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1 Introduction

Time-varying volatility is perhaps one of the most salient features of asset returns.
Bollerslev et al. (1992) documents ample empirical evidence that the conditional vari-
ance of stock returns is not constant over time. Stock return volatility appears to be
serially correlated, and shocks to volatility are negatively correlated with unexpected
returns. Changes in volatility are persistent (French, Schwert and Stambaugh 1987,
Campbell and Hentschel 1992). Large negative returns tend to be associated with
increases in volatility that persist over long periods of time. In addition, stock return
volatility appears to be correlated across markets over the world (Engle, Ito and Lin

1990, Ang and Bekaert 1999).

While there is an abundant literature that explores the implications of chang-
ing volatility for asset pricing models, the implications for optimal dynamic portfolio
choice have been largely ignored.! This is surprising, because Merton (1969, 1971,
1973) has shown that time-varying investment opportunities imply optimal portfolio
strategies for multi-period investors that differ from those of single-period investors.
Portfolio strategies differ because multi-period investors demand risky assets not only
for their risk premia, but also because they are appropriate instruments to hedge con-
sumption against adverse changes in future investment opportunities, provided that
shifts in investment opportunities are correlated with asset returns. Thus investors

have an extra demand for risky assets that reflects intertemporal hedging.

There is only one instance in which we can safely ignore the hedging component

of the demand for risky assets: When investors have unit relative risk aversion coef-

! An exception is concurrent work developed by Liu (1998).



ficients. For these investors, the substitution and income effects on portfolio choice
produced by changes in the investment opportunity set exactly cancel out, and in-
tertemporal hedging demands are zero (Merton 1969, 1971, 1973). However, the
literature on the equity premium finds that the size of this premium is too large to be
consistent with a representative-investor model in which the investor has unit relative
risk aversion (Campbell 1998, Campbell, Lo, and MacKinlay 1997 [Chapter 8|, Cec-
chetti, Lam, and Mark 1994, Cochrane and Hansen 1992, Hansen and Jagannathan
1991, Kocherlakota 1996, Mehra and Prescott 1985).

For investors with risk-aversion coefficients different from one, hedging demands
are not necessarily zero. Recent research has examined the quantitative importance
of hedging demands in light of the observed predictable variation in the equity pre-
mium (Balduzzi and Lynch 1997, Barberis 1998, Brandt 1998, Brennan, Schwartz and
Lagnado 1996, Campbell and Viceira 1999) and in interest rates (Brennan, Schwartz
and Lagnado 1997, Campbell and Viceira 1998). This research finds that hedging
demand should represent a large fraction of the total demand for risky assets. Viceira
(1998) shows that intertemporal hedging is also important for investors subject to

uninsurable labor income risk.

This paper investigates the optimal consumption and portfolio choice of long-
horizon investors when there is predictable variation in return volatility. It derives
analytic expressions for the optimal consumption and portfolio policies of an infinite-
horizon investor who rebalances her portfolio continuously. It considers two scenarios.
In one scenario, expected returns do not vary with volatility, while in a second sce-
nario, expected returns are allowed to covary linearly with volatility. Using these

theoretical results, the paper evaluates the empirical relevance of intertemporal hedg-



ing demands with stochastic volatility for U.S. investors.

Solving for the optimal consumption and portfolio policies of a multi-period in-
vestor when volatility is stochastic or, in general, when investment opportunities are
time-varying, is not a trivial exercise. Kim and Omberg (1996) and Liu (1998) solve
analytically for the optimal portfolio rule of an investor who maximizes power utility
over terminal wealth and faces either a time-varying equity premium or time-varying
volatility, respectively. Unfortunately, when the consumption decision is also endoge-
nous, closed form solutions for the optimal policies have not been developed except
when markets are complete. Using the method of Cox and Huang (1989), Wachter
(1998) shows that the problem of optimal consumption and portfolio choice with time-
varying expected returns has a closed-form solution, provided that the state variable
is instantaneously perfectly correlated with returns or, equivalently, that markets
are complete. This paper extends this complete markets result to time-variation in
volatility using a dynamic programming approach. Schroder and Skiadas (1997) and
Fisher and Gilles (1998) also explore the implications of complete markets for optimal

consumption and portfolio choice.

However, the assumption of perfect correlation is not empirically plausible in many
instances. In particular, it is difficult to justify for the case of stochastic volatility
given the empirical evidence on the matter. Therefore, in this paper we allow for
imperfect correlation between stock returns and volatility. As a result, the problem

we are left to solve is one in a setting of incomplete markets.

In order to solve this incomplete markets problem, we develop an approximation
to the Bellman equation that is the continuous-time equivalent of that used in several

discrete-time settings. Campbell and Viceira (1998, 1999) and Viceira (1998), build-



ing on the work of Campbell (1993), have developed an analytic solution method that
finds approximate solutions to the discrete-time problem when consumption is endoge-
nous. Their solution methodology does not require markets to be complete. They
replace the Euler equations of the problem and the intertemporal budget constraint
with log-linear Taylor expansions and use the method of undetermined coefficients
to find closed-form solutions for the approximate problem. They apply this method
to solve for the optimal policies when investors face a time varying equity-premium
(Campbell and Viceira, 1999), stochastic interest rates (Campbell and Viceira, 1998)
or uninsurable labor income risk (Viceira, 1998). This paper develops a continuous-
time counterpart to the Campbell-Viceira solution method to solve for the optimal
consumption and portfolio policies when volatility is stochastic. By working in contin-
uous time we are able to provide an exact solution to the problem when the investor’s
elasticity of intertemporal substitution is unity—though her relative risk aversion co-
efficient need not be equal to one. In all other cases, the solution is approximate,
but it requires only one approximation on one of the terms of the Bellman equation.
This approximation technique can be viewed as a particular class of the perturbation

methods described in Judd (1998).

