




1 As argued by Hsieh (1989), a higher conditional than unconditional kurtosis may be interpreted as
evidence of model misspecification.
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rt ' Ft gt

1.  Introduction and Basic Ideas

The prescriptions of modern financial risk management hinge critically on the associated

characterization of the distribution of future returns (cf., Diebold, Gunther and Tay, 1998, and

Diebold, Hahn and Tay, 1999).  Because volatility persistence renders high-frequency returns

temporally dependent (e.g., Bollerslev, Chou and Kroner, 1992), it is the conditional return

distribution, and not the unconditional distribution, that is of relevance for risk management.  This

is especially true in high-frequency situations, such as monitoring and managing the risk

associated with the day-to-day operations of a trading desk, where volatility clustering is

omnipresent.

Exchange rate returns are well-known to be unconditionally symmetric but highly

leptokurtic.  Standardized daily or weekly returns from ARCH and related stochastic volatility

models also appear symmetric but leptokurtic; that is, the distributions are not only

unconditionally, but also conditionally leptokurtic, although less so than unconditionally.1  A

sizable literature explicitly attempts to model the fat-tailed conditional distributions, including, for

example, Bollerslev (1987), Engle and Gonzalez-Rivera (1991), and Hansen (1994).

Let us make the discussion more precise.  Assuming that return dynamics operate only

through the conditional variance, a standard decomposition of the time-t return (innovation) is

where  refers to the time-t conditional standard deviation, and .  Thus, given  itFt gt

iid
- (0, 1) Ft

would be straightforward to back out  and assess its distributional properties.  Of course,  isgt Ft



2 This result has motivated the practical use of various “fudge-factors” relative to the standard normal
quantiles in the construction of Value-at-Risk type statistics.  
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not directly observable.  When using an estimate of  the distributions of the resultingFt

standardized returns are typically found to be fat-tailed, or leptokurtic.2

The main focus of the present paper is similar.  However, there is an important distinction: 

our volatility measure is fundamentally different from the ARCH and related estimators that have

featured prominently in the literature, and hence our estimates of the conditional distribution differ

as well.  In particular, we rely on so-called realized volatility measures constructed from high-

frequency intraday returns, as previously analyzed by Schwert (1990), Hsieh (1991), Andersen

and Bollerslev (1998), and Andersen, Bollerslev, Diebold and Labys (1999a), among others. 

Importantly, in this situation, the assumption of an underlying continuous-time diffusion process

implies that the distribution of  should be Gaussian.  This contrasts with the conditionalgt

distributions of discrete time parametric GARCH and stochastic volatility models, for which

theory makes no particular prediction regarding the distribution of the standardized returns. 

Based on ten years of high-frequency returns for the Deutschemark - U.S. Dollar (DM/$) and

Japanese Yen - U.S. Dollar (Yen/$) exchange rates, we will show that the actual empirical

distributions are in fact consistent with this theoretical prediction.

We proceed as follows.  In order to establish a proper benchmark, section 2 provides a

characterization of the distribution of the daily unstandardized returns.  In section 3 we

characterize the distribution of the daily returns when standardized by our realized univariate

volatility measures, and in section 4 we characterize the distribution of the returns when

standardized by the realized volatilities in a multivariate fashion.  For comparison, in section 5 we
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examine the distribution of returns standardized by GARCH(1,1) volatilities, along with the

distribution of returns standardized by one-day-ahead volatility forecasts from a simple

ARMA(1,1) model fit directly to realized volatility.  We conclude in section 6.

2.  Unstandardized Returns

Our empirical analysis is based on a 10-year time series of 5-minute DM/$ and Yen/$

returns from December 1, 1986 through December 1, 1996.  The data were kindly supplied by

Olsen & Associates.  After omitting weekend and other holiday non-trading periods, as detailed in

Andersen, Bollerslev, Diebold, and Labys (1999a), we are left with a total of T=2,445 complete

days, each of which consists of 288 5-minute returns.  From these we proceed to construct time

series of continuously compounded 30-minute and daily returns.

We begin our analysis with a summary of the distributions for the unstandardized, or raw,

daily DM/$ and Yen/$ returns.  The results appear in Table 1 and Figures 1 through 3.  Consistent

with the extant literature, the s-shaped quantile-quantile plots for the two marginal distributions in

the top panel of Figure 1 indicate that both returns are symmetric but fat-tailed relative to the

normal distribution.  The statistics reported in the first panel of Table 1 confirm that impression: 

the sample skewness is near 0.0 for both series, but the sample kurtoses are well above the normal

value of 3.0.

