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ABSTRACT

In this paper we provide an analytical review of previous estimates of the rate of return on

schooling investments and measure how these estimates vary by country, over time, and by estimation

method.  We find evidence reporting (or “file drawer”) bias in the estimates and, after due account

is taken of this bias, we find that differences due to estimation method are much smaller than is

sometimes reported, although some are statistically significant.  We also find that estimated returns

are higher in the U.S. and they have increased in the last two decades.  
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1. Introduction

In recent years there has been considerable interest in whether measured correlations between

schooling and earnings reflect the causal impact of schooling on earnings.  This interest has led to

some innovative methods of estimation that take advantage of either exogenous determinants of

schooling decisions (instrumental variables) or comparisons between genetically identical

workers (twins).  In this paper we provide an analytical survey of estimates of the rate of return to

schooling that is designed to determine the extent to which rates of return differ by country, over

time, and with the method of estimation.

In providing this survey we have taken especial care to study the role that “reporting” or

“file drawer” bias may have played in the studies we observe.  Reporting bias may arise because

of the tendency in virtually all scientific fields to report statistical results that tend to reject the

hypothesis of no effect.  The result is that estimated effects of schooling may be correlated with

sampling errors and, if these are in turn correlated with other variables, conclusions about the

determinants of rates of return may be seriously biased.  The existence of any such bias is no

reflection on any individual scholar, but is instead the natural working of a scientific process

designed to discover important new results.  We implement a generalized method for testing for

reporting bias, and for adjusting reported estimates for reporting bias, that is due to Hedges

(1992).

The results of our study provide some evidence that estimated rates of return do suffer

from reporting bias, especially those based on instrumental variables or within-twin estimators.

After adjustment for reporting bias we find strong evidence of a considerable payoff to schooling

that differs less with the estimation method used to measure that payoff than is sometimes

reported.
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2.  Simple Earnings Functions & the Problems of OLS-Estimation

 Ignoring other covariates, Mincer’s (1974) specification for the determinants of earnings is

 iii  uSy  +  +  = βα (1)

where yi is the log of earnings of individual i, Si is a measure of their schooling, ui is a statistical

error term and α and β are parameters to be estimated, with the parameter β being the return to

schooling.   In the early literature following Mincer's approach, equation (1) - extended with

linear and quadratic experience terms to account for on-the-job training - was commonly

estimated by means of ordinary least squares (OLS).  This estimation technique assumes that the

explanatory variables are uncorrelated with the unobserved disturbance in the equation, which for

various reasons might not be fulfilled.

The coefficient β is biased if an individual’s ‘ability’ or motivation affects earnings but is

omitted from the earnings equation, with the extent of the bias determined by the correlation

between education and ability.   The concern about the formulation of an estimate of the return to

schooling β is that ability may be associated with both wages and schooling.  Three approaches

have been used to try to deal with this potential problem.  One approach deals with the issue of

ability bias by including explicit measures that proxy for unobserved ability. IQ and related tests

are an example of such proxies (Griliches (1977), Griliches and Mason (1972)).  The results of

these studies have sometimes suggested that there is an upward bias in results that lack an ability

measure.  The method of adding ability proxies has been criticised, however, because it is

extremely difficult to develop ability measures that are not themselves determined by schooling.

When the ability measure is itself influenced by schooling, the use of ability proxies will, in fact,

bias estimated rates of return downward.
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The ‘siblings’ or ‘twins’ approach exploits a belief that siblings are more alike then a

randomly selected pair of individuals, given that they share common heredity, financial support,

peer influences, and geographic influences. The approach attempts to eliminate omitted ability

bias by estimating the return to schooling from differences between siblings or twins in levels of

schooling and earnings. If the omitted variable, say ability (A), is such that siblings have the same

level of A, then any estimate of β from within family data will eliminate this bias.

Studies based on sibling or twin comparisons have suffered from two primary criticisms.

First, if ability has an individual component as well as a family component, which is not

independent of the schooling variable, the within-family approach may not yield estimates that

are less biased than OLS estimates.  Second, if schooling is measured with error, this will account

for a larger fraction of the differences between the twins than across the population as a whole.

This would imply that the bias from measurement error in schooling is likely to increase by

forming differences between twins, which means the within-twin estimates will be biased

downwards.  Recent contributions to the twins and siblings literature have attempted to deal with

the measurement error problem by collecting multiple measures of schooling by questioning the

siblings about each other or by using independent measures of error variances to adjust the

estimates.  Many of the within-twin studies suggest that ability bias is relatively small, although

this is only the case when measurement error has been controlled.