This paper, like the Campbell-Viceira papers, assumes that preferences are given
by Epstein-Zin-Weil recursive utility, a generalization of power utility that separates
relative risk aversion from the elasticity of intertemporal substitution of consumption—
two conceptually different objects, which under power utility are inextricably linked
by a single parameter, one being the inverse of the other. Schroder and Skiadas (1997)

and Fisher and Gilles (1998) also assume recursive preferences.

We find that, when expected excess returns are constant and all time-variation in



the Sharpe ratio of the risky asset is in the denominator, optimal portfolio demand
for stocks is proportional to precision, the inverse of stock volatility. When expected
returns covary linearly with volatility, optimal portfolio demand is an affine function
of precision. We also find that stochastic volatility produces an optimal intertemporal
hedging demand for stocks. The sign of this hedging component of portfolio demand
is the same as the sign of the instantaneous correlation between changes in volatility
and excess stock returns. The absolute size of this demand increases with the size of
this correlation, and also with the persistence of shocks to volatility. An empirical
calibration using monthly U.S. stock returns from 1926 to 1997, and annual stock
returns from 1871 to 1997 shows that persistence in shocks to volatility is considerably

more important than correlation in determining the size of hedging demands.?

The paper is organized as follows. Section 2 states the dynamic optimization prob-
lem, Section 3 presents an exact solution to the problem when the investor has unit
elasticity of intertemporal substitution—though her coefficient of relative risk aver-
sion can take any value—and Section 4 explains the continuous-time approximate
solution method that allows us to solve the problem when the elasticity of intertem-
poral substitution differs from unity. Section 4 also states the solution implied by the
method. Section 5 explores the solution to the problem when expected excess returns
covary with volatility. Section 6 describes how to apply Spectral GMM (Chacko and
Viceira 1998, Singleton 1997) to estimate the parameters of the stochastic volatility

2This result is helpful to understand the numerical findings in Ang and Bekaert (1999) for in-
ternational portfolio diversification. Using a regime switching model to describe time-variation in
cross-country return correlations from 1970 to 1997, they estimate little persistence in shocks to these
correlations and they find that hedging demands generated by time-variation in these correlations

are small. Based on our results, we suspect that their first result explains the second.



model. Section 7 calibrates the model to monthly U.S. stock market data and ex-
plores the empirical implications of stochastic volatility for portfolio choice. Finally,

Section 8 concludes.

2 The Intertemporal Consumption and Portfolio

Choice Problem

We assume that wealth consists of only tradable assets. Moreover, to keep the analysis
simple, we assume in this paper that there are only two tradable assets. One of the
assets is riskless, with instantaneous return dB;/B; = rdt. The second asset is risky,

with instantaneous total return dynamics given by

t

where v; is the time-varying instantaneous variance of the return on the risky asset,

and S; is the value of a fund fully invested in the asset that reinvests all dividends.

Thus, the expected excess return on the risky asset over the riskless asset (u—r) is
constant over time. However, the conditional variance of the risky asset return varies
stochastically over time, and this induces time variation in investment opportunities.

We assume the following dynamics for the inverse of this variance:

dy; = k(0 — y)dt + o/yedW,, (2)

where y, = 1/v; is the precision of the risky asset return process. Precision follows

a mean-reverting process with long-term mean equal to # and reversion parameter



k > 0.2 This parameterization of the process for precision implies a process for v,
that can capture the main stylized facts about volatility in asset markets. To see
this, we can apply Ito’s Lemma to (2) and find the following stochastic differential
equation for v;:

duy

= Ky (0, — vy) dt — o/, dW,, (3)

Ut
where 0, = (0 —0?/k) ! and k, = £/0,. Equation (3) implies that volatility is mean-
reverting and that proportional changes in volatility are more pronounced in times of

high volatility than in times of low volatility.

We also assume that unexpected returns on the asset are instantaneously cor-
related with innovations in precision. This instantaneous correlation is given by p.
Therefore, proportional changes in volatility and returns are correlated, with instan-

taneous correlation

dUt dSt

COI‘I‘t(E, ?t) = —p.

Investor’s preferences are described by a recursive utility function. Recursive
utility is a generalization of the standard, time-separable power utility model that
separates relative risk aversion from the elasticity of intertemporal substitution of
consumption.* Epstein and Zin (1989, 1991) derive a parameterization of recursive
utility in a discrete-time setting, while Duffie and Epstein (1992a, 1992b) and Fisher
and Gilles (1998) offer a continuous-time analogue. We adopt the Duffie and Epstein

3In order to satisfy standard integrability conditions, we assume that 26 > 2.
4Power utility restricts the elasticity of intertemporal substitution parameter to be the inverse of

the relative risk aversion coefficient, while in fact these two parameters need not be related to one

another.



(1992b) parameterization:

J = [/toof(Cs,JS)ds] | ()

where f(Cs, J;) is a normalized aggregator of current consumption and continuation

utility that takes the form

<=

p
1—

c .
(O ) =—"—1-yJ||———— —1f, 5
BT (((1—7>J>ﬁ> ?

[ > 0 is the rate of time preference, v > 0 is the coefficient of relative risk aversion

and 1 > 0 is the elasticity of intertemporal substitution. Power utility obtains from

(5) by setting ¢ = 1/7.

The normalized aggregator f(Cs, Js) takes the following form when ¢ — 1:

£(C,7) = 5(1—7) ] [log (C) — 1

log (1 —=7)J)|. (6)
The investor maximizes (4) subject to the intertemporal budget constraint
dXt = [ﬂ't(lLL — T)Xt + TXt - Ct]dt + WtXt\/U_tdWS, (7)

where X, represents the investor’s wealth, 7, is the fraction of wealth invested in the

risky asset and C; represents the investor’s instantaneous consumption.

