for the four drugs over the entire sample period. Note

that Tagamet's market share dropped to about 20 percent by the end of the period, and the

combined shares of Axid and Pepcid stabilized at just over 20 percent.

In terms of real (quality-unadjusted) prices, after original entry until it faced competi-

tion from Zantac, Tagamet gradually decreased its real price from about $1 to $0.80 per

day. As shown in Figure 3, not only did Zantac enter with a considerable price premium

over Tagamet, but thereafter prices of both Zantac and Tagamet rose with time, although

Tagamet's price increased more rapidly. By the end of the sample, the Zantac price premium

had narrowed from about 56 percent to about 25 percent. Prices of the third and fourth

entrants, Pepcid and Axid, generally fell in between those of Zantac and Tagamet.

Finally, Figure 4 shows the depreciated stock of detailing minutes, MINSTKit, for each

brand. (The stocks are computed using a monthly depreciation rate of 5 percent.) Note that

the advertising stocks for all four brands steadily rose during most of the time that they

were on the market, but Tagamet's fell during the last two years of our sample, perhaps in

expectation of the imminent loss of patent protection in May 1994.

The data employed in the empirical analysis of the hedonic and brand di®usion models

comprise an unbalanced panel, while those for the equilibrium share equations constitute

a balanced panel. We estimate the parameters of the hedonic price eqn. (1) by ordinary

least squares, and compute heteroscedasticity-consistent and ARMA(2,2) serial correlation-
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consistent standard errors. We estimate the logit equations for the equilibrium brand shares

three ways | as a seemingly unrelated regression (SUR), by three-stage least squares (3SLS),

and by generalized method of moments (GMM). The di®usion model for the entire H2-

antagonist class is nonlinear in the parameters, so we estimate it using nonlinear least squares.

Since the share weights of the individual drugs are constant arithmetic means within each

epoch, we treat the industry average price variable as exogenous.

We also estimate the brand-speci¯c di®usion model of eqn. (11) by nonlinear least squares

(NLS). For each brand i, we form the vectors Xi with components that begin at di®erent

time periods for each i (e.g., August 1977 for Tagamet, July 1983 for Zantac, etc.). We stack

the Xi's into a vector X which comprises our unbalanced panel.

Table 1 shows summary statistics for the variables used in the model. Part A includes

aggregate industry variables, and Parts B to E include brand-speci¯c variables. Part F

shows summary statistics for each brand's market share, price, and marketing for the last

53 months of our sample (the \equilibrium" time period).

4 Hedonic Price Equations

Table 2 presents the results of estimating linear and semi-log hedonic price equations for our

unbalanced panel of four drugs. We ¯rst estimate the hedonic price equation by OLS. There

may be serial correlation in the residuals, but we have no basis for making assumptions

about its structure. We therefore re-estimate the model using GMM, with an instrument

set composed of all of the right hand side variables. The point estimates do not change,

but the t-statistics are thus robust to the presence of heteroscedasticity and ARMA(2,2)-

serial correlation in the residuals. All of the regressions include annual and quarterly time

dummies (not shown). These dummies are highly signi¯cant, and show that real, quality-

adjusted prices fell from 1977 through 1981, and then rose gradually through 1993.

We work with four basic attribute variables, whose construction and interpretation was

discussed in Section 3: GERD, SUMATT, INTER, and DOSAGE. As can be seen from the

table, GERD, INTER, and DOSAGE are all highly signi¯cant and have the expected signs;
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SUMATT is usually insigni¯cant, and has the wrong sign.12

Each equation also has one or two variables that are intended to identify and measure

the e®ects of past sales at the brand-speci¯c and at the therapeutic category levels. The ¯rst

variable, XSi;t¡1, is the depreciated stock of past sales of brand i, calculated using a monthly

depreciation rate of 4 percent. The second variable, XSt¡1 at the therapeutic-category level,

is the corresponding depreciated stock of past sales for the therapeutic-category. As can be

seen from Table 2, the brand-speci¯c variable XSi;t¡1 is always positive and highly signi¯cant

in both the linear and semi-log versions. The depreciated stock of sales at the therapeutic

category level, XSt¡1, however, is insigni¯cant. We infer from this that the use of a drug

by others a®ects its valuation, and that this e®ect operates at the brand rather than the

therapeutic class level.13

To obtain some idea of the magnitude of this network e®ect, consider column (1) in

part A of Table 1, where the coe±cient on XSi;t¡1 is about .00018. Just prior to Zantac's

introduction in August 1983, Tagamet had a depreciated stock of past sales of 786 million

patient days. Had this ¯gure been about 200 million (25 percent) less, the contribution of past

sales to the value of Tagamet would have been reduced by about $0.036 (i.e., 200£ :00018),
or about 5 percent of its approximately 75 cents price at that time. This implies a brand-

speci¯c valuation elasticity of .2 (.05/.25), which is positive but modest. The semi-log

hedonic equation yields even smaller elasticities. In all of the calculations that follow, we

use Model (1) of Table 2, i.e., the linear hedonic equation.

Figure 5 shows quality-adjusted real prices for the four drugs. The sharp movements

in these quality-adjusted prices are largely due to discrete changes in the drugs' attributes.

For example, increases in the quality-adjusted price of Tagamet during 1980{82 are due

to new information concerning additional interactions with other drugs that reduced its

12This is not surprising in view of the fact that much prescribing is \o®-label," permitted but not formally
approved by the FDA.

13To explore possible strategic pricing, we also ran regressions adding as a regressor the number of ¯rms
competing in the market that month, initially as a single count variable, and then as three dummy variables
for the duopoly, three-¯rm, and four-¯rm epochs. The parameter estimates on these variables were always
insigni¯cant, and often of the wrong sign.
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e®ective quality. The sharp drops in the price of Tagamet in January 1985 and January

1987 are due to a change in dosing from four to two daily doses, and then two to one daily

dose, respectively. Zantac's quality-adjusted price also dropped in January 1987 because

its dosing dropped from two to one daily dose. Pepcid's quality-adjusted price dropped in

December 1991 when it received approval for treatment of GERD.

Note that at the time of Zantac's entry in 1983, its quality-adjusted price was close

to that of Tagamet. This can help us understand the pricing of Zantac. Ignoring quality

di®erentials, Zantac was priced higher than Tagamet by about 61 cents (in 1982 dollars).

One might argue that Zantac entered the market at a higher price to signal higher quality.

The drug indeed had quality advantages over Tagamet, in particular fewer interactions and

less frequent dosing. However, it also had a disadvantage insofar as Tagamet's installed base

gave Tagamet a perceived value premium. Our hedonic equation implies that Zantac had a

72 cents advantage from its better dosing and interaction pro¯le, and a 12 cents disadvantage

from the consumption externality, implying a net price premium of only 1 cent.

5 Equilibrium Share Equations

Using the hedonic price equation (1) from Table 2, we construct quasi-residuals that represent

quality-adjusted prices for each brand. With these quasi-residuals, along with the depreciated

stock of detailing minutes for each brand, we estimate a multinomial logit model using the

last 53 months of data for our sample. During this time period, all four brands are well

established, and information regarding their e±cacy and side-e®ects is well known. Thus

we believe that it is reasonable to impose the identifying assumption that the market is in

equilibrium during this period, so that any changes in market shares are due to changes in

prices and marketing e®orts.

Because price and marketing levels are likely to be endogenous, we need a set of instru-

mental variables for consistent estimation. We use the following set of instruments: the log

of the wage rate in the pharmaceutical industry and the PPI for intermediate goods (both of

which vary across time but not across ¯rms); the cumulative stocks of detailing minutes for
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each of the four ¯rms on all their other products (calculated the same way as MINSTKit),

and quality-adjusted prices for each of the ¯rms for H2-antagonist drugs sold to hospitals
14

(which vary over time and across ¯rms).