A third approach to the problem of ability bias exploits natural variation in data caused by

different influences on the schooling decision. The essence of this 'natural experiment' approach

is to provide a suitable determinant (or instrument) for schooling that is not correlated with the

earnings residual.  In principle, natural experiments provide the closest equivalent to a

randomised trial in a clinical study.  In the context presented here the treatment group is chosen
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(albeit not randomly) independent of individual characteristics. The treatment and control groups

should, in principle, be identical in other observed and unobserved characteristics that affect

earnings except for schooling.  By constructing instruments for schooling that are uncorrelated

with the earnings residual the instrumental variables (IV) approach will generate a consistent

estimator of the return to schooling.  The basic idea of the IV estimator is to proceed in two

stages.  First, estimate the effect of the instrumental variable on schooling; then estimate the

effect of the instrumental variable on earnings.  Since, by assumption, the instrument is correlated

with earnings only because it influences schooling, the ratio of the effect of the instrument on

earnings to its effect on schooling provides an estimate of the causal effect of schooling on

earnings.  The primary criticism of IV estimates revolves around the concern that the instrument

may not, in fact, be truly independent of the earnings residual.  If, for example, the instrument is

positively correlated with earnings, the IV estimator may be upward biased.

The results from IV studies are varied, but some point towards the presence of a

downward bias in OLS estimates.  Card (1998) has proposed an explanation for this phenomenon

that is based on the hypothesis that the return to schooling is heterogeneous and declines at higher

levels of schooling.  IV estimates will differ from OLS estimates to the extent that the instrument

influences schooling decisions at different levels.  If the instrument influences decisions primarily

at lower levels of schooling, the IV estimator may be higher than the OLS estimator because it

reflects the payoff to schooling at lower rather than higher schooling levels.

It is apparent from this discussion that the estimates of returns to schooling may differ

because of the estimation method.  In what follows we systematically investigate the role of the

estimation method - along with region and time period - as determinants of the payoff to

schooling.
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3.  Meta-Analysis of the Returns to Schooling Literature

There already exist several extensive summaries of the payoff to schooling, including

Psacharopolous (1994) and Card (1998).  Here we use methods common among statisticians, and

sometimes called “meta-analysis,” to test whether estimated payoffs are sensitive to estimation

period or time period covered and to provide a framework to determine whether our inferences

are sensitive to reporting (or “file drawer”) bias.  As noted in Huque (1988), Hunter et al.(1990)

and Egger and Smith (1997) a meta-analysis combines and integrates the results of several

studies that share a common aspect so as to be 'combinable' in a statistical manner.

Although less common in economics1, there has been considerable concern in the medical

and statistical literature over whether the observed sample of published results was selected

solely because they were "statistically significant". If they were, then any survey of these results

suffers from the sample selection bias so well known in a different context in econometric

analyses.  In what follows we provide estimates of the extent of this kind of selection bias and

also of its effect on estimates of the factors associated with differences across time, across

econometric methods, and across regions in the return to schooling.  We test for publication bias

using a method due to Hedges (1992) that we have generalized to accommodate systematic

heterogeneity in the payoff to education.

It is important to understand that “reporting bias” may exist even without the authors of

individual studies being aware of it.  The potential problem simply arises because of the desire to

report useful findings.  Except in unusual circumstances, evidence against the null hypothesis—

1   Similar issues have been addressed extensively by financial economists; see Brown, Goetzmann, and Ross (1995)
and Lo and MacKinlay (1990).  Card and Krueger (1995) also comment on this problem in their survey of minimum
wage studies.
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that is, favorable to the finding of a treatment effect—is more valuable and more likely to be

reported in any rational weighting of the usefulness of empirical evidence.

