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parameter uncertainty will tend to induce return predictability in ways that resemble irrational

mispricing, and prices can violate familiar volatility bounds when investors are rational. Cross-

sectionally, expected returns deviate from the CAPM even if investors attempt to hold mean-variance
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Estimation risk, market efficiency, and the predictability of returns 
 
1. Introduction 

 There is now much evidence that stock returns are predictable.  At the aggregate level, Fama and 

Schwert (1977), Keim and Stambaugh (1986), Fama and French (1989), and Kothari and Shanken (1997) 

find that interest rates, dividend yield, aggregate book-to-market, and the default premium forecast time-

variation in expected returns.  Further, LeRoy and Porter (1981) and Shiller (1981) argue that the 

volatility of stock prices is too high to be explained by a model with constant discount rates, providing 

indirect evidence that expected returns change over time.  At the firm level, Fama and French (1992) 

conclude that size and book-to-market together explain much of the cross-sectional variation in average 

returns.  Jegadeesh and Titman (1993) show that past returns also contain information about expected 

returns.  In sum, there seems little doubt that expected returns vary both cross-sectionally and over time.1 

 The interpretation of predictability, however, is more contentious.  The empirical results are 

potentially consistent with either market efficiency or irrational mispricing.  In general terms, market 

efficiency implies that prices ‘fully reflect all available information.’  To formalize this idea for empirical 

testing, Fama (1976) distinguishes between the probability distribution of returns perceived by ‘the 

market,’ based on whatever information investors view as relevant, and the true distribution of returns 

conditional on all information.  The market is said to be informationally efficient if these distributions are 

the same.  As an obvious consequence, market efficiency implies that investors correctly anticipate any 

cross-sectional or time-variation in true expected returns.  While Fama’s definition ignores potentially 

important issues like heterogeneous beliefs, it provides a useful framework for thinking about a broad set 

of asset-pricing questions. 

Market efficiency is closely related to the ‘rational expectations’ property analyzed by Muth (1961) 

and Lucas (1978).  In Lucas’s model, asset prices are a function of the current level of output, whose 

behavior over time is known by investors.  Consumers make investment decisions based, in part, on their 

                                                   
1 Clearly, this list of empirical papers and predictive variables is not meant to be exhaustive, and a considerable 

amount of subsequent research extends, confirms, and critiques these findings.  See Fama (1991) for a more 
complete survey of the evidence. 
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expectations of future prices.  Rational expectations requires that the pricing function implied by 

consumer behavior (the true pricing function) is the same as the pricing function on which decisions are 

based (the perceived pricing function).  Lucas shows that rational expectations can, and generally will, 

give rise to predictable variation in expected returns (see also LeRoy, 1973).  Intuitively, changes in 

economic conditions will lead to changes in the discount rate and, consequently, predictable returns.  

Thus, researchers must judge whether the empirical patterns in returns are consistent with credible models 

of rational behavior or can be better explained by irrational mispricing. 

 In this paper, we argue that there is a third potential source of return predictability:  estimation risk.  

In the asset-pricing literature, estimation risk refers to investor uncertainty about the parameters of the 

return- or cashflow-generating process.  Because investors do not know the true distribution, they must 

estimate the parameters using whatever information is available, which can be formally modeled using 

Bayesian analysis.  The parameter uncertainty increases the perceived risk in the economy and necessarily 

influences portfolio decisions.  As a consequence, estimation risk affects equilibrium prices and expected 

returns, and further, we show that it can be a source of predictability in a way that differs from other 

models with rational investors. 

 The theoretical literature on estimation risk typically focuses on the subjective distribution perceived 

by investors.  The subjective distribution combines investors’ prior beliefs with the information contained 

in observed data.  This distribution represents investors’ best guess about future returns or cash flows, and 

is therefore relevant for investment decisions.2  Our paper emphasizes instead the true distributions of 

prices and returns which arise endogenously in equilibrium.  The true distribution simply refers to the 

actual, or observable, distribution from which prices or returns are drawn.  Under the standard definition 

of market efficiency, the true and subjective distributions are the same.  However, that definition goes 

well beyond the intuitive notion that prices fully reflect available information, and implicitly assumes that 

investors know the parameters of the cashflow process.  In the presence of estimation risk, the two 

                                                   
2 See Zellner (1971) and Berger (1985) for a general introduction to Bayesian analysis and Bawa, Brown, and 

Klein (1979) for an application to portfolio theory.  Jobson, Korkie, and Ratti (1979), Jorion (1985), Kandel and 
Stambaugh (1996), Stambaugh (1998), and Barberis (1999) also discuss portfolio choice when investors must 
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distributions necessarily differ since the true distribution depends on the unknown parameters.  We should 

stress that ‘true’ does not mean ‘exogenous’:  the true distribution of returns must be endogenous because 

prices clearly depend on investors’ beliefs. 

Our central result is easy to summarize:  with estimation risk, the observable properties of prices and 

returns can differ significantly from the properties perceived by rational investors.  For example, returns 

can appear predictable based on standard empirical tests even when they are not predictable by rational 

investors.  The reason is simply that empirical tests estimate the true properties of returns, and these 

properties will typically differ from those under the subjective distribution.  An example should help 

illustrate the point.  Suppose dividends are normally distributed and independent over time with unknown 

mean δ and known variance σ2 (in our parlance, this is the true distribution).  From the investors’ 

perspective, the mean of the dividend process is random, represented by a posterior belief about δ.  

However, for an empirical test, the process that generates actual dividends has a fixed, constant mean.  

The sampling distribution of any statistic calculated from dividends – say, an autocorrelation coefficient − 

depends only on this true distribution.  In a similar way, the true distribution of returns is relevant for 

empirical tests even when it is unknown.  To put the idea a bit differently, returns can be predictable 

under the true distribution, when they are not predictable by investors, since this distribution conditions 

on unknown information.  We show that standard empirical tests, like predictive regressions and volatility 

tests, can in principle detect this predictability. 

 We develop these ideas in a simple overlapping-generations model of capital market equilibrium.  

Investors have imperfect knowledge about an exogenous dividend process, and they estimate the 

parameters based on current and past cash flows.  For simplicity, we initially assume that all parameters 

are constant over time.  We later extend the model to incorporate periodic shocks to the dividend process, 

in which case investors never fully learn the true distribution.  Throughout, investors are assumed to be 

rational and use all available information when making decisions.  As long as estimates of expected cash 

flows diverge from the true values, asset prices deviate from their values in the absence of estimation risk.  

                                                                                                                                                                    
estimate expected returns. 
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However, prices tend to move toward these ‘fundamental’ values over time as investors update their 

beliefs.  Through this process of updating, parameter uncertainty affects the predictability, volatility, and 

cross-sectional distribution of returns. 

 The model shows that estimation risk can induce return behavior that resembles irrational 

mispricing.  In our benchmark model without estimation risk, returns are unpredictable using past 

information.  When investors must estimate the mean of the cashflow process, returns become predictable 

based on past dividends, prices, and returns.  For example, when investors begin with a diffuse prior over 

the mean of the dividend process, stock prices appear to react too strongly to realized dividends, and 

returns become negatively related to past dividends and prices.  In a fairly general sense, it appears that 

this phenomenon is inherent in a model with estimation risk because investors’ ‘mistakes’ eventually 

reverse as they learn more about the underlying parameters.  However, the predictability induced by 

estimation risk can take the form of either reversals or continuations (or neither), depending on investors’ 

prior beliefs and on the underlying cashflow process (we discuss these issues further in Section 6).  When 

investors have prior information about the dividend process, they may appear to react too slowly to new 

information, giving rise to momentum. 

Predictability in the model is fundamentally different from predictability in other models with 

rational investors, such as that of Lucas (1978).  The difference is illustrated most easily by considering 

the case of risk-neutral investors.  In a model with perfect information, excess stock returns must be 

unpredictable if investors are risk-neutral.  This does not have to be true with estimation risk.  We show 

that excess stock returns can be predictable, under the true distribution, even with rational, risk-neutral 

investors.  This predictability is consistent with rational expectations because investors do not know the 

true distribution; nonetheless, the predictability can be detected by standard empirical tests.  To reiterate 

our earlier point, excess returns remain unpredictable from the perspective of rational investors, but 

empirical tests estimate the true, not the subjective, distribution. 

 The example with risk-neutral investors shows that some basic properties of asset prices do not hold 

with estimation risk.  Most importantly, investor rationality no longer implies that return surprises must 



 5 

be uncorrelated with any element of investors’ information set.  In fact, return surprises will often be 

correlated with past prices if investors must estimate expected cash flows.  The idea is simple.  Suppose 

that prices equal the discounted present value of expected future dividends, assumed to be independent 

and identically distributed over time, and assume that investors do not know the mean of the dividend 

process.  If a representative investor’s estimate at a given point in time is, say, higher than the true mean, 

the price of the stock will be inflated above its ‘fundamental’ value.  Furthermore, future dividends will 

be drawn from a true distribution with a lower mean than the market’s estimate, and investors will, on 

average, perceive a negative surprise over the subsequent period.  It follows that relatively high prices 

predict relatively low future returns. 

This story resembles the standard mispricing argument, but with some important differences.  Given 

estimation risk, the reversals are driven by completely rational behavior on the part of investors.  The 

reversals arise precisely because prices do fully reflect all available information at each point in time.  In 

fact, investors know that returns are negatively autocorrelated but cannot take advantage of it.  They 

would want to exploit this pattern by investing more aggressively when the market’s best estimate is less 

than the true mean of the dividend process, but of course they cannot know when this is the case.  In 

contrast, DeLong, Shleifer, Summers, and Waldmann (1990), Daniel, Hirshleifer, and Subramanyam 

(1998), and Barberis, Shleifer, and Vishny (1998) generate return predictability by assuming irrationality 

on the part of investors.  Investors misperceive the true return-generating process because of behavioral 

biases, not because they have imperfect information about returns. 

 The discussion has emphasized the time-series properties of returns.  We also examine the cross 

section of expected returns.  Curiously, for many years the conventional wisdom has been that estimation 

risk is largely irrelevant for equilibrium, although it is important for individual portfolio selection.  For 

example, Bawa and Brown (1979) argue that estimation risk does not affect market betas or the expected 

return on the market portfolio.  They conclude that 

‘in empirical testing of equilibrium pricing models, one should not necessarily be concerned with the 
problem of estimation risk – or expect estimation risk to be a factor explaining any possible 
deviation between CAPM and observed market rates of returns,’ (p. 87). 
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More recently, Coles and Loewenstein (1988) argue that many of Bawa and Brown’s conclusions are 

driven by the questionable assumption that the return-generating process is exogenous.  Coles and 

Loewenstein take end-of-period payoffs as exogenous, and allow prices and expected returns to adjust in 

equilibrium.  They show that estimation risk affects fundamental economic features like relative prices, 

expected returns, and betas, although they continue to find that the CAPM holds in equilibrium. 

 Bawa and Brown (1979) and Coles and Loewenstein (1988) both examine the subjective distribution 

of returns.  Its relevance for empirical research is questionable:  although equilibrium imposes pricing 

restrictions under the subjective distribution, empirical tests use returns that are generated from the true 

distribution.  Beliefs are relevant only insofar as they impact observable quantities.  The basic distinction 

between the true and subjective distributions has typically been glossed over in the cross-sectional 

literature.  Because the two distributions differ with estimation risk, we show that observed returns will 

typically deviate from the predictions of the CAPM, even when investors attempt to hold mean-variance 

efficient portfolios.  Moreover, the deviations can be predictable, in either time-series or cross-sectional 

regressions, using past dividends and prices. 

 In short, our primary message is that estimation risk drives a wedge between the distribution 

perceived by investors and the distribution estimated by empirical tests.  Although investors are rational, 

the empirical properties of prices and returns can look very different from the properties under the 

subjective distribution.  Stock returns can appear predictable, in time-series or cross-sectionally, even 

though they are not from the perspective of rational investors.  As a result, parameter uncertainty has 

important implications for characterizing and testing market efficiency.  Our point here is not to argue 

that estimation risk necessarily explains empirically-observed asset-pricing anomalies.  Rather, we 

emphasize that many so-called ‘tests of market efficiency’ cannot distinguish between an efficient market 

with estimation risk and an irrational market.  We believe that a world with estimation risk is the 

appropriate benchmark for evaluating apparent deviations from market efficiency. 