Estimation results for this model are given in Table 3. Columns (1) and (2) show results

for seemingly unrelated regression and three-stage least squares, respectively. In model (2),

a Hausman speci¯cation test fails to reject exogeneity of price and advertising; the test

statistic is 6.486 (p = .090). Our preferred model is in column (3), estimated by GMM. The

t-statistics reported for this model are from heteroscedasticity-consistent and ARMA(1,1)

serial-correlation-consistent standard errors. The J-statistic for the test of the overidentifying

restrictions is 16.618; with 10 degrees of freedom (¯ve instruments, including the constant,

times three equations, minus ¯ve parameters), this has a p-value of .093.

Table 3 also presents price and detailing elasticities computed at the point of means for

the 1989{1993 sample period. Focusing on column (3), note that the own-price elasticities

are in the range of {0.3 to about {0.6. These elasticities are based on holding the total

quantity of H2-antagonist drugs constant when the price of a single drug changes, i.e., they

only re°ect substitution within the therapeutic category. The total own-price elasticities will

be somewhat larger in magnitude. The estimated detailing elasticities for each brand are

close to unity, which might seem large. After launch ramp-up, the advertising-to-sales ratio

for these drugs is on the order of 15 to 20 percent. Thus even with own-price elasticities as

high as 1, the advertising elasticity should be on the order of about 0.2 if the marginal cost of

detailing were constant. (Detailing accounted for about 80 percent of total pharmaceutical

advertising.) There is anecdotal evidence, however, that the marginal cost of detailing rises

sharply, and is much higher than the average cost. (It becomes increasingly di±cult for

detailers to get additional minutes of physicians' time.) This is consistent with our large

elasticity estimates.

14The hospital and drugstore segments can plausibly be considered independent. Hospitals administer
these drugs intravenously to emergency room patients in order to reduce acid secretion induced by severe
trauma. On the other hand, drugstores sell oral preparations to outpatients su®ering from a wide range
of ulcer-related and chronic conditions. Since both markets experience common manufacturing cost shocks,
hospital price changes are likely to be uncorrelated with unobserved determinants of drugstore demand.
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As can be seen from Table 3, our elasticity estimates are quite robust to the choice of

estimation method. Although not shown in the table, both the price and detailing elasticities

are also robust to the monthly depreciation rates used to compute the stock of detailing

minutes and the stock of past sales. (We experimented with depreciation rates between 2

percent and 8 percent, and 3 percent and 5 percent, for detailing minutes and past sales,

respectively, with very little change in the parameter estimates or the optimized value of the

GMM objective function.)

Using model (3) from Table 3, we construct ¯tted values of equilibrium shares for the

four drugs. By \equilibrium shares," we mean the shares which each of these drugs would

have had at any particular point in time had the market already reached equilibrium at

that point in time. For months prior to 1989, we generate out-of-sample backcasts of the

equilibrium shares. For example, let k denote the number of drugs competing in the market

at a point in time. When k = 4,we can write the ¯tted shares from model (3) in Table 3 as:

ŝ¤it(4) =
exp(±it)

1 +
P
j exp(±jt)

(13)

where ±it = âi0 + â1(Pit ¡ PT;t) + â2(MINSTKit ¡MINSTKT;t), and the subscript T denotes
Tagamet. When k < 4, ŝ¤it(k), the equilibrium share of drug i, can be computed as:

ŝ¤it(k) =
exp(±it)

1 +
P
j exp(±jt)

: (14)

6 Di®usion Equations

The third component of our model is a set of equations describing the di®usion of the various

brands as they approach their equilibrium levels. Although our focus is on individual brand

di®usion, we begin with models describing the di®usion of the entire therapeutic class. We

estimate modi¯ed logistic and Gompertz equations, using the hedonic price quasi-residuals

constructed and equilibrium shares as described above.

6.1 Di®usion at the Industry Level

We estimate eqns. (9) and (10) using industry-level data. Note that the industry saturation

level, X¤
t , is endogenous, and is given by eqn. (5) for eqn. (9) and by eqn. (6) for eqn. (10),
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in linear and log forms, respectively.

These equations explain the change in the level of industry sales. At issue is how large

a time interval should be represented by this change. In principle, we can use our monthly

data to estimate a model describing monthly changes in sales. We have done this, and the

results are shown in Table 4A. However, there are issues as to whether the accounting of

sales in the data is free of lags, and there is high-frequency noise in the data due to ordering

and stocking decisions by drugstores. Thus we also experimented with three-month and six-

month changes in sales. These results are shown in Tables 4B and 4C, respectively. Finally,

we used two alternative variables to capture the e®ects of consumption externalities | the

stock of depreciated past sales, XSt, and the log of this stock.

The results include estimates of the own-price elasticity of demand at the industry level.

In models (2) and (4) of Table 4B, this elasticity is given by the estimated value of the

coe±cient b1, and ranges from {0.17 to about {0.65. These estimates are reasonable given

that most patients do not pay for these drugs at the margin, and the cost of alternative

treatments (such as surgery) are far greater. In models (1) and (3), the long-run price

elasticities of demand are not constant, and so we compute them at the point of means. For

the entire 1977{1993 sample period, these long-run price elasticities are in the range of {0.83

to about {0.94. (This elasticity is found by setting ¢Xt = 0, i.e., from the parameters of

the equation for the saturation level, X¤
t .)

Observe that in all of these models, the estimated coe±cient d0 is positive and signi¯cant.

This coe±cient (as opposed to the constant term, C0 and the coe±cient on the seasonal

dummies) represents the component of sales growth (towards the saturation level) that is

related to previous sales. Thus, we ¯nd that past sales indeed a®ect the continued growth

of sales. Of course we cannot determine from this whether the consumption externality

is operating at the industry- and/or brand-speci¯c levels since the equation is ¯tted using

aggregate industry sales. Also, note that this externality relates to the rate of di®usion, and

is distinct from the brand-speci¯c e®ect on valuation that we observed in our hedonic price

equations.

To assess the ability of these equations to replicate the evolution of industry sales, we
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performed dynamic simulations, in which quality-adjusted price, population, and total in-

dustry detailing minutes were all exogenous, and the sales level, Xt, is solved recursively

from month to month. Figure 7 plots the results of this dynamic simulation for model (2)

in Table 4B. It shows the actual level of sales in millions of patients (the °uctuating line),

the simulated saturation level (the relatively smooth curve), and the simulated level of sales.

Note that the model predicts saturation to occur in about three years, whereas actual sales

took about four years to saturate (assuming our estimates of the saturation level are correct).

Simulations of the other models in Tables 4A through 4C typically resulted in similar rapid

rates of saturation. Simulation diagnostics are displayed in column (1) of Table 6.

As can be seen from Figure 7, the estimated saturation level X¤
t grows four-fold from

1977 to 1993, i.e., more than 9 percent per year, much faster than the underlying population

growth rate. What might account for this? One possibility is that the perceived long-term

safety of using an H2-antagonist drug depends not only on how many people have taken the

drug, but also on how long the drug has been in use, particularly for patients with chronic

conditions requiring maintenance therapy. Hence longer usage increases the perceived safety

for a large potential population, and thereby increases the saturation level.15

6.2 Di®usion at the Brand Level

Tables 5A, 5B, and 5C show the results of estimating the modi¯ed Gompertz model given

by eqns. (11) and (6) for the di®usion of the four individual brands. Once again, we estimate

models with one-month, three-month, and six-month di®erences in the sales of each brand.

In addition, we estimate models in which the depreciated stock of past sales (of the brand and

of the total therapeutic category) appear in linear and in logarithmic form. We ¯rst estimate

these models making the industry saturation level, X¤
t , endogenous. We then reestimate the

models with X¤
t exogenous, using the ¯tted values from Tables 4A through 4C. In each

case the models are estimated by NLS, combining the data for the four brands to form an

15Discussions with industry personnel also suggest that disorders treated by H2-antagonists have a greater
prevalence in individuals over age 45, an age category that has been increasing more rapidly than the overall
population.
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unbalanced panel.

