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1 Introduction

There is a controversial debate about the degree of progressivity that the income tax

should have. This debate is not limited to the economic research area but also attracts

much attention in the political sphere and among the public in general. At the center

of the debate lies the equity-eÆciency trade-o�. Progressivity allows the government to

redistribute from rich to poor, but progressive taxation and high marginal tax rates have

eÆciency costs. High rates may a�ect the incentives to work and may therefore reduce the

tax base, producing large deadweight losses. The modern setup for analyzing the equity-

eÆciency tradeo� using a general nonlinear income tax was built by Mirrlees (1971). Since

then, the theory of optimal income taxation based on the original Mirrlees's framework

has been considerably developed. The implications for policy, however, are limited for

two main reasons.

First, optimal income tax schedules have few general properties: we know that optimal

rates must lie between 0 and 1 and that they equal zero at the top and the bottom.

These properties are of little practical relevance for tax policy. In particular the zero

marginal rate at the top is a very local result. In addition, numerical simulations show

that tax schedules are very sensitive to the utility functions chosen. Second, optimal

income taxation has interested mostly theorists and has not changed the way applied

public �nance economists think about the equity-eÆciency tradeo�. Though behavioral

elasticities are the key concept in applied studies, there has been no systematic attempt

to derive results in optimal taxation which could be easily used in applied studies. As a

result, optimal income tax theory is often ignored and tax reform discussions are centered

on the concept of deadweight burden. Thus, most discussions on tax reforms focus only on

the eÆciency aspect of taxation and do not incorporate the equity aspect in the analysis.

This paper argues that there is a simple link between optimal tax formulas and elas-

ticities of earnings familiar to empirical studies. It shows that using directly elasticities

to derive optimal income tax rates is a useful method to obtain new results in optimal

income taxation. First, a simple formula for the optimal tax rate for high incomes is
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derived as a function of both substitution and income e�ects and the thickness of the top

tail of the income distribution. Second, deriving the general Mirrlees formula for optimal

non-linear tax rates in terms of elasticities provides a clear understanding of the key eco-

nomic e�ects underlying the formula. It shows that the shape of the income distribution

plays a critical role in the pattern of optimal tax rates. Third, the optimal tax formulas

derived using elasticities can be easily extended to a heterogeneous population and do

not require the strong homogeneity assumptions about preferences usually made in the

optimal income tax literature. Last, because the formulas derived are closely related to

empirical magnitudes, they can be easily implemented numerically using the empirical

income distribution and making realistic assumptions about the elasticity parameters.

The paper is organized as follows. Section 2 reviews the main results of the optimal

income tax literature. Section 3 derives a simple formula for optimal high income tax

rates and relates it to empirical magnitudes. Section 4 considers the general optimal non-

linear income tax problem. The formula of Mirrlees (1971) is derived directly in terms of

elasticities. Section 5 presents numerical simulations of optimal tax schedules and Section

6 concludes.

2 Literature Review

The Mirrlees (1971) model of optimal income taxation captures the key eÆciency-equity

tradeo� issue of redistribution: the government has to rely on a distortionary nonlinear

income tax to meet both its revenue requirements and redistribute income. General results

about optimal tax schedules are fairly limited. Tuomala (1990), Chapter 6, presents most

of the formal results.

Mirrlees (1971) showed that there is no gain from having marginal tax rates above 100

percent because nobody will choose to have such a rate at the margin. Mirrlees (1971)

also showed that optimal marginal rates cannot be negative. Seade (1982) clari�ed the

conditions under which this result holds. The most striking and well known result is that
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the marginal tax rate should be zero at the income level of the top income level when

the income distribution is bounded (Sadka (1976) and Seade (1977)). Numerical simu-

lations have shown, however, that this result is very local (see Tuomala (1990)). This

result is therefore of little practical interest. Mirrlees (1971) did not derive this simple

result because he considered unbounded distributions of skills. He nonetheless presented

precise conjectures about asymptotic optimal rates in the case of utility functions separa-

ble in consumption and labor. Nonetheless, these conjectures have remained practically

unnoticed in the subsequent optimal income tax literature. This can be explained by two

reasons. First, Mirrlees conjectures depend on the unobservable distribution of skills and

on abstract properties of the utility function with no obvious intuitive meaning. Second,

the zero top rate result was probably considered for a long time as the de�nitive result

because the empirical income distribution is indeed bounded. The present paper argues

that in fact unbounded distributions are of much more interest than bounded distributions

to address the high income optimal tax rate problem.

A symmetrical zero rate result has been obtained at the bottom. Seade (1977) showed

that if everybody works (and labor supply is bounded away from zero) then the bottom

rate is zero. However, if there is an atom of non workers then the bottom tax rate

is positive and numerical simulations show that, in this case, the bottom rate can be

substantial (Tuomala (1990)).

A number of studies have tried to relate optimal income tax formulas to the elasticity

concepts used in applied work. Using the tools of optimal commodity tax theory, Dixit

and Sandmo (1977) expressed the optimal linear income tax rate in terms of elasticities.

However, in the case of the non-linear income tax problem, the attempts have been much

less systematic. Roberts (1999) uses a perturbation method, similar in spirit to what is

done in the present paper, and obtains optimal non-linear income tax formulas expressed

in terms of elasticities.1 He also derives asymptotic formulas that are similar to the

1Revesz (1989) also attempted to express the Mirrlees formulas in terms of elasticities.
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ones I obtain.2 Recently, Diamond (1998) analyzed the case of utility functions with no

income e�ects and noticed that the Mirrlees formula for optimal rates is considerably

simpler in that case and could be expressed in terms of the labor supply elasticity. He

also obtained simple results about the asymptotic pattern of the marginal rates.3 Piketty

(1997) considered the same quasi-linear utility case and derived Diamond's optimal tax

formulas for the Rawlsian criterion without setting a formal program of maximization. He

considered instead small local changes in marginal rates and used directly the elasticity of

labor supply to derive the behavioral e�ects of this small reform. My paper clari�es and

generalizes this alternative method of derivation of optimal taxes. Finally, the non-linear

pricing literature, which considers models that are formally very close to optimal income

tax models, has developed a methodology to obtain optimal price formulas based on

demand pro�le elasticities that is also close to the method adopted here (Wilson (1993)).

Another strand of the public economics literature has developed similar elasticity

methods to calculate the marginal costs of public funds. The main purpose of this litera-

ture was to develop tools more sophisticated than simple deadweight burden computations

to evaluate the eÆciency costs of di�erent kinds of tax reforms and the optimal provision

of public goods (see e.g., Ballard and Fullerton (1992) and Dahlby (1998)). I will show

that the methods of this literature can be useful to derive results in optimal taxation and

that, in particular, Dahlby (1998) has come close to my results for high income rates.

Starting with Mirrlees (1971), considerable e�ort has gone into simulations of optimal

tax schedules. Following Stern (1976), attention has been paid on a careful calibration of

the elasticity of labor supply. Most simulation results are surveyed in Tuomala (1990). It

has been noticed that the level of inequality of the distribution of skills and the elasticities

of labor supply signi�cantly a�ect optimal schedules. Most simulations use a log-normal

distribution of skills which matches roughly the single moded empirical distribution but

has also an unrealistically thin top tail which leads to marginal rates converging to zero.

2The link between Roberts (1999) and the present analysis is discussed in detail in Section 4.

3Some of these results had been obtained by Atkinson (1990) in a more specialized situation.
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Nobody has tried to use empirical distributions of income to perform simulations because

the link between skills and realized incomes was never investigated in depth.4 The present

study pays careful attention to this issue and presents simulations based on the empirical

earnings distribution.