 Our results extend a growing literature on learning and parameter uncertainty.  In the continuous-

time literature, Merton (1971) and Williams (1977) show that parameter uncertainty creates a ‘new’ state 
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variable representing investors’ current beliefs, and the hedging demand associated with this state variable 

can cause deviations from the CAPM (see also Detemple, 1986; Dothan and Feldman, 1986; Gennotte, 

1986).  Our results are different because investors in our model attempt to hold mean-variance efficient 

portfolios; it is their mistakes, not their hedging demands, that induce deviations from the CAPM.  Stulz 

(1987) and Lewis (1989) also point out that prices can appear to overreact or underreact to information 

simply because investors must learn about the underlying true process.  Wang (1993) and Brennan and 

Xia (1998) show that learning about an unobservable state variable might increase return volatility, but 

the effect on predictability is less clear.  Finally, Timmermann (1993, 1996) recognizes that parameter 

uncertainty might induce both predictability and excess volatility.  We extend his work by analyzing an 

equilibrium model with fully rational (Bayesian) investors, and we discuss the implications for market 

efficiency and the cross-section of expected returns. 

 The paper is organized as follows.  Sections 2 and 3 introduce the basic model and derive capital 

market equilibrium.  Section 4 examines the time-series properties of prices and returns and Section 5 

explores the cross-sectional behavior of returns.  Section 6 generalizes the model to incorporate 

informative priors, time-varying parameters, and non-stationary dividends, and presents simulation 

evidence from the general model.  Section 7 concludes. 

 

2. The model 

 We present a simple overlapping-generations model of capital market equilibrium in which the 

dividend, or cashflow, process is taken as exogenous.  Investors are uncertain about the true dividend 

process and update their beliefs with observed data.  Many features of the model are borrowed from the 

economy analyzed by DeLong, Shleifer, Summers, and Waldmann (DSSW, 1990).  Like DSSW, we 

examine capital market equilibrium when investors’ beliefs diverge from the true distribution.  In their 

model, noise traders’ beliefs are exogenously specified and irrational.  In contrast, investors in our model 

are rational and use all available information when making decisions. 

 
2.1. Time 
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 We analyze the properties of asset prices in an infinite-period model, t = 1, …, ∞.  In single-period 

models of estimation risk, the end-of-period distribution of either returns or payoffs is exogenously 

specified (e.g., Bawa, Brown, and Klein, 1979; Coles and Loewenstein, 1988).  In contrast, end-of-period 

prices in our model are determined by investors’ beliefs, and both payoffs and returns are endogenous.  

When making decisions, investors must anticipate how market prices will react to the arrival of new 

information.  Thus, the model permits a detailed investigation of both the time-series and cross-sectional 

behavior of returns. 

 
2.2. Assets 

 We assume that there exists a riskless asset which pays real dividend r in every period.  Following 

DSSW, the riskless asset is assumed to have perfectly elastic supply:  it can be converted into, or created 

from, one unit of the consumption good in any period.  As a result, its price in real terms must equal one 

and the riskless rate of return equals r. 

The capital market also consists of N risky securities.  As mentioned above, estimation risk has 

implications for both the time-series and cross-sectional behavior of asset prices.  When we discuss the 

time-series properties of prices and returns, we examine a model with a single risky asset.  The analysis 

with many risky assets focuses on the cross-sectional implications of estimation risk. 

 Following Coles and Loewenstein (1988), we model investor uncertainty about an exogenously-

specified cashflow process.  Clearly, nothing can be learned about the return process if it is simply taken 

as exogenous, as assumed by Williams (1977) and Bawa and Brown (1979).  If returns are endogenous, it 

is unclear how investors in the model would update their beliefs directly about the distribution of returns.  

For example, we doubt that any multiperiod model with estimation risk would produce returns that are 

independently and identically distributed (IID) over time.  We show later that price reversals are inherent 

in a model with estimation risk, so it is unlikely that returns would be serially uncorrelated.  Since the 

dividend process is assumed to be exogenous, we do not have to worry about how investors’ beliefs affect 

its distribution. 

 The risky assets each have one unit outstanding and pay real dividend dt, an N×1 vector, in period t.  
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To develop the ideas in a simple framework, we initially assume that dividends are IID over time and 

have a multivariate normal distribution (MVN): 

[ ]Σδ  , MVN ~dt ,                   (1) 

where δ is the mean vector and Σ is a nonsingular covariance matrix.  Notice that the parameters of this 

distribution are assumed to be constant over time.  As a consequence, estimation risk will vanish as t goes 

to infinity.  In reality, parameter uncertainty seems unlikely to disappear even after a long history of data.  

The economy evolves over time, and the underlying cashflow process undoubtedly changes as well.  

Therefore, we extend the model in Section 6 to include unobservable shocks to the true parameters which 

periodically renew estimation risk. 

The IID assumption is not intended to be realistic, but dramatically simplifies the exposition.  Again, 

we relax this assumption later and allow dividends to follow a geometric random walk.  In addition, we 

have explored a model in which dividends are autocorrelated over time, and the qualitative results appear 

to be similar.  Throughout the paper, investors are assumed to know the form of the distribution function 

(IID and normal), but may not know its parameters. 

 
2.3. Investors 

 Individuals live for two periods, with overlapping generations.  Following DSSW, there is no first-

period consumption, no labor supply decision, and no bequest.  Therefore, in the first period individuals 

decide only how to invest their exogenously-given wealth.  We assume that investors can be represented 

by a single agent with constant absolute risk aversion, or 

U(w)  exp ( 2  w)= − − γ ,                  (2) 

where w is second-period wealth and γ > 0 is the risk-aversion parameter. 

 Investors in this model do not have to allocate wealth across time.  We ignore the intertemporal 

nature of the consumption problem and focus instead on estimation risk.  It is almost immediate that 

investors will attempt to hold mean-variance efficient portfolios, and will not have hedging demands 

related to changes in investment opportunities (see Merton, 1973).  This assumption limits the ways in 
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which estimation risk can affect equilibrium, and distinguishes the predictability in our model from that in 

Merton (1971) and Williams (1977).  In those papers, learning creates a state variable representing 

investors’ beliefs, and the demand for risky assets contains a hedging component associated with this state 

variable.  Our paper emphasizes a distinct phenomenon.  We show that the difference between the true 

and subjective distributions can be a source of predictable returns. 

 The representative investor chooses a portfolio to maximize expected utility, where the expectation 

is taken over the investor’s subjective belief about the distribution of next-period wealth.  In all the cases 

we consider, both dividends and wealth are normally distributed.  Consequently, it is easily shown that 

maximizing expected utility is equivalent to maximizing wµ − γ 2
wσ , where wµ  and 2

wσ  are the mean and 

variance of wealth.  Let pt be the vector of risky-asset prices and xt be the vector of shares held in the 

portfolio.  The investor will choose 

[ ] [ ]t1+t1+t
s
t

-1
1+t1+t

s
t

*
t p r)+(1  )+d(pE )d+(pvar 

2
1=x −
γ

,           (3) 

where s
tE  and s

tvar denote the subjective expectation and variance at t.3  The first term in brackets is the 

covariance matrix of gross returns, and the second term is the expected excess gross return.  Note that the 

optimal investment in the risky assets is not a function of initial wealth, an implication of constant 

absolute risk aversion.  Also, given our assumptions that investors are short-lived and returns are 

multivariate normal, it is immediate that investors attempt to hold mean-variance efficient portfolios.  

Consequently, *
tx  is the Markowitz tangency portfolio under the subjective distribution. 

Equilibrium in the economy, which treats current and future prices as endogenous, must satisfy eq. 

(3).  In addition, equilibrium requires that the demands for the risky assets, given by *
tx , equal their 

supply in every period.  Setting *
tx  = ι , where ι  is an N×1 vector of ones, and solving for price yields 

[ ]ιγ−  )d +(p var 2  )d +(pE  
r+1

1=p 1+t1+t
s
t1+t1+t

s
tt .              (4) 

                                                   
3 Throughout the paper we denote subjective moments with an ‘s’ superscript. 
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This equation gives the equilibrium current price in terms of next-period’s price, which in turn will be 

endogenously determined. 

 

3. Capital market equilibrium 

 This section derives capital market equilibrium with and without estimation risk.  We assume 

throughout that investors correctly anticipate how prices will react to the arrival of new information.  In 

other words, equilibrium satisfies the rational expectations property that the pricing function perceived by 

investors equals the true pricing function (Lucas, 1978).  This condition does not imply, however, that 

investors’ subjective belief about the distribution of returns equals the true distribution.  Rational 

expectations, as we use the term, implies that these distributions are equal only if investors have perfect 

knowledge of the dividend process. 

 
3.1. Equilibrium with perfect information 

 Suppose, initially, that investors know the dividend process.  This equilibrium will serve as a 

convenient benchmark for the model with estimation risk.  Since dividends are IID and the optimal 

investment in the risky asset does not depend on initial wealth, a natural equilibrium to look for is one in 

which prices are constant, or pt = p.  With constant prices, Et(pt+1 + dt+1) = p + δ and vart(pt+1 + dt+1) = Σ.  

Substituting into eq. (4) and solving for price yields 

ιΣγ−δ   
r

2  
r
1 = p .                   (5) 

The price of a risky asset equals its expected dividends discounted at the riskless rate minus a ‘correction’ 

for risk.  Not surprisingly, an asset’s contribution to the risk of the market portfolio (proportional to Σι; 

see below) is important, rather than its total variance.  Investors require an expected rate of return that is 

higher than the riskless rate if the asset’s ‘market risk’ is positive. 

 Many of the time-series implications of estimation risk can be investigated in a model with a single 

risky asset.  The properties of this asset are identical to those of the market portfolio when there are many 

risky assets.  In particular, the market portfolio M has weights proportional to the vector of prices, pt = p.  
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Its value, or price, equals 

pM = ι′  p = 2
MM r

2
r
1 σγ−δ ,                 (6) 

where the dividend on the market portfolio has expectation δM = ι′δ  and variance 2
Mσ = ι′Σι .  Since the 

variance is always positive, the expected return on the market portfolio is necessarily greater than the 

riskless rate.  Referring back to the pricing function with many assets, it is straightforward to show that 

the general model collapses to eq. (6) when N = 1. 

 
3.2. Equilibrium with estimation risk 

 The model above assumes that investors have perfect knowledge about the dividend process – that is, 

they know both the mean and the variance with certainty.  We now relax this strong assumption.  

Specifically, suppose that investors begin with a diffuse prior over δ (the prior density function is 

proportional to a constant).  Although this prior permits δ to be negative, it is the standard representation 

of ‘knowing little’ about the mean and simplifies the algebra.  We later consider alternative prior beliefs.  

With an informative prior, investors assign less weight to the data and more weight to their initial beliefs, 

which can be important for the way prices behave in equilibrium.  Consequently, the results in this and 

the next section should be interpreted as illustrative, but not completely representative, of the effects of 

estimation risk.  For simplicity, we continue to assume that investors know the covariance matrix of 

dividends.  Previous research finds that uncertainty about the covariance matrix is relatively unimportant 

(e.g., Coles, Loewenstein, and Suay, 1995), and we doubt that it would affect our basic conclusions. 

 Investors update their beliefs using Bayes rule, incorporating the information in observed dividends.  

With a diffuse prior, the posterior distribution of δ at time t is ] )t1( ,d[ MVN t Σ , where td  is the vector 

of average dividends observed up to time t.  The subjective, or in Bayesian terms ‘predictive,’ distribution 

of dividends is 





 Σ 

t
1+t ,d MVN ~ d t

s
1+t .                 (7) 

An investor’s best guess about the mean of the dividend process is simply the average realized dividend.  
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The covariance matrix of the predictive distribution reflects both the true variance, Σ, and uncertainty 

about the mean, Σ / t. 