Turning to the joint distribution, not surprisingly, the two rates show considerable

dependence, with a sample correlation of 0.66.  This high degree of dependence is further

underscored by the bivariate scatterplot in the top panel of Figure 2, which also clearly illustrates

the marginal fat tails in terms of the many outliers relative to the tight ellipsoid expected under

bivariate normality.



3 In an abuse of notation, we will continue to use  to denote an estimate of the volatility, as theFt
meaning will be clear from context.
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Finally, we consider the conditional distribution of the unstandardized returns, as

summarized by the autocorrelations for each of the two daily squared return series and the cross

product of the two rates.  The relevant correlograms to a displacement of 100 days, along with

the conservative Bartlett standard errors, appear in the top panel of Figure 3.  Again, directly in

line with existing evidence in the literature, the results indicate highly persistent conditional

variance and covariance dynamics.

3.  Univariate Standardization by Realized Volatility

In the absence of any short-run predictability in the mean, which is a good approximation

for the two exchange rates analyzed here, the univariate return series are naturally decomposed as

 where , and  is the time-t conditional standard deviation.  On rearranging thisrt'Ftgt, gt

iid
- (0, 1) Ft

decomposition, we obtain the F-standardized return,

on whose distribution and dependence structure we now focus.

In practice, of course,  is unknown and must be estimated.3  Many volatility models haveFt

been proposed in the literature.  However, as formally shown by Andersen, Bollerslev, Diebold

and Labys (1999a), in a continuous time setting the ex-post volatility over a day may be estimated

to any desired degree of accuracy by summing sufficiently high-frequency returns within the day. 

Following this analysis we shall refer to the corresponding measures as realized volatilities.

In order to define formally our daily realized volatilities, let the two series of 30-minute
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DM/$ and Yen/$ returns be denoted by )logD(48),t and )logY(48),t , respectively, where t = 1/48,

2/48, ..., 2,445, and “48" refers to the 48 30-minute intervals in the 24-hour trading day.  From

these 48·2,445 = 117,360 30-minute returns, we estimate the daily variances by simply summing

the 48 squared returns within each day.  That is,

          / Ej=1,..,48 ()logD(48),t-1+j/48 )
2F2

Dt(RV)

 / Ej=1,..,48 ()logY(48),t-1+j/48 )
2,F2

Yt(RV)

where t =
 1, 2, ..., 2,445, and “RV” stands for “realized volatility.”  Our choice of half-hour returns

is motivated by the analysis in Andersen, Bollerslev, Diebold and Labys (1999b), which suggests

that in the present context 30-minute sampling provides a reasonable balance between the salient

market microstructure frictions at the very highest sampling frequencies on the one hand, and the

accuracy of the continuous record asymptotics underlying the estimators on the other.

We now proceed to examine the -standardized returns for each of the two currencyF(RV)

series.  The quantile-quantile plots in the middle panel of Figure 1 look radically different from

those in the top panel.  In particular, they are now nearly linear, indicating that a Gaussian

distribution affords a close approximation to each of the marginal distributions.  The diagnostic

statistics in the second panel of Table 1 confirm that impression:  the distributions of the -F(RV)

standardized daily returns are remarkably close to a standard normal.  The means are near zero,

the standard deviations are close to one, the skewnesses coefficients are close to zero, and the



4 In an independent study, Bollen and Inder (1999) have recently observed that the distribution of
-standardized daily S&P500 futures returns also appear approximately Gaussian.F(RV)
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coefficients of kurtosis are near three.4  If anything, the distributions appear slightly thin-tailed, or

platykurtic.  Interpreting the realized volatility as an ideal measure of the rate of information flow

to the market, these findings are therefore consistent with the distributional assumptions

underlying the Mixture-of-Distributions-Hypothesis (MDH) as originally advocated by Clark

(1973); see also Tauchen and Pitts (1983) and Taylor (1986).

Proceeding to the joint unconditional distribution of the -standardized returns, notF(RV)

surprisingly, we see from the second panels of Table 1 and Figure 2 that the correlation remains

high.  Interestingly, however, the outliers in the joint density have been largely eliminated.  As for

the conditional distribution, the correlograms for the squares and the cross product of the daily

-standardized returns indicate the absence of any remaining conditional variance dynamicsF(RV)

for the DM/$ rate, and a great reduction in the conditional variance dynamics for the Yen/$ rate. 