3 High Income Optimal Tax Rates

I show in this Section that the classic elasticity method of the optimal linear income tax

literature can be used to derive in a simple way an optimal tax rate formula for high

income earners. I will consider that the government sets a 
at marginal rate � above a

given (high) income level �z and then derive the welfare and tax revenue e�ects of a small

increase in � using elasticities. The optimal tax rate � is obtained when a small change

in tax rates has no �rst order e�ects on total social welfare.5

3.1 Elasticity concepts

I consider a standard two good model. Each taxpayer maximizes a well-behaved individual

utility function u = u(c; z) which depends positively on consumption c and negatively on

earnings z. Individual skills or ability are embodied in the individual utility function.

Assuming that the individual faces a linear budget constraint c = z(1� �) +R, where �

is the marginal tax rate and R is virtual (non-labor) income. The �rst order condition of

the individual maximization program, (1� �)uc+uz = 0, de�nes implicitly a Marshallian

4However, Kanbur and Tuomala (1994) realized that it is important to distinguish between the skill

distribution and the income distribution when calibrating the distribution of skills. Their work improved

signi�cantly upon previous simulations. I come back to their contribution in Section 5.
5Dahlby (1998) considered piecewise linear tax schedules and used the same kind of methodology to

compute the e�ects of a general tax rate reform on taxes paid by a \representative" individual in each

tax bracket. By specializing his results to a reform a�ecting only the tax rate of the top bracket, he

derived a formula for the tax rate maximizing taxes paid by the \representative" individual of the top

bracket that is a special case of the one obtained here.
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(uncompensated) earnings supply function z = z(1� �; R). The uncompensated elasticity

is de�ned such that,

�
u =

1� �

z

@z

@(1� �)
: (1)

Income e�ects are captured by the parameter,

� = (1� �)
@z

@R
: (2)

The Hicksian (compensated) earnings function is the earnings level which minimizes cost

c � z needed to reach a given utility level u for a given tax rate � and is denoted by

z
c = z

c(1� �; u). The compensated elasticity of earnings is de�ned by,

�
c =

1� �

z

@z

@(1� �)
ju : (3)

The two elasticity concepts and the income e�ects parameter are related by the Slutsky

equation,

�
c = �

u
� �: (4)

The compensated elasticity is always non-negative and � is non positive if leisure is

not an inferior good, an assumption I make from now on.

3.2 Deriving the high income optimal tax rate

The government sets a constant linear rate � of taxation above a given (high) level of

income �z. I normalize without loss of generality the population with income above �z to

one and I note h(z) the density of the earnings distribution. To obtain the optimal � , I

consider a small increase d� in the top tax rate � for incomes above �z as depicted on Figure

1. This tax change has two e�ects on tax revenue. First, there is a mechanical e�ect,

which is the change in tax revenue if there were no behavioral responses, and second,

7



there is a reduction in tax revenue due to reduced earnings through behavioral responses.

Let us examine these two e�ects successively.

� Mechanical e�ect

The mechanical e�ect (denoted by M) represents the increase in tax receipts if there

were no behavioral responses. A taxpayer with income z (above �z) would pay (z � �z)d�

additional taxes. Therefore, summing over the population above �z and denoting the mean

of incomes above �z by zm, the total mechanical e�ect M is equal to,

M = [zm � �z]d�: (5)

� Behavioral Response

As shown in Figure 1, the tax change can be decomposed into two parts; �rst, an

overall uncompensated increase d� in marginal rates (starting from 0 and not just from

�z), second, an overall increase in virtual income dR = �zd� . Therefore, an individual with

income z changes its earnings by,

dz = �

@z

@(1� �)
d� +

@z

@R
dR = �(�uz � � �z)

d�

1� �
; (6)

where we have used de�nitions (1) and (2). The reduction in income dz displayed in

equation (6) implies a reduction in tax receipts equal to �dz. The total reduction in

tax receipts due to the behavioral responses is simply the sum of the terms �dz over all

individuals earning more than �z,

B = �(��uzm � �� �z)
�d�

1� �
; (7)

where ��u =
R
1

�z �
u

(z)zh(z)dz=zm is a weighted average of the uncompensated elasticity. The

elasticity term �
u

(z) inside the integral represents the average elasticity over individuals

earning income z. Similarly, �� =
R
1

�z �(z)h(z)dz is the average income e�ect. Note that ��

and ��u are not averaged with the same weights. It is not necessary to assume that people
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earning the same income have the same elasticity; the relevant parameters are simply the

average elasticities at given income levels.

In order to obtain the optimal tax rate, we must equalize the revenue e�ect obtained

by summing (5) and (7) to the welfare e�ect due to the small tax reform. To obtain

the welfare e�ect, let us consider �g which is the ratio of social marginal utility for the

top bracket taxpayers to the marginal value of public funds for the government. In other

words, �g is de�ned such that the government is indi�erent between �g more dollars of

public funds and one more dollar consumed by the taxpayers with income above �z. The

smaller �g, the less the government values marginal consumption of high incomes. Thus �g

is a parameter re
ecting the redistributive goals of the government.

As we saw, the small tax reform d� induces behavioral changes dz. However, these

behavioral changes in earnings lead only to second order e�ects on welfare (this is the

usual consequence of the envelope theorem). Therefore, welfare e�ects are due uniquely to

the mechanical increase in tax liability. Each additional dollar raised by the government

because of the tax reform reduces social welfare of people in the top bracket by �g. Thus

the total welfare loss due to the tax reform is equal to �gM . Consequently, the government

sets the rate � such that, (1� �g)M +B = 0. Thus, using (5) and (7), the optimal rate is

such that,

�

1� �
=

(1� �g)(zm=�z � 1)
��uzm=�z � ��

: (8)

Equation (8) gives a strikingly simple answer to the problem of the optimal marginal

rate for high income earners. Note that this formula does not require identical elasticities

among taxpayers and thus applies to populations with heterogeneous preferences or elas-

ticities. The only relevant behavioral parameters are the average elasticity ��u and average

income e�ects �� for taxpayers with income above �z. Unsurprisingly, the optimal rate �

is a decreasing function of the social weight �g put on high income taxpayers, the average

elasticity ��u, and the absolute size of income e�ects ���. Interestingly, the optimal rate

is an increasing function of zm=�z. The ratio zm=�z is a key parameter for the high income

9



optimal tax problem. This parameter depends on the shape of the income distribution

and has not been studied in the optimal tax literature.

If the distribution of income is bounded, then, when �z is close to the top, the ratio

zm=�z tends to one and thus, from (8), we deduce that the top rate must be equal to zero.

This is the classical zero top rate result derived by Sadka (1976) and Seade (1977). The

intuition for the result is straightforward. As can be seen comparing (5) and (7), close

to the top, the mechanical e�ect M is negligible relative to the behavioral response B

implying that the optimal rate must be close to zero.

3.3 Empirical earnings distributions and optimal top rate

To assess whether the zero top result is actually relevant, it is useful to examine the

ratio zm=�z using empirical earnings distributions. Figure 2 plots the values of the ratios

zm=�z computed using annual wage income reported on tax return data for years 1992 and

1993 in the US.6 On Figure 2, the ratios zm=�z are reported as a function of �z for incomes

between $0 to $500,000 in the left panel and for incomes between $10,000 to $30 million in

the right panel (using a semi-log scale). Figure 2 shows that the ratio is strikingly stable

(and around 2) over the tail of the income distribution.7 As discussed above, the ratio

must be equal to one at the level of the highest income. However, Figure 2 shows that

even at income level $30 million, the ratio is still around 2. For example, if the second

top income taxpayer earns half as much as the top taxpayer then the ratio is equal to 2

at the level of the second top earner. Thus the ratio might well come to one only in the

vicinity of the top income earner. Consequently, the zero top result only applies to the

6The public use tax �les prepared yearly by the Internal Revenue Service have been used for this

exercise. This data is particularly �tted for this type of computations because it oversamples high

income taxpayers. As many as one third of the highest income earners in the US are included in the

sample. The ratios have been computed using the amounts reported on the line Wages, Salaries and Tips

of Form 1040. The sample has been restricted to married taxpayers only.
7The ratio becomes noisy above $10 million because the number of taxpayers above that level is very

small and crossing only one taxpayer has a non trivial discrete e�ect on the curves.