 From eq. (7), it is clear that the subjective distribution of dividends, and consequently of future 

prices, differs from the true distribution.  Rational expectations requires, however, that investors correctly 

anticipate how equilibrium prices will be determined next period.  We impose this requirement by 

recursively substituting for pt+k in eq. (4), yielding4 

pt ( )
ι⋅








+

+
γ− ∑

∞

=
+   )d(pvarE

r1
1   2  d 

r
1 = k+tk+t

1k

s
1-kt

s
tkt .            (8) 

Price is a function of expected dividends and the expected conditional variance of gross returns.  Since 

estimation risk ‘scales up’ the predictive variance by (t+1)/t, the conditional variance of returns is 

unlikely to be constant.  However, if price is a linear function of td , then the conditional variance of 

returns will be a deterministic function of time.  We look for an equilibrium that has this property. 

 If the conditional variance of returns is deterministic, then we can drop the expectations operator 

from the infinite sum in eq. (8).  Variation in prices is driven entirely by the first term.  Therefore, the 

subjective variance of returns is 

Σ




 +









+

+=  
t

1t
1)(tr 

11)d+(pvar
2

1+t1+t
s
t .              (9) 

Substituting into eq. (8) yields the equilibrium pricing function: 

ιΣγ−   f(t)  2  d
r
1 =p tt ,                 (10) 

where 

f(t) = ∑
∞

=







−+
+









+

+
+1k

2

k 1kt
kt

k)r(t
11

r)(1
1 .            (11) 

The equilibrium price is similar to the price with perfect information (eq. 5).  The mean of the predictive 

distribution, td , replaces the true mean in the first term and the function f(t) replaces 1/r in the second 

                                                   
4 Eq. (8) imposes the transversality condition limk→∞Et[pt+k]/(1+r)k = 0, which will be satisfied in equilibrium. 
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term.  The function f(t) decreases as t gets larger and converges to 1/r in the limit.  Since the probability 

limit of td  is δ, the equilibrium price with estimation risk converges to the price with perfect information.  

This is intuitive because, as mentioned above, estimation risk vanishes in the limit.  In Section 6 we allow 

the true parameters to change, so that investors never completely learn the dividend process. 

 We noted in Section 2 that investors attempt to hold the tangency portfolio, which implies that the 

CAPM must describe expected returns under the subjective distribution.  We will discuss the CAPM in 

more detail below, but for now we note that the market portfolio’s value, or price, is 

pM,t = ι′  pt = 2
MtM,  f(t)  2d

r
1 σγ− ,               (12) 

where ttM, d d ι ′=  is the average dividend on the market portfolio from t = 1 to t.  Referring back to the 

pricing function with many assets, it is straightforward to show that the general model collapses to eq. 

(12) when N = 1. 

 Several colleagues have noted that the pricing function in eq. (10) could also be generated by a 

model with a nonstationary dividend process and no estimation risk.  In particular, suppose investors have 

perfect information and the true mean of the dividend process evolves over time as a function of average 

realized dividends (that is, δt+1 = td ).  In this case, the pricing function would be identical to the price in 

our model.  Notice, however, that our model should be distinguishable from one with nonstationary 

dividends.  Prices and expected returns evolve quite differently in the two models.  With a changing 

dividend process and perfect information, expected gross returns would be positively related to lagged 

dividends, and prices would exhibit no tendency to revert to a long-run mean.  The opposite is true in our 

model; true expected returns are negatively related to lagged dividends and price fluctuations are 

temporary.  Further, nonstationary dividends would not generate deviations from the CAPM. 

 

4. The time-series properties of prices and returns 

 Equilibrium, derived above, is determined by the subjective distribution of returns.  However, 

empirical tests use prices and returns drawn from the true distribution.  As we emphasized before, the 
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subjective and true distributions differ when there is estimation risk, even though investors know the true 

pricing function.  In this section, we examine the time-series properties of prices and returns, highlighting 

the impact of estimation risk on market efficiency.  The analysis considers a model with a single risky 

asset, interpreted as the market portfolio.  In this case, the price of the risky asset is given by eqs. (6) and 

(12).  We drop the subscript ‘M’ throughout this section for convenience. 

In the model with perfect information, prices are constant and returns simply equal realized 

dividends.  With estimation risk, prices fluctuate as investors update their beliefs about the dividend 

process.  From the previous section, the change in price from t to t+1 equals 

[ ])1t(f  )t(f  2  )dd(
r
1 p  p t1tt1t +−γ+−=− ++ .             (13) 

The change in price contains two components.  The first term is random and reflects changes in investors’ 

beliefs about expected dividends.  The second term is deterministic and arises because estimation risk 

declines steadily over time.  Since f(t+1) < f(t), this component tends to make prices increase over time.  

When we talk about predictability, the deterministic portion serves only to add an additional, non-random 

component to the equations.  Therefore, to focus on the main ideas, we assume in this section that 

investors are risk-neutral (γ = 0), causing the second term in the equation to drop out.  None of the results 

are sensitive to this assumption. 

 
4.1. Predictability 

 Previous studies argue that returns might be predictable either because business conditions change 

over time or because investors are irrational.  However, these stories cannot explain why returns would be 

predictable in our model.  The riskless rate, preferences, and the distribution of cash flows do not change, 

so ‘business conditions’ are constant by construction.  In addition, investors are rational and use all 

available information when making decisions, so irrational mispricing does not exist.  In our model, 

estimation risk is the only source of predictability. 

 As noted above, returns equal dividends when investors have perfect information.  With estimation 

risk, returns at t+1 equal 
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 =R 1+t )d(d 
1)r(t

1d t1t1t −
+

+ ++ .               (14) 

The first term equals realized dividends, and the second term equals the change in price.  At time t, 

investors’ best guess about dividends is given by td ; when realized dividends differ from this 

expectation, investors revise their beliefs about the mean of the dividend process, which in turn affects 

prices. 

Under the subjective distribution, it is clear that prices follow a martingale: 

0  ]pp[E t1t
s
t =−+ .                  (15) 

However, the empirical properties of returns will differ from the perceived properties.  The reason is 

simple.  From the investor’s perspective, the expected dividend is random, represented by a posterior 

belief over δ.  In contrast, for an empirical test, the dividend mean is fixed and constant, equal to 

whatever the true value actually is; the process that generates observed dividends does not have a random 

mean.  Put differently, the observable properties of returns are conditional on the true dividend process 

even though it is unknown.  Because of this fundamental difference between the true and subjective 

distributions, changes in prices can appear predictable to a researcher.  From eq. (14), the true conditional 

expected return is 

[ ] )d (
1)r(t

1    RE t1+tt −δ
+

+δ= .                (15) 

It is clear that Rt+1 is negatively related to past dividends.5  Although dividends are IID by assumption, 

price revisions are negatively correlated with past cash flows.  The intuituion is fairly straightforward.  

Prices depend on investors’ best guess about future dividends, given by td .  The higher that past 

dividends have been, the lower that changes in beliefs are expected to be.  As a result, price revisions 

move opposite to past cash flows. 

 From eq. (15), prices, dividends, and returns all predict time-variation in expected returns.  For 

                                                   
5 For simplicity, we examine the predictability of gross returns rather than rates of return.  The analysis with rates 

of return is more difficult because it involves expectations of ratios, but the qualitative results are similar. 
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example, suppose we are interested in the autocovariance of returns:6 

[ ] 2
1+tt 1)(tr t 

1R ,Rcov σ
+

−= .               (16) 

With estimation risk, returns are negatively autocorrelated.  A researcher who ignores estimation risk, and 

observes that business conditions do not change, would come to the incorrect conclusion that investors 

overreact:  higher returns today predict lower future returns.  Similarly, 

[ ] 2
1+tt 1)(tr t 

1R ,dcov σ
+

−= .               (17) 

A high dividend today predicts lower future returns, which would suggest that investors naively 

extrapolate recent dividend performance into the future.  However, investors are completely rational in 

our model and the predictability is driven entirely by estimation risk.  Investors appropriately incorporate 

all relevant information, but today’s dividend causes a revision in prices that moves opposite to expected 

returns. 

 We later present simulation evidence to show how estimation risk can affect empirical tests.  To 

illustrate the results, Fig. 1 depicts a sample price path for the risky asset.  The figure assumes that 

investors are risk-neutral and the riskless rate is 0.05.  Dividends have mean 0.05 and standard deviation 

0.10, taken to be similar to the dividend yield and volatility of dividends on the market portfolio.  Under 

these assumptions, the price of the risky asset without estimation risk equals one and its expected rate of 

return is 0.05.  The price with estimation risk depends on realized average dividends, which we randomly 

draw from a normal distribution.  The figure shows that the price of the risky asset tends to revert towards 

‘fundamental’ value.  The sample autocorrelation in returns equals -0.10 for the periods shown (t = 10 to 

110) and the correlation between rates of return and lagged prices equals -0.28.  True conditional 

expected rates of return vary from 2.0% to 6.2%.7 

 In this example, the mean-reversion in asset prices is obvious from the figure.  The price-reversal 

                                                   
6 This covariance is time-dependent because estimation risk declines over time.  We will break the strong 

connection between time and predictability in Section 6 when we allow the true dividend process to change. 
7 The example is for illustration purposes only.  The reported statistics do not adjust for small-sample bias in the 

correlation and regression coefficients.  We present more extensive simulation evidence in Section 6. 
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effect of estimation risk might be observable to a researcher, yet prices at every point in time are set 

rationally.  Investors ignore the negative relation between returns and dividends because it provides no 

useful information about future expected returns.  Similar results for actual stock market data would be 

interpreted as evidence against efficient markets.  However, ex ante, investors in this example could not 

have forecast any variation in expected returns. 

 The analysis above considers the predictability of one-period returns.  Investor expectations are 

highly persistent, however, and price reversals can take many periods to occur.  As a result, the negative 

relation between returns and past dividends becomes stronger for long-horizon returns.  Define the H-

period return ending at t+H as the sum of one-period returns, or R t H
H
+  = Rt+1 + … + Rt+H.  Then the 

conditional expected H-period return is 

][RE H
H+tt )d(

H)r(t
H  H t−δ
+

+δ= .              (18) 

Similar to one-period returns, H
HtR +  is negatively related to past prices.  Except for the substitution of t+H 

for t+1 in the denominator, the expected return is H-times more sensitive to changes in average dividends 

than one-period returns.  As a result, the price-reversal effect of estimation risk will be more pronounced 

in long-horizon returns.  For example, the autocovariance of H-period returns is 

[ ] 2
2

H
H+t

H
t H)(tr t 

H R ,Rcov σ
+

−= ,               (19) 

which increases by a factor of H2 as the horizon is lengthened (except for the change from t+1 to t+H in 

the denominator).  The variance of returns increases at a rate less than H, so returns become more 

negatively autocorrelated as the return horizon lengthens.  Results are similar for the relation between 

expected returns and lagged dividends. 

In short, estimation risk can be a source of predictability.  However, the predictability of total returns 

does not say anything directly about market efficiency.  In the model analyzed by Lucas (1978), for 

example, returns are predictable yet the market is efficient.  To get a clearer picture of market efficiency, 

we need to examine the predictability of return surprises.  A standard result in finance is that forecast 
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errors should be unpredictable if investors are rational.  Indeed, tests of market efficiency, like those 

analyzed by Shiller (1981) and Abel and Mishkin (1983), rely on the assumption that rational forecast 

errors are uncorrelated with past information.  In the presence of estimation risk, we show that rationality 

no longer imposes this restriction.  Investors form expectations based on past information, so forecast 

errors will be correlated under the true distribution with past cash flows. 

 The unexpected portion of returns, URt+1, is given by the difference between realized returns and 

investors’ subjective expectation, or Rt+1 − [ ]1+t
s
t RE .  In this section, we have assumed that investors are 

risk-neutral, implying that unexpected returns equal excess returns.  From eq. (14), 

)d(d 
1)r(t

11 =UR t1t1+t −







+

+ + .                (20) 

It follows that 

[ ] )d  ( 
1)r(t

11 = URE t1+tt −δ







+

+ .                (21) 

Therefore, like total returns, the unexpected portion of returns is predictable based on past dividends, 

returns, and prices.  It is precisely this result that differentiates predictability in our model from 

predictability in other models with rational investors.  With perfect information, excess returns must be 

unpredictable if investors are risk-neutral.  In contrast, once we allow for parameter uncertainty, excess 

returns can be predictable even with rational, risk-neutral investors. 