3 An Exact Solution with Unit Elasticity of In-

tertemporal Substitution

Merton (1969, 1971, 1973) has shown that the optimization problem (4)-(7) has an

exact solution when the investor has log utility (y = ¢ = 1). In this case, it is

8



optimal for the investor to behave myopically and ignore time variation in investment
opportunities, and the dynamic problem essentially reduces to a static problem. For
all other investors, however, intertemporal considerations matter and the dynamic

problem does not reduce to a static problem.

Giovannini and Weil (1989) have shown—through an analysis of the Euler equa-
tions of the problem in discrete time that, for investors with unit elasticity of intertem-
poral substitution, it is optimal to behave myopically regarding the consumption de-
cision, but that intertemporal considerations still enter their portfolio decision. Hence
the 1) = 1 case, though special, is very useful to understand the effects of time-varying

investment opportunities on portfolio choice.’

Unfortunately, Giovannini and Weil do not pursue this issue further and they do
not explicitly characterize the optimal portfolio rule. In this section we tackle this
issue and derive an exact analytic solution that allows us to fully characterize portfolio
choice under time-varying investment opportunities.® The next section presents an

approximate analytic solution for the general case in which 1 is not restricted to one.

The optimization problem given by (4)-(7) has one state variable, the precision

of the risky asset return or, equivalently, the volatility of the risky asset return.

>This special case ignores the effects of 1 on portfolio choice. However, sections 4 and 6 below
show that v, while important for the consumption decision, has only an indirect effect on portfolio

choice.
¢Campbell and Viceira (1998, 1999) do explore this issue further in a discrete-time setting and

derive an analytical expresion for the optimal portfolio rule. However, their solution is only approx-
imate, because it is based on an approximation to the log return on wealth. In continuous time,
however, we can derive an exact expression for the log return on wealth which is linear in portfolio

shares.



Therefore, the value function of the problem (.J) depends on financial wealth (X;)

and this state variable.
The Bellman equation for this problem is

1
0 = Sug {f (Cs, J5) + [m(p—r) Xy +r Xy — Cy)Jx + §7T2Xt21)tJXX + k(0 — ye)J,

1
+§02ytJyy + pmrtXtJXy} : (8)
where f (C, J) is given in (6) and subscripts on J denote partial derivatives.

The first-order conditions for this equation are

C, = I [(1—y) )= B 9)
w - () ) - () w

Equation (9) results from the envelope condition, fo = Jx, from which the optimal

consumption rule obtains once the value function is known. Equation (10) shows that
the optimal portfolio share in the risky asset has two components. The first one is
proportional to the risk premium times the inverse of the coefficient of relative risk
aversion in the indirect utility function. This is the optimal demand for risky assets
we find in single-period models, or in multi-period models with constant investment
opportunities. For this reason it is called “myopic demand.” The second component
is Merton’s intertemporal hedging demand. It depends on instantaneous rates of
change of the value function, the instantaneous variance of the state variable, and the

instantaneous correlation between changes in the state variable and the risky asset.

By inspection of (10), it is immediately seen that the hedging component of port-

folio demand is non-zero unless 0 = 0 (constant investment opportunities), p = 0

10



(no hedging value in risky asset), or Jx, = 0. This last equality obtains when v =1
(Merton 1969, 1971, 1973, Giovannini and Weil 1989). Note, however, that equations
(

9) and (10) do not represent a complete solution to the model until we solve for

J(Xta yt)-

Substituting the first-order conditions into (8) and rearranging gives the Bellman

equation:
1(Jx)? JxJ
0 = £(CW), )= IxC () — S gy I
2 Jxx Ixx
1 (Jx,)? 1
+Jx Xir — —ﬂp%jyt + Jyk(0 — i) + = Jyy s, (11)
2 Jxx 2

where C(.J) denotes the expression for consumption resulting from (9).

We now guess a solution of the form J(X;,v;) = I(y:) X, 7 /(1 — 7). Substituting
this solution into the Bellman equation and simplifying yields the following ordinary

differential equation (ODE):

2

1 _
0 = (logﬁ— 7 log(l—'y))ﬂl——ﬁﬂogl—ﬁf—l—('u ) Lyt
1=~ L=~ 2y
po (=) pro* (1,)* 1 o’
B Ty + B2~ T k(0— — 7 L. (12
+ yYt T > 1 yt+1_7y/<a( yt)+2(1_7) yye- (12

This ODE has a solution of the form I = exp{Ay, + B} that leads to two algebraic

equations for A and B,

aA> +bA+c = 0, (13)
(1—7) (Blog B+ 71— B) — Bylog (1 —7) — BB+ kA = O, (14)
where
o’ 2 2
a = mh(l—P)er}a (15)

11



The first equation is a quadratic equation in A, and the second equation is linear in
B given A. For general parameter values the equation for A has two roots. These roots
are always real provided that v > 1. From standard theory on quadratic equations,
the product of the roots is equal to ¢/a. When v > 1, this ratio is always negative
so that the roots have opposite signs. It is easy to check that J(y; A > 0,7 > 1) <
J(y; A < 0,7 > 1) for all y;, so that only the negative root maximizes the value
function.” This root is obtained by selecting the positive root of the discriminant of

the quadratic equation. Therefore, A < 0 when v > 1.

When v < 1, the roots are real—and a solution to the problem exists—if and only

(S22 (o) <

This condition implies that both roots of the quadratic equation are positive. In

this case the largest root—again, the root associated with the positive root of the

discriminant—maximizes the value function. Therefore, A > 0 when v < 1.

The following two propositions state the solution:

Proposition 1 The indirect utility function, J(X¢,y) = J( Xy, 1/vy) is given by

1 A X!
J(Xt,—>:exp{—+B} b
Vg Vg 1—7

"Note that the equation for B implies that 0B/dA > 0.