10



very highest taxpayer and is therefore of no practical interest.

From $150,000 to close to the very top, the ratio zm=�z is roughly constant around

2. This means that formula (8) can be applied by replacing zm=�z by 2 for any �z above

$150,000. Distributions with constant ratio zm=�z are exactly Pareto distributions. There-

fore, the tails of empirical earnings distributions can be remarkably well approximated by

Pareto distributions.8 More precisely, a Pareto distribution with parameter a > 1 is such

that Prob(Income > z) = C=z
a for some constant C. For a Pareto distribution, zm=�z

is constant and equal to a=(a � 1). The higher a, the thinner is the tail of the income

distribution. For the U.S. wage income distribution, the ratio zm=�z is around 2 and thus

the parameter a is approximately equal to 2.

Assuming that the elasticity ��u and income e�ects �� converge as �z increases, and

assuming that the ratio zm=�z converges (to a limit denoted by a=(a�1)), the optimal tax

rate (8) converges. Using the Slutsky equation (4), the limiting tax rate can be written

in terms of the limiting values of the elasticities ��u and ��c and the Pareto parameter a,

�� =
1� �g

1� �g + ��u + ��c(a� 1)
: (9)

In that case, the government wants to set approximately the same linear rate �� above

any large income level and thus �� is indeed the optimal non-linear asymptotic rate of the

Mirrlees problem.9

The top rate �� depends negatively of the thinness of the top tail distribution mea-

sured by the Pareto parameter a. This is an intuitive result, if the distribution is thin

then raising the top rate for high income earners will raise little additional revenue. In-

terestingly, for a given compensated elasticity ��c, the precise division into income e�ects

and uncompensated rate e�ects matters. The higher are absolute income e�ects (���)

relative to uncompensated e�ects (��u), the higher is the asymptotic tax rate �� . Put in

other words, what matters most for optimal taxation is whether taxpayers continue to

8Pareto discovered this empirical regularity more than a century ago (see Pareto (1965)).

9This point is con�rmed in Section 4.
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work when tax rates increase (without utility compensation). In particular, though ��c is

a suÆcient statistic to approximate the deadweight loss of taxation, same values of ��c can

lead to very di�erent optimal tax rates.

The case �g = 0 corresponds to the situation where the government does not value the

marginal consumption of high income earners and sets the top rate so as to extract as

much tax revenue as possible from high incomes (soak the rich). Formula (9) specialized

to the case �g = 0 is the high income tax rate maximizing tax revenue. In the case with

no income e�ects (��c = ��u), this \La�er" rate is equal to �� = 1=(1 + a��) with a around

2 for the US. This formula is a simple generalization of the well known formula for the


at tax rate maximizing tax revenue, 1=(1 + ��), where �� is the average elasticity over all

taxpayers.

I show in Section 4 that, in the Mirrlees model, the parameter a is independent of �� as

long as �� < 1 which implies that formula (9) can be applied using directly the empirical

value of a. The intuition is the following. When elasticities are constant, changing the

tax rate has the same multiplicative e�ect on the incomes of each high income taxpayer

and therefore the ratio zm=�z is unchanged. Empirically, in the US, a does not seem to

vary systematically with the level of the top rate.10

There is little consensus in the empirical literature on behavioral responses to taxation

about the size of high income elasticities. Some studies have found estimates in excess

of 1 while others have found elasticities very close to zero. Gruber and Saez (2000)

summarize the empirical literature based on US tax reforms and discuss the reasons for

discrepancies.11 They �nd elasticity estimates around 0.25 for gross income. It is unlikely,

though not impossible, that the long-term compensated elasticity are bigger than 0.5. The

uncompensated elasticity is probably even smaller.

Table 1 presents optimal asymptotic rates using formula (9) for a range of realistic

values for the Pareto parameter of the income distribution, ��u and ��c, (the asymptotic

10See Saez (1999a) for an empirical examination.

11The recent volume of Slemrod (2000) also provides a number of elasticity estimates for high incomes.
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elasticities) and �g. Except in the cases of high elasticities, the optimal rates are fairly

high. Comparing the rows in Table 1 shows that the Pareto parameter has a big impact

on the optimal rate. Pareto parameters for income distributions vary across countries,

the parameter is low in the US compared to most European countries or Canada. A

thorough investigation of Pareto parameters across countries would be relatively simple to

carry out and would provide an important piece of information for tax policy discussions.

Comparing columns (2), (5) and (7) (or columns (3), (6), (8)), we see also that, at �xed

compensated elasticity, the optimal rate is very sensitive to the size of income e�ects.

4 Optimal Non-Linear Income Tax Rates

Last section considered only the problem of optimal tax rates at the high income end. In

this Section, I investigate the issue of optimal rates at any income level using the same

elasticity method. In order to contrast my approach to the original Mirrlees approach, I

�rst present brie
y the Mirrlees (1971) model.

4.1 The Mirrlees model

In the model, all individuals have the same utility function which depends positively on

consumption c and negatively on labor supply l and is noted u(c; l). Individuals di�er only

in their skill level (denoted by n) which measures their marginal productivity. Earnings

are equal to z = nl. The population is normalized to one and the distribution of skills

is written F (n), with density f(n) and support in [0;1). cn, zn = nln, and un denote

the consumption, earnings and utility level of an individual with skill n. The government

cannot observe skills and thus is restricted to setting taxes as a function only of earnings,

c = z � T (z). The government maximizes a social welfare function,

W =

Z
1

0
G(un)f(n)dn; (10)

where G is an increasing and concave function of utility. The government maximizes W
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subject to a resource constraint and incentive compatibility constraints. The resource

constraint states that total consumption is less than total earnings minus government

expenditures, E,

Z
1

0
cnf(n)dn �

Z
1

0
znf(n)dn� E: (11)

I note p the multiplier of the budget constraint (11) which represents the marginal value of

public funds. The incentive compatibility constraints state that, for each n, the selected

labor supply ln maximizes utility, given the tax function, u(nl� T (nl); l). The derivation

of the �rst order condition for optimal rates is sketched in appendix. Note that in the

model, redistribution takes place through a guaranteed income level (equal to �T (0))

that is taxed away as earnings increase. The welfare program is thus fully integrated to

the tax schedule.

4.2 Optimal Marginal Rates

The general �rst order condition Mirrlees obtained depends in a complicated way on

the derivatives of the utility function u(c; l) which are not related in any obvious way

to empirical magnitudes (see equation (22) in appendix). Moreover, it is derived using

powerful but blind Hamiltonian optimization. Thus, the optimal taxation literature has

not elucidated the key economic e�ects leading to the optimal formula. In this subsection,

I derive a formula for optimal tax rates using elasticities of earnings and show precisely

the key economics e�ects behind the optimal tax rate formula. I denote by H(z) the

cumulated income distribution function (the total population is normalized to one) and

by h(z) the density of the income distribution. I note g(z) the social marginal value of

consumption for taxpayers with income z expressed in terms of the value of public funds.12

I �rst present a simple preliminary result that is also useful to understand the relation

between the income distribution and the distribution of skills in the Mirrlees economy.