Meanwhile, the autocorrelations for the cross product of the standardized returns decay more

slowly than the autocorrelations for the product of the raw returns.  Thus, although the univariate

standardization has largely eliminated the conditional variance dynamics, it has actually magnified

the conditional covariance dynamics.  Elimination of both requires a multivariate standardization,

to which we now turn.
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4.  Multivariate Standardization by Realized Volatility

With a slight abuse of notation, the multivariate case is conveniently written as,

 

where both  and  are now Nx1 vectors, and Pt refers to the NxN matrix square-rootrt gt

iid
- (0, 1)

of the time-t conditional covariance matrix for the raw returns, , so that in particular . Et PtP
/
t'Et

Of course, the matrix square-root operator is not unique.  For concreteness, we rely here on the

unique NxN lower-triangular Cholesky factorization.  The corresponding P-standardized return

vector is then readily defined as,

which, in general, will differ from the corresponding vector of stacked univariate F-standardized

returns.  In particular, we have

where we have arbitrarily arranged the bivariate returns as (DM/$, Yen/$).  Upon matching terms,

it follows that 



5 This mirrors the dependence on the ordering of the variables in the analysis of Vector
AutoRegressions (VARs) as identified by a Wold Causal Chain.
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so,

Hence, P-standardization of a time-t return vector is equivalent to element-by-element, or

univariate, F-standardization only in the special and counterfactual case of .  Moreover, theFDYt'0

ordering matters.  The P-standardization simply F-standardizes the return placed first in the

ordering, whereas it substitutes a linear combination of the two unstandardized returns for the

second return.5

Of course, the  matrix involves both exchange rate variances and their covariance. Pt

Analogous to our realized variance estimator, the realized covariance is readily defined as
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the sum of the intra-day cross products:

 / Ej=1,..,48 )logD(48),t-1+j/48 ·)logY(48),t-1+j/48 .FDY(RV)

Armed with these realized variances and covariances, we now proceed to construct and examine

-standardized returns.P(RV)

The results are reported in the third panel of Table 1 and Figures 1-3.  The differences, as

expected, arise primarily in the multivariate dimensions of the distribution.  The sample correlation

between the bivariate -standardized returns, as reported in Table 1, is greatly reduced fromP(RV)

0.66 to only 0.08.  Moreover, the scatterplot reported in the third panel of Figure 2 now appears

spherical, confirming the negligible correlation.  Importantly, the correlogram for the cross

products of the daily -standardized returns, reported in the third panel of Figure 3,P(RV)

confirms that the conditional covariance dynamics have been eliminated.  The differences,

however, are not exclusively in terms of the multivariate features.  In particular, the -P(RV)

standardization also produces an improved correlogram for the Yen/$ returns relative to that of

the -standardized returns.F(RV)

5.  Standardization by GARCH(1,1) Volatility and by Forecasts of Realized Volatility

Numerous parametric volatility models have been suggested in the literature for best

capturing the conditional temporal dependencies in .  The most commonly used specification isFt

the simple univariate GARCH(1,1) model, and we follow standard practice by utilizing this as an



6 For simplicity we focus on the univariate version of the various models along with the corresponding
F-standardized returns, but the same ideas carry over straightforwardly to more complicated
multivariate volatility models.  Furthermore, it is evident that an extensive specification search would
provide alternative models with, at least, marginally improved predictive performance, but the
qualitative results emphasized below are generic to the entire class of ARCH and stochastic volatility
models.
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t&1 % $F2
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illustrative benchmark for each of the two rates.  That is, we posit that

We refer to the associated estimates of the conditional standard deviations as , withF(GARCH)

the -standardized daily returns defined accordingly.6F(GARCH)

Consistent with the prior literature, the summary statistics in the fourth panel of Table 1

show that standardization by  reduces, but does not eliminate, the excess kurtosis.  InF(GARCH)

particular, the sample kurtosis for the DM/$ drops from 5.4 to 4.8, while the Yen/$ kurtosis is

reduced from 7.4 to 5.4.  Thus, in each case, significant excess kurtosis remains after the

standardization.