12



where A is the solution associated to the positive root of the discriminant of the
quadratic equation (13), and B is the solution to the linear equation (14). Coefficient
A satisfies AJ(1 —~) > 0.

Proof. The proof for this proposition follows immediately from (12) and the

ensuing discussion, using that y; = 1/v;. B

Substituting the solution for the indirect utility function given in Proposition 1

into (9) and (10), we can solve for the optimal policies:

Proposition 2 The optimal consumption and portfolio rules implied by Proposition

1 are

and

Proof. The proof for this proposition follows immediately from Proposition 1

and (9)-(10), using y, = 1/v,. A

Proposition 2 shows that when ¢ = 1, the optimal log consumption-wealth ratio
is invariant to changes in volatility and it is equal to the rate of time preference. For
an investor with unit elasticity of intertemporal substitution, the income and substi-
tution effects on consumption produced by a change in the investment opportunity
set exactly cancel out, and it is optimal for her to consume a fixed fraction of her
wealth each period. For this reason this consumption policy is termed “myopic” in
the asset allocation literature. By contrast, the optimal portfolio rule changes with

volatility and includes a hedging term.

13



The optimal portfolio demand for the risky asset has two components. The first
one is the myopic demand, that depends only on the risk premium multiplied by
the inverse of the relative risk aversion coefficient and current volatility. The second
component is the intertemporal hedging demand. The sign of this demand depends
on the sign of the correlation between unexpected returns and changes in volatility
(—p) and the sign of A. Proposition 2 shows that a negative correlation implies a
negative hedging demand for investors with v > 1, and a positive hedging demand for
investors with v < 1. Investors who are more risk averse than a logarithmic investor
have a negative hedging demand for the risky asset because it lacks hedging properties
against an increase in volatility: A negative correlation implies that the risky asset

tends to do worse in those states of the world in which uncertainty is high.

The absolute size of the hedging demand for the risky asset is increasing in the
persistence of shocks to return volatility when v > 1. To see this, note that 0A/J0x >
0.8 Since A < 0 when v > 1, an increase in persistence (a decrease in k) increases
the absolute value of A and hence the absolute value of the hedging component of
m¢. If shocks to return volatility are highly persistent, the risky asset becomes a more

valuable hedging instrument.

Coefficient A is zero when the expected excess return on the risky asset is also
zero. Therefore, when p — r = 0 both the myopic component and the intertemporal
component of the demand for the risky asset are zero. If the expected excess return
on the risky asset is zero, any amount of risk taking is uncompensated, and it is
optimal for the investor to simply pull out of the risky asset and to invest only on

the riskless asset, hence eliminating all uncertainty about future consumption.

89A/0k > 0 is proportional to A/(1 — ) and Proposition 1 shows that A/(1 —~) > 0.

14



Finally, another property of the solution is that the ratio of hedging demand
to myopic demand is independent of the level of volatility. Therefore, the hedging
component of demand is always a constant fraction of the total portfolio demand,
no matter what the level of the state variable is. This is so because returns are
instantaneously correlated with proportional changes in volatility rather than with

absolute changes in volatility.

4 Approximate General Solution

Having analyzed the special case 1y = 1 we can now address the general case that
does not restrict the investor’s willingness to substitute consumption intertemporally.
In this case, both optimal portfolio choice and consumption will react to changes in

volatility.

When 1 is not restricted to one, we obtain the following ODE after plugging (5)
into the Bellman equation, (11), and guessing that J(X;, y,) = I(y) X, " /(1 = 7):

1 = (n—r)? po(p—r)
= —_ 1/)_[1+ - _[ I I _[
0 T A Al e e
2.2 2 2
p o (1) 1 o
— — k(0 — — 1Y 1
F o T O )+ g e (18)

We can further simplify this equation by making the transformation I = H *ﬁ,

which gives the following non-homogeneous ODE:

(1=9)(u—=r)?  po(p—r)(1—9) H,

_ _ g1 _
0 = —BYH '+yp8+ o Yt S Ut
p*o?(1—~)? (H,\* H,



o (1—7 H, 2 o? Hy,
) (ﬂ + 1) (ﬁ) 5 v (19)

Unfortunately, equation (19) is a non-linear ODE in H whose analytical solution
is unknown except in three special cases: log utility (7 = ¢ = 1), constant investment
opportunities (k,0 = 0) and isoelastic utility (¢» = 1/7) plus perfect instantaneous
correlation between the state variable and returns (| p |= 1). The first two cases are
well-known from Merton’s (1969, 1971, 1973) work. The third case has been explored
by Wachter (1998) in a model whose state variable is the expected excess return.
We show here that a similar result holds when the state variable is volatility.” In
fact, it is easy to show that Wachter’s point is general: A closed form solution ex-
ists whenever utility is isoelastic and there is perfect positive or negative correlation
between the state variable and asset returns. In this case, the resulting equation is
a non-homogeneous version of the Gauss’ hypergeometric ODE. Therefore, equation
(19), specialized for | p |= 1, results in a closed-form solution in terms of the conflu-
ent hypergeometric function. This solution is given in Polyanin and Zaitsev (1995,

p.143).10

However, assuming perfect correlation between changes in volatility and asset re-
turns is not empirically plausible. In that case, (19) has no exact closed-form solution,

even if ¢ = 1/7. Nevertheless, it is still possible to find approximate analytic solu-