12This is G0(u)uc=p using the notation of the Mirrlees model.
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Lemma 1 For any regular tax schedule T (such that T 00 exists) not necessarily optimal,

the earnings function zn is non-decreasing and satis�es the following di�erential equation,

_zn

zn
=

1 + �
u

(n)

n
� _zn

T
00

(n)

1� T
0

(n)

�
c

(n): (12)

If equation (12) leads to _zn < 0 then zn is discontinuous and (12) does not hold.

The proof, which is routine algebra, is presented in appendix. In the case of a linear

tax (T 00 = 0) the earnings equation (12) simpli�es to dz=z = (1+ �u)dn=n. In the general

case, a correction term in T 00 which represents the e�ect of the change in marginal rates

is present. By de�nition, the income density and the skill density are related through the

equation h(z) _z = f(n). Consequently, for a given skill distribution and using Lemma 1, we

see that a non-linear tax schedule produces a local deformation of the income distribution

density h(z).

In order to simplify the presentation of optimal tax rates formulas, I introduce h�(z)

which is the density of incomes that would take place at z if the tax schedule T (:) were

replaced by the linear tax schedule tangent to T (:) at level z.13 I call the density h�(z) the

virtual density. Applying Lemma 1 to the linearized schedule, we have _z�=z = (1+ �
u)=n

where _z� is the derivative of earnings with respect to n when the linearized schedule is in

place. By de�nition, we also have h�(z) _z� = f(n). Thus h and h� are related through the

following equation:

h
�(z)

1� T 0(z)
=

h(z)

1� T 0(z) + �czT 00(z)
: (13)

Of course, the virtual density h
� is not identical to the actual density h. However,

because the density h at the optimum tax schedule is endogenous (changes in the tax

schedule a�ect the income distribution through behavioral responses), there is very little

inconvenience in using h� rather than h. Using h� is a way to get rid of the deformation

13This linearized tax schedule is characterized by rate � = T 0(z) and virtual income R = z � T (z)�

z(1� �).
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component induced by the non-linearity in the tax schedule. In that sense and as evi-

denced by Lemma 1, h� is more closely related than h to the underlying skill distribution

which represents intrinsic inequality.

The following proposition presents the optimal tax formula expressed in terms of the

behavioral elasticities (same notations as in the previous section) and the shape of the

income distribution using the concept of virtual density h�.14

Proposition 1 The �rst order condition for the optimal tax rate at income level �z can

be written as follows,

T
0(�z)

1� T 0(�z)
=

1

�c(�z)

 
1�H(�z)

�zh�(�z)

! Z
1

�z
(1� g(z)) exp

2
4Z z

�z
(1�

�
u

(z0)

�c(z0)

)
dz

0

z0

3
5 h(z)

1�H(�z)
dz: (14)

Alternatively, using the notations of the Mirrlees model, this equation can be rewritten as,

T
0(zn)

1� T 0(zn)
= A(n)B(n); (15)

where

A(n) =

0
@1 + �

u

(n)

�c(n)

1
A
 
1� F (n)

nf(n)

!
; (16)

B(n) =

Z
1

n

 
1�

G
0(um)u

(m)
c

p

!
exp

2
4Z m

n

(1�
�
u

(s)

�c(s)

)
dzs

zs

3
5 f(m)

1� F (n)
dm: (17)

In equations (16) and (17), sub or superscripts (n) mean that the parameter is com-

puted at the skill level n.

Obtaining (15) in the context of the Mirrlees model is possible using the Mirrlees

�rst order condition. This derivation is presented in appendix.15 This rearrangement

of terms of the Mirrlees formula is a generalization of the one developed by Diamond

14The proof of the proposition makes clear why introducing h� is a useful simpli�cation
15Revesz (1989) has also attempted to express the optimal non-linear tax formula of Mirrlees in terms

of elasticities. His derivation is similar in spirit to the one presented in appendix but there are a number

of mistakes in his computations and results.
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(1998) in the case of quasi-linear utility functions. This method, however, does not show

the economic e�ects which lead to formula (14). Formula (14) can, however, be fruitfully

derived directly in terms of elasticities using a similar method as in Section 3. The formula

is commented in the light of this direct derivation just after the proof.

Direct Proof of Proposition 1

I consider the e�ect of the following small tax reform perturbation around the optimal

tax schedule. As depicted on Figure 3, marginal rates are increased by an amount d� for

incomes between �z and �z + d�z. I also assume that d� is second order compared to d�z so

that bunching (and inversely gaps in the income distribution) around �z or �z+ d�z induced

by the discontinuous change in marginal rates are negligible. This tax reform has three

e�ects on tax receipts: a mechanical e�ect, an elasticity e�ect for taxpayers with income

between �z and �z + d�z, and an income e�ect for taxpayers with income above �z.

� Mechanical E�ect net of Welfare Loss

As shown in Figure 3, every taxpayer with income z above �z pays d�d�z additional

taxes which are valued (1�g(z))d�d�z by the government therefore the overall mechanical

e�ect M net of welfare loss is equal to,16

M = d�d�z

Z
1

�z
(1� g(z)) h(z)dz:

� Elastic E�ect

The increase d� for a taxpayer with income z between �z and �z+d�z has an elastic e�ect

which produces a small change in income (denoted by dz). This change is the consequence

of two e�ects. First, there is a direct compensated e�ect due to the exogenous increase

d� . The compensated elasticity is the relevant one here because the change d� takes place

at level �z just below z. Second, there is an indirect e�ect due to the shift of the taxpayer

16The tax reform has also an e�ect on h(z) but this is a second order e�ect in the computation of M .
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on the tax schedule by dz which induces an endogenous additional change in marginal

rates equal to dT 0 = T
00
dz. Therefore, the behavioral equation can be written as follows,

dz = ��
c�z
d� + dT

0

1� T 0
;

which implies,

dz = ��
c�z

d�

1� T 0 + �c�zT 00
:

It easy to see that 1�T 0+ �c�zT 00 > 0 if and only if the curvature of the indi�erence curve

at the individual optimum bundle is larger than the curvature of the schedule z � T (z),

or equivalently, if and only if, the individual second order condition is strictly satis�ed.

Mirrlees (1971) showed that bunching of types occurs when this condition fails. I assume

here that 1� T 0+ �
c�zT 00 > 0. Note that this condition is always satis�ed at points where

T
00(�z) � 0.

Introducing the virtual density h�(�z) and using equation (13), the overall e�ect on tax

receipts (denoted by E) can be simply written as,

E = ��
c

(�z)�z
T
0

1� T 0
h
�(�z)d�d�z;

where �c(�z) is the compensated elasticity at income level �z. The use of the virtual density

h
� is useful because it allows to get rid of the complication due to the endogenous change

in marginal rate dT 0 = T
00
dz. In other words, one can derive the above expression for E

without taking into account the endogenous change in marginal rates by just replacing h

by h�.

� Income E�ect

A taxpayer with income z above �z pays �dR = d�d�z additional taxes. So, taxpayers

above the small band [�z; �z + d�z] are induced to work more through income e�ects which

reinforce the mechanical e�ect. The income response dz is again due to two e�ects. First,

there is the direct income e�ect (equal to � dR=(1 � T
0)). Second, there is an indirect
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elastic e�ect due to the change in marginal rates dT 0 = T
00
dz induced by the shift dz

along the tax schedule. Therefore,

dz = ��
c
z
T
00
dz

1� T 0
� �

d�d�z

1� T 0
;

which implies,

dz = ��
d�d�z

1� T 0 + z�cT 00
: (18)

Introducing again the virtual density h
�(z) to get rid of the endogenous rate change

component and summing (18) over all taxpayers with income larger than �z, I obtain the

total tax revenue e�ect due to income e�ects responses,

I = d�d�z

Z
1

�z
��(z)

T
0

1� T 0
h
�(z)dz:

Any small tax reform around the optimum schedule has no �rst order e�ect on welfare.