Thus, not only do subjective expectations differ from true expectations, but they do so in a way that 

is predictable with prices and dividends.  With incomplete information, investors form expectations based 

on observed dividends.  If these have been, say, abnormally high, then price will be inflated above its 

fundamental (perfect information) value.  Consequently, prices are related to future returns in a way that 

resembles overreaction.  The predictability is consistent with rational expectations because it is based on 

the unknown, true distribution.  We emphasize, however, that the true distribution determines the 

empirical properties of returns even though it is unknown.  At the time portfolio decisions are made, 

investors cannot know whether past dividends have been above or below the true mean.  Over time, 
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investors learn more about expected cash flows and, looking back, can observe the negative relation 

between prices and unexpected returns (as illustrated by Fig. 1). 

 Throughout this section, we have found that parameter uncertainty creates price reversals and 

negative autocorrelation in returns.  These results are relevant for the large empirical literature on excess 

volatility and apparent overreaction.  However, several studies also document momentum in stock returns.  

Jegadeesh and Titman (1993), for example, find that short-term ‘winners’ (stocks that performed well 

over the past 3 to 12 months) have higher future returns than short-term ‘losers.’  In Section 6, we show 

that informative priors might give rise to momentum in returns.  In addition, alternative cashflow 

processes, such as autocorrelated dividends, could generate momentum if investors are uncertain about 

the persistence of cash flows. 

 
4.2. Price volatility 

 Price volatility is closely related to predictability (see, e.g., Campbell, 1991).  For example, investor 

overreaction generally implies that returns will be both negatively autocorrelated and excessively volatile.  

Given our results above, it is clear that estimation risk will significantly affect the variance of prices and 

returns. 

 In the model without estimation risk, the variance of returns simply equals the variance of dividends, 

σ2.  With parameter uncertainty, prices fluctuate over time as investors update their beliefs about the 

dividend process.  In particular, the (true) conditional variance of price is 

[ ]1+tt pvar  = 2
2

1)+r(t
1 σ








,                (22) 

and the unconditional variance is 

[ ]1+tpvar  = 2
2 1)+(tr

1 σ .                 (23) 

Estimation risk increases both the conditional and unconditional variances of observed prices.  Similar to 

inferences about return predictability, ignoring the effects of estimation risk would suggest investor 

overreaction.  However, ‘excess’ volatility simply reflects parameter uncertainty; volatility is high 
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precisely because investors rationally update their beliefs. 

 In the model, a relatively small amount of parameter uncertainty will substantially increase price 

volatility.  Suppose, for example, that investors are risk-neutral, the riskless rate is 0.05, and dividends are 

distributed with mean 0.05 and standard deviation 0.10.  (These are the values used in Fig. 1.)  In this 

case, the value of the risky asset equals one when the dividend process is known.  With parameter 

uncertainty, the standard deviation of pt equals t2 , which remains significant as a percentage of 

fundamental value for rather large t.  When t is, say, 100 the standard deviation of price is 0.20.  This 

implies that the length of a two-standard-deviation confidence interval is 80% of fundamental value, 

despite the fact that the subjective standard deviation of dividends is less than one percent greater than the 

true standard deviation. 

 Thus, the model suggests that prices might vary considerably around their ‘true’ values.  The 

deviations are eventually reversed, giving rise to predictable variation in returns, yet investors are 

completely rational.  Put differently, stock price movements do not have to be explained by subsequent 

changes in dividends.  Indeed, in our model, prices are completely uncorrelated with future dividends.  

Prices are backward looking and, ignoring estimation risk, investors appear to overreact to past 

information. 

 Asset prices can also violate the volatility bounds that have been the focus of much empirical 

research.  For example, Shiller (1981) argues that an immediate consequence of ‘optimal forecasts’ is that 

var(pt) ≤ var( *
tp ),                  (24) 

where *
tp  is the ex post rational price, or the price based on realized, rather than expected, dividends.  

That is, *
tp  is given by 
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+

=∑
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=
+ .               (25) 

With perfect information and rational investors, the bound holds because *
tp  equals the actual price plus a 

random, unpredictable forecast error.  We saw above, however, that the forecast error with parameter 
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uncertainty can be negatively related to price.  In the current model, the variance of *
tp  is 

2
2

1k
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t 2rr
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=σ
+

=∑
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=

.              (26) 

Comparing this to eq. (23), we see that the volatility bound will be violated for t ≤ 1 + 2/r.  Perhaps more 

directly, however, prices violate the basic premise of the volatility-bound literature, that revisions in 

prices should only reflect changes in true expected dividends.  With estimation risk, new information 

about future dividends does not have to correspond to changes in the true distribution.  Thus, the volatility 

literature tests the joint hypothesis that investors are rational and have perfect information about the 

dividend process.  Assuming that investors have less than perfect knowledge, it might be more surprising 

if prices did not violate the bounds. 

 The volatility of returns provides additional insights into the effects of estimation risk.  The 

conditional variance of returns is 

[ ]1+tt Rvar  = 2
2

1)r(t
1
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+ .                (27) 

Comparing this to the variance of the subjective distribution (eq. 9), we find the standard result that the 

subjective variance equals the true variance multiplied by (t+1)/t.  Also, compared to the variance of 

returns when δ is known, which is just σ2, we see that estimation risk greatly increases return volatility if t 

is small.  For example, if the riskfree rate is 0.05 and t is 50, the conditional variance of returns is roughly 

twice as big with estimation risk than without. 

 

5. The cross-section of expected returns 

 We now return to the model with many assets and analyze the cross-sectional behavior of returns.  In 

single-period models, Bawa and Brown (1979) and Coles and Loewenstein (1988) find that the CAPM 

continues to hold with estimation risk.  These studies focus exclusively on the subjective distribution of 

returns, and find that estimation risk is largely irrelevant for equilibrium.  We emphasize instead the 

observable behavior of prices and returns. 
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 Before continuing, we should mention again that investors are assumed to begin with a diffuse prior.  

This assumption will affect the results in a variety of ways.  For example, an informative prior can contain 

more information about some securities than others.  The diffuse prior, on the other hand, is ‘symmetric.’8  

To see why this is important, recall that unexpected returns in the model equal 

)d(d 
1)r(t

11 =UR t1t1+t −
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
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+ + ,                (28) 

where URt+1, dt+1, and td  are now N×1 vectors.  In the brackets, the term ‘1/r(t+1)’ gives the effect that 

unexpected dividends have on prices.  With a diffuse prior, price revisions are proportional to the vector 

of unexpected dividends.  This result will not generally hold with an informative prior.  Dividends on 

assets with relatively high amounts of prior information provide clues about the values of other securities 

(Clarkson, Guedes, and Thompson, 1996; Stambaugh, 1997).  We discuss informative priors further in 

Section 6. 

 

5.1. Covariances and betas 

 When we talk about the CAPM, it will be useful to have a few results on covariances and market 

betas.  With one risky asset, we saw that parameter uncertainty increases both the subjective and true 

volatility of returns.  Similarly, with many assets, estimation risk scales up the true covariance matrix.  In 

particular, the conditional covariance matrix of gross returns is 

[ ] Σ
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1+tt 1)(tr 
11Rvar .               (29) 

The effect of estimation risk is analogous to the single asset case:  uncertainty about δ increases the true 

volatility of prices and returns.  In the model with perfect information, prices are constant and the 

covariance matrix of returns simply equals Σ.  With estimation risk, investor uncertainty increases all 

variances and covariances proportionally.  Further, this statement describes both the subjective and true 

                                                   
8 With a symmetric prior, the prior covariance matrix is proportional to the true covariance matrix.  That is, the 

prior distribution over δ has the form MVN [δ*, Σ/h], where h is a measure of prior information.  The diffuse prior 
can be interpreted as the limiting distribution as h approaches zero. 
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covariance matrices.  Comparing eqs. (9) and (29), we find that the subjective covariance matrix equals 

the true covariance matrix multiplied by (t+1)/t, and both are proportional to Σ.9 

Because estimation risk simply scales up the covariance matrix, it does not affect market betas (for 

gross returns).  The market return is the sum of the asset returns, and market volatility increases by the 

same factor as the covariance matrix.  Consequently, with and without parameter uncertainty, betas equal 

ιΣ
ιΣι ′

=β   
  

1 = )R ,cov(R
)Rvar(

1 tM,t
t,M

.             (30) 

Note also that eq. (30) gives both subjective and true market betas, which are the same because the two 

covariance matrices are proportional.  Again, this result is an artifact of the diffuse prior.  With an 

informative prior, subjective and true betas will not necessarily be the same, nor will they equal the betas 

without estimation risk.10 

 

5.2. Expected returns and the CAPM 

 In Section 4, we found that total and unexpected returns are predictable with lagged dividends and 

prices.  With many assets, we consider instead deviations from the CAPM.  We examine both the time-

series and cross-sectional predictability of these deviations. 

 With and without estimation risk, the subjective distribution of returns is multivariate normal.  

Together with the assumption that investors derive utility only from end-of-period wealth, this implies 

that the CAPM must hold under the subjective distribution.  In terms of gross returns, the CAPM says 

that 

[ ] [ ]tM,1t,M
s
tt1t

s
t p r)R(E   pr   RE −β+= ++  .             (31) 

Eq. (31) can be verified by substituting for equilibrium price and subjective expected returns, derived 

above.  Investors attempt to hold mean-variance efficient portfolios, which imposes the CAPM restriction 

                                                   
9 The assumption that investors begin with a diffuse prior is important here.  With informative priors, the 

subjective and true covariance matrices may not be proportional, and neither has to be proportional to Σ.  See 
Section 6. 

10 The analysis here focuses on gross returns, not rates of return.  As noted by Coles and Loewenstein (1988), 
estimation risk does affect rate-of-return betas.  Asset i’s rate-of-return beta equals its gross-return beta multiplied 
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on subjective expected returns.  However, empirical tests use returns taken from the true, not the 

subjective, distribution. 

To analyze the cross-sectional properties of returns, we focus on ex post deviations from the CAPM, 

given by 

[ ]tM,1+tM,t1+t1+t pr R   pr R a −β−−= .              (32) 

Note that at+1 is similar to the vector of unexpected returns, except that the realized return on the market 

enters eq. (32) rather than the expected market return.  We know from Section 4 that the market return is 

predictable based on past information.  By examining at+1, rather than unexpected returns, we eliminate 

predictability that is related to the aggregate market. 

 Deviations from the CAPM must be unpredictable under the subjective distribution: 

[ ] 0aE 1t
s
t =+ .                   (33) 

In the absence of estimation risk, market efficiency implies that the true conditional expectation of at+1 is 

zero.  This restriction, of course, forms the basis for empirical tests of the CAPM.  For example, cross-

sectional regressions, like those in Fama and MacBeth (1973), indirectly test whether firm characteristics 

predict cross-sectional variation in ai,t+1.  The multivariate F-statistic of Gibbons, Ross, and Shanken 

(1989) tests whether the unconditional expectation of at+1 is zero, which follows from the law of iterated 

expectations.  Finally, various conditional asset-pricing tests directly examine the conditional expectation 

of at+1 (e.g., Harvey, 1989; Shanken, 1990). 

 With parameter uncertainty, rational expectations no longer requires that the true expectation of at+1 

equals zero.  Substituting for prices and returns in eq. (32) and taking expectations yields 
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In general, this will deviate from zero.  Similar to unexpected returns in the model with a single risky 

security, deviations from the CAPM are negatively related to past dividends and prices.  In particular, for 

                                                                                                                                                                    
by pm,t / pi,t.  Rate-of-return betas will change unless relative prices remain the same, which will not be true in 
general. 
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any asset i: 
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where var(εi) is the residual variance when the asset’s dividend is regressed on the market dividend.  The 

ability of price to predict time-variation in ai,t+1 is similar to its ability to predict unexpected returns, 

except that var(εi) is substituted for the dividend’s total variance.  Again, we see that estimation risk 

induces price reversals and apparent overreaction by investors.  When investors’ best guess about 

expected dividends for a given stock is above the true mean (after adjusting for marketwide mispricing), 

price is inflated above its fundamental value and expected returns are lower than predicted by the CAPM. 