Note that as in the industry-level di®usion models discussed above, individual brand

prices a®ect the average quality-adjusted price for the therapeutic category, P t, which in

turn a®ects the saturation level. In addition, relative prices a®ect the saturation level for

the brand through its equilibrium share. Finally, the long-run own-price elasticity for the

therapeutic category is given by the estimated coe±cient, b1. This elasticity is on the order

of {0.3 to {0.9. The total own-price elasticity for each individual brand is given by:

EPi =
@ log s¤i
@ logPi

+ b1si4 = a1(1¡ s¤i )Pi + b1si4

Likewise, the total detailing elasticity for each individual brand is given by:

EAi =
@ log s¤i

@ logMINSTKi
+ b3

MINSTKi
MINSKTOT

= a2(1¡ s¤i )MINSTKi + b3
MINSTKi
MINSKTOT

Here, si4 is the average share of drug i during the period in which all four drugs are present.

In this model, consumption externalities attributable to past sales of the therapeutic

category are captured by the coe±cient d0, while those attributable to past sales of the

individual brand are captured by d1. Note from the tables that d1 is in most cases positive

and signi¯cant, while d0 is insigni¯cant. We infer from this that consumption externalities

connected with the rate of product di®usion occur primarily at the brand level. In other

words, past sales of a speci¯c brand| as opposed to the entire therapeutic class | contribute

to the rate at which sales of that brand increases towards its saturation level.

Tables 5A, 5B, and 5C also show estimated total own-price elasticities, and total elas-

ticities with respect to detailing minutes. The price elasticities are on the order of {0.5 to

{0.7, and the advertising elasticities are on the order of 1 to 1.3. Given that the marginal

cost of production for H2-antagonist antiulcer drugs is very small (generally around 10 cents

to 20 cents per daily dose), we would expect the own-price elasticities to be close to {1 if

the producers are indeed maximizing pro¯ts. Thus these estimated price elasticities seem

somewhat low. As explained earlier, the large advertising elasticities may re°ect the rising

marginal cost of detailing.
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7 Simulations of the Model

Simulations of the complete model can be used for at least two purposes. First, in-sample

simulations provide a test of the model's validity. Speci¯cally, by using historical values for

the attributes, the prices, advertising levels, and population, we can solve for all of the other

variables endogenously, in a dynamic framework, and assess how close the results are to the

actual data. Second, we can use the model to simulate the e®ects of alternative strategies

for pricing, detailing, and quality improvement. For example, we can examine how sales of

the various brands would have evolved had Zantac detailed less, or had Zantac's attributes

been the same as those of, say, Tagamet.

Because the model is highly nonlinear, the convergence and stability of the simulations

are sensitive to the initial conditions. To deal with this, we simulate the full model using the

actual values of sales for each brand for the ¯rst 12 months following the entry of the brand.

Figure 8 shows the simulated and actual sales for all four brands. The simulated series

comes from a dynamic simulation of the entire model, where real prices, detailing minutes,

attribute levels, and population are exogenous, and all other variables (quality-adjusted

prices, quality-adjusted average price, equilibrium shares, the industry saturation level, and

the sales of each brand) are solved for endogenously. Note that overall, the simulated values

are quite close to the actual values. Table 6 displays simulation diagnostics for each of the

four brands.

We then use the model to simulate the e®ects of changes in market conditions. We

conducted four experiments:

² We set Zantac's nominal price in each month equal to that of Tagamet.

² We set Zantac's marketing level (detailing minutes) in each month equal to that of
Tagamet.

² We set Zantac's marketing level equal to Tagamet's, and we also set its attributes equal
to those of Tagamet.
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² We reduced d1, the coe±cient in the brand di®usion model that determines the impact
of past sales on the rate of growth of current sales, by 50 percent (from 0.018 to 0.009).

The results of these simulations are summarized in Table 7, which shows the change in sales

for each brand (the experiment minus the base case) in May 1993, the end of our sample.

Table 7 also shows the resulting change in cumulative pro¯ts for Zantac and Tagamet under

each experiment.

The results of the ¯rst experiment are shown in Figure 9. Here, Zantac's nominal price

is equal to Tagamet's in each month. Recall that Zantac had better attributes than did

Tagamet, so its quality-adjusted price is lower than Tagamet's. The ¯gure compares two

sets of simulated values | the simulated sales for each drug using the actual values of the

exogenous variables, and the simulated sales for each drug using the actual values for all

variables, except for setting Zantac's price equal to that of Tagamet. Observe from Figure 9

that Zantac's sales are about 20 percent higher than in the base case simulation | its lower

quality-adjusted price results in an increase in its equilibrium share. What is surprising,

however, is that the sales of Tagamet, Pepcid, and Axid are also higher than in the base case

simulation. The reason is that even though their equilibrium shares are lower, the average

industry price is now lower (because Zantac's price has been reduced), so that the industry

saturation level, X¤
t , is higher. In this simulation, the e®ect of this higher saturation level

outweighs the reductions in equilibrium shares.

The results of the second experiment, in which Zantac's detailing level is set equal to

Tagamet's, are shown in Figure 10. Recall that Zantac detailed much more heavily than

Tagamet, particularly during the ¯rst two years following its introduction. Thus in the

experiment we are decreasing Zantac's detailing. The result is that Zantac's sales are much

lower by the end of the period. Likewise, the sales of Tagamet, Axid, and Pepcid are all

signi¯cantly higher. These results are due to the large values (about 1.0) of the advertising

elasticities of demand estimated in the equilibrium share model. The reduction in Zantac's

detailing thus leads to a large drop in its equilibrium share. Table 7 shows the impact on

Zantac's cumulative gross pro¯ts, ignoring production costs (which are small), but accounting
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for detailing costs, which are estimated annually from aggregate pharmaceutical industry

data.16 Observe that although Zantac's detailing expenditures drop, its sales drop by so

much that its overall cumulative pro¯ts fall by almost $700 million.

Figure 11 shows a simulation in which Zantac's attributes and its detailing level are set

equal to those of Tagamet. In e®ect, we are increasing Zantac's quality-adjusted price (and

reducing its detailing). This will reduce Zantac's equilibrium share and raise the equilibrium

shares of Tagamet, Axid, and Pepcid. The results are close to those of Experiment (2).

Because of the large estimated detailing elasticity of demand, Zantac's sales fall considerably.

Our last experiment evaluates the role of past sales as a determinant of the rate at

which a brand di®uses into the market. This e®ect is captured by the coe±cient d1 in our

brand di®usion model. Note from column (1) of Table 5B that the estimated value for this

coe±cient was 0.0180. In our experiment, we reduce this coe±cient by 50 percent, i.e., we

set it equal to 0.0090. The result of the simulation is shown in Figure 12. Observe that

Tagamet's sales grow much more slowly than in the base case simulation. (The reason is

that past sales of Tagamet contribute less to the growth of sales as compared to the base

case simulation.) The same is true, however, for Zantac, Pepcid, and Axid. As a result,

by late 1984, after Zantac has entered the market, Tagamet's sales are higher than in the

base case simulation. The reason is that Tagamet is now less harmed by the slower sales

growth of Zantac (and, later, Pepcid and Axid). As can be seen from Table 7, the overall

change in Tagamet's cumulative gross pro¯ts is small (it falls by about $25 million). Zantac's

cumulative gross pro¯ts, however, fall by nearly $900 million. Thus we observe that past

sales play a signi¯cant role in brand di®usion and pro¯tability.

16We used average \Cost per Call" data, estimated each year for the pharmaceutical industry as a whole
by IMS (IMS, 1996, pp. 7{47 and A-20), from a survey of manufacturers who estimate the direct expenses of
keeping a representative \in the ¯eld" | salary, bonus, car, insurance, expenses, training, etc. IMS indicates
that, on average, a call involves from two to four \product details," i.e., individual products discussed by
the sales representative. In addition to the number of detailing minutes for each drug, we have data on
the number of details per month for each drug. Aggregating these two series to the level of the entire H2-
antagonist class, and assuming that each \call" comprises three \details," we compute an average annual
cost per detailing minute from 1977 to 1993. In 1982 dollars, this average cost increases from $3.28 in 1977
to $8.09 in 1993.
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8 Conclusions

Our objective in this paper has been to identify the distinct ways in which consumption

externalities in°uence the demands for prescription pharmaceuticals, and to obtain empirical

estimates of their importance. We have focused on the case of H2-antagonists employed for

antiulcer/heartburn treatments, but our approach could be applied to other well-de¯ned

therapeutic classes of prescription drugs. It could also be applied to other products for

which information about e±cacy and safety is conveyed by the usage of others.