Thus the sum of the three e�ects M , E and I must be zero which implies,

T
0

1� T 0
=

1

�c

 
1�H(�z)

�zh�(�z)

!"Z
1

�z
(1� g(z))

h(z)

1�H(�z)
dz +

Z
1

�z
��

T
0

1� T 0

h
�(z)

1�H(�z)
dz

#
:

(19)

Equation (19) can be considered as a �rst order linear di�erential equation and can

be integrated (see appendix) using the standard method to obtain equation (14) of the

proposition.

Changing variables from �z to n, and using the fact that, by Lemma 1, �zh�(�z)(1 + �
u) =

nf(n), it is straightforward to obtain equation (15) of Proposition 1. When changing

variables from �z to n, an additional term 1+�u appears on the right hand side to form the

term A(n) of equation (15). This counterintuitive term (higher uncompensated elasticity

should not lead to higher marginal rates) should be incorporated into the skill distribution

ratio (1�F )=(nf) to lead to the income distribution ratio (1�H)=(�zh�). This shows that

19



expressing optimal tax formulas in terms of the skill distribution instead of the income

distribution can be misleading. k

Interpretation of Proposition 1

In the light of this direct proof, let us analyze the decomposition of optimal tax rates

presented in Proposition 1. Analyzing equation (14), it appears that three elements

determine optimal income tax rates: elasticity (and income) e�ects, the shape of the

income (or skill) distribution and social marginal weights.

� Shape of Income Distribution

The shape of the income distribution a�ects the optimal rate at level �z mainly through

the term (1 � H(�z))=(�zh(�z)). The elastic distortion at �z induced by a marginal rate

increase at that level is proportional to income at that level times number of people at

that income level (�zh(�z)) while the gain in tax receipts is proportional to the number of

people above �z (i.e., 1 � H(�z)). Therefore, the government should apply high marginal

rates at levels where the density of taxpayers is low compared to the number of taxpayers

with higher income. This is obviously the case at the bottom of the income distribution

because �zh(�z) is close to zero while 1 � H(�z) is close to one. At the top, for a Pareto

distribution with parameter a, the ratio (1�H)=(�zh) is constant and equal to 1=a. From

the evidence displayed in Section 3, we expect the ratio to converge to a constant close to

0:5 (remember that a is around 2) for large �z. Figure 4 presents the graphs of the ratio

(1 � H(z))=(zh(z)) for years 1992 and 1993 as a function of z. These graphs are based

on the same data and samples as the graphs of Figure 2. The ratios are U-shaped. The

hazard ratio is very high for low incomes, it decreases until income level $80,000 and then

increases until $200,000. Above $200,000, the ratio is indeed approximately constant,

around 0.5, showing that the Pareto approximation is adequate. The fact that the ratio

increases from $80,000 to $200,000 suggests that, with constant elasticities, optimal rates

should be increasing in that range.
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Of course, the ratio (1 � H)=(�zh) is endogenous (because of behavioral responses,

changing the tax schedule may change the income distribution). Nevertheless, using

directly the income distribution allows a better understanding of the optimal tax rate

formula. In the numerical simulations presented in the following section, the endogeneity

issue is solved by computing an exogenous skill distribution based on the actual income

distribution.

� Elastic and Income e�ects

Behavioral e�ects enter the formula for optimal rates in two ways. First, increas-

ing marginal rates at level �z induces a compensated response from taxpayers earning �z.

Therefore, �c(�z) enters negatively the optimal tax rate at income level �z. Second, this

marginal rate change increases the tax burden of all taxpayers with income above �z. This

e�ect induces these taxpayers to work more through income e�ects which is good for tax

receipts. Therefore, this income e�ect leads to higher marginal rates (everything else be-

ing equal) through the exponential term in (14) which is bigger than one. Note that this

term is identically equal to one when there are no income e�ects (this case was studied

by Diamond (1998)).17

� Social Marginal Welfare Weights

The social marginal weights g(z) enter the optimal tax formula through the term

(1� g(z)) inside the integral. Social marginal weights represent the relative value for the

government of an additional dollar of consumption at each income level. More precisely,

the government is indi�erent between giving 1=g(z1) additional dollars to a taxpayer

with income z1 or giving 1=g(z2) dollars to a taxpayer with income z2. These weights

17The heuristic proof shows clearly why negative tax rates are never optimal. If the tax rate were

negative in some range then increasing it a little bit in that range would decrease earnings of taxpayers

in that range (because of the substitution e�ect) but this behavioral response would increase tax receipts

because the tax rate is negative in that range. Therefore, this small tax reform would unambiguously

increase welfare.
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summarize in a transparent way the distributive objectives of the government. If the

government has redistributive tastes, then these weights are decreasing in income. In

that case, expression (1 � g(z)) in equation (14) is increasing in z. Therefore, taste for

redistribution is unsurprisingly an element tending to make the tax schedule progressive.

If the government had no redistributive goals, then it would choose the same marginal

welfare weights for everybody and thus equation (14) can also be applied in the case with

no redistributive concerns. The shape of the income distribution and the size of both

substitution and income e�ects would still matter for the optimal income tax.

The original Mirrlees derivation relies heavily on the fact that there is a unidimensional

skill parameter which characterizes each taxpayer. As a result, that derivation gives no

clue about how to extend the non-linear tax formula to a heterogeneous population in a

simple way. The direct proof using elasticities shows that there is no need to introduce

an exogenous skill distribution. Formula (14) is valid for any heterogeneous population as

long as �u(z) and �
c

(z) are considered as average elasticities at income level z.18 Therefore, the

skill distribution in the Mirrlees model should not be considered as a real economic element

(which could be measured empirically) but rather as a simpli�cation device to perform

computations and numerical simulations. The skill distribution should simply be chosen

so that the resulting income distribution is close to the empirical income distribution.

This route is followed in Section 5.

Mirrlees (1986) tried to extend the model to heterogeneous populations where indi-

viduals are characterized by a multidimensional parameter instead of a single dimensional

skill parameter. He adopted the same approach as he used in his original 1971 study and

derived �rst order conditions for the optimal tax schedule. However, these conditions were

even more complicated than in the unidimensional case and thus it proved impossible to

obtain results or interpret the �rst order conditions in that general case. It is nonetheless

possible to manipulate the �rst order conditions of the general case considered in Mirrlees

18Equation (13) linking the virtual density h� to the actual density h can be generalized to the case of

heterogeneous populations.
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(1986) in order to recover formula (14). Therefore, the elasticity method is a powerful

tool to understand the economics of optimal income taxation and is certainly a necessary

step to take to extend in a fruitful way the model to heterogeneous populations. The

rigorous analysis of the multi-dimensional case is out of the scope of the present paper

and is left for future research.

Formula (14) could also be used to pursue a positive analysis of actual tax schedules.

Considering the actual tax schedule T (:) and the actual income distribution H(:), and

making assumptions about the patterns of elasticities �u(z) and �
c

(z), it is also possible to use

equation (14) to infer the marginal social weights g(z). Even if the government does not

explicitly maximize welfare, it may be interesting to know what are the implicit weights

that the government is using. For example, if some of the weights appear to be negative

then the tax schedule is not second-best Pareto eÆcient.19

Link with Previous Studies

As discussed in Section 2, Roberts (1999) has obtained a formula equivalent to (19)

using also a perturbation approach. His perturbation induces all taxpayers in a small

band of income to bunch at the upper end of the band. His derivation is perhaps less

transparent than the present one because it is obtained using Taylor expansions and does

not decompose the tax revenue changes into income and substitution e�ects. Moreover,

his approach relies on the assumption that there is only one type of individual at each

income level as in the Mirrlees (1971) model.