It is natural to ask why such different results obtain for the - versus theF(RV)

-standardized returns.  Of course, in general, we would expect different measures forF(GARCH)

 to affect the properties of the standardized returns.  However, in this case, there is a specificFt

aspect of the calculations that makes an obvious difference:   is an estimate of the volatilityFt(RV)

for the day-t returns conditional on the continuous (or high-frequency discrete intraday) sample

path of stochastic volatility up to and including day t, whereas  is an estimate of theFt(GARCH)



7 The  forecasting exercise reported here is highly preliminary and stylized.  A much moreF(RV)
detailed analysis is currently being undertaken in Andersen, Bollerslev, Diebold and Labys (1999c).  A
related approach was recently pursued by Taylor and Xu (1997) in analyzing the informational content
in high-frequency foreign exchange rates and volatilities implied in option prices.

8 It is tempting to conjecture that -standardized returns will be less fat-tailed than -F(RVF) F(GARCH)
standardized returns, because  should provide a superior measure of recent volatility relativeFt&1(RV)
to , which is operative in the GARCH(1,1) recursion.  However, there is generally noFt&1(GARCH)
simple relation between forecasts based on more relative to less information and the resulting amount
of excess kurtosis of the corresponding standardized returns, as explained for example in Nelson
(1996).

9 Assuming no structural breaks during our 10-year sample, and that the dynamics remained
unchanged relative to the previous ten years, we can justify the use of one-day-ahead volatility forecasts
based on full-sample parameter estimates.  Estimation with the full sample also has the obvious
advantage that it avoids the early-on instability associated with recursive estimation.
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volatility of day-t returns conditional on the discrete sample path of returns up to but not

including day t.

To further underscore the importance of this difference, we next calculate  as aFt(RVF)

one-day-ahead forecast of the realized volatility made at day t-1, where the forecast formula is

obtained by a projection of the realized volatility on the past daily realized volatilities.7  This

approach is much closer in spirit to the  estimator analyzed above, and we thereforeFt(GARCH)

conjecture that standardization by  will reduce, but not eliminate, the excess kurtosis.8Ft(RVF)

For ease of comparison to the GARCH(1,1) case, we shall rely on a simple ARMA(1,1)

structure for modeling the realized volatilities.  Also, in direct analogy to the GARCH(1,1) case,

the model is estimated over the full ten-year sample.9  From these estimates, we proceed with the

creation of standard 1-day-ahead forecasts, from which we obtain our  series, andFt(RVF)



10 The presence of a drift term in the diffusion does not affect any of the arguments given below, as
long as the drift is independent of the volatility path over day t.
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corresponding -standardized returns.F(RVF)

The diagnostic statistics in the last panel of Table 1 show that the distributions of the

-standardized returns and the -standardized returns are fairly similar.  InF(RVF) F(GARCH)

particular, both exhibit fat tails relative to the normal.  Figure 4 clearly reveals the reason behind

this divergence between the -standardized returns, which to a first approximation appearF(RV)

Gaussian, and the leptokurtic - and -standardized returns.  The  andF(RVF) F(GARCH) Ft(RVF)

 volatility series are both one-day-ahead forecasts, and so are smoother than theFt(GARCH)

object being forecast, which is effectively the  volatility series.  Hence, standardization byFt(RV)

 or  is insufficient to eliminate the excess kurtosis, whereas standardizationFt(RVF) Ft(GARCH)

by the  is able to accomplish that goal.Ft(RV)

6.  Concluding Remarks and Directions for Future Research

The normality of the -standardized returns is of special interest because it shedsF(RV)

light on the adequacy (or lack thereof) of commonly used continuous-time models of asset prices. 

Specifically, assume that the log price, , follows a standard continuous time stochastic volatilitypt

diffusion,10

,dpt ' Ft dWt



11 It is noteworthy that these theoretical predictions hold up very well in practice in spite of the host of
market microstructure features, such as non-synchronous trading and bid-ask bounce effects, which
clearly invalidate the continuous-time diffusion assumption for the actual observed price process at the
highest intraday sampling frequencies.
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where t$0, Wt is a standard Brownian motion, and Ft is a strictly stationary positive stochastic

process.  If Ft and Wt are independent, it follows that the variance of the 1-day return, conditional

on the sample path realization of the stochastic volatility process, is Gaussian with variance equal

to the integrated volatility, .  Hence, the integrated-volatility-standardized daily returnsm
1

0

F2
t&1%JdJ

are standard normal,

rt

m
1

0

F2
t&1%JdJ

- N(0, 1).