Our results indicate that consumption externalities appear to operate at the brand-

speci¯c level. These e®ects are captured by introducing the depreciated stock of past sales,

for the brand and for the therapeutic class, in both our hedonic price equations and our

models of brand di®usion. We ¯nd that the brand-speci¯c spillover variable is statistically

signi¯cant in both cases, although its quantitative importance is modest.

Our hedonic equations show that past sales contributes to the value of a brand, but it

only explains a few percent of a brand's value. However, its e®ect on the rate of di®usion is

economically very signi¯cant. Our simulations imply that had the magnitude of this e®ect

been 50 percent smaller, Zantac would have earned $882 million less in gross pro¯ts, an

amount roughly equivalent to three months of 1992 sales.

These results have important strategic implications. Our hedonic price equations suggest

that pioneering ¯rms bene¯t (in terms of consumer valuation) by being ¯rst to market and

establishing a large installed base before another ¯rm enters, but that this e®ect is modest.

On the other hand, our brand-level di®usion equations suggest that rates of di®usion can be

accelerated by a larger brand-speci¯c installed base. Thus, even if the ultimate saturation

level for a second entrant is close to that of a ¯rst entrant with similar attributes, the more

rapid rate of di®usion can result in signi¯cantly greater pro¯ts.

In the case of H2-antagonist antiulcer drugs, this consumption externality was not large

enough to prevent the second entrant from overcoming the pioneering brand. Our results also

shed light on how Zantac prevailed. It derived little bene¯t from the information about H2-

antagonists generated by Tagamet: free-riding from inter-brand consumption externalities is
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negligible. Instead, delayed entry allowed Glaxo to introduce a product with better quality

attributes. Combined with a heavy detailing campaign, these superior attributes overcame

whatever …rst-mover advantage Tagamet’s installed base of patients may have represented.17

More generally, the results of this study concur with David (1997), who argues that

lock-ins and positive feedbacks are neither necessary nor su¢cient conditions for ine¢cient

market outcomes to prevail. Consumption externalities of the type studied here constrain

…rms’ optimal pricing and advertising decisions, but need not lead to signi…cant ine¢ciencies.

17Anecdotal evidence suggests that these features are not unique to the antiulcer drug market. In the
anti-hypertensive market, for example, Merck introduced its ACE Inhibitor Vasotec later than Bristol Myers-
Squibb’s pioneer, Capoten. As recounted by Werth (1994), p. 58:

“Merck had put scores of chemists on the task of improving [Capoten], then followed up with a withering
sales campaign so e¤ective that it ended up beating Squibb in the market even though Capoten was launched
…rst and was much the same drug.”

29



References

Banerjee, A. V., 1992, “A Simple Model of Herd Behavior,” Quarterly Journal of Economics,

107(3), 797-817.

Bass, F. M., 1969, “A New Product Growth Model for Consumer Durables,”Management Science,

15(1), 215-227.

Beggs, A. and P. Klemperer, 1992, “Multi-Period Competition with Switching Costs,” Econo-

metrica, 60(3), 651-666.

Berndt, E. R., 1991, The Practice of Econometrics: Classic and Contemporary, Reading, MA:

Addison-Wesley Publishing Co.

Berndt, E. R., Cockburn I. M. and Z. Griliches, 1996, “Pharmaceutical Innovations and

Market Dynamics: Tracking E¤ects on Price Indexes for Antidepressant Drugs,” Brookings Paper

on Economic Activity: Microeconomics, 133-188.

Berndt, E. R., Bui, L. T., Lucking-Reiley, D. H. and G. L. Urban, 1997, “The Roles of

Marketing, Product Quality, and Price Competition in the Growth and Composition of the U.S.

Antiulcer Drug Industry,” in T. F. Bresnahan and R. J. Gordon, eds., The Economics of New

Goods, 58, NBER Studies in Income and Wealth, Chicago: University of Chicago Press, 277-322.

Berndt, E. R., Bui, L. T., Lucking-Reiley, D. H. and G. L. Urban, 1995, “Information,

Marketing, and Pricing in the U.S. Antiulcer Drug Market,” American Economic Review, Papers

and Proceedings of the 107th Meetings of the American Economic Association, 85(2), 100-105.

Berry, S., 1994, “Estimating Discrete-Choice Models of Product Di¤erentiation,” RAND Journal

of Economics, 25(2), 242-262.

Berry, S., Levinsohn J. and A. Pakes, 1995, “Automobile Prices in Market Equilibrium,”

Econometrica, 60(4), 889-917.

Besen, S. M. and J. Farrell, 1994, “Choosing How to Compete: Strategies and Tactics in

Standardization,” Journal of Economic Perspectives, 8(2), 117-131.

Bhattacharyja, A. S., 1994, “Product Experimentation and Learning Under Reswitching,”

Working Paper, Econometric Society Meetings.

Bikhchandani, S., Hirshleifer D. and I. Welch, 1998, “Learning from the Behavior of

Others: Conformity, Fads, and Informational Cascades,” Journal of Economic Perspectives, 12(3),
151-170.

30



Bond, R. S. and D. F. Lean, 1977, “Sales, Promotion, and Product Di¤erentiation in Two

Prescription Drug Markets,” Sta¤ Report to the FTC, Federal Trade Commission, Washington,

D.C.

Brynjolfsson, E. and C. F. Kemerer, 1996, “Network Externalities in Microcomputer Soft-

ware: An Econometric Analysis of the Spreadsheet Market,” Management Science, 42(12), 1627-
1647.

Choi, J. P., 1997, “Herd Behavior, the ‘Penguin E¤ect,’ and the Suppression of Informational

Di¤usion: An Analysis of Informational Externalities and Payo¤ Interdependency,” RAND Journal

of Economics, 28(3), 407-425.

Cockburn, I. and A. H. Anis, 1998, “Hedonic Analysis of Arthritis Drugs,” NBER Working

Paper #6574.

Coleman, J. S., Katz, E. and H. Menzel, 1966, Medical Innovation: A Di¤usion Study, New

York: Bobbs-Merrill.

David, P., 1997, “Path Dependence and the Quest for Historical Economics: One More Chorus of

the Ballad of QWERTY,” Working Paper, Oxford University.

Ellison, S. F., Cockburn, I., Griliches, Z. and J. Hausman, 1997, “Characteristics of

Demand for Pharmaceutical Products: An Examination of Four Cephalosporins,” RAND Journal

of Economics, 28(3), 426-446.

Gandal, N., 1994, “Hedonic Price Indexes for Spreadsheets and an Empirical Test for Network

Externalities,” RAND Journal of Economics, 25(1), 160-170.

Gandal, N., Kende, M. and R. Rob, 2000, “The Dynamics of Technological Adoption in

Hardware/Software Systems: The Case of Compact Disc Players,” RAND Journal of Economics,

31(1), 43-61.

Goolsbee, A. and P. J. Klenow, 1999, “Evidence on Network and Learning Externalities in

the Di¤usion of Home Computers,” NBER Working Paper #7329.

Griliches, Z., 1957, “Hybrid Corn: An Exploration in the Economics of Technological Change,”

Econometrica, 25(4), 501-522.

Griliches, Z., 1958, “Research Costs and Social Returns: Hybrid Corn and Related Innovations,”

Journal of Political Economy, 66(5), 419-431.

Griliches, Z., 1990, “Patent Statistics as Economic Indicators: A Survey,” Journal of Economic

Literature, 28(4), 1661-1707.

31



IMS America, 1996, Information Services Manual, Philadelphia: IMS Publications.