The derivation presented here is also close to the demand pro�le approach used in

the literature on optimal nonlinear pricing for a regulated monopoly (see Wilson (1993)).

The nonlinear price problem is formally equivalent to the optimal income tax problem

with constant welfare weights g(z). Moreover, the non-linear pricing literature generally

assumes away income e�ects. In that particular case, the non-linear pricing literature

19This analysis has been used frequently in the commodity taxation literature where it is known as the

inverse optimum problem (see e.g. Ahmad and Stern (1984)).
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has been able to derive optimal pricing formulas directly in terms of demand pro�les

and express optimal pricing formulas as a simple inverse elasticity rule that is formally

equivalent to formula (14) with no income e�ects and constant weights g(z). In the

income tax case, the demand pro�le elasticity becomes the elasticity of the number of

taxpayers above a given income level z (i.e. 1 � H(z)) with respect to (one minus) the

marginal rate at z (i.e. 1� T
0(z)).20 In the case of the income tax, it is more convenient

to express optimal tax formulas in terms of standard labor supply elasticities rather than

the \demand pro�le" elasticity. Nonetheless, it is perhaps surprising that the optimal

income tax literature before Diamond (1998) did not consider more seriously the case

with no income e�ect which is standard in the nonlinear pricing literature because it is

very convenient to solve and analyze.

Optimal Asymptotic Rates

It is possible to recover the high income optimal tax formula (9) from Section 3 using

equation (14) for large �z.21 With large z, g(z) tends to �g, and the ratio (1 � H)=(�zh�)

tends to 1=a when the tail is Paretian. Assuming that elasticities converge, the exponential

term in (14) is approximately equal to (z=�z)1�
��u= ��c and thus the fact that h(z) is Paretian

implies that the integral term in (14) tends to (1� �g)a=[a� (1� ��u= ��c)]. Putting together

these results, one can obtain (9).

Diamond (1998) obtained this formula in the case with no income e�ects but expressed

the formula in terms of the Pareto parameter of the skill distribution instead of the income

distribution.22 Using Lemma 1, it can be shown that the Pareto parameter of the income

distribution is equal to the Pareto parameter of the skill distribution divided by 1 + ��u.

This shows that, as discussed in Section 3, the Pareto parameter a is independent of

the limiting tax rate in the Mirrlees model. Roberts (1999) also obtained an asymptotic

20See Saez (1999b) for more details.

21Saez (1999a) discusses this point in detail.
22That is why his table of high income optimal tax rates is not directly comparable to the results

presented in Table 1. He also confused a and 1 + a when selecting examples.
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formula that is close to equation (9). However, the basic methodology of Section 3 is a

much easier way to obtain the same optimal tax rate result for high incomes than going

through the asymptotics of the general formula.

5 Numerical simulations

5.1 Methodology

As we saw in the previous section, there are three key elements that determin optimal

tax rates: elasticities, the shape of the income distribution and redistributive tastes of

the government. In the simulations, careful attention is paid to the calibration of each of

these parameters.

Simulations are presented using utility functions with constant compensated elastic-

ity �c. This provides a useful benchmark because the compensated elasticity is the key

parameter empirical studies. Even though there is empirical evidence showing that elas-

ticities may be higher at the low end and the high end of the income distribution (see e.g.,

Blundell (1992) and Gruber and Saez (2000)), it is useful to start with the case of constant

elasticities in order to see how optimal tax rates should be set in that benchmark case. It

is fairly simple to adapt the simulation methodology to the case of varying elasticities.23

As we saw, for a given compensated elasticity, varying income e�ects a�ects optimal

rates. Therefore, in the simulations, I use two types of utility functions with constant

elasticities. With utility functions of Type I,

u = log(c�
l
1+k

1 + k
); (20)

there are no income e�ects. The elasticity (uncompensated and compensated) is equal to

1=k. This case was examined theoretically by Atkinson (1990) and Diamond (1998).

23This is attempted by Gruber and Saez (2000) in a simpler four-bracket optimal income tax setting.
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Type II utility functions are such that,

u = log(c)� log(1 +
l
1+k

1 + k
): (21)

The compensated elasticity is equal to 1=k but there are income e�ects. The uncompen-

sated elasticity �u can be shown to tend to zero when n tends to in�nity.

It is important to keep in mind that the utility functions should be chosen so as to

replicate the empirical elasticities and that l does not necessarily represent hours of work.

As a result, Type I utility function, where l tends to in�nity for large n, is clearly not

realistic when l represents hours of work but is nevertheless appropriate if we think that

income e�ects are much smaller than substitution e�ects.

As discussed in Section 3, there is controversy in the empirical literature about the size

of the elasticity. I chose two values for the compensated elasticity parameters �c = 0:25

and �c = 0:5. These values fall within the middle range of empirical estimates. There is

also some controversy in the literature about the size of income e�ects. In most but not

all studies, income e�ects are of modest size (see Blundell and MaCurdy (1999)).

I use the earnings distribution of year 1992 from tax return data to perform numerical

simulations. Formula (14) cannot be directly applied using the empirical income distri-

bution because the income distribution is a�ected by taxation. Therefore, it is useful to

come back to the Mirrlees formulation and use an exogenous skill distribution to perform

numerical simulations. The main innovation is that the skill distribution is calibrated

such that, given the utility function chosen and the actual tax schedule, the resulting

income distribution replicates the empirical earnings distribution. Previous simulations

almost always used log-normal skill distributions which match globally unimodal empir-

ical distributions but approximate very poorly empirical distributions at the tails (both

top and bottom tails). Moreover, changing the elasticity parameter without changing the

skill distribution, as usually done in numerical simulations, might be misleading because

changing the elasticities modi�es the resulting income distribution and thus might a�ect

optimal rates also through this indirect e�ect.
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Optimal rates simulations are performed using two di�erent social welfare criteria,

Utilitarian and Rawlsian. Because for both types of utility functions, uc ! 0 as n !

1, �g is always equal to zero and thus the asymptotic rates are the same with both

welfare criteria. In the case of the Utilitarian criterion, social marginal weights g(z) are

proportional to uc which is approximately decreasing at the rate 1=c. Optimal rates are

computed such that the ratio of government spending E to aggregate production is equal

to 0.25. The original Mirrlees (1971) method of computation is used and the details are

presented in appendix.

5.2 Results

Optimal marginal rates are plotted on Figure 5 for yearly wage incomes between $0 and

$300,000. The curves represent the optimal non-linear marginal rates and the dashed

horizontal lines represent the optimal linear rates (see below). As expected, the level

of the optimal rates depends on the level of elasticities and on the type of the utility

function. In all four cases, however, the optimal rates are clearly U-shaped.24 Optimal

rates are decreasing from $0 to $75,000 and then increase until income level $200,000.

Above $200,000, the optimal rates are close to their asymptotic level. This U-shape

pattern is strikingly close to many actual tax schedules. The high rates at the bottom

obtained in the simulations correspond to the phasing-out of the guaranteed income level.