Table 1 Sample Statistics – Rates of Return Data (27 studies, 9 countries)

For our analysis we created a data set of 96 different returns to schooling, obtained from

27 studies. Table 1 reports some descriptive statistics for this sample of both published and

unpublished studies, broken down by estimation method, with the full listing of the studies

reported in Appendix Table A1.2  The year of estimation averages in the mid-80's but ranges

from 1974 to 1995. Sample size is quite varied with the smallest sample naturally being observed

in the twins’ studies.  Ability controls are quite common in the literature, with around 20% of the

OLS estimated sample containing ability measures, and a somewhat higher representation in the

IV estimated returns. Explicit control for the presence of measurement error is increasingly a

feature of the literature and we see an average of 6% of the rates of return coming from models

where this is the case, although control for measurement error is far more common in the twins

Variable ALL  OLS  IV  TWINS  

 Mean s.d. Mean s.d. Mean s.d. Mean s.d. 

Year 
Sample Size/1000 
Ability Controls? (1=Yes) 
Estimated Rate 
Standard Error 
Published?  
Measurement Error?  

88.71 
32.70 
0.198 
0.079 
0.015 
0.365 
0.063 

5.93 
86.65 
0.401 
0.036 
0.017 
0.484 
0.243 

88.38 
35.67 
0.180 
0.066 
0.006 
0.420 
0.020 

5.90 
96.50 
0.388 
0.026 
0.007 
0.500 
0.141 

88.14 
38.54 
0.257 
0.093 
0.026 
0.286 
0.057 

6.46 
84.74 
0.443 
0.041 
0.022 
0.458 
0.236 

92.00 
0.631 
0.091 
0.092 
0.021 
0.364 
0.273 

3.00 
0.470 
0.302 
0.037 
0.010 
0.505 
0.467 

N 96  50  35  11  
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studies.  With respect to the returns and their corresponding standard errors/t-statistics we see the

pattern emerging clearly - average returns of 6/7% with corresponding IV and twins study

estimated returns of 9%.  Precision is lost when we move from OLS however, as seen in the far

larger standard errors among the IV and twins studies.

 

Table 2 Meta-Analysis – OLS Regression of Estimates of Returns to Schooling 

 ALL  US  Non-US  

 Estimate Std.Err Estimate Std.Err Estimate Std.Err 

(A)       
Non-US Data 
Year of Sample 
Estimated by IV 
Estimated by Twins 
Sample Size/1,000,000 
Ability Controls 
Published 
Measurement Error 
Constant 

-0.003 
0.002 
0.031 
0.016 
0.001 
-0.002 
0.018 
0.013 
0.030 

0.009 
0.001 
0.007 
0.012 
0.004 
0.009 
0.010 
0.015 
0.016 

 
0.002 
0.033 
0.026 
-0.002 
-0.054 
0.016 
0.000 
0.038 

 
0.001 
0.010 
0.014 
0.004 
0.015 
0.011 
0.017 
0.017 

 
0.001 
0.031 
-0.001 
0.379 
0.024 
0.037 
-0.002 
0.034 

 
0.001 
0.009 
0.017 
0.233 
0.011 
0.015 
0.025 
0.020 

Adjusted R2 0.179  0.419  0.251  

(B)       
Non-US Data 
Year of Sample 
Estimated by IV 
Estimated by Twins 
Sample Size /1,000,000 
Ability Controls 
Published 
Measurement Error 
Standard Error 
Constant 

-0.004 
0.002 
0.007 
0.003 
0.005 
0.001 
0.006 
0.005 
1.103 
0.031 

0.008 
0.001 
0.008 
0.011 
0.004 
0.008 
0.009 
0.013 
0.215 
0.014 

 
0.002 
0.005 
0.005 
0.003 
-0.040 
-0.000 
-0.000 
1.082 
0.040 

 
0.001 
0.010 
0.012 
0.003 
0.012 
0.009 
0.013 
0.225 
0.013 

 
0.000 
0.009 
-0.009 
0.510 
0.027 
0.028 
-0.020 
1.181 
0.034 

 
0.001 
0.010 
0.015 
0.209 
0.009 
0.014 
0.022 
0.313 
0.017 

Adjusted R2 0.364  0.652  0.416  

N 96  41  55  

 

2   The criteria for study inclusion are not very stringent.   The starting point was the list originally produced by
David Card (1998), reported in Appendix Table A1 and the comprehensive review of Cohn and Addison (1997)
where the details about the original data were provided.  The deadline for entries in this study is June 1998.
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The top half of Table 2 provides some regression results whereby the estimated return is

related to a range of other variables that may influence the estimated return. The omitted category

is important to note - here we use an unpublished return estimated via OLS without ability or

measurement error corrections as our specification. The year variable is re-scaled so that 1974=0,

so that the constant in the regression measures the rate of return in 1974.  For results pooled

across countries the omitted category is the US. The dependent variable is the level of the

estimated return.  The pooled results suggest little difference in the estimated returns by

geographical region - countries in this non-US grouping include Finland, Honduras, Indonesia,