Kessler, D. and M. McClellan, 1996, “Do Doctors Practice Defensive Medicine?,” Quarterly

Journal of Economics, 111(2), 353-390.

King, C., 1998, “Marketing, Product Di¤erentiation, and Competition in the Market for Antiulcer

Drugs,” Working Paper, Harvard Business School.

Lu, Z. J. and W. S. Comanor, 1998, “Strategic Pricing of New Pharmaceuticals,” Review of

Economics and Statistics, 80(1), 108-118.

Mahajan, V. and E. Muller, 1979, “Innovation Di¤usion and New Product Growth Models in

Marketing,” Journal of Marketing, 43(4), 55-68.

Mahajan, V., Muller E. and F. M. Bass, 1990, “New Product Di¤usion Models in Marketing:

A Review and Directions for Research,” Journal of Marketing, 54(1), 1-26.

McFadden, D., 1984, “Econometric Analysis of Qualitative Response Models,” in Z. Griliches

and M. D. Intriligator, eds., Handbook of Econometrics, 2, New York: North-Holland, 1396-1457.

Pindyck, R. S. and D. L. Rubinfeld, 1997, Econometric Models and Economic Forecasts,

Fourth Edition, New York: McGraw Hill.

Scharfstein, D. and J. Stein, 1990, “Herd Behavior and Investment,” American Economic

Review 80(3), 465-479.

Suslow, V. Y., 1996, “Measuring Quality Change in the Market for Anti-Ulcer Drugs,” in R. B.

Helms, ed., Competitive Strategies in the Pharmaceutical Industry, Washington, D.C.: The AEI

Press, 49-72.

Werth, B., 1994, The Billion-Dollar Molecule, New York: Simon & Schuster.

32



Table 1. Summary Statistics

Mean Std Dev Minimum Maximum

A. Industry Variables (Nobs = 188)

Xt (patient-days/month, £106) 51.75 25.57 3.773 99.05
XSt (cumul. patient-days, £106) 1028.4 619.7 7.715 2099.3
P t (quality-adjusted avg. price) 1.562 0.215 1.155 1.914
pt (real avg. price, 1982$) 1.206 0.441 0.688 1.930
POPt (U.S. population, £106) 237.3 10.34 219.4 256.2
MINt (detailing minutes, £106) 0.249 0.171 0.019 0.604
MINSTKTOTt (ind. tot. stock min., £106) 4.173 3.107 0.263 9.268

B. Tagamet (Nobs = 188)

Xit (patient-days/month, £106) 27.52 9.087 3.773 46.42
XSit (cumul. patient-days, £106) 615.0 259.0 7.715 872.6
Pit (quality-adjusted price) 1.562 0.232 1.155 2.004
pit (real price, 1982$) 1.056 0.328 0.688 1.700
MINit (detailing minutes, £106) 0.094 0.036 0.019 0.199
MINSTKit (stock of minutes, £106) 1.727 0.656 0.263 2.576
GERDit (GERD dummy) 0.133 0.340 0.000 1.000
SUMATTit (other approved indications) 1.612 0.873 0.000 3.000
INTERit (# adverse drug interactions) 7.096 3.617 0.000 10.00
DOSAGEit (daily dosing frequency) 2.516 1.416 1.000 4.000

C. Zantac (Nobs = 117)

Xit (patient-days/month, £106) 30.42 14.20 4.190 54.27
XSit (cumul. patient-days, £106) 537.8 337.9 11.92 1093.2
Pit (quality-adjusted price) 1.733 0.108 1.533 1.961
pit (real price, 1982$) 1.770 0.239 1.309 2.129
MINit (detailing minutes, £106) 0.133 0.036 0.048 0.212
MINSTKit (stock of minutes, £106) 2.289 0.667 0.704 3.049
GERDit (GERD dummy) 0.718 0.452 0.000 1.000
SUMATTit (other approved indications) 1.530 0.794 0.000 2.000
INTERit (# adverse drug interactions) 0.145 0.354 0.000 1.000
DOSAGEit (daily dosing frequency) 1.342 0.476 1.000 2.000
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Table 1. Summary Statistics (continued)

Mean Std Dev Minimum Maximum

D. Pepcid (Nobs = 77)

Xit (patient-days/month, £106) 9.173 3.693 1.947 14.61
XSit (cumul. patient-days, £106) 141.7 86.62 4.740 284.0
Pit (quality-adjusted price) 1.695 0.117 0.417 1.892
pit (real price, 1982$) 1.616 0.123 1.286 1.844
MINit (detailing minutes, £106) 0.075 0.023 0.031 0.131
MINSTKit (stock of minutes, £106) 1.211 0.389 0.295 1.645
GERDit (GERD dummy) 0.234 0.426 0.000 1.000
SUMATTit (other approved indications) 1.727 0.448 1.000 2.000
INTERit (# adverse drug interactions) 0.000 0.000 0.000 0.000
DOSAGEit (daily dosing frequency) 1.000 0.000 1.000 1.000

E. Axid (Nobs = 59)

Xit (patient-days/month, £106) 4.926 2.344 0.704 9.207
XSit (cumul. patient-days, £106) 65.16 41.80 4.568 146.6
Pit (quality-adjusted price) 1.778 0.090 1.630 1.964
pit (real price, 1982$) 1.680 0.169 1.456 1.943
MINit (detailing minutes, £106) 0.114 0.024 0.069 0.217
MINSTKit (stock of minutes, £106) 1.647 0.517 0.427 2.277
GERDit (GERD dummy) 0.390 0.492 0.000 1.000
SUMATTit (other approved indications) 1.000 0.000 1.000 1.000
INTERit (# adverse drug interactions) 1.000 0.000 1.000 1.000
DOSAGEit (daily dosing frequency) 1.000 0.000 1.000 1.000

F. Balanced Panel, 1989{1993 (Nobs = 53)

Sit { Tagamet 0.293 0.059 0.212 0.407
Sit { Zantac 0.519 0.018 0.478 0.550
Sit { Pepcid 0.130 0.023 0.079 0.169
Sit { Axid 0.058 0.023 0.011 0.094
Pit { Tagamet 1.854 0.093 1.709 2.004
Pit { Zantac 1.808 0.086 1.673 1.961
Pit { Pepcid 1.738 0.106 1.542 1.892
Pit { Axid 1.790 0.088 1.630 1.964
MINSTKit { Tagamet 2.343 0.221 1.713 2.538
MINSTKit { Zantac 2.895 0.099 2.535 3.049
MINSTKit { Pepcid 1.450 0.154 1.030 1.645
MINSTKit { Axid 1.758 0.415 0.914 2.277
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Table 2. Hedonic Price Equation

A. Dependent Variable = Pjt B. Dependent Variable = logPjt

(1) (2) (3) (4) (5) (6)

Const. 1.3535 1.4152 1.3919 0.5113 0.5467 0.5387
(18.82) (18.44) (17.64) (7.47) (7.45) (7.21)

GERDit 0.1816 0.2320 0.1820 0.1245 0.1418 0.1247
(10.72) (13.48) (10.71) (10.50) (13.40) (10.48)

SUMATTit {0.0159 0.0163 {0.0156 {0.0061 0.0050 {0.0059
({0.98) (1.11) ({0.97) ({0.49) (0.46) ({0.48)

INTERit {0.0452 {0.0375 {0.0452 {0.0286 {0.0259 {0.0285
({16.62) ({14.37) ({16.59) ({14.33) ({14.56) ({14.29)

DOSAGEit {0.1158 {0.1194 {0.1157 {0.1555 {0.1566 {0.1554
({6.83) ({7.41) ({6.83) ({9.63) ({9.91) ({9.64)

XSit(¡1) .1758£10¡3 .1753£10¡3 .6030£10¡4 .5998£10¡4
(5.49) (5.48) (2.72) (2.71)

XSt(¡1) .4804£10¡3 .4265£10¡3 .0239£10¡3 .3054£10¡3
(1.79) (1.50) (1.45) (1.34)