In concurrent work with this paper, Liu (1998) also shows a similar result.
10The solution to this equation is available from the authors. It is a linear combination of confluent

hypergeometric functions. However, the rather abstruse form of these functions makes it dificult to
obtain any economic insights from the solution. The reader should also refer to Wachter (1998).
Using the Cox-Huang approach, she is able to write the optimal policies as integrals of linear and
quadratic functions of the state variable. This allows her to obtain more insights about the economic

significance of the solution.
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tions that gives us a deeper understanding of the problem. We present two approaches
for finding analytic solutions. The first approach is based on a log-linear expansion
of the consumption-wealth ratio around its unconditional mean. This is exactly the
same type of approximation that Campbell (1993) and Campbell and Viceira (1998,
1999) pursue in discrete time. However, while they use the approximation to linearize
the log budget constraint, we use it to linearize the Bellman equation. The second
approach is to approximate the solution to the nonlinear ODE (18) around the exact

solution that obtains when ¢ = 1.1

We can view these two approaches as particular classes of the perturbation meth-
ods of approximation described in Judd (1998). The nature of the approximation
is very different in each case. The first approximate solution method finds a solu-
tion around a particular point in the state space—the unconditional mean of the log
consumption-wealth ratio. This solution will be close to the exact solution provided
that the consumption-wealth ratio is not too variable. The second method finds a
solution around a particular point in the preference space— = 1. This solution will
be accurate when the elasticity of intertemporal substitution is close to one, but it is
unlikely to be accurate for values of ¢ far from one. By contrast, the first method is
also accurate for values of ¥ close to one—because the consumption-wealth ratio is

constant when 1) = 1-—, but it can also be accurate for values of 1 far from 1.'2

We are interested in exploring the optimal consumption and portfolio policies of

'Note that this second approach includes, as a special case, a third approach consisting in approx-

imating the solution to (18) around the exact known solution for a log-utility investor (y =1 =1).
12In a model with time-varying expected returns, Campbell, Cocco, Gomes, Maenhout and Viceira

(1998) show that this approximation method is a good approximation to the true solution for values

of ¢ far from one.
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investors with low elasticity of intertemporal substitution for two reasons. First, the
empirical estimates of ¢ available from aggregate data are very close to zero (Hall
1988, Campbell and Mankiw 1989, Campbell 1999). Second, we want to explore
the solution when investors have time-additive, isoelastic power utility—in which
case ¢ = 1/y—for a wide range of values of the coefficient of relative risk aversion.
Accordingly we choose to present the first solution approach in the main text of the

paper, and we show the second approach in appendix A.

As mentioned above, the solution approach we use in the main text of the pa-
per is based on a log-linear expansion of the consumption-wealth ratio around its
unconditional mean. To see how this works, note that the envelope condition (9)
implies

BYH ' =exp{c, — ),
where ¢;—x; = log (C;/ X}). Therefore, using a first-order Taylor expansion of exp{c;—

z,} around E[e; — wy] = (¢ — ) we can write

ﬂi/)H_l ~ ho + hl (Ct — .Tt) 3 (20)

where hg = exp{c—z} [l — (¢ — )] and h; = exp {¢ — z}.

Substituting (20) for 3YH~! in the first term of (19), it is easy to see that the
resulting ODE has a solution of the form H = exp { Ay; + B}. Note that this solution
implies ¢; — x; = — Ay, — B + 1 log (3, i.e., the log consumption-wealth ratio is linear

in precision.

Our approach replaces the term that causes the non-linear ODE (19) to be non-
solvable analytically with a log-linear approximation that transforms the equation

into another ODE with a known analytic solution. If the log-linear approximation

18



is accurate, the exact analytic solution to the approximate ODE will also verify the
original ODE subject to some approximation error. In this sense it is an approximate
analytic solution. We show below that the approximation error is zero for the special

cases of log utility and constant investment opportunities.

The approximate ODE leads to two algebraic equations for A and B similar to

the equations found in the ) = 1 case:

aA* +bA+c = 0, (21)
ho—hlB—@/Jﬁ—T(l—’l/J)—FlieA = 0, (22)

where

o« = #(1=3) ba-M (23)

2y \1—1

b= (bt ) — (1- v)p;f(u - T)7 (24)
(1 =) (p—r)?

¢ = o : (25)

Using the same reasoning as in the ) = 1 case, we choose A to be the root associated

with the positive root of the discriminant in (21).

The following proposition gives the approximate value function for the problem:

Proposition 3 The indirect utility function, J(X¢,y) = J( Xy, 1/vy) is given by

1\ 1—7) (A X,
() =eo - (23) (o) frss

where A 1is the solution associated to the positive root of the discriminant of the

quadratic equation (21), and B is the solution to the linear equation (22). A/(1— 1)
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does not depend on v except through the loglinearization constant hy. Moreover, v > 1

implies A/(1 — 1) < 0.

Proof. The proof for this proposition follows immediately from (19), (20) and
(21)-(22), using y, = 1/v,. A

Substituting the solution for the indirect utility function given in Proposition 3

into (9) and (10), we can solve for the optimal policies:

Proposition 4 The optimal consumption and portfolio rules implied by Proposition

g :ﬁwexp{—é—B},

Vt

1 are

and
p—r (d=—q)pc A 1
T+ = —_ . . —_
' YUt Y 1—v¢ v

Proof. The proof for this proposition follows immediately from Proposition 3

and (9)-(10), using y, = 1/v,. A

Proposition 4 shows that the optimal log consumption-wealth ratio is a linear
function of the instantaneous precision of the risky asset’s returns. Moreover, Propo-
sition 3 implies that A/(1—1) < 0 when v > 1.'3 Therefore, the consumption-wealth
ratio is a decreasing monotonic function of volatility for investors with v > 1 and
1 < 1, while it is an increasing function of volatility for investors with v > 1 and

v > 1. This reflects the intertemporal income and substitution effects of volatility on

3When v < 1, it is difficult to sign A.
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consumption. For investor whose elasticity of intertemporal substitution of consump-
tion (¢) is smaller than one, the income effect of an unexpected change in return
volatility is always larger than the intertemporal substitution effect. For example,
a sudden increase in volatility implies a deterioration in investment opportunities,
because there is more uncertainty about future returns which is not compensated
by an increase in expected returns. This creates a positive intertemporal substitu-
tion effect on consumption—because the investment opportunities available are not
as good as they are at other times—but also a negative income effect—because in-
creased uncertainty increases the marginal utility of consumption. For investors with
1 < 1, the income effect dominates the substitution effect and they reduce their cur-
rent consumption relative to wealth. For investors with ¢) > 1, the substitution effect

dominates, and they increase their current consumption relative to wealth.