Ireland, Netherlands, Portugal and the United Kingdom. Estimation methods have significant

effects throughout with rates of return by IV and fixed effects/twins some 3% and 1.6% higher

than the OLS default category. Sample size in itself has no effect on the estimated return but

controlling for ability lowers the OLS estimate for the US studies in line with conventional

wisdom, but raises the OLS estimate in the non-US studies. Controlling for measurement error

has no significant effect on estimated rates of return, but published papers do tend to report

higher rates of return (although this is only significant for the non-US studies).  Looking at the

results for the US we see that the more recent estimates are higher for the US studies in line with

recent suggestions of a general shift upwards in the returns to schooling in the US.  However this

result is not apparent for the non-US studies, confirming the findings of Harmon and Walker

(1995) of a relatively stable pattern of returns over time in the UK, which would be the largest

grouping in the non-US block.

The bottom half of Table 2 incorporates all of the earlier elements but in addition controls

explicitly for the standard error of the regression coefficient estimated for the rate of return in the

model.  The results here are rather startling.  Unlike the top half of the table we no longer find

any evidence of differences in the returns estimated by different estimation procedures, nor do we
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observe the pattern of higher estimates in published studies (although the upward drift of returns

over time is still observed).  This is a very important result, for in the absence of any bias in the

reporting of results the estimates should not be correlated with the standard error. This leads us in

the next section to a more formal consideration of the results in the context of reporting bias.

4. Model of Reporting Bias

One straightforward interpretation of the contrast between the result in panels A and B in Table 2

is that estimated payoffs that are significantly different from zero are more likely to be reported

in journals and, since the twins studies and IV studies tend to have larger sampling errors in

general, a less representative sample of these studies is typically reported.

The graphs in Figure 1 examine this issue more closely and are related to the material

presented in Table 2 where we related the return to schooling to the estimated standard error.

These graphs show a plot of the estimated return against the standard error, together with the

estimated regression line. In the absence of any selective reporting this line should be horizontal,

as the return to schooling should not vary in proportion to its standard error.  However if the

tendency is to only report where the t-ratio is greater than 2 the estimated return will increase as

the standard error increase in order to maintain the t-ratio at or above 2.  Over all of the estimates

in our meta-analysis, shown in panel (a) we find a positive slope which is significant (t = 7.11)

but in the case of the OLS returns in panel (b) the slightly positive slope is not statistically

significant.  However the estimated returns in panel (c) and (d) for the IV and Twins estimates

respectively show far steeper slopes which are statistically significant (with estimated t-ratios of

3.92 and 5.42 respectively).



Figure 1 Estimated Returns Plotted Against Estimated Standard Error

(a)  All Estimates (b)  OLS Estimates

Standard Error (Rate of Return)

 Rate of Return Estimate  Fitted values

0.00010 0.11300

0.01300

0.19814

Standard Error (Rate of Return)

 Rate of Return Estimate  Fitted values

0.00010 0.03560

0.01300

0.11400

(c)  IV Estimates (d)  Twins Estimates

Standard Error (Rate of Return)

 Rate of Return Estimate  Fitted values

0.00200 0.11300

0.02800

0.18500

Standard Error (Rate of Return)

 Rate of Return Estimate  Fitted values

0.00800 0.04300

0.02700

0.16700



Figure 2 Predicted Interval Estimates of Returns Based on Random Effects Meta-Analysis

(a)  OLS Estimates

Rate of Return Estimate
-0.07999 0.44999

Combined

(b)  IV Estimates            (c)  Twins Estimates

Rate of Return Estimate
-0.07999 0.44999

Combined

Rate of Return Estimate
-0.00461 0.28025

Combined
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<insert Figures 1 and 2 about here>

An alternative way to consider this problem is to estimate the study returns from the

information collected via a simple meta regression.  We might expect some degree of

heterogeneity in the returns compared to some overall pooled 'average' return if what we are

seeing in the reported studies is not exhibiting some degree of non-randomness.  The graphs in

Figure 2 represent pooled meta-analysis estimates of the returns based on the relationship

between the estimate and the standard error of the estimate.  Note that in the case of the OLS

estimates the pooled estimate (represented in the graph by the vertical line) bypasses many of the

individual interval estimates.  On the contrary the results for the IV and Twins estimates suggest

a clustering of the results around the pooled estimate in almost every instance.