R2 .966 .960 .967 .970 .969 .970

Zantac Price $0.01 $0.35 $0.30 $0.04 $0.27 $0.25
Premium

Note: All regressions include annual and quarterly time dummies; NOB = 441; t-statistics (from
heteroscedasticity-consistent and ARMA(2,2) serial-correlation consistent standard errors) in paren-
theses. Zantac price premium is the estimated quality-adjusted price of Zantac minus that of Tagamet
at the time of Zantac's entry in July 1983, based on attribute di®erences with Tagamet. (The actual
de°ated price di®erence was $0.615.)
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Table 3. Estimates of Equilibrium Logit Market Shares, 1989-1993

(Omitted Share is Tagamet, NOBS = 53)

(1) (2) (3)
SUR 3SLS GMM

Intercept{Zantac 0.1983 0.1937 0.2055
(10.47) (10.14) (14.89)

Intercept{Pepcid {0.0817 {0.0788 {0.0957
({3.33) ({3.16) ({4.31)

Intercept{Axid {1.1067 {1.1045 {1.1047
({73.38) ({71.23) ({87.50)

a1 {0.2889 {0.3129 {0.3442
({4.76) ({4.90) ({5.91)

a2 0.7634 0.7697 0.7414
(32.08) (31.53) (43.12)

R2 .78/.81/.96 .78/.81/.96 .77/.81/.96

²P Tagamet {0.385 {0.417 {0.459
({4.757) ({4.897) ({5.908)

Zantac {0.250 {0.271 {0.298
({4.757) ({4.897) ({5.908)

Pepcid {0.435 {0.471 {0.518
({4.757) ({4.897) ({5.908)

Axid {0.485 {0.525 {0.577
({4.757) ({4.897) ({5.908)

²MIN Tagamet 1.286 1.297 1.249
(32.078) (31.534) (43.119)

Zantac 1.057 1.066 1.027
(32.078) (31.534) (43.119)

Pepcid 0.958 0.966 0.930
(32.078) (31.534) (43.119)

Axid 1.258 1.268 1.222
(32.078) (31.534) (43.119)

Note: For models (1) and (2), t-statistics (from heteroscedasticity-consistent standard errors)
are in parentheses. For model (2), the Hausman test statistic for exogeneity of price and
advertising is 6.486 (p = .090). For model (3), the t-statistics are from heteroscedasticity-
consistent and ARMA(1,1) serial-correlation-consistent standard errors; the J-statistic for
the test of overidentifying restrictions is 16.618, df = 10, p = .083. The price and advertising
elasticities are computed at the point of means for the 1989{1993 sample period.
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Table 4A. Industry Di®usion Models, One-Month Di®erence
NOBS = 188

(1) (2) (3) (4)
Past Sales XSt¡1 XSt¡1 log[XSt¡1] log[XSt¡1]

C0 0.0169 {0.8196 {0.5072 {15.226
(0.16) ({0.35) ({2.57) ({3.27)

d0 .6268£10¡3 0.0402 0.1646 5.2535
(8.32) (9.80) (5.60) (5.05)

b0 0.1907 {34.305 0.1670 {28.676
(15.49) ({8.50) (11.78) ({2.67)

b1 {0.0544 {0.3895 {0.0509 {0.2344
({5.60) ({1.80) ({5.02) (0.56)

b2 6.9853 5.8935
(9.26) (2.96)

b3 .2988£10¡3 0.1775 {0.0012 0.2984
(0.43) (5.75) ({1.55) (2.49)

¯ 0.0076 0.0099
(12.21) (11.00)

R2 .410 .398 .340 .184

Note: In each model, the consumption externality is CEt = XSt or log[XSt]. Models (1)
and (3):

¢Xt = (X
¤
t ¡Xt¡1)(C0 +

12X
k=2

µkmkt + d0CEt¡1) and

X¤
t = (b0 + b1P t + b3MINSTKTOTt)POPt e

¯t

Models (2) and (4):

¢Xt = (logX
¤
t ¡ logXt¡1)(C0 +

12X
k=2

µkmkt + d0CEt¡1) and

logX¤
t = b0 + b1 logP t + b2 log POPt + b3 logMINSTKTOTt

The mkt's are a set of monthly dummies whose coe±cients µk are not reported. Numbers
in parentheses are t-statistics from heteroscedasticity-consistent standard errors. In models
(1) and (3), the estimated long-run price elasticities of demand, computed at the point of
means, are ¡0:81 (¡4:70) and ¡0:94 (¡4:33), respectively, for the period 1977{1993. For
the period 1989{1993, the elasticities are ¡1:04 (¡4:13) and ¡1:41 (¡3:74), respectively.
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Table 4B. Industry Di®usion Models, Three-Month Di®erence
NOBS = 185

(1) (2) (3) (4)
Past Sales XSt¡3 XSt¡3 log[XSt¡3] log[XSt¡3]

C0 0.0979 0.9162 {0.2653 {7.9582
(1.07) (0.54) ({1.70) ({2.49)

d0 .4646£10¡3 0.0320 0.1200 3.9017
(6.83) (8.30) (4.66) (4.07)

b0 0.1953 {38.754 0.1706 {39.192
(13.67) ({8.01) (11.01) ({3.03)

b1 {0.0558 {0.6337 {0.0510 {0.1786
({5.01) ({2.42) ({4.61) ({0.34)

b2 7.8273 7.8690
(8.65) (3.27)

b3 .6234£10¡4 0.1538 {0.0014 0.1615
(0.08) (4.26) ({1.67) (1.71)

¯ 0.0076 0.0098
(10.45) (9.87)

R2 .347 .339 .295 .150

Note: In each model, the consumption externality is CEt = XSt or log[XSt]. Models (1)
and (3):

Xt ¡Xt¡3 = (X¤
t ¡Xt¡3)(C0 +

12X
k=2

µkmkt + d0CEt¡3) and

X¤
t = (b0 + b1P t + b3MINSTKTOTt)POPt e

¯t

Models (2) and (4):

Xt ¡Xt¡3 = (logX¤
t ¡ logXt¡3)(C0 +

12X
k=2

µkmkt + d0CEt¡3) and

logX¤
t = b0 + b1 logP t + b2 log POPt + b3 logMINSTKTOTt

The mkt's are a set of monthly dummies whose coe±cients µk are not reported. Numbers
in parentheses are t-statistics from heteroscedasticity-consistent standard errors. In models
(1) and (3), the estimated long-run price elasticities of demand, computed at the point of
means, are ¡0:83 (¡4:18) and ¡0:942 (¡3:985), respectively, for the period 1977{1993. For
the period 1989{1993, the elasticities are ¡1:06 (¡3:66) and ¡1:40 (¡3:38), respectively.
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Table 4C. Industry Di®usion Models, Six-Month Di®erence
NOBS = 182

(1) (2) (3) (4)
Past Sales XSt¡6 XSt¡6 log[XSt¡6] log[XSt¡6]

C0 0.0995 {0.3113 {0.1615 {10.681
(1.05) ({0.10) ({0.91) ({1.87)

d0 .4920£10¡3 0.0371 0.0949 3.9967
(6.94) (8.90) (3.73) (3.85)

b0 0.2034 {39.951 0.1678 {47.412
(15.15) ({8.76) (12.57) ({3.55)

b1 {0.0586 {0.6813 {0.0512 {0.3412
({5.65) ({2.81) ({5.86) ({0.65)

b2 8.0544 9.4018
(9.43) (3.78)

b3 .1687£10¡3 0.1405 {0.0022 0.1197
(0.21) (4.19) ({3.42) (1.28)

¯ 0.0073 0.0109
(10.50) (11.62)

R2 .438 .414 .387 .190

Note: In each model, the consumption externality is CEt = XSt or log[XSt]. Models (1)
and (3):

Xt ¡Xt¡6 = (X¤
t ¡Xt¡6)(C0 +

12X
k=2

µkmkt + d0CEt¡6) and

X¤
t = (b0 + b1P t + b3MINSTKTOTt)POPt e

¯t

Models (2) and (4):