The properties of the optimal portfolio demand are similar to the properties in the
1 = 1 case, which we have already discussed in depth in section 3. We only need to
add that Proposition 3 implies that the optimal portfolio demand for the risky asset
given in (4) does not depend on 1, except through the loglinearization parameter h;.
The calibration exercise presented in section 7 shows that this effect is quantitatively
negligible. Campbell and Viceira (1998, 1999) note a similar result when expected

returns and interest rates are time-varying.

An important feature of this approximate solution is that it delivers the exact
solution in those cases where this solution is known. When v = ¢ = 1, by direct
substitution into Propositions 3 and 4 we find that A = 0, so that C;/X; =  and
7y = (u — 7)/ve. This is the exact solution to the problem with log utility reported
in Merton (1969).
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When ¢ =1 but v # 1, A =0 and C;/X; = . However A/(1 — ) # 0 and the
hedging component of 7m; does not vanish. That is, the optimal consumption rule is
myopic, while the optimal portfolio rule is not. This is the case discussed in section 3.
When v = 1 but ¢ # 1, the result is reversed: The hedging component of 7; vanishes

and 7, = (u — 1) /vy, but consumption relative to wealth is still a function of 1/v,.

Finally, when investment opportunities are constant (implying x, o = 0 and v,

v), both policies are myopic. Substituting into (21) and (22), we obtain

C 1 (u—r)°
—t_ Sl )
and m, = (u — r)/yv. This is a generalized version of the exact solution given in

Merton (1969) for the power utility case (¢ = 1/7).

5 Consumption and Portfolio Choice When Ex-
pected Excess Returns Covary with Volatility

The previous analysis of optimal consumption and portfolio choice with stochastic
volatility is based on the assumption that expected returns are constant. A natural
extension of this analysis is to allow for expected excess returns to change linearly
with volatility:

d
E {% - Tdt] = g + Q0. (26)
t

Guessing the same functional forms for J(X;,y;) and I(y:) as in section 4, it is
straightforward to show that the Bellman equation simplifies to an ODE in H (y;)

for which there is a closed form solution, provided that we make the approximation
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BYH™ = hg+ hy(c — xt). (Details are given in Appendix A). The solution takes the
form

H = exp {Alogy: + Asy: + B},
where A; and A, solve two independent quadratic equations and B solves an equation

which is linear, given A; and A,.'4

The approximation implies the following optimal policies:

Proposition 5 The optimal consumption and portfolio rules when E:[(dS:/St) —

rdt] = ag + aqvy are

C

A
— = ﬂwexp{Al log v; — =2 B} ,
Xt Ut

1 1 (1 =) po A Ay 1
Ft_v(a1+aovt> N 1—1/1+1—¢Ut ,

where both Ay/(1 —1) and Ay/(1 — 1)) do not depend on 1 except through the loglin-

and

earization constant hy. Moreover, v > 1 implies A1 /(1 —1) > 0 and Ay/(1 —4) < 0.

Proof. See appendix A. Note that y, = 1/v,. B

Proposition 5 shows that both the myopic component and the hedging component
of portfolio demand are affine functions of precision. Since A;/(1—1) > 0, the sign of
the intercept of the hedging component is positive when v > 1 and p > 0. In this case
negative covariation between excess returns and volatility creates an extra positive

hedging demand which is independent of the level of volatility. This positive hedging

4When we substitute hg + hi(c; — 2¢) for 6¢H[1 in the Bellman equation, we still need to do a

further approximation of —logy; = logv; around its conditional mean.
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component offsets (totally or partially) the negative hedging demand coming from
pure changes in volatility. Appendix A shows that the magnitude of this component
depends on the magnitude of «ay, the slope of the expected return function, but its

sign is independent of the sign of a;.'

The special case oy = 0 is particularly useful to understand why the intercept of
the hedging component is always positive when v > 1 and p > 0 regardless of the
sign of o, because in this case hedging demand is determined solely by the constant
intercept term. (Appendix A shows that, when ay = 0, we have that Ay = 0, while
A; is not necessarily zero). Moreover, oy = 0 implies that the myopic component of
portfolio demand is also constant, so that the optimal total portfolio demand for the

risky asset reduces to the following state-independent rule:

ﬂ_tEW:%_(l—v)pa‘ A . (27)

Y Y 11—

The intuition behind this result is the following. Suppose for simplicity that
ry = 0, so that the expected return on wealth is majv;, and the Sharpe ratio for
the risky asset is ay4/v;. If y > 0, the investor can only have a positive expected
return on wealth by holding a long position on the risky asset. When 7 > 0, the ex-
pected return on wealth is increasing in volatility. An increase in volatility represents
an improvement in investment opportunities, because it increases the Sharpe ratio
for the risky asset. In this case, a negative correlation between unexpected excess
returns and shocks to volatility (p > 0) makes the risky asset a good instrument
to hedge consumption against a deterioration in investment opportunities, because

low expected returns on wealth—declines in volatility—tend to coincide with positive

15 Appendix A shows that A; depends on a; but not on g (except through hy), while Ay depends

on ag but not on oy (again, except through hq).
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unexpected returns on the risky asset that in turn deliver positive realized returns
on wealth—because m > 0. Therefore, investors with v > 1 will optimally have a

positive hedging demand for the risky asset.