 Eq. (35) is essentially a time-series relation.  The predictability of at+1 arises because investors do not 

know whether past dividends are greater than or less than the true mean.  At any point in time, however, 

investors observe whether each security’s average dividend is above or below the cross-sectional average.  

Our initial guess, then, was that deviations from the CAPM would not be cross-sectionally related to 

lagged prices:  if cross-sectional variation in ai,t+1 was related to the observable quantity pi,t, it would seem 

that investors could use this information to earn abnormal returns.  Surprisingly (to us), this intuition is 

wrong.  In sample, the cross-sectional relation between ai,t+1 and pi,t is 
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Taking the unconditional expectation yields 
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which is negative because every covariance term is negative (see eq. 35).  In the presence of estimation 

risk, lagged dividends and prices explain cross-sectional variation in expected returns after controlling for 

betas.  Investors understand the negative cross-sectional relation, but they cannot use this information to 

be better off. 
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 We find this result paradoxical.  To gain some intuition, consider the decision process of a rational 

investor.  Implicitly, the expectation in eq. (37) integrates over all possible price paths from time 1 to t+1.  

However, at time t, the conditional cross-sectional relation can be either positive or negative, depending 

on the difference between td and δ.  In other words, conditional on observing td , the cross-sectional 

covariance between prices and at+1 depends on the true value of δ.  Investors understand this dependence, 

and their beliefs about δ determine their investment choices.  Thus, they integrate over the subjective 

distribution of δ to make portfolio decisions.  The resulting belief about at+1 will always have mean zero.  

The point is simply that investors do not ignore the relation between prices and deviations from the 

CAPM, but their best forecast of at+1 at any point in time is always zero. 

 Alternatively, we can think about this in terms of an individual asset.  Suppose that an asset has a 

relatively high price compared with other stocks.  Does this imply that the asset is overvalued relative to 

its ‘fundamental’ value?  The answer depends, of course, on the actual value of δi, which is unknown.  

Integrating over the posterior beliefs about δi, an investors’ best guess at all times is that the asset is fairly 

priced.  Yet in hypothetical repeated sampling, the asset with the highest price will, on average, be 

overvalued.  This puzzle highlights the distinction between the conditional nature of Bayesian decision 

making (conditional on the observed prices) and the frequentist perspective of classical statistics.  For a 

Bayesian investor, hypothetical repeated sampling is irrelevant to the portfolio decision, which must be 

made after observing only a single realization of prices (see Berger, 1985, for an extensive discussion of 

these issues). 

 To illustrate the cross-sectional results, we simulate a set of prices and returns in the model.  Similar 

to the example in Section 4, we assume that investors are risk-neutral and the riskless rate is 0.05.  In 

addition, all risky assets, with N = 15, have true expected dividends equal to 0.05.  Hence, all prices equal 

one in the absence of estimation risk.  When δ is unknown, security prices depend on realized dividends, 

which we randomly generate from a MVN distribution.  To provide a reasonable covariance matrix, we 

estimate the return covariance matrix for 15 industry portfolios formed from all stocks on the Center for 

Research in Security Prices (CRSP) database. 
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 Both the time-series and cross-sectional behavior of returns reveal the price-reversal effect of 

estimation risk.  For t = 10 through 110, the correlation between total return and lagged price is negative 

for every security, with a mean correlation of -0.21.  Deviations from the CAPM also appear predictable 

based on lagged prices:  the average correlation between ai,t+1 and pi,t is -0.16, and 14 out of the 15 

correlations are negative.  Cross-sectionally, the relation between ai,t+1 and pi,t is significantly negative in 

Fama-MacBeth style regressions, with a t-statistic of -3.97.  On average, an increase in price from one 

standard deviation below to one standard deviation above the cross-sectional mean leads to a -0.042 

change in ai,t+1.  Since prices are generally close to one, this would imply that Jensen’s alpha, based on 

rates of return, decreases by approximately -4.2%.  Although investors attempt to hold mean-variance 

efficient portfolios and use all available information when making decisions, expected returns can differ 

substantially from the predictions of the CAPM.  Additional simulations show that this example is typical.  

For example, across 2500 simulations, Fama-MacBeth regressions produce an average t-statistic of –3.75 

with a standard deviation of 0.94. 

 

6. Informative priors, time-varying parameters, and simulation evidence 

 We have presented an extremely simple model of estimation risk.  Among the simplifications, we 

assumed that investors begin with no information about expected dividends, all parameters are constant, 

and dividends are IID.  Each of these assumptions makes it difficult to judge the potential empirical 

significance of estimation risk.  In this section, we relax the assumptions to make the model a bit more 

realistic.  We also present simulation evidence to suggest the practical importance of the results. 

 

6.1. Informative priors 

 The assumption of diffuse priors has at least two important effects on the model.  First, investors’ 

beliefs about expected dividends are determined entirely by past realized dividends.  With an informative 

prior, investors would put less weight on the data and more weight on their initial beliefs.  Second, an 

investor’s belief about the expected dividend on one asset is determined solely by the realized dividends 
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on that asset, and does not depend at all on the realized payoffs of other securities.  With an informative 

prior, however, dividends on assets with relatively high amounts of prior information can be useful in 

valuing other assets.  We discuss both of these issues in this subsection.  For now, we continue to assume 

that the true parameters of the dividend process remain constant over time. 

 Consider first the model with one risky asset.  Assume that the variance of the dividend process, σ2, 

remains known, and suppose that investors begin with some information about the mean.  In particular, 

assume that prior beliefs are centered around some δ* and have variance σ2/h, where h is a measure of 

prior information.  Writing the variance in this form is simply for notational convenience; a variance 

equal to σ2/h means that the investor has prior information that is as informative as a sample of h realized 

dividends.  With this prior, a Bayesian investor’s belief about dividends at time t is 
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Investors shrink their best guess about expected dividends toward their prior mean, and the variance 

reflects both the volatility of dividends, σ2, and uncertainty about the mean, σ2/(t+h).  It is clear that the 

prior mean exerts a permanent, yet diminishing, influence on beliefs.  To the extent that the prior mean 

deviates from δ, investors’ beliefs are ‘biased’ away from the true mean.  However, as before, beliefs 

eventually converge to the true distribution as t gets large. 

 Equilibrium takes nearly the same form as the original model, except that price now reflects prior 

beliefs as well as the information in realized dividends.  Denote the mean of the subjective distribution as 

mt.  At time t, the price of the risky asset equals 
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where f(t) is defined in eq. (11).  With informative priors, the price contains a new term corresponding to 

the initial belief about expected dividends.  It is clear from eq. (39) that the time-series properties of 

prices and returns will be determined by the properties of mt.  Moreover, the prior information anchors the 
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price to the investor’s initial guess, but does not have a stochastic effect on prices.  As a result, in this 

simple model with fixed parameters, informative priors have little effect on the qualitative conclusions 

from the original model.  Returns continue to be negatively related to past prices and dividends, although 

the magnitude is diminished compared with diffuse priors.  For example, 
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tR ,pcov σ

+++
−= ,             (40) 

which is negative but smaller than the corresponding expression with diffuse priors.  This result is 

actually quite intuitive since prior information has, for practical purposes, the effect of simply adding h 

periods to the model before time 0. 

 We present more thorough simulations in section 6.3, but it may be useful to report simulations here 

to illustrate the impact of informative priors.  The model is simulated 2500 times assuming that investors 

are risk neutral, the riskless rate is 0.05, true expected dividends are 0.10, and the standard deviation of 

dividends is 0.10.  Using the simulated data, we estimate the correlation between excess rates of return, 

which equal unexpected returns because of risk neutrality, and lagged average dividends for 70 periods, 

from t = 10 through t = 80.  The results confirm our analytic work.  The average correlation equals –0.136 

with perfect information (this is negative because of small-sample bias; see Stambaugh, 1999) and at the 

other extreme, the average correlation equals –0.259 with diffuse priors.  Informative priors produce 

results that are between these polar cases.  For example, with h = 20, meaning that investors have 

observed the equivalent of 30 periods of dividends when we begin estimating predictability, the average 

correlation between excess returns and lagged dividends equals –0.198.  These results are not sensitive to 

the prior mean. 

 We should add an important caveat at this point.  The relatively minor effect of informative priors 

depends on the assumption that the true mean is fixed.  Once we allow for shocks to the true parameters, 

informative priors can play a larger role because investors may appear to react slowly to changes in the 

dividend process (see the next section).  In addition, notice that even in the current model, forecast errors 

are all expected to have the same sign because of the permanent influence of the prior mean.  Although 
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the influence is non-stochastic and does not affect serial correlation in returns, it could create the 

appearance of underreaction in some contexts.  For example, Lewis (1989) argues that a similar 

phenomenon might account for the persistent forecast errors observed in the foreign exchange market in 

the 1980s. 

 Informative priors can also play a more important role with many assets.  We need to consider two 

possible types of informative priors when there are many assets:  symmetric information and differential 

information.  In the discussion above, we denoted the variance of the prior as σ2/h, where h can be 

interpreted as the length of the sample already observed.  Loosely speaking, a symmetric prior means that 

the investor has observed the equivalent of h dividends for all securities.  In this case, the prior covariance 

matrix equals Σ/h, where Σ is the covariance matrix of dividends.  Of course, symmetric information is a 

fairly special case, and investors will typically have more information about some securities than others.  

With differential information, the prior covariance matrix does not have to be proportional to the dividend 

covariance matrix. 

 We briefly consider the general case of differential information.  Suppose that investors’ prior beliefs 

about expected dividends are MVN [δ*, Ω].  For a Bayesian investor, the posterior distribution for δ at 

time t is MVN [mt, Π t], where 

[ ] [ ]t1*1-111-
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The mean of the distribution is a matrix-weighted-average of δ* and td , with weights given by the 

inverses of the covariance matrices.  Importantly, the mean for a given asset will typically depend on the 

realized dividends for all assets and the covariance matrix does not have to be proportional to Σ.  Beliefs 

about dividends (the previous equations are for δ) have the same mean; the predictive covariance matrix 

reflects both the true variance of dividends and uncertainty about the mean, or Π t + Σ. 

In the special case of symmetric information, the mean and variance of the posterior distribution 

simplify to 
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The mean is a scalar weighted-average of δ* and td , and an investor’s belief about expected dividends for 

a given asset is unrelated to past dividends on other securities. 

The equilibrium pricing function remains similar in form to the basic model.  Specifically, the price 

at time t is 

ιγ−   v(t) 2  m
r
1 =p tt ,                 (45) 

where v(t) is a deterministic N×N matrix that plays the role of f(t) in the original model.  Once again, the 

properties of prices and returns depend on the behavior of mt.  Without going into too many details, we 

can draw two conclusions about the behavior of returns with informative priors: 

 
(a)  The cross-sectional correlation between deviations from the CAPM and lagged prices can be 

either positive or negative, depending on the strength of the prior and the relation between the prior mean 

and true expected dividends.  Recall that with a diffuse prior, the cross-sectional correlation is always 

negative and investors appear to react too strongly to realized dividends.  With an informative prior, 

however, investors can appear to update too slowly because they place less weight on the data and more 

on their prior beliefs. 

To give a concrete example, suppose that the true mean of the dividend process is δ, an N×1 vector.  

Investors have symmetric priors and cannot distinguish among the assets, meaning that they have the 

same prior mean for every asset, or δ ~s N[δ*ι , Σ/h], where δ* is a scalar and ι  is a vector of ones.  To 

make matters simple, assume that the prior beliefs are correct on average, so that δ* equals the cross-

sectional average of δ.  Under these assumptions, it can be shown that the expected cross-sectional 

covariance between deviations from the CAPM and lagged price equals 
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where var(εi) is the residual variance when the asset’s dividend is regressed on the market dividend (see 

eq. 35), and )(var iε  denotes the cross-sectional average.  The cross-sectional covariance can be either 

positive or negative depending on the strength of the prior (the parameter h) and the cross-sectional 

variance of δ.  Qualitatively, these results are intuitive.  When investors have weak prior beliefs (h is 

small), they appear to react too strongly to realized dividends and the price-reversal effect described in 

Section 5 dominates.  On the other hand, with strong prior beliefs, investors rely less heavily on the data 

and might appear to react too slowly to new information. 