But, as shown by Andersen and Bollerslev (1998) and Andersen, Bollerslev, Diebold and Labys

(1999a),  is a highly efficient estimator of .  Hence under the assumed conditionsFt(RV) m
1

0

F2
t&1%JdJ

our -standardized returns should be approximately N(0,1), which we showed to be theF(RV)

case.11

Our findings may be interpreted as providing indirect support for the assertion of a

jumpless diffusion, because the presence of jumps is likely to result in a violation of the normality

of the -standardized returns.  Such inference would be consistent with the recent evidenceF(RV)

in Das and Sundaram (1999), who arrive at this conclusion from a very different perspective, but

counter to the findings in Andersen, Benzoni and Lund (1998), Bates (1996), Drost, Nijman and

Werker (1998), and Johannes, Kumar and Polson (1998), among others, who argue for the
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importance of allowing for jumps in other markets and/or time periods.  It is obviously of interest

to pursue this issue through more formal and direct tests.  The present study is relatively limited in

scope, examining only two exchange rates, while much of the existing literature focuses on

equities.  Thus, our findings along this dimension are best interpreted as suggestive, and further

work is required for a more extensive empirical assessment and reconciliation.  Nonetheless, the

documented ability to measure realized volatilities with good precision has opened an entirely new

avenue for this line of inquiry.



-15-

References

Andersen, T.G., Benzoni, L. and Lund, J. (1998), “Estimating Jump-Diffusions for Equity
Returns,” Manuscript, Department of Finance, J.L. Kellogg Graduate School of
Management, Northwestern University.

Andersen, T.G. and Bollerslev, T. (1998), “Answering the Skeptics:  Yes, Standard Volatility
Models Do Provide Accurate Forecasts,” International Economic Review, 39, 885-905.

Andersen, T.G., Bollerslev, T., Diebold, F.X. and Labys, P. (1999a), “The Distribution of
Exchange Rate Volatility,” Wharton Financial Institutions Center Working Paper 99-08
and NBER Working Paper 6961.  

 
Andersen, T.G., Bollerslev, T., Diebold, F.X. and Labys, P. (1999b), “Microstructure Bias and

Volatility Signatures,” Manuscript in progress.

Andersen, T.G., Bollerslev, T., Diebold, F.X. and Labys, P. (1999c), “Forecasting Realized
Volatility:  A VAR for VaR,” Manuscript in progress.

Barndorff-Nielsen, O.E. and Shephard, N. (1998), “Aggregation and Model Construction for
Volatility Models,” Manuscript, Department of Mathematical Sciences, University of
Aarhus, and Nuffield College, Oxford.

Bates, D.S. (1996), “Jumps and Stochastic Volatility:  Exchange Rate Processes Implicit in
Deutsche Mark Options,” Review of Financial Studies, 9, 69-107.

Bollen, B. and Inder, B. (1999), “Ex Post, Unconditional Estimators of Daily Volatility,”
Manuscript, Department of Econometrics, Monash University.

Bollerslev, T. (1987), “A Conditional Heteroskedastic Time Series Model for Speculative Prices
and Rates of Return,” Review of Economics and Statistics, 69, 542-547.

Bollerslev, T., Chou, R.Y. and Kroner, K.F. (1992), “ARCH Modeling in Finance:  A Selective
Review of the Theory and Empirical Evidence,” Journal of Econometrics, 52, 5-59.

Clark, P. K. (1973), “A Subordinated Stochastic Process Model with Finite Variance for
Speculative Prices,” Econometrica, 41, 135-155.

Das, S.R. and Sundaram, R.K. (1999), “Of Smiles and Smirks:  A Term Structure Perspective,”
Manuscript, Graduate School of Business, Harvard University, and Stern School of
Business, New York University.

Diebold, F.X., Gunther, T. and Tay, A.S. (1998), “Evaluating Density Forecasts, With



-16-

Applications to Financial Risk Management,” International Economic Review, 39, 863-
883.

Diebold, F.X., Hahn, J. and Tay, A.S. (1999), “Multivariate Density Forecast Evaluation and
Calibration in Financial Risk Management:  High-Frequency Returns on Foreign
Exchange,” Review of Economics and Statistics, 81, forthcoming.

Drost, F.C., T.E. Nijman and Werker, B.J.M. (1998), “Estimation and Testing in Models
Containing Both Jumps and Conditional Volatility,” Journal of Business and Economic
Statistics, 16, 237-243.