If a; < 0, the investor must hold a short position on the risky asset to have a
positive expected return on wealth. When m < 0, the expected return on wealth
is still increasing in volatility. An increase in volatility still means an improvement
in investment opportunities, because investors who hold short positions on an asset
benefit from changes in investment opportunities that make the Sharpe ratio for this
asset more negative. A negative correlation between unexpected excess returns and
shocks to volatility (p > 0) implies that low expected returns on wealth—declines in
volatility—tend to coincide with positive returns on the risky asset that now deliver
negative realized returns on wealth—because m < 0. Therefore, even though short-
ing the risky asset is the only way to make positive returns on wealth on average,
risk averse investors will want to temper this short position with a positive hedging
demand to avoid having too large negative returns on wealth when investment oppor-
tunities are poor. This explains why hedging demand is always positive regardless of

the sign of a; when v > 1 and p > 0.

6 Model Estimation: Spectral GMM

A practical implementation of the solution to the dynamic optimization problem
(4)-(7) requires an estimation of the parameters of the process (1)—(2). Estimating
stochastic volatility models is typically a difficult task. The main difficulty is that

volatility is not observable and therefore needs to be integrated out of the condi-
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tional density function. Common techniques used have included simulated method
of moments, Kalman filtering, simulated maximum likelihood, and Bayesian estima-
tion.'® The choice between these usually becomes a tradeoff between accuracy and

computation time.

Chacko and Viceira (1998) and Singleton (1997) have developed an alternative
estimation procedure that does not require knowledge of the likelihood function. As
an additional benefit, this methodology does not require the discretization of the
stochastic process either. It only requires knowledge of its conditional characteristic
function. Once this function is known, we can integrate volatility out and obtain
the characteristic function of next period’s stock price conditional only on the prior
period’s stock price. Chacko and Viceira (1998) show that we can use generalized
method of moments (GMM) to estimate the parameters of the model directly off
this conditional characteristic function. Accordingly they call this estimation method

Spectral GMM.
The conditional characteristic function of the log stock price is defined as
¢ (log Sy, 7;6,w) = E [exp {iwlog Sy} [log Si] , (28)

where w € R, 7 > 1, and 0 = (u, &, 0, o, p)’. Note that we are conditioning only on
past prices after integrating out volatility. Appendix B derives ¢(log S;, 7;0,w) and

gives an analytic expression for this function in equation (40).

The characteristic function defines a set of moments of the complex stochastic

16See Melino and Turnbull (1990), Gallant, Hsieh, and Tauchen (1994), Harvey, Ruiz, and Shep-
hard (1994), Danielsson (1994), and Jacquier, Polson, and Rossi (1994) for examples of these esti-

mation methods in the context of stochastic volatility models.

26



variable exp(ilog Sy, ). For example, when w = 1, the characteristic function is sim-
ply the first non-central moment of exp(ilog Siy,). For w = 2, the characteristic
function is simply the second non-central moment of exp(ilog S;;,). This procedure
can be repeated to obtain any desired number of moments. Furthermore, obtain-
ing these population moments is trivial since it involves only the evaluation of the

characteristic function (40).

Equation (28) implicitly defines a set of moment conditions, since
E [h(Xa t) ® (¢ (log Stv 75 07 W) — €Xp {Zw IOg St+7'})] = Oa (29)

for all w € R. h(X,t) is any vector of (real-valued or complex-valued) instruments.
Since there are five parameters to be estimated, we choose w = 1,...,5. We also set

h(X,t) =1 and 7 = 1 for simplicity.

If we let g(@) represent the sample analog of the moment conditions in (29), we
choose parameter estimates such that
0 = arg n{fg{lg((?)’W(O)g(@)
where W(0) is a positive-definite, symmetric weighting matrix. Because the moment
conditions exactly match the number of parameters we have in the model, the pa-
rameters are exactly identified, and ¢g(0)'W(80)g(0) attains zero for all choices W (8).
Consequently, we use the identity matrix for W (8).
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7 Optimal Consumption and Portfolio Choice with
Stochastic Volatility: The U.S. Experience

This section examines the implications of the patterns in volatility observed in the
U.S. stock market for portfolio choice. In order to accomplish this, we first need to
estimate the parameters in equations (1) and (2) for the U.S. market. To this end, we
use the results in Section 6 to estimate the stochastic volatility model of (1) and (2)
using monthly equity returns from January 1926 through December 1997, and annual
equity returns from 1871 through 1997. For the monthly estimates we use excess
returns (inclusive of dividends) on the CRSP value-weighted portfolio comprising the
NYSE, AMEX, and Nasdaq stocks. We compute excess stock returns over the one-
month T-bill yield from the CRSP Risk Free Rates file. For the annual estimates
we use excess returns (inclusive of dividends) on the Standard and Poor Composite
Stock Price Index over the prime commercial paper rate. These data come from an
updated version of the annual long-term stock market dataset in Shiller (1989).1"For

our calibration exercise we set the riskless rate at 1.5% per year.

Table 1 reports Spectral GMM parameter estimates and their standard errors.
Standard errors are bootstrapped, and parameter estimates are annualized to facil-
itate their interpretation. The estimates of both the unconditional mean of excess
returns and precision have low standard errors in both samples. However, the esti-
mates of the rest of the parameters—particularly the reversion parameter—are less

precise.

17"This update is publicly available at Robert Shiller’s web home page at
[http://www.econ.yale.edu/ “shiller/].
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These estimates imply a mean excess return around 8% per year in both samples.
The square root of the unconditional mean of the variance process is estimated at
around 20% per year in the monthly sample. This estimate is somewhat larger in
the annual sample.'® The instantaneous correlation between shocks to volatility and
stock returns (—p) is negative and relatively large—almost —54% in the monthly

sample and —37% in the annual sample.