Hedges (1992), in a review of over seven hundred studies on the effectiveness of aptitude

tests as a predictor of employment outcomes, proposes a formal model of publication bias based

on the assumption that there is a weight function (based on outcome p-values) that determines the

probability a study is observed.  Full details of this weight function are outlined in an appendix to

this paper but the estimation procedure generates parameters that determine the increasing or

decreasing probability of observing a study.  We have specified different probabilities of

observation of a study according to whether the p-value for that study is 0.01<p<0.05 (denoted

ω2) or p>0.05 (denoted ω3), relative to a default category of 0<p<0.01.  This default category’s

weight ω1 is normalized to unity expressing the assumption that results with p-values in this

bracket are reported with probability one.  In the absence of reporting bias ω2 and ω3 should equal

unity as well, indicating the equality of outcome probabilities when significance of results is
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accounted for.  In addition to these ωi parameters the overall pooled estimate for the return to

schooling, denoted ∆, is provided based on the observed studies.  Finally, the heterogeneity

(measured by the standard deviation) in rates of return is estimated, and denoted σ.

 

Table 3 Hedges’ publication bias model; all studies  

All Studies Unrestricted Restricted (ω2 = ω3 = 1 ) 
Parameter Coefficient Standard error Coefficient Standard error 
ω2 1.273 0.497 -- -- 
ω3 0.146 0.089 -- -- 
∆ ('true' rate of return) 0.068 0.004 0.073 0.003 
σ 0.030 0.003 0.028 0.002 
Log-Likelihood 288.67 279.73 
N 96 96 
   
OLS Studies Unrestricted Restricted (ω2 = ω3 = 1 ) 
Parameter Coefficient Standard error Coefficient Standard error 
ω2 1.692 1.426 -- -- 
ω3 0.409 0.470 -- -- 
∆ ('true' rate of return) 0.064 0.004 0.065 0.004 
σ 0.025 0.003 0.025 0.003 
Log-Likelihood 158.19 157.46 
N 50 50 
   
IV Studies Unrestricted Restricted (ω2 = ω3 = 1 ) 
Parameter Coefficient Standard error Coefficient Standard error 
ω2 2.134 1.130 -- -- 
ω3 0.265 0.214 -- -- 
∆ ('true' rate of return) 0.081 0.009 0.086 0.007 
σ 0.034 0.006 0.032 0.005 
Log-Likelihood 100.74 95.83 
N 35 35 
 

Table 3 presents the results for all studies together, for the studies using OLS and for the

IV-studies, based on the modified Hedges' procedure.  The first column gives the results of the

full model, while the results in the second column are based on the model assuming no

publication bias.  The presence of publication bias is determined by examining the parameters ωi
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and testing the restriction of ω2 = ω3 = 1.  Rejection of this restriction indicates the presence of

publication bias. The test statistic is the difference of the log-likelihood values of the two models

times 2.  This statistic has a chi-square distribution with 2 degrees of freedom.  Hence for the

OLS studies equality of ω2 and ω3 to unity cannot be rejected, while for the IV studies equality of

ω2 and ω3 to unity has to be rejected at the 1% level (test statistic equals 9.82 with a critical value

of 9.21). Thus the IV studies appear to exhibit publication bias.

The parameter ∆ in this context can be interpreted as the true mean effect corrected for

publication bias.  Correcting for this bias the IV estimated rate of return to a year of schooling is

equal to 0.081, higher than the OLS rate of return of 0.064.  There is evidence of considerable

heterogeneity in estimated returns, with an estimated standard deviation of around .03.  Notice

also that the corrected IV return is somewhat below the uncorrected IV return (0.081 vs. 0.086).

The point estimates for ω2 exceed 1 so it is expected that studies with p-values below 0.01 have a

lower probability to be observed than studies with a p-values between 0.01 and 0.05, but these

estimates are never significantly higher than one.  On the other hand, the probability of observing

a study with a p-value numerically larger than 0.05 is much smaller than that of observing a p-

value smaller than 0.01, and this difference is statistically significant (Hedges found a similar

pattern).