 
(b)  In Section 5, we showed that estimation risk simply ‘scales up’ the return covariance matrix 

when investors have diffuse priors.  This result does not have to hold with differential information.  In the 

general model, the true conditional covariance matrix of returns is given by 
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The matrix Mt maps unexpected dividends into unexpected returns.  The identity matrix, I, gives the 

immediate effect that unexpected dividends have on returns, and the second term gives the effect that 

unexpected dividends have on prices.  The subjective covariance matrix of returns is: 
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The difference between the subjective and true covariance matrices is that the predictive covariance, Π t + 

Σ, enters eq. (49). 

Parameter uncertainty affects both the true and subjective distributions through the matrix Mt+1.  In 

general, the subjective and true covariance matrices will not be proportional to each other, nor will they 

be proportional to the covariance matrix when the dividend process is known.  As a result, estimation risk 
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affects subjective and true market betas differently, and both differ from market betas with perfect 

information.  Consider, for example, a simple model with two assets, a low-information and a high-

information security.  Specifically, assume the investor has previously observed L periods of dividends 

for the low-information security and H > L periods of dividends for the high-information security.  In this 

case, it can be shown that parameter uncertainty increases the beta of the low-information security.  

Further, the subjective beta is greater than the true beta, implying that the true (observable) beta does not 

fully capture the risk perceived by investors. 

 
In summary, informative priors can be important for the way parameter uncertainty affects 

equilibrium prices and returns.  Our basic conclusions about predictability and market efficiency, 

however, continue to hold. 

 

6.2. Renewal of estimation risk 

 Perhaps the most obvious limitation of our model is that estimation risk steadily diminishes over 

time.  As time passes, investors accumulate information and their beliefs converge to the true process.  

The reason is simple:  we have assumed that the dividend process is fixed, so investors never ‘lose’ 

information.  In reality, the economy evolves over time and a more realistic model would allow the 

dividend process to change.  In this section, we extend the model to incorporate unobservable shocks to 

the true parameters which periodically renew estimation risk.  We focus on the model with a single risky 

asset because the section is most applicable to the time-series properties of aggregate returns.  At the 

microeconomic level, firms continually appear and disappear from the stock market, and it is not clear 

that the long-run implications of estimation risk are relevant for the behavior of individual stocks. 

 There are many ways to prevent estimation risk from vanishing in the limit.  Here, we have chosen a 

particularly simple form of ‘renewal’ to illustrate the ideas.  The model remains the same with one 

exception:  we now assume that the true mean of the dividend process fluctuates over time at known, 

fixed intervals.  Specifically, every K periods the mean is re-drawn from a normal distribution with mean 

δ* and variance 2
sσ .  Thus, the model is essentially a sequence of short ‘regimes’ that look like our basic 
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model truncated after K periods.  We have analyzed alternative models in which (1) the length of the 

intervals is random rather than fixed and (2) the true mean of the dividend process follows a persistent 

process.  The qualitative conclusions from these models appear to be similar. 

After an infinite number of periods, it is clear that investors would learn the distribution from which 

the short-run mean is drawn.  Therefore, in the limit, investors’ priors at the beginning of each regime 

would be ] ,[ N 2
s

* σδ .  Although we analyze these priors as a special case, we do not think that it is either 

the most realistic or most interesting scenario because it represents an extreme amount of learning.  

Instead, we consider the more general beliefs ] ,[ N 2
h

* σδ , which have the same mean as the actual 

distribution but not necessarily the same variance.  Thus, we assume that investors have observed the 

process long enough to know long-run expected dividends, even though they cannot observe short-run 

changes in the process.  Permitting the variances to be different can be justified on several grounds. 

First, we are trying to capture the idea that the economy moves though periods of high and low 

growth that cannot be perfectly observed.  These periods might cover many years, so learning about the 

switching process – and its variance – is likely to be slow.  Second, we have made the artificial 

assumption that the mean is repeatedly drawn from the same distribution.  The economy undoubtedly 

moves through periods of relative stability and periods of rapid change, and the variance of shocks to 

expected dividends is likely to change over time.  If investors cannot observe changes in volatility, then 

their current estimate of the volatility will not be perfect.  Finally, alternative assumptions about the 

evolution of the true mean do not necessarily have the property that the prior variance ever converges to 

the true variance.11  We abstract from these issues, and take the more expeditious approach of simply 

permitting the prior variance to be different from 2
sσ . 

 The pricing function is similar to the price in the basic model.  The renewal model consists of a 

sequence of intervals with fixed expected dividends, and investors do not observe the current draw of the 

                                                   
11 For example, suppose the dividend mean δt follows a random walk, dividends have conditional variance σ2, and 

the shocks to δt are uncorrelated with dividends and have variance 2
sσ .  In the long-run, investors beliefs about δt 

will be N[mt, 2
hσ ], where 2

hσ  is time-invariant and 2
hσ > 2

sσ . 
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short-run mean, δk.  As discussed above, investors’ priors at the beginning of each interval are ] ,[ N 2
h

* σδ .  

For notational convenience, let s/  22
s σ=σ  and h/  22

h σ=σ , and assume for simplicity that investors are 

risk neutral.  Realized dividends during the current interval provide no information about payoffs after the 

end of the interval, so beliefs about those payoffs always have mean δ*.  Therefore, the price at the 

beginning of every regime equals δ*/r, the value of expected dividends in perpetuity.  After t periods in 

the current regime, the investor’s predictive belief about short-run dividends has mean 
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identical to eq. (38).  Thus, price equals 
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where AFK-t is an annuity factor for K-t periods.  Not surprisingly, the time-series properties of prices and 

returns once again depend on the behavior of mt.  It is straightforward to show that excess, or unexpected, 

returns are given by 
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The term in parentheses is simply unexpected dividends, which have an immediate effect on unexpected 

returns (the ‘1’ in brackets) and an indirect effect on prices (with the multiplier AFk-t-1/(t+h+1)). 

 The analysis of predictability with renewal is more complicated than in our basic model.  In 

particular, now that the short-run mean is random, we have to distinguish between expectations that are 

conditional on the current mean and expectations that treat the parameter as random.  It turns out that a 

combination of the two seems to be relevant for empirical tests (see the simulations below).  At time t 

(interpreted as t periods into the current regime), the unexpected return has true mean 
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which follows immediately from eq. (52).  As in our basic model, the true unexpected return is negatively 
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related to past dividends and prices.  Consequently, taking the value of δk as given, the covariance 

between excess returns and lagged prices equals 
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which is negative.  We refer to this expression as the ‘conditional covariance’ because it regards the short-

run mean as fixed.  The equation is very similar to our previous results with informative priors, except 

that the covariance is attenuated because price fluctuations are less pronounced (the price always returns 

at the end of the regime to δ*/r).  Therefore, in one sense, the effects of estimation risk documented above 

remain the same even in the long-run:  the true and subjective distributions are different, leading to price 

reversals. 

Unfortunately, things are not quite so simple.  Although the conditional covariance does not depend 

on δk, the ‘unconditional covariance’ – which regards the short-run mean as random – will nonetheless 

differ from eq. (54).12  Specifically, the unconditional covariance equals 
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The sign of the unconditional covariance depends on the relative magnitudes of s and h.  Recall that σ2/s 

is the true variance of δk while σ2/h is the prior variance.  Therefore, the unconditional covariance is 

negative when the prior variance is greater than the true (h < s), but positive when the prior variance is 

less.  When investors believe that the variance of shocks to expected dividends is high, they are relatively 

sensitive to realized dividends and the price-reversal effect of estimation risk shows up both conditionally 

and unconditionally.  On the other hand, if the short-run mean is more variable than investors believe, 

                                                   
12 In statistical terms, the expected conditional covariance does not equal the unconditional covariance because 

the conditional means of the variables move together over time. 
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they tend to be surprised by the large movements in expected dividends and require many observations to 

update their beliefs.  Consequently, returns exhibit patterns of continuation or momentum.  The cutoff 

value occurs when investors have exactly the right beliefs about the variance of δk, or when s = h.  In this 

case, the unconditional covariance between excess returns and lagged prices is exactly zero. 

Thus, we have two results on predictability in the renewal model:  (1) the conditional covariance is 

always negative, regardless of the relative magnitudes of s and h, and (2) the unconditional covariance 

depends on whether h is less than or greater than s.  The fact that the conditional covariance is negative 

implies immediately that excess returns are predictable, but it is not obvious to us whether the 

unconditional or conditional covariance is more relevant for standard empirical tests.13  An empirical test 

depends on the observed sample, and implicitly conditions on the sample value (or values) of the mean 

parameter δk.  This observation suggests that the conditional variance might be most relevant.  Indeed, 

take a particularly simple case in which the observed sample covers only one regime.  Regardless of the 

value of δk, the covariance between unexpected returns and prices is expected to be negative; the 

correlation in this case corresponds directly to the conditional covariance.14  On the other hand, if a 

sample covers multiple regimes, the empiricist implicitly conditions on several values of δk and our 

simple formula for the conditional variance no longer represents the population counterpart of the 

estimate.  To muddy the waters further, if the empiricist suspects that a change in regime occurs and adds 

a dummy variable to the regression, or focuses on subperiod regressions, then the sample covariance will 

correspond once again to the conditional variance.  However, it is not common to include regime 

dummies in predictive regressions, nor is it easy to identify regime changes.  Rather than speculate 

further, we use simulations to explore the sample covariance with renewal. 

 

6.3. Simulations 

                                                   
13 Some additional explanation might be useful.  A predictive regression for returns that includes regime dummies 

would estimate the conditional covariance, and can therefore detect the price reversals.  Alternatively, the price 
reversals can be picked up by estimating within-regime covariances. 

14 We stress that this is not a survival bias or a so-called ‘peso problem.’  We expect to see a negative correlation 
for any value of δk because the true correlation is negative. 
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To investigate the ‘steady-state’ effects of estimation risk with renewal, we simulate the model 2500 

times and examine the predictability of returns.  To make the model more realistic, the simulations 

assume that dividends follow a geometric random walk with time-varying growth.  Specifically, 

dividends follow the process 

ln dt+1 = gk + ln dt + εt+1,                 (56) 

where εt+1 ~ N[0, σ2] and gk is randomly drawn every K periods from a normal distribution with mean g* 

and variance σ2/s.  The simulations normalize the initial dividend to equal one, the discount rate equals 

0.12, σ = 0.10, and the long-run growth rate g* equals 0.03.  These parameters are chosen to be 

reasonably close to actual values, interpreting a period in the model as one year.  In comparison, the 

average annual return on the CRSP value-weighted index equals 12.5% for the period 1926 through 1997, 

and Brennan and Xia (1998) report that the average real growth rate in dividends equals 1.6%, with a 

standard deviation of 12.9%, over the period 1871-1996.  The simulations estimate predictive regressions 

using roughly 75 years of data, again taken to be similar to a typical study.  We report results for several 

combinations of the parameters s, h, and K.  These parameters determine the true variance in short-run 

growth rates, the variance of investors’ priors, and the length of a regime, respectively.  The appendix 

describes the Bayesian inference problem for this model. 

 Table 1 reports the results of the simulations.  Specifically, the table shows the average slope 

coefficient and t-statistic when excess returns are regressed on lagged dividend yield.15  An important 

complication arises because the slope coefficient in these regressions suffers from a significant small-

sample bias (see Stambaugh, 1999, for a thorough discussion).  The bias is caused by the same 

phenomenon that biases autocorrelation estimates downward, but the coefficients in these regressions are 

biased upward, giving the appearance of more predictability.  To help reduce the effects of the bias, we 

also report bias-adjusted slope coefficients using the results of Stambaugh (1999).16  In addition, the table 

                                                   
15 We focus on predictability here, but other moments of the return distribution are also affected by estimation 

risk.  This might be a useful area of future research. 
16 To derive the bias, Stambaugh makes several assumptions about the return and dividend processes that do not 

hold in our model (e.g., dividend yields are AR(1) and returns are homoskedastic).  Indeed, Table 1 shows that with 
perfect information, the bias adjustment tends to correct too much (the corrected slopes are negative not zero).  To 
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reports results when investors perfectly observe the dividend process.  The difference between the bias-

adjusted coefficients with and without perfect information gives an estimate of the predictability caused 

by estimation risk. 