Engle, R.F. and González-Rivera, G. (1991), “Semiparametric ARCH Models,” Journal of
Business and Economic Statistics, 9, 345-359.

Hansen, B.E. (1994), “Autoregressive Conditional Density Estimation,” International Economic
Review, 35, 705-730.

Hsieh, D.A. (1989), “Modeling Heteroskedasticity in Daily Foreign Exchange Rates,” Journal of
Business and Economic Statistics, 7, 307-318.

Hsieh, D.A. (1991), “Chaos and Nonlinear Dynamics:  Application to Financial Markets,” Journal
of Finance, 46, 1839-1877.

Johannes, M., Kumar, R. and Polson, N.G. (1999), “Jump Diffusion Models:  Extraction of
Jumps from Equity Indices,” Manuscript, Graduate School of Business, University of
Chicago.

Nelson, D.B. (1996), “A Note on the Normalized Errors in ARCH and Stochastic Volatility
Models,” Econometric Theory, 12, 113-128.

Schwert, G.W. (1990) “Stock Market Volatility,” Financial Analysts Journal, May-June, 23-34.

Tauchen, G.E. and Pitts, M. (1983), “The Price Variability-Volume Relationship on Speculative
Markets,” Econometrica, 51, 485-505.

Taylor, S.J. (1986).  Modelling Financial Time Series.  Chichester, England:  John Wiley & Sons,
Ltd.

Taylor, S.J. and Xu, X. (1997), “The Incremental Volatility Information in One Million Foreign
Exchange Quotations,” Journal of Empirical Finance, 4, 317-340.



-17-

Table 1
Descriptive Statistics for Daily Exchange Rate Returns

Un-                         -                  -                  -          -         F(RV) P(RV) F(GARCH) F(RVF)
                       Standardized           Standardized          Standardized          Standardized          Standardized

DM/$    Yen/$        DM/$    Yen/$        DM/$    Yen/$        DM/$    Yen/$        DM/$    Yen/$

Mean    -0.007   -0.009       -0.007      0.007      -0.007    0.016        -0.002   -0.011       -0.001    -0.013
Median -0.010    0.007       -0.017      0.015      -0.017    0.028        -0.003     0.017      -0.016      0.011
Maximum  3.909     5.445        3.040      2.971       3.040    2.557          5.370    5.954        5.782     7.400
Minimum -3.333   -3.682       -2.753    -2.747       -2.753  -2.704        -4.814   -4.681       -4.470    -5.261
Std. Dev.   0.710    0.705         1.009      0.984        1.009   0.883          1.001    1.000        1.047     1.035
Skewness   0.033    0.052         0.015      0.002        0.015  -0.073        -0.027   -0.139        0.001    -0.008 
Kurtosis   5.395    7.357         2.406      2.414        2.406   2.622          4.753    5.405        4.779     6.161
Correlation   0.659                      0.661                      0.081                     .661                        0.676
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Figure 1
Quantile-Quantile Plots

Daily Exchange Rate Returns
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Scatterplots

Daily Exchange Rate Returns



-20-

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

10 20 30 40 50 60 70 80 90 100

Displacement

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Squared DM/$
Unstandardized

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

10 20 30 40 50 60 70 80 90 100

Displacement

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Squared Yen/$
Unstandardized

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

10 20 30 40 50 60 70 80 90 100

Displacement

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

DM/$, Yen/$
Cross Product
Unstandardized

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

10 20 30 40 50 60 70 80 90 100

Displacement

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Squared DM/$
Sigma(RV) Standardized

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

10 20 30 40 50 60 70 80 90 100

Displacement

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Squared Yen/$
Sigma(RV) Standardized

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

10 20 30 40 50 60 70 80 90 100

Displacement

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

DM/$, Yen/$
Cross-Product
Sigma(RV) Standardized

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

10 20 30 40 50 60 70 80 90 100

Displacement

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Squared DM/$
P(RV) Standardized

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

10 20 30 40 50 60 70 80 90 100

Dispacement

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

Squared Yen/$
P(RV) Standardized

-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15

10 20 30 40 50 60 70 80 90 100

Displacement

S
am

pl
e 

A
ut

oc
or

re
la

tio
n

DM/$, Yen/$
Cross Product
P(RV) Standardized

Figure 3
Sample Autocorrelation Functions
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Figure 4
Time Series of Alternative Volatility Measures
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