Xt ¡Xt¡6 = (logX¤
t ¡ logXt¡6)(C0 +

12X
k=2

µkmkt + d0CEt¡6) and

logX¤
t = b0 + b1 logP t + b2 log POPt + b3 logMINSTKTOTt

The mkt's are a set of monthly dummies whose coe±cients µk are not reported. Numbers
in parentheses are t-statistics from heteroscedasticity-consistent standard errors. In models
(1) and (3), the estimated long-run price elasticities of demand, computed at the point of
means, are ¡0:85 (¡4:65) and ¡1:058 (¡5:126), respectively, for the period 1977{1993. For
the period 1989{1993, the elasticities are ¡1:07 (¡4:04) and ¡1:68 (¡4:27), respectively.
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Table 5A. Brand Di®usion Models, One-Month Di®erence
NOBS = 437

Endogenous X¤
t Exogenous X¤

t

(1) (2) (3) (4)

Past Sales XSt¡1 log[XSt¡1] XSt¡1 log[XSt¡1]

CTagamet {0.3205 5.0732 0.8032 2.5398
({0.71) (2.58) (1.38) (2.97)

CZantac 2.0792 4.3498 {0.0310 2.8082
(1.39) (1.75) ({0.01) (3.33)

CPepcid 4.5848 4.2097 {0.2280 2.9241)
(1.83) (1.48) ({0.07) (3.21)

CAxid 5.8898 3.9249 0.0940 2.8447
(1.92) (1.53) (0.02) (3.16)

d0 {0.0032 0.0218 0.0012 {0.5378
({1.60) (0.05) (0.43) ({3.74)

d1 0.0195 {0.2661 0.0062 0.1343
(3.94) ({0.75) (1.15) (1.83)

b0 {3.6129 {149.32
({0.31) ({7.45)

b1 {0.1944 {2.8627
({0.30) ({2.52)

b2 1.3485 28.2367
(0.63) (7.56)

b3 0.3502 {0.3003
(3.43) ({1.85)

R2 .194 .179 .146 .061

Table continues on following page.
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Table 5A. Brand Di®usion Models, One-Month Di®erence (continued)
NOBS = 437

Endogenous X¤
t Exogenous X¤

t

(1) (2) (3) (4)

²P (Tagamet) {0.5149 {1.2965 {0.5721 {1.6218
({2.48) ({3.80) ({5.70) ({2.70)

²P (Zantac) {0.3980 {1.7827 {0.4992 {2.3590
({1.16) ({3.01) ({4.05) ({2.23)

²P (Pepcid) {0.5419 {0.8878 {0.5672 {1.0320
({4.44) ({5.18) ({6.17) ({3.71)

²P (Axid) {0.5875 {0.7433 {0.5989 {0.8081
({5.60) ({6.30) ({6.08) ({5.25)

²MIN (Tagamet) 1.3472 1.1659 1.2991 1.7863
(33.20) (21.72) (43.01) (7.44)

²MIN (Zantac) 1.1475 0.9240 1.0881 1.6888
(27.08) (15.25) (41.76) (5.73)

²MIN (Pepcid) 0.9904 0.8790 0.9608 1.2602
(35.69) (25.00) (43.29) (8.51)

²MIN (Axid) 1.2944 1.1601 1.2588 1.6199
(36.67) (26.44) (43.37) (9.05)

Note: In each model, the consumption externality is CEt =XSt or log[XSt], and CEit = XSit
or log[XSit]. We estimate the following model by nonlinear least squares, using data for the
four brands, combined to form an unbalanced panel:

¢Xit = [log(ŝ
¤
itX

¤
t )¡ logXit¡1] ¢

"
Ci +

12X
k=2

µkmkt + d0CEt¡1 + d1CEit¡1

#

The ŝ¤it's are the ¯tted equilibrium market shares from model (3) of Table 4, adjusted to
account for the number of competing brands in each of the 4 epochs. The mkt's are a set
of monthly time dummies whose coe±cients µk are not reported. In models (1) and (2),
logX¤

t = b0+ b1 logP t+ b2 log POPt+ b3 logMINSTKTOTt. In models (3) and (4), we use
the ¯tted values of X¤

t , taken from models (2) and (4), respectively, of Table 4A. Numbers
in parentheses are t-statistics from heteroscedasticity-consistent standard errors.
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Table 5B. Brand Di®usion Models, Three-Month Di®erence
NOBS = 429

Endogenous X¤
t Exogenous X¤

t

(1) (2) (3) (4)

Past Sales XSt¡3 log[XSt¡3] XSt¡3 log[XSt¡3]

CTagamet 0.5307 {2.6602 1.3935 {1.5228
(1.25) ({1.76) (3.60) ({1.12)

CZantac 2.6309 {3.1004 1.2637 {1.4328
(1.46) ({1.11) (0.52) ({0.50)

CPepcid 4.2109 {2.0477 0.7658 {0.3996
(1.46) ({0.68) (0.20) ({0.13)

CAxid 5.1534 {3.9436 1.2937 {2.4764
(1.50) ({1.35) (0.28) ({0.84)

d0 {0.0024 0.0612 .4395£10¡3 {0.2576
({1.04) (0.13) (0.14) ({0.52)

d1 0.0180 1.3585 0.0082 1.4884
(4.04) (4.57) (1.60) (5.49)

b0 {26.887 {49.474
({2.41) ({3.05)

b1 {1.0205 {1.2366
({1.59) ({1.26)

b2 5.7040 9.8617
(2.73) (3.25)

b3 0.2182 0.1069
(2.92) (0.87)

R2 .293 .200 .227 .176

Table continues on following page.
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Table 5B. Brand Di®usion Models, Three-Month Di®erence (continued)
NOBS = 429

Endogenous X¤
t Exogenous X¤

t

(1) (2) (3) (4)

²P (Tagamet) {0.7569 {0.8202 {0.6436 {0.5103
({3.73) ({2.76) ({5.90) ({2.97)

²P (Zantac) {0.8266 {0.9388 {0.6259 {0.3897
({2.46) ({1.84) ({4.32) ({1.41)

²P (Pepcid) {0.6490 {0.6770 {0.5988 {0.5398
({5.38) ({4.39) ({6.37) ({4.87)

²P (Axid) {0.6357 {0.6483 {0.6131 {0.5866
({6.08) ({5.73) ({6.20) ({5.73)

²MIN (Tagamet) 1.3104 1.2794 1.2925 1.2946
(36.74) (28.45) (42.17) (33.05)

²MIN (Zantac) 1.1021 1.0639 1.0800 1.0826
(31.48) (21.87) (40.04) (26.87)

²MIN (Pepcid) 0.9677 0.9487 0.9567 0.9580
(38.60) (31.42) (42.66) (35.52)

²MIN (Axid) 1.2672 1.2442 1.2539 1.2555
(39.29) (32.65) (42.82) (36.47)

Note: In each model, the consumption externality is CEt =XSt or log[XSt], and CEit = XSit
or log[XSit]. We estimate the following model by nonlinear least squares, using data for the
four brands, combined to form an unbalanced panel:

Xit ¡Xit¡3 = [log(ŝ¤itX¤
t )¡ logXit¡3] ¢

"
Ci +

12X
k=2

µkmkt + d0CEt¡3 + d1CEit¡3

#

The ŝ¤it's are the ¯tted equilibrium market shares from model (3) of Table 4, adjusted to
account for the number of competing brands in each of the 4 epochs. The mkt's are a set
of monthly time dummies whose coe±cients µk are not reported. In models (1) and (2),
logX¤

t = b0+ b1 logP t+ b2 log POPt+ b3 logMINSTKTOTt. In models (3) and (4), we use
the ¯tted values of X¤

t , taken from models (2) and (4), respectively, of Table 4B. Numbers
in parentheses are t-statistics from heteroscedasticity-consistent standard errors.
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Table 5C. Brand Di®usion Models, Six-Month Di®erence
NOBS = 417

Endogenous X¤
t Exogenous X¤

t

(1) (2) (3) (4)

Past Sales XSt¡6 log[XSt¡6] XSt¡6 log[XSt¡6]