Table 1 shows that estimation risk can induce predictability even in steady state.  The results suggest 

that the negative conditional covariance between returns and lagged prices tends to dominate the 

regressions.  Even when investors know both the mean and variance of the distribution from which the 

growth rate is drawn (h = s), the slope coefficient in the dividend yield regression is positive.  For 

example, with two regimes over the 75 years, the average slope coefficient ranges from 1.06 to 1.52 for 

different values of h = s (see the diagonal terms in the last column).  With four regimes the slope 

coefficient ranges from 0.56 to 0.60, and with six regimes the slope ranges from 0.45 to 0.50.  The price 

reversal effect tends to be larger when the regimes are longer, and it becomes much more pronounced 

when investors’ prior variance is higher than actual variance.  With s = 49 and h = 16, the table shows that 

the slope coefficient varies between 1.98 and 2.24 for different values of K.  Cases in which s > h, so the 

subjective variance is greater than the true, are of particular interest because they show roughly how 

prices behave before we reach steady state (even if investors know 2
sσ , the subjective variance of 

dividends is always greater than the true after a finite number of periods).  We believe that the 

evolutionary process is at least as relevant for empirical tests as the steady-state equilibrium. 

To add some perspective, the historical slope coefficient for the period 1941 to 1997 is 3.93 

(standard error of 1.73), before adjusting for bias, when the CRSP value-weighted return is regressed on 

its lagged dividend yield.  Although a more thorough study is necessary to draw detailed conclusions, the 

simulations provide preliminary evidence that estimation risk could account for a non-trivial portion of 

the predictability.  We hesitate to draw firm conclusions because the simulations do not (and probably 

cannot) capture all of the relevant properties of actual dividends and returns, and it is beyond the scope of 

                                                                                                                                                                    
confirm that the simulation evidence is not driven by problems with the bias-adjustment procedure, we perform an 
additional check.  We also estimate regressions using true unexpected returns, which always have conditional mean 
zero but otherwise have the same properties as excess returns.  The average slope coefficient in these regressions 
provides an alternative estimate of the bias.  These results support our conclusions in Table 1. 
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the current paper to understand which set of parameter values best characterizes the historical stock 

market. 

The table also shows that return continuation, or a negative slope coefficient in the dividend yield 

regressions, is possible if investors’ prior variance is smaller than the true.  This case corresponds to a 

situation in which the economy is changing more dramatically than investors realize.  Investors require 

many dividend observations until their beliefs ‘catch up’ with the actual changes, which creates 

persistence in expected returns. 

Finally, adding a regime dummy variable to the regressions produces an estimate of the conditional 

covariance.  In results not reported, the average bias-adjusted slope coefficient is approximately 1.47 with 

two regimes, 2.00 with four regimes, and 2.55 with six regimes.  These values are not sensitive to the 

values of h and s, presumably because h and s affect the covariance in the numerator and the variance in 

the denominator by similar magnitudes.  Although we believe these issues deserve a more complete 

treatment, we simply note here that the simulations confirm, in substance, our earlier results.  Even in 

steady state, parameter uncertainty can be a source of predictability. 

 

7. Summary and conclusions 

 Financial economists generally assume that, unlike themselves, investors know the means, variances, 

and covariances of the return or cashflow process.  Practitioners do not have this luxury.  To apply the 

elegant framework of modern portfolio theory, they must estimate expected returns using whatever 

information is available.  As Black (1986) observes, however, the world is a noisy place and our 

observations are necessarily imprecise.  The estimation risk literature formalizes this problem.  

Surprisingly, this literature has had little impact on mainstream thinking about equilibrium asset pricing 

and market efficiency.  We believe that this is due, in large part, to its focus on the subjective beliefs of 

investors, rather than the true, or empirical, distribution of returns.  As we have emphasized throughout 

the paper, the subjective distribution of returns does not have to correspond to the empirical distribution 

even when investors are rational. 
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 Our analysis shows that parameter uncertainty can significantly affect the time-series and cross-

sectional behavior of asset prices.  Prices in our model satisfy commonly accepted notions of market 

efficiency and rational expectations:  investors use all available information when making decisions and, 

in equilibrium, the perceived pricing function equals the true pricing function.  However, prices and 

returns violate standard tests of efficiency, suggesting that parameter uncertainty is likely to be important 

for characterizing an efficient market.  Although we do not argue that estimation risk necessarily explains 

specific asset-pricing anomalies, our results relate to several empirically-observed patterns in stock prices: 

 Return predictability.  Empirical studies document time-varying expected stock returns, captured by 

variables like past returns, aggregate dividend yield, and aggregate book-to-market (e.g., Keim and 

Stambaugh, 1986; Fama and French, 1989; Kothari and Shanken, 1997).  These studies attribute variation 

in expected returns to changes in business conditions or to irrational investors.  We find that estimation 

risk can be a third source of return predictability.  In our basic model, expected returns are negatively 

related to past dividends and prices, and can actually be negative at times.  The price-reversal effects 

become more pronounced in long-horizon returns, consistent with the evidence of Fama and French 

(1988) and Poterba and Summers (1988).  In more elaborate models, parameter uncertainty could also 

give the appearance of underreaction or momentum in returns. 

 Volatility.  Leroy and Porter (1981) and Shiller (1981) derive bounds on the volatility of asset prices 

in an efficient market.  They conclude that prices ‘move too much to be justified by subsequent changes 

in dividends.’  Our findings suggest that estimation risk might help explain excess volatility.  Asset prices 

can reject the volatility bounds even though investors are rational and prices reflect all available 

information.  The volatility bounds can be viewed as tests of market efficiency only if investors have 

perfect knowledge of the dividend process.  In our simple model with IID dividends, price changes are 

completely uncorrelated with future dividends.  Thus, like the results on predictability, price volatility 

would suggest investor overreaction in the absence of estimation risk.  Asset prices can take long swings 

away from ‘fundamental’ value, which are eventually reversed, giving the appearance of fads or bubbles 

in stock prices. 
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 CAPM.  Many empirical studies find that the CAPM does not completely describe the cross-section 

of expected returns.  Departures from the CAPM have been attributed to missing risk factors, irrational 

investors, or trading frictions.  We find that estimation risk provides an additional explanation.  When 

investors must estimate expected dividends, returns will typically deviate from the predictions of the 

CAPM even if investors attempt to hold mean-variance efficient portfolios.  Moreover, the deviations can 

be predictable, both cross-sectionally and in time series, with past dividends, prices, and returns.  Our 

results complement previous studies on asset pricing with incomplete information (e.g., Williams, 1977). 

 The fact that estimation risk might explain these patterns does not, of course, mean that it does.  The 

impact of estimation risk on actual prices is obviously an empirical issue, which we plan to explore in 

future work.  Clarkson and Thompson (1990) find evidence that market betas reflect differences in the 

quality of available information about firms, consistent with differentially-informative priors.  However, 

our analysis suggests the possibility of much more general effects on volatility and predictability, at both 

the individual-security and aggregate-market levels.  The central question becomes:  To what extent do 

rational forecasts deviate from expectations based on perfect knowledge of the underlying cashflow 

process?  We believe from casual observation and reading of the financial press that these deviations 

could be quite large. 

To assess market efficiency in light of estimation risk, the researcher may in effect need to mimic the 

Bayesian-updating process of rational investors.  This is probably not an easy task:  it would necessarily 

require some judgment about what constitutes a ‘reasonable’ prior and an examination of rational 

forecasts generated by a range of such priors.  Fama (1971) has emphasized that empirical tests of market 

efficiency actually test a joint hypothesis of market efficiency and an assumed model of expected returns.  

Our study suggests that empirical tests also require an additional assumption about investors’ prior 

beliefs.  Although the role of prior beliefs and learning is typically ignored, these considerations may be 

just as important in disentangling behavioral and rational explanations for empirical anomalies. 

 It is important to distinguish between ‘true’ uncertainty in the economy and estimation risk.  True 

uncertainty concerns economic conditions or events that could not be predicted even with complete 
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knowledge of the underlying economic process.  In contrast, estimation risk refers to subjective 

uncertainty about some relevant characteristic of the economy that is already largely determined at the 

time of the forecast, but not directly observable.  Although the line between subjective and true is not 

always clear, the distinction can be important for asset pricing.  As we have seen, uncertainty about a 

predetermined characteristic (expected dividends in our model) gives rise to price-related predictability in 

returns, since resolution of this uncertainty is negatively related to past mistakes.  In contrast, resolution 

of true uncertainty will be unrelated to past information. 

As an example of subjective uncertainty, consider the rate of productivity growth in the United 

States, which has recently received much attention.  Market analysts debate whether past technological 

innovations allow the economy to grow more quickly.  The question, then, is whether productivity growth 

has already accelerated; the change in the economy is presumed to have already taken place, but it is 

unknown.  Similarly,  Lewis (1989) argues that demand for U.S. currency shifted in the early 1980s, but 

investors could not immediately learn about this change.  At the firm level, uncertainty about the demand 

for a firm’s product or service would generate estimation risk.  Consumers’ preferences, and consequently 

true expected demand, might be predetermined, but ‘noise’ prevents investors from precisely measuring 

the true probability distribution of demand.  In all of these examples, the underlying economic process 

cannot be perfectly observed. 

 We close with a few reflections on the relation between data mining and estimation risk.  In recent 

years, researchers and practitioners have become increasingly sensitive to the possibility that, with the 

intensive scrutiny of data common in investment research, ‘statistically significant’ return patterns can 

emerge even when returns are essentially random (see, for example, Lo and MacKinlay, 1990).  Thus, we 

might observe patterns that do not exist in the true underlying process.  Our analysis of estimation risk 

suggests a complementary concern.  With hindsight, we can discern patterns that existed in the true return 

process, but could not have been exploited at the time by rational investors.  Similar to the results of data 

snooping, these patterns would not be relevant for future investment decisions.  Unlike data snooping, 

however, the patterns can persist in the future because they are part of the true process.  This conclusion 
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provides an alternative perspective on empirical anomalies.  For example, Fama (1998) argues that 

various long-horizon return anomalies in the literature are chance results, consistent with market 

efficiency.  He finds that ‘apparent overreaction to information is about as common as underreaction’ and, 

given data mining and other methodological concerns, concludes that the overall weight of the evidence is 

not compelling.  Our work reinforces this conclusion by demonstrating that reversals and continuations 

might be expected in an efficient market with estimation risk, not only as a random outcome of the data 

but as a feature of the actual process. 
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Appendix 
 
 This appendix describes the Bayesian inference problem in the renewal model.  Dividends are 

assumed to follow a geometric random walk with a time-varying growth rate: 

ln dt+1 = gk + ln dt + εt+1,                (A.1) 

where εt+1 ~ N[0, σ2] and gk is randomly drawn every K periods from a normal distribution with mean g* 

and variance σ2/s.  At the beginning of a regime, investors’ prior beliefs about gk are N[g*, σ2/h].  After t 

periods in a regime (t ≤ K), investors beliefs about gk are ] ,c[N 2
 tc,t σ , where 
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The predictive belief about log dividends next period is normally distributed with mean ct + ln dt and 

variance [(t+h+1)/(t+h)]σ2.  Actual dividends are log-normally distributed.  Converting the expectations 

about log dividends into actual dividends, and extending the results to any dividend in the next q periods, 

where t + q ≤ K (that is, dividends in the current regime), we have that the predictive distribution of 

dividends is log-normal with mean 
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This equation fully takes into account the fact that changes in log dividends are correlated with changes in 

beliefs about the growth rate.  In other words, investors recognize that their beliefs, both the mean and the 

variance, will evolve over time.  After the end of the current regime, investors expect dividends to grow 

once again at the rate g*, and the variance of the growth rate is σ2/h.  Therefore, to derive beliefs about 

long-run dividends requires two steps:  first, take the expectation conditional on the realized dividend at 

the end of the current regime, dK, and then take the expectation conditional only on the current dividend, 

dt.  Details available on request. 

 



 47 

References 
 
Abel, Andrew and Frederic Mishkin, 1983, An integrated view of tests of rationality, market efficiency 

and the short-run neutrality of monetary policy, Journal of Monetary Economics 11, 3-24. 