The interpretation of ∆ as the true mean effect corrected for publication bias (with only

random heterogeneity) is a sensible interpretation in applications where it is indeed reasonable to

expect that there is one uniform global effect.  With medical interventions this might indeed be

the case. When returns to schooling are considered, however, we have presented evidence that the

returns vary across, for instance, countries and periods.  A natural extension of Hedges'

likelihood function is to parameterize ∆, thereby allowing the true return to schooling to vary
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with some of these characteristics.  Thus the restriction, present in Table 3, that the estimate of

the true rate of return is a constant is removed which allows us to show how the 'reporting-bias-

corrected' return to schooling varies with the studies' characteristics.

In Table 4 we supplement the parameter ∆ with interactions between it and the various

regressors in Table 2, thus combining the OLS regressions in Table 2 with the results in Table 3.
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Table 4 Extended Publication Bias Model: All Studies  
 

All Studies Unrestricted Restricted (ω2 = ω3 = 1 ) 
Parameter Coefficient Standard error Coefficient Standard error 
ω2 1.598 0.655 -- -- 
ω3 0.226 0.144 -- -- 
∆0 0.035 0.010 0.038 0.010 
∆1(IV) 0.018 0.008 0.022 0.007 
∆2(US) 0.013 0.007 0.013 0.006 
∆3(Year) 0.002 0.001 0.001 0.0005 
∆4(Twins) 0.009 0.012 0.012 0.011 
∆5(Ability) 0.002 0.008 0.002 0.008 
σ 0.026 0.003 0.025 0.002 
Log-Likelihood 295.29 289.1 
N 96 96 
OLS Studies Unrestricted Restricted (ω2 = ω3 = 1 ) 
Parameter Coefficient Standard error Coefficient Standard error 
ω2 2.114 1.824 -- -- 
ω3 0.558 0.658 -- -- 
∆0 0.033 0.011 0.033 0.011 
∆1(IV) -- --   
∆2(US) 0.016 0.007 0.015 0.007 
∆3(Year) 0.002 0.0006 0.002 0.0006 
∆4(Twins) -- --   
∆5(Ability) 0.003 0.009 0.003 0.009 
σ 0.023 0.003 0.023 0.002 
Log-Likelihood 162.56 161.92 
N 50 50 
IV Studies Unrestricted Restricted (ω2 = ω3 = 1 ) 
Parameter Coefficient Standard error Coefficient Standard error 
ω2 2.052 1.091   
ω3 0.251 0.204   
∆0 0.072 0.025 0.081 0.020 
∆1(IV)     
∆2(US) -0.005 0.018 -0.006 0.015 
∆3(Year) 0.001 0.001 0.000 0.001 
∆4(Twins)     
∆5(Ability) -0.002 0.018 -0.001 0.015 
σ 0.034 0.006 0.031 0.005 
Log-Likelihood 101.03 96.07 
N 35 35 
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Overall the results are fairly similar.  Again by a likelihood ratio test of restricted versus

unrestricted models, the IV studies appear to suffer from reporting bias whereas the OLS studies

do not.  The results in the top panel of Table 4 provide perhaps the most general summary of our

analysis.  The results in this panel reject the hypothesis that there is no publication bias.  The

benchmark estimates of the overall average return to schooling is 3.5% in 1974, but increasing at

a rate of about 2 percentage points per decade.  The estimated unexplained heterogeneity in rates

of return, which is reduced with the use of the covariates in Table 4, has a standard deviation of

around 2.6 percentage points. The IV and within-twins estimates of the return are 1.8 and 0.9

percentage points higher than the OLS estimates, and the difference between the IV and OLS

estimates is statistically significant while the difference between the within-twins and OLS

estimates are not.  However, these “reporting-bias-corrected” differences in returns due to

estimation method are much smaller than the uncorrected differences of 3.1 and 1.6 percentage

points reported in Panel A of Table 2.  Ability control have no effect on the estimated rates of

return, but there remains evidence that returns have increased over time, at a rate of about 2

percentage points per decade.