As in actual systems, the simulations suggest that the government should apply high

rates at the bottom in order to target welfare only to low incomes. In most countries,

rates drop signi�cantly once welfare programs are phased-out and tax rates are in general

increasing at high income levels because most income tax systems are progressive. In the

simulations presented, tax rates increase at high income levels because of the shape of

the income distribution (as discussed above) and because of the redistributive tastes of

the government. Note that the increasing pattern of tax rates due to U-shape pattern of

24The rate at the bottom is not zero because labor supply tends to zero as the skill n tends to zero,

violating one of the assumptions of Seade (1977).
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the ratio (1�H)=(zh) cannot be obtained with a log-normal skill distribution because in

that case, the ratio (1�H)=(zh) is always decreasing. The increasing pattern of marginal

rates at the high end depends of course on the assumption of constant elasticities and

might be reversed if elasticities are increasing with income (Gruber and Saez (2000)).

As expected, the Rawlsian criterion leads to higher marginal rates. The di�erence in

rates between the two welfare criteria is larger at low incomes and decreases smoothly

toward 0 (the asymptotic rates are the same).

I have also reported in dashed lines on Figure 5, the optimal linear rates computed

for the same utility functions, welfare criteria and skill distribution (the upper one corre-

sponding to �c = 0:25 and the lower one to �c = 0:5). The optimal linear rates are also

computed so that government spending over total earnings be equal to 0.25. Table 2 re-

ports the optimal average marginal rates weighted by income in the non-linear case along

with the optimal linear rate.25 The guaranteed consumption levels of people with skill

zero (who supply zero labor and thus earn zero income) in terms of average income are

also reported. As average incomes di�er in the linear and non-linear cases, I also report

(in parentheses) the ratio of the guaranteed income for the linear case to the guaranteed

income for the non-linear case: this ratio allows a simple comparison between the absolute

levels of consumption of the poorest individuals in the linear and non-linear case.

The average marginal rates are substantially lower in the non-linear cases than in the

linear cases. The guaranteed levels of consumption are slightly higher in relative terms

in the linear cases (than in the non-linear cases) but as average earnings are lower in the

linear cases, the absolute levels are similar. Therefore, non-linear taxation is signi�cantly

more eÆcient than linear taxation to redistribute income. In particular, it is better from

an eÆciency point of view to have high marginal rates at the bottom (which corresponds

to the phasing out of the guaranteed income level).

Mirrlees (1971) found much smaller optimal marginal rates in the simulations he pre-

sented. Rates were slightly decreasing along the income distribution and the levels around

25The asymptotic rate in the non-linear case is reported in parentheses.
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20% to 30%. The smaller rates he found were the consequence of two e�ects. First, the

utility function he chose (u = log(c) + log(1� l)) implies high elasticities. Income e�ects

are constant with � = �0:5 and compensated elasticities are large with �c decreasing from

around 1 (at the bottom decile) to 0.5 (at the top decile). These high elasticities lead

to low optimal tax rates. Second, the log-normal distribution for skills implies that the

hazard ration (1�H(z))=(zh(z)) is decreasing over the income distribution and tends to

zero as income tends to in�nity. This implied a decreasing pattern of optimal rates.

Subsequently, Tuomala (1990) presented simulations of optimal rates using utility

functions with smaller elasticities. As in Stern (1976) for the linear tax case, Tuomala

(1990) used the concept of elasticity of substitution between consumption and leisure to

calibrate utility functions. This concept does not map in any simple way into the concepts

of income e�ects and elasticities used in the present paper. Tuomala's utility function

implies that compensated elasticity are around 0.5 but income e�ects are unrealistically

large (� ' �1) implying negative uncompensated elasticities. Unsurprisingly, he found

higher tax rates but the pattern of optimal rates was still regressive, from around 60% at

the bottom to around 25% at 99th percentile because of the shape of the skill distribution.

Kanbur and Tuomala (1994) noticed that it is important to calibrate the log-normal skill

distribution indirectly so that the income distribution inferred from the skill distribution

matches the actual distribution. They obtained optimal tax rates substantially higher

than previous simulations and closer to those presented here.

6 Conclusion

Using elasticities to derive optimal income tax rates is a fruitful method for a number of

reasons. First, it is straightforward to obtain an optimal tax formula for high incomes.

The literature following Mirrlees (1971) on optimal income taxation had not been able

to obtain this simple formula. Using elasticity estimates from the empirical literature,

the formula for asymptotic top rates suggests that marginal rates for labor income should
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not be lower than 50% and may be as high as 80%. Second, the elasticity method has

the advantage of showing precisely how the di�erent economic e�ects come into play

and which are the relevant parameters for optimal taxation. The original maximization

method of Mirrlees (1971) was much more complicated and did not allow such a simple

economic interpretation. Third, because optimal tax formulas are expressed in terms of

parameters that can be observed or estimated, numerical simulations can be performed

and calibrated using the empirical income distribution.

My analysis can be extended in several ways. First, the ratios zm=�z and (1�H(z))=(zh)

introduced in Sections 3 and 4 are closely linked to optimal pattern of marginal rates and

can be fruitfully examined using empirical income distributions. It would be interesting to

compute these ratios for other years and countries to see whether the U-shape pattern is

universal or speci�c to the US. Second, the general framework under which the approach

used here to derive optimal tax rates is valid, needs still to be worked out precisely.

Last, it might be fruitful to apply the same methodology to other tax and redistribution

problems. In particular, the issue of optimal tax rates at the bottom of income distribution

deserves more attention in order to cast light on the important problem of designing

income maintenance programs.
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APPENDIX

Deriving the Mirrlees optimal tax formula

Each individual chooses l to maximize u(nl�T (nl); l), which implies, n(1�T 0(zn))uc+

ul = 0. Di�erentiating un with respect to n, we have du=dn = �lul=n. Following Mirrlees

(1971), in the maximization program of the government, un is regarded as the state

variable, ln as the control variable while cn is determined implicitly as a function of un

and ln from the equation un = u(cn; ln). The government maximizes equation (10) by

choosing ln and un subject to equation (11) and du=dn = �lul=n. Denoting by p and

�(n) the corresponding multipliers, we obtain (see Mirrlees (1971), equation (33)),

0
@n+ u

(n)
l

u
(n)
c

1
A f(n) =  

(n)
l

n

Z
1

n

 
1

u
(m)
c

�

G
0(um)

p

!
Tnmf(m)dm; (22)

where Tnm = exp[�
R
m

n

lsucl(cs;ls)

suc(cs;ls)
ds].  is de�ned such that  (u; l) = �lul(c; l) where c is a

function of (u; l) such that u = u(c; l). An superscript (n) means that the corresponding

function is estimated at (cn; ln; un).

Proof of Lemma 1

_zn=zn = (ln + n _ln)=(nln) and ln = l(wn; Rn) where wn = n(1 � T
0) is the net-of-tax

wage rate and Rn = nln�T (nln)�nln(1�T
0) is the virtual income of an individual with

skill n. I note l(w;R) the uncompensated labor supply function. Therefore,

_ln =
@l

@w
[1� T

0

� n(n _ln + ln)T
00] +

@l

@R
(n _ln + ln)(nlnT

00);

and rearranging,

_ln =
wn

l

@l

@w

l

n
+ [wn

@l

@R
�

wn

l

@l

@w
]
nlnT

00

n(1� T 0)
[ln + n _ln]:

Using the de�nitions (1) and (2) along with the Slutsky equation (4),
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_ln = �
u
ln

n
� _zn

lnT
00

1� T 0
�
c
:

and therefore,

_zn

zn
=
n _ln + ln

nln
=

1 + �
u

n
� _zn

T
00

1� T 0
�
c
;

which is exactly (12). The second order condition for individual maximization is _zn � 0.