Barberis, Nicholas, 1999, Investing for the long run when returns are predictable, forthcoming in Journal 
of Finance. 

Barberis, Nicholas, Andrei Shleifer, and Robert Vishny, 1998, A model of investor sentiment, Journal of 
Financial Economics 49, 307-343. 

Bawa, Vijay and Stephen Brown, 1979, Capital market equilibrium: Does estimation risk really matter?, 
in: V. Bawa, S. Brown, and R. Klein, eds., Estimation Risk and Optimal Portfolio Choice (North-
Holland, Amsterdam). 

Bawa, Vijay, Stephen Brown, and Roger Klein, 1979, Estimation Risk and Optimal Portfolio Choice 
(North-Holland, Amsterdam). 

Berger, James, 1985, Statistical Decision Theory and Bayesian Analysis (Springer-Verlag, New York, 
NY). 

Black, Fischer, 1986, Noise, Journal of Finance 41, 529-543. 

Bossaerts, Peter, 1997, The dynamics of equity prices in fallible markets, Working paper (California 
Institute of Technology, Pasadena, California). 

Brennan, Michael and Y. Xia, 1998, Stock price volatility, learning, and the equity premium, Working 
paper (University of California at Los Angeles, Los Angeles, CA). 

Campbell, John, 1991, A variance decomposition for stock returns, The Economic Journal 101, 157-179. 

Clarkson, Peter, Jose Guedes, and Rex Thompson, 1996, On the diversification, observability, and 
measurement of estimation risk, Journal of Financial and Quantitative Analysis 31, 69-84. 

Clarkson, Peter and Rex Thompson, 1990, Empirical estimates of beta when investors face estimation 
risk, Journal of Finance 45, 431-453. 

Coles, Jeffrey and Uri Loewenstein, 1988, Equilibrium pricing and portfolio composition in the presence 
of uncertain parameters, Journal of Financial Economics 22, 279-303. 

Daniel, Kent, David Hirshleifer, and Avanidhar Subrahmanyam, 1998, Investor psychology and security 
market under- and over-reactions, Journal of Finance 53, 1839-1885. 

DeLong, J. Bradford, Andrei Shleifer, Lawrence Summers, and Robert Waldmann, 1990, Noise trader 
risk in financial markets, Journal of Political Economy 98, 703-738. 

Detemple, Jerome, 1986, Asset pricing in a production economy with incomplete information, Journal of 
Finance 41, 383-391. 

Dothan, Michael and David Feldman, 1986, Equilibrium interest rates and multiperiod bonds in a 
partially observable economy, Journal of Finance 41, 369-382. 



 48 

Fama, Eugene, 1970, Efficient capital markets: A review of theory and empirical work, Journal of 
Finance 25, 383-417. 

Fama, Eugene, 1976, Foundations of Finance (Basic Books, New York, NY). 

Fama, Eugene, 1991, Efficient capital markets: II, Journal of Finance 46, 1575-1617. 

Fama, Eugene, 1998, Market efficiency, long-term returns, and behavioral finance, Journal of Financial 
Economics 49, 283-306. 

Fama, Eugene and Kenneth French, 1988, Permanent and temporary components of stock prices, Journal 
of Political Economy 96, 246-273. 

Fama, Eugene and Kenneth French, 1989, Business conditions and expected returns on stocks and bonds, 
Journal of Financial Economics 25, 23-49. 

Fama, Eugene and Kenneth French, 1992, The cross-section of expected stock returns, Journal of Finance 
47, 427-465. 

Fama, Eugene and James MacBeth, 1973, Risk, return and equilibrium: Empirical tests, Journal of 
Political Economy 81, 607-636. 

Fama, Eugene and G. William Schwert, 1977, Asset returns and inflation, Journal of Financial 
Economics 5, 115-146. 

Gennotte, Gerard, 1986, Optimal portfolio choice under incomplete information, Journal of Finance 41, 
733-746. 

Gibbons, Michael, Stephen Ross, and Jay Shanken, 1989, A test of the efficiency of a given portfolio, 
Econometrica 57, 1121-1152. 

Harvey, Campbell, 1989, Time-varying conditional covariances in tests of asset pricing models, Journal 
of Financial Economics 24, 289-317. 

Jegadeesh, Narasimhan and Sheridan Titman, 1993, Returns to buying winners and selling losers: 
Implications for stock market efficiency, Journal of Finance 48, 65-91. 

Jobson, J.D., Bob Korkie, and V. Ratti, 1979, Improved estimation for Markowitz portfolios using James-
Stein type estimators, Proceedings of the American Statistical Association, 279-284. 

Jorion, Philippe, 1985, International portfolio decisions with estimation risk, Journal of Business 58, 259-
278. 

Keim, Donald and Robert Stambaugh, 1986, Predicting returns in the stock and bond markets, Journal of 
Financial Economics 17, 357-390. 

Kothari, S.P. and Jay Shanken, 1997, Book-to-market, dividend yield, and expected market returns: A 
time-series analysis, Journal of Financial Economics 44, 169-203. 

LeRoy, Stephen, 1973, Risk aversion and the martingale property of stock prices, International Economic 
Review 14, 436-446. 



 49 

LeRoy, Stephen and Richard Porter, 1981, The present value relation: Tests based on implied variance 
bounds, Econometrica 49, 555-574. 

Lewis, Karen, 1989, Changing beliefs and systematic rational forecast errors with evidence from foreign 
exchange, American Economic Review 79, 621-636. 

Lo, Andrew and A. Craig MacKinlay, 1990, Data-snooping biases in tests of financial asset pricing 
models, Review of Financial Studies 3, 431-467. 

Lucas, Robert, 1978, Asset prices in an exchange economy, Econometrica 46, 1429-1446. 

Merton, Robert, 1971, Optimum consumption and portfolio rules in a continuous-time model, Journal of 
Economic Theory 3, 373-413. 

Merton, Robert, 1973, An intertemporal asset pricing model, Econometrica 41, 867-887. 

Muth, John, 1961, Rational expectations and the theory of price movements, Econometrica 29, 315-335. 

Poterba, James and Lawrence Summers, 1988, Mean reversion in stock prices: Evidence and 
implications, Journal of Financial Economics 22, 27-59. 

Shanken, Jay, 1990, Intertemporal asset pricing: An empirical investigation, Journal of Econometrics 45, 
99-120. 

Shiller, Robert, 1981, Do stock prices move too much to be justified by subsequent changes in 
dividends?, American Economic Review 7, 421-436. 

Stambaugh, Robert, 1997, Analyzing investments whose histories differ in length, Journal of Financial 
Economics 45, 285-331. 

Stambaugh, Robert, 1999, Predictive regressions, Working paper (Wharton School, University of 
Pennsylvania, Philadelphia, PA). 

Stulz, René, 1987, An equilibrium model of exchange rate determination and asset pricing with nontraded 
goods and imperfect information, Journal of Political Economy 95, 1024-1040. 

Timmermann, Allan, 1993, How learning in financial markets generates excess volatility and 
predictability in stock prices, Quarterly Journal of Economics 108, 1135-1145. 

Timmermann, Allan, 1996, Excess volatility and predictability of stock prices in autoregressive dividend 
models with learning, Review of Economic Studies 63, 523-557. 

Wang, Jiang, 1993, A model of intertemporal asset prices under asymmetric information, Review of 
Economic Studies, 60, 249-282. 

Williams, Joseph, 1977, Capital asset prices with heterogeneous beliefs, Journal of Financial Economics 
5, 219-239. 

Zellner, Arnold, 1971, An Introduction to Bayesian Inference in Econometrics (John Wiley and Sons, 
New York, NY). 



 50 

 

Price

0.75

0.85

0.95

1.05

1.15

1.25

1.35

1.45
10 20 30 40 50 60 70 80 90 10
0

11
0

Time

Fundamental value

Actual price

 
 
Figure 1 
Equilibrium price of the risky asset 
 
This figure illustrates a sample price path for the risky asset when the dividend process is known 
(‘fundamental value’ in the figure; see eq. 6 in the text) and when investors must estimate expected 
dividends (‘actual price’; see eq. 12 in the text).  The riskless rate is 0.05, dividends have true mean 0.05 
and standard deviation 0.10, and investors are risk-neutral.  Without estimation risk, the price of the risky 
asset is one.  With estimation risk, the price depends on average dividends, which we randomly select 
from a normal distribution. 
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Table 1 
Predictability in steady state 

 
We simulate the renewal model 2500 times.  Dividends are assumed to follow a geometric random walk with 
time-varying expected growth, where the short-run growth rate gk is randomly drawn every K periods from 
N[g*, σ2/s].  Investors are risk neutral and have initial beliefs about gk at the beginning of each ‘regime’ equal 
to N[g*, σ2/h].  In the simulations, r = 0.12, σ = 0.10, and g* = 0.03.  The table reports results for various 
combinations of s, h, and K.  The table shows the average slope coefficient and t-statistic when excess returns 
are regressed on lagged dividend yield for roughly 75 years (approximate because we require the number of 
years to be divisible by K).  We also report bias-adjusted slope coefficients which correct for small-sample 
bias using the results of Stambaugh (1999). 
 

   Estimation  risk  Perfect information  Difference 

   h  h  h 

  s 16 25 49  16 25 49  16 25 49 

16 2.91 3.05 3.68  0.40 0.39 0.50  2.41 2.65 3.16 
25 3.31 3.57 4.41  0.37 0.31 0.52  2.94 3.26 3.88 slope 
49 3.92 4.16 5.62  0.44 0.50 0.41  3.48 3.65 5.21 

16 0.78 0.32 -0.53  -0.28 -0.29 -0.16  1.06 0.60 -0.37 
25 1.16 0.84 0.15  -0.28 -0.34 -0.11  1.44 1.18 0.25 

bias-
adj 

slope 49 1.77 1.39 1.31  -0.21 -0.14 -0.21  1.98 1.53 1.52 

16 1.02 0.80 0.53  0.25 0.25 0.28  0.77 0.55 0.25 
25 1.15 0.98 0.71  0.23 0.19 0.18  0.92 0.78 0.53 

2 regimes 
(K = 38) 

t-stat 
49 1.34 1.14 0.94  0.11 0.14 0.13  1.23 1.00 0.81 

16 2.56 2.44 1.97  0.37 0.30 0.34  2.19 2.15 1.64 
25 3.34 3.29 3.61  0.32 0.32 0.28  3.02 2.97 3.32 slope 
49 4.01 4.21 5.25  0.35 0.35 0.27  3.65 3.85 4.98 

16 0.29 -0.56 -2.95  -0.27 -0.33 -0.29  0.56 -0.23 -2.66 
25 1.06 0.26 -1.36  -0.29 -0.31 -0.34  1.35 0.57 -1.01 

bias-
adj 

slope 49 1.72 1.17 0.24  -0.27 -0.27 -0.35  1.99 1.43 0.60 

16 0.62 0.38 0.05  0.24 0.20 0.22  0.38 0.18 -0.17 
25 0.86 0.59 0.32  0.18 0.18 0.16  0.69 0.41 0.16 

4 regimes 
(K = 19) 

t-stat 
49 1.05 0.80 0.56  0.14 0.14 0.11  0.91 0.66 0.46 

16 2.59 1.94 1.41  0.27 0.32 0.24  2.33 1.62 1.17 
25 3.65 3.44 3.65  0.31 0.28 0.25  3.34 3.16 3.40 slope 
49 4.38 4.87 5.80  0.29 0.30 0.26  4.09 4.57 5.54 

16 0.16 -1.35 -4.15  -0.33 -0.26 -0.34  0.49 -1.08 -3.81 
25 1.22 0.14 -1.95  -0.27 -0.31 -0.34  1.49 0.45 -1.61 

bias-
adj 

slope 49 1.94 1.56 0.18  -0.29 -0.27 -0.32  2.24 1.83 0.50 

16 0.48 0.19 -0.05  0.17 0.20 0.16  0.31 -0.01 -0.20 
25 0.42 0.45 0.22  0.16 0.15 0.13  0.57 0.31 0.08 

6 regimes 
(K = 13) 

t-stat 
49 0.90 0.71 0.44  0.11 0.10 0.10  0.79 0.60 0.34 

 