CTagamet 0.2271 {4.4561 1.8403 {2.1413
(0.44) ({2.62) (2.54) ({1.50)

CZantac {0.5319 {3.3487 0.0606 {1.4171
({0.18) ({1.13) (0.02) ({0.54)

CPepcid {0.9357 {1.8496 {1.8995 {0.8102
({0.21) ({0.58) ({0.39) ({0.29)

CAxid {1.3683 {5.5432 {2.6523 {3.9959
({0.25) ({1.79) ({0.45) ({1.49)

d0 0.0016 {0.4136 0.0027 {0.5692
(0.44) ({0.84) (0.70) ({1.31)

d1 0.0177 2.1887 0.0084 8.1700
(3.91) (6.49) (1.65) (4.47)

b0 {36.034 {56.393
({4.32) ({4.17)

b1 {1.2528 {1.1395
({2.60) ({1.60)

b2 7.4182 11.145
(4.74) (4.40)

b3 0.1296 0.0062
(2.31) (0.06)

R2 .472 .361 .382 .318

Table continues on following page.
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Table 5C. Brand Di®usion Models, Six-Month Di®erence (continued)
NOBS = 417

Endogenous X¤
t Exogenous X¤

t

(1) (2) (3) (4)

²P (Tagamet) {0.8250 {0.7918 {0.6575 {0.5579
({5.13) ({3.56) ({6.25) ({3.24)

²P (Zantac) {0.9472 {0.8884 {0.6506 {0.4741
({3.71) ({2.38) ({4.81) ({1.71)

²P (Pepcid) {0.6791 {0.6644 {0.6050 {0.5609
({6.31) ({5.23) ({6.50) ({5.06)

²P (Axid) {0.6493 {0.6427 {0.6159 {0.5961
({6.39) ({6.05) ({6.24) ({5.82)

²MIN (Tagamet) 1.2857 1.2513 1.2887 1.2830
(39.06) (31.54) (42.36) (32.99)

²MIN (Zantac) 1.0717 1.0293 1.0754 1.0683
(34.97) (25.08) (40.67) (26.78)

²MIN (Pepcid) 0.9526 0.9314 0.9544 0.9509
(40.35) (34.18) (42.78) (35.45)

²MIN (Axid) 1.2489 1.2234 1.2511 1.2468
(40.81) (35.23) (42.92) (36.42)

Note: In each model, the consumption externality is CEt =XSt or log[XSt], and CEit = XSit
or log[XSit]. We estimate the following model by nonlinear least squares, using data for the
four brands, combined to form an unbalanced panel:

Xit ¡Xit¡6 = [log(ŝ¤itX¤
t )¡ logXit¡6] ¢

"
Ci +

12X
k=2

µkmkt + d0CEt¡6 + d1CEit¡6

#

The ŝ¤it's are the ¯tted equilibrium market shares from model (3) of Table 4, adjusted to
account for the number of competing brands in each of the 4 epochs. The mkt's are a set
of monthly time dummies whose coe±cients µk are not reported. In models (1) and (2),
logX¤

t = b0+ b1 logP t+ b2 log POPt+ b3 logMINSTKTOTt. In models (3) and (4), we use
the ¯tted values of X¤

t , taken from models (2) and (4), respectively, of Table 4C. Numbers
in parentheses are t-statistics from heteroscedasticity-consistent standard errors.
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Table 6. Simulation Diagnostics

Industry Model Brand Model
Model (2) Table 4B Model (1) Table 5B

Total Industry Demand Tagamet Zantac Pepcid Axid

Root-Mean-Squared Error: 4.5166 3.7626 2.1634 0.9159 1.6475

Mean Absolute Error: 3.4844 2.9771 1.7691 0.7492 1.4644

Mean Error: 0.0188 {1.1496 {0.4500 0.4040 1.4644

Regression coe±cient of 1.0147 0.9690 1.0529 1.1962 1.3935
actual on predicted:

Theil's Inequality Coe±cient: 0.0380 0.0622 0.0306 0.0442 0.1576

Fraction of Error due to Bias: 0.0000 0.0933 0.0433 0.1945 0.7901

Fraction of Error due to 0.0289 0.0289 0.1311 0.3645 0.1332
Di®erent Variation:

Fraction of Error due to 0.9710 0.8777 0.8257 0.4410 0.0767
Di®erence Covariation:

Note: The Root-Mean-Squared Error (RMS) for the variable Xit is de¯ned as

RMS =

vuut 1

T

TX
t=1

(Xsim
it ¡Xactual

it )2 :

Also shown is Theil's inequality coe±cient , which is de¯ned as

U =
RMSq

1
T

PT
t=1(X

sim
it )

2 +
q

1
T

PT
t=1(X

actual
it )2

;

where Xsim
it = simulated value of Xit, X

actual
it = actual value, and T = number of months for the

simulation. U measures RMS in relative terms. The Theil inequality coe±cient can be decomposed
into bias, variance, and covariance as displayed in the table. For more on simulation diagnostics,
see Pindyck and Rubinfeld (1997), pp. 710{712.
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Table 7. Simulation Experiments

May 1993

Experiment ¢XT ¢XZ ¢XP ¢XA ¢§¦T ¢§¦Z

(1)
Zantac Price at 1.5733 10.784 0.7073 0.1710 268.21 {669.6
Tagamet Level 6.87% 22.3% 5.05% 2.79% 5.07% {0.11%

(2)
Zantac Advertising 5.8974 {13.548 2.9091 1.0013 306.54 {662.2
at Tagamet Level 26.0% {27.88% 22.34% 16.25% 5.79% {10.7%

(3)
Zantac Advertising 4.3938 {19.643 2.2330 0.8278 150.98 {1626.8
and Attributes at 19.4% {40.5% 17.1% 13.4% 2.85% {26.4%
Tagamet Level

(4)
Coe±cient d1 3.5294 {3.5837 {1.6551 {3.1595 {106.12 {882.3
Reduced by 50% 15.7% {7.39% {12.8% {52.9% {2.02% {14.4%

Note: ¢XZ is di®erence in Zantac sales between the experiment and the base case, in
May 1993. Similarly, ¢XT , ¢XP , and ¢XA are the di®erences in Tagamet, Pepcid, and
Axid sales in May 1993. ¢§¦Z is the aggregate change in gross pro¯t for Zantac under
the simulation experiment compared to the base case simulation. Likewise, ¢§¦T is the
aggregate change in gross pro¯t for Tagamet. The ¯rst number in each row is the absolute
change (in millions of patient days or millions of dollars) and the second number is the
percentage change. In Experiments (2) and (3), we use an average cost per minute of
detailing, which varies from $3.76 in 1983 to $8.09 in 1993, to calculate the savings in
reduced advertising expenditures for Zantac.
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Figure 1: Monthly Sales of H2-Antagonist Drugs

Tagamet

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Aug-77 Feb-79 Aug-80 Feb-82 Aug-83 Feb-85 Aug-86 Feb-88 Aug-89 Feb-91 Aug-92

Zantac

Pepcid

Axid

Figure 2: Market Shares of H2-Antagonist Drugs

48



0

0.5

1

1.5

2

2.5

Aug-77 Feb-79 Aug-80 Feb-82 Aug-83 Feb-85 Aug-86 Feb-88 Aug-89 Feb-91 Aug-92

P
ri

ce
 p

er
 P

at
ie

nt
-D

ay
 o

f 
T

he
ra

py
 (

19
82

 d
ol

la
rs

)

Tagamet

Zantac

Pepcid

Axid

Figure 3: Real Prices of H2-Antagonist Drugs
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Figure 4: Depreciated Stocks of Detailing Minutes (± = 5%)
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Figure 8: Full Model Simulation of Brand Sales versus Actual
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Figure 9: Zantac Price Set Equal to Tagamet’s
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Figure 10: Zantac Detailing Set Equal to Tagamet’s
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Figure 11: Zantac Detailing and Attributes Set Equal to Tagamet’s
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Figure 12: Coe¢cient d1 Set Equal to 50 Percent of Estimated Value
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