Therefore, if (12) leads to _zn < 0, this means that T 0 decreases too fast producing a

discontinuity in the income distribution. k

Proof of Proposition 1

In order to rewrite equation (22) in terms of elasticities, I �rst derive formulas for �u,

�
c and � as a function of the utility function u and its derivatives. The uncompensated

labor supply l(w;R) is obtained implicitly from the �rst order condition of the individual

maximization program, wuc + ul = 0. Di�erentiating this condition with respect to l; w

and R leads to,

[uccw
2 + 2uclw + ull]dl + [uc + uccwl + ucll]dw + [uccw + ulc]dR = 0:

Replacing w by �ul=uc, the following formulas for �
u and � are obtained,

�
u =

ul=l � (ul=uc)
2
ucc + (ul=uc)ucl

ull + (ul=uc)2ucc � 2(ul=uc)ucl
; (23)

� =
�(ul=uc)

2
ucc + (ul=uc)ucl

ull + (ul=uc)2ucc � 2(ul=uc)ucl
;

and using the Slutsky equation (4),

�
c =

ul=l

ull + (ul=uc)2ucc � 2(ul=uc)ucl
: (24)

The �rst order condition of the individual n(1�T 0)uc+ul = 0 implies n+ul=uc = nT
0 =

�(ul=uc)T
0
=(1� T

0). Therefore (22) can �rst be rewritten as follows,
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T
0

1� T 0
= �

 l

ul

 
1� F (n)

nf(n)

!Z
1

n

[1�
G
0(um)u

(m)
c

p
]
u
(n)
c

u
(m)
c

Tnm

 
f(m)

1� F (n)

!
dm: (25)

The �rst part of (25) is equal to A(n) i� � l=ul = (1+ �
u)=�c.  is de�ned such that

 (u; l) = �lul(c; l) where c is a function of (c; l) such that u = u(c; l). Therefore, using

(23) and (24), simple algebra shows that � l=ul = (1 + �
u)=�c:

The integral term of (25) is equal to B(n) if it is shown that,

Tnm
u
(n)
c

u
(m)
c

= exp[

Z
m

n

(1�
�
u

(s)

�
c

(s)

)
_zs

zs
ds]:

By de�nition of Tnm and expressing u(n)
c
=u

(m)
c

as an integral,

Tnmu
(n)
c
=u

(m)
c

= exp[

Z
m

n

(�
d log(u(s)

c
)

ds
�

lsu
(s)
cl

su
(s)
c

)ds]: (26)

I note J(s) = �(du(s)
c
=ds+ lsu

(s)
cl
=s)=u(s)

c
the expression in (26) inside the integral. Now,

u
(s)
c

= uc(cs; ls), therefore du
(s)
c
=ds = u

(s)
cc
_cs + u

(s)
cl
_ls. From du=dn = �lul=n, I obtain

u
(s)
c
_cs + u

(s)
l
_ls = _us = �lsu

(s)
l
=s. Substituting _cs from the latter into former, I obtain

du
(s)
c
=ds = �[s _ls + ls]ulucc=(suc) + ucl

_ls. Substituting this expression for du(s)
c
=ds in J(s)

and using again the expressions (23) and (24), we have �nally,

J(s) = [lulucc=u
2
c
� lucl=uc]

 
ls + s _ls

sls

!
=

 
�
c
� �

u

�c

!
_zs

zs
;

which �nishes the proof. Note that on bunching intervals included in (n;m), _zs = _cs = 0,

J(s) = 0, and all the preceding equations remain true, and thus the proof goes through.

k

Derivation of the formula for optimal rates (14) from formula (19)

I note,

K(z) =

Z
1

z

��
T
0

1� T 0
h
�(z0)dz0:
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Equation (19) can be considered as a �rst order di�erential equation in K(z), K 0(�z) =

D(�z)[C(�z) + K(�z)], where C(�z) =
R
1

�z [1 �
MS(z)

p
]h(z)dz and D(�z) = �=(�z�c). Routine

integration using the method of the variation of the constant and taking into account

that K(1) = 0, leads to,

K(�z) = �

Z
1

�z
D(z)C(z) exp[�

Z
z

�z
D(z0)dz0]dz:

Integration by parts leads to,

K(�z) = �

Z
1

�z
C
0(z) exp[�

Z
z

�z
D(z0)dz0]dz � C(�z): (27)

Di�erentiation of (27) leads directly to (14). k

Numerical Simulations.

Separability of the utility function in labor and consumption simpli�es the computa-

tions. Therefore, for Type I utility, I use u = c� l
k+1

=(k + 1), and G(u) = log(u) (in the

utilitarian case). For Type II utilities, u = log(c) � log[1 + l
k+1

=(k + 1)] and G(u) = u

(in the utilitarian case). For both types of utility functions, optimal rates are computed

by solving a system of two di�erential equations in u(n) and vr(n) = (n+ul=uc)= l. The

system of di�erential equations can be written as follows,

dvr

dn
= �

vr

n
(1 +

nf
0

f
)�

1

nuc
+
G
0(u)

pn
;

and du=dn = �lul=n.

The system of di�erential equations used to solve optimal rates depends on f(n)

through the expression nf
0(n)=f(n). f(n) is derived from the empirical distribution of

wage income in such a way that the distribution of income z(n) = nl(n) inferred from f(n)

with 
at taxes (reproducing approximately the real tax schedule) matches the empirical

distribution. I check that the optimal solutions lead to increasing earnings zn which is a

necessary and suÆcient condition for individual second order conditions (Mirrlees (1971)).
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TABLE 1 -  Optimal Tax Rates for High Income Earners

0.2 0.5 0.8 0.2 0.5 0.8 0.5 0.8

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: social marginal utility with infinite income g = 0
Pareto
Parameter

1.5 91 80 71 77 69 63 57 53
2 83 67 56 71 59 50 50 43

2.5 77 57 45 67 51 42 44 37

Panel B: social marginal utility with infinite income g = 0.25

Pareto
Parameter

1.5 88 75 65 71 63 56 50 45
2 80 60 48 65 52 43 43 37

2.5 71 50 38 60 44 32 38 31

g is the ratio of social marginal utility with infinite income over marginal value of public funds. The Pareto parameter 
of the income distribution takes values 1.5, 2, 2.5. Optimal rates are computed according to formula (9).

Compensated Elasticity 

Uncompensated Elasticity = 0

Compensated Elasticity Compensated Elasticity 

Uncompensated Elasticity = 0.5Uncompensated Elasticity = 0.2



TABLE 2 - Numerical Simulations of Optimal Taxes

Non-linear Linear Non-linear Linear Non-linear Linear Non-linear Linear

(1) (2) (3) (4) (5) (6) (7) (8)

Panel A: Utility Type I (no income effects)

Optimal Average Rate 0.51 0.61 0.38 0.51 0.68 0.80 0.52 0.67
(Asymptotic Rate) (0.68) (0.51) (0.68) (0.51)

Guaranteed Income Level 0.33 0.36 0.21 0.26 0.55 0.55 0.42 0.42
(linear over non-linear level) (1.03) (1.09) (0.92) (0.87)

Panel B: Utility Type II (income effects)

Optimal Average Rate 0.59 0.67 0.48 0.60 0.77 0.88 0.65 0.82
(Asymptotic Rate) (0.81) (0.69) (0.81) (0.69)

Guaranteed Income Level 0.40 0.42 0.31 0.35 0.60 0.63 0.50 0.57
(linear over non-linear level) (1.00) (1.01) (0.92) (0.92)

In the non-linear case, optimal rates are averaged with income weights; asymptotic rates are reported in parentheses below average
rates. The guaranteed income level is expressed in percentage of average income. The ratio of the absolute guranteed level in the 
linear case over the absolute guaranteed level in the non-linear case is reported in parentheses.

0.25 0.50.25 0.5

Utilitarian Criterion

Compensated Elasticity

Rawlsian Criterion

Compensated Elasticity