5. Conclusion

There appears little controversy in the general principle underpinning the theory of schooling and

earnings - schooling adds considerably to the earnings of individuals.  What is at the centre of the

debate is that in any context schooling is a choice variable and may not be independent of other

factors that affect earnings.  This raises the possibility that the observed correlation between

schooling and earnings is not a causal relationship, but merely masks a correlation between other

factors, such as ability, and earnings.
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Studies of twins and other siblings and studies that use instrumental variables have been a

major focus of research in the last decade in sophisticated attempts to measure the causal effect of

schooling on earnings.  Our survey of these studies suggests that, once the impact of the

likelihood that a study result will be reported is controlled, there are relatively small differences

among the estimates produced by the different estimation methods although some of these

differences are statistically significant.  Estimated rates of return to schooling appear to be higher

in the U.S. than elsewhere, in part because of increased returns in the U.S. in the last two

decades.  However apart from this difference the estimates of the returns are considerably closer

to each other than a simple glance at the range of estimates would provide.  The evidence that

schooling investments have a significant economic payoff is therefore very strong.

A number of future directions exist for this research.  For many purposes it is often more

useful to know the returns to specific types of schooling (by level and field) or the payoff to

increased quality of schooling.  It appears that the current methodology to estimate returns to

years of schooling should be applied to these other topics as well.  Likewise, studies of the

returns to work-related training (firm training) should be subject to similar analyses.  These, and

related empirical studies of human capital investments, are essential to making wise public and

private choices.
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APPENDIX – A GENERALIZED PUBLICATION BIAS MODEL

Hedges (1992) model of publication bias builds on the assumption that there is a weight function

that determines the probability that a study is observed.  He posits that the weight function

depends on the p-value, whereby studies with a lower p-value are more likely to be observed. It is

assumed that a random effects model generates the observed data.  More precisely the observed

data, X1,….,Xn are such that

),(~ 2
ii NX σδ , (A1)

where σi
2 is known and δ is an unknown parameter distributed as

),(~ 2σ∆δ N . (A2)

Hence

),(~ ii NX η∆ (A3)

where

ii η=σ+σ 22 .   The observation associated with each study forms part of the weight function

w(Xi) which determines the probability of being observed, with the relationship with Xi coming

via the p-value. In Hedges' formulation the weight function is a step function with the steps at

points determined a priori. In our application we distinguish three steps: 0<p<0.01, 0.01<p<0.05
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and p>0.053.  Given this data generating process and the weight function, Hedges derives the

joint log-likelihood for the data X, which has the following form (Hedges 1992, p.250) for i

observations over j steps in the weight function,
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where Bij(∆, σ) is the probability that a normally distributed random variable with mean ∆ and

variance ηi will be assigned weight value ωi.

The parameter ∆ can be interpreted as the true effect corrected for publication bias. This is

a sensible interpretation in applications where it is indeed reasonable to expect that there is one

uniform global effect.  With medical interventions this might indeed be the case. When returns to

schooling are considered however, we have presented evidence that the returns vary between for

instance countries and periods.  A natural extension of Hedges' likelihood function is therefore to

parameterize ∆ thereby allowing the true return to schooling to vary with some of these

characteristics.  The extended likelihood function now reads:
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where Zi is a vector of characteristics of study i and ∆ is (now) a vector of parameters to be

estimated.  In our application the vector Z includes four dummies equal to 1 if the study uses IV,

3 Due to data limitations it is impossible to distinguish the additional step of 0.05<p<0.10.
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twins data, relates to the US and when an ability measure is included, as well as year to which the

study relates.
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 Appendix Table A1 Meta-Analysis – Sources

STUDY YEAR COUNTRY
Angrist and Krueger 1991a USA
Angrist and Krueger 1991b USA
Angrist and Krueger 1995 USA
Angrist and Newey 1991 USA
Ashenfelter and Rouse 1997 USA
Bedi and Gaston 1998 HONDURAS
Blanchflower and Elias 1993 UK
Blackburn and Neumark 1993 USA
Blackburn and Neumark 1995 USA
Butcher and Case 1994 USA
Card 1993 USA
Card 1998 USA
Conneely and Uusitalo 1998 FINLAND
Dearden 1995 UK
Dearden 1997 UK
Duflo 1998 INDONESIA
Hansen and Wahlberg 1998 SWEDEN
Harmon and Walker 1995 UK
Harmon and Walker 1999 UK
Harmon and Walker 1999 UK
Isaacsson 1999 SWEDEN
Meghir and Palme 1997 SWEDEN
Miller, Martin & Mulvey 1995 AUSTRALIA
Plug 1997 NETHERLANDS
Rouse 1997 USA
Uusitalo 1997 FINLAND
Viera 1997 PORTUGAL