The estimate of the reversion parameter s in the precision equation implies a
half-life of a shock to precision of about 2 years in the monthly sample. The rate of
mean reversion is slower in the annual sample, where the estimate of the half-life of
a shock to precision is slightly longer than 16 years. French, Schwert and Stambaugh
(1987) and Campbell and Hentschel (1990) have also found a relatively slow speed of
adjustment of shocks to stock volatility in low frequency data. This slow reversion to
the mean in low frequency data contrasts with the fast speed of adjustment detected
in high frequency data by Andersen, Benzoni and Lund (1998). An estimation of the
model in this paper using weekly data also shows a quick reversion to the mean.'
These results suggest the presence of high frequency and low frequency (or long-
memory) components in stock market volatility. Chacko and Viceira (1998) show that
a model of multiple additive components in stock return volatility, each one operating

at a different frequency, generates a similar pattern in the estimates of x when stock

returns are sampled at different frequencies. The high frequency component is unlikely

18The unconditional mean of the precision process y is §. A second-order Taylor expansion of
v = 1/y around 6 implies an unconditional mean of v equal to 1/6 + 02/26%k. The second term
comes from the second-order term of the expansion, that involves the unconditional variance of the

precision process.
19We estimate the half-life of a shock to precision to be about 3 months. We do not report the

weekly estimates to save space. However, they are readily available upon request.
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to have a large effect on portfolio choice because shocks to volatility have very low
persistence.?’ Accordingly we do not pursue this issue further and we only consider

the estimates from the monthly and annual datasets for our calibration exercise.

Tables IT explores the implications for portfolio choice of the monthly estimates,
while Table III explores the implications of the annual estimates. Panel A of each
table reports the mean optimal percentage allocation to stocks for investors with
coefficients of relative risk aversion () equal to {1, 1.5, 2, 4, 10, 20, 40}, elasticities
of intertemporal substitution (¢) equal to {1, 1/1.5, 1/2, 1/4, 1/10, 1/20, 1/40}
and rate of time preference (3) equal to 6% annually.?! We have shown that portfolio
choice does not depend on the investor’s elasticity of intertemporal substitution except
through the loglinearization parameter h;. Panel A of each table shows that the
indirect effect of ¥ on 7, is negligible. Campbell and Viceira (1999) have found a
similar result when expected returns are time-varying. By contrast, the total optimal
portfolio allocation to stocks is inversely related to the coefficient of relative risk

aversion.

Panel B evaluates the empirical importance of hedging demands. It reports the
percentage ratio of hedging portfolio demand over myopic portfolio demand which,
as shown in Propositions 2 and 4, is independent of the level of volatility. Since our
estimate of the correlation between shocks to volatility and unexpected stock returns

is negative in both samples, hedging demand is negative for all v > 1. Hence this

20We have shown in Section 4 that optimal portfolio demand is increasing in the persistence of

shocks to volatility.
2INote that Proposition 2 implies that the optimal percentage allocation to stocks is linear in the

inverse of the stock return volatility. Hence, the mean allocation to stocks differs from the allocation

at the mean of the volatility process by a Jensen’s Inequality term.
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ratio tells us the reduction in myopic portfolio demand due to hedging considerations.
Panel B of Table II shows that our estimates of the volatility process for monthly US
stock returns imply a small impact of time-variation in volatility on the optimal
portfolio demand for stocks. Even for highly risk averse investors (y = 40), hedging
demand reduces myopic demand by less than 4%. By contrast, the estimates of the
volatility process based on the annual sample imply a much larger impact of volatility
on optimal portfolio demand. Hedging demand reduces myopic demand by at least
4% for investors with v = 4. For highly risk averse investors (7 = 40), it can reduce

myopic demand by almost 16%.

Figures 1 and 2 are helpful to understand these results. Propositions 2 and 4
show that hedging demand depends on the instantaneous correlation between shocks
to volatility and stock returns (—p) and the persistence of these shocks (x). Figure 1
plots the ratio of hedging demand to myopic demand for values of k implying a half-life
of a shock between 6 months and 30 years—and holding the rest of the parameters at
the values implied by the monthly dataset. Figure 2 repeats the experiment, though
this time the parameter that varies is the correlation coefficient. The vertical line in
each plot intersects the horizontal axis at the parameter value implied by the monthly

dataset.

Figures 1 and 2 suggest that hedging demand is more sensitive to the persistence
in shocks to volatility than to the correlation between these shocks and stock returns.
Figure 1 shows that increasing persistence has noticeable effects on hedging demand,
even for investors with low coefficients of relative risk aversion. For example, an
investor with v = 4 would reduce her myopic demand by approximately 10% instead

of 2.5% if the half-life of a shock were 10 years instead of 2 years. By contrast, the

31



effect of changing the correlation is much smaller. Even if the correlation between
unexpected returns and shocks to volatility were —1, hedging demand would not

reduce myopic demand by more than 6% for an investor with v = 20.

Table IV describes the implications for consumption and savings of the estimated
volatility process for the monthly sample. Panel A in the table reports the exponen-
tiated optimal mean log consumption-wealth ratio and Panel B reports the long-term
expected return on wealth. Panel A shows that optimal consumption depends on
both v and . It is a positive monotonic function of ¢ when v > 1, while it is a
negative monotonic function of ¢ when v = 1. It is independent of v and equal to

the rate of time preference 5 (6%) when 1 = 1—as shown in Section 3.

In the context of a model with time-varying expected returns, Campbell and
Viceira (1999) explain the complex patterns we observe in Panel A. Investors in the
bottom of the panel are highly risk averse, so they are almost fully invested in stocks;
if they are also very reluctant to substitute consumption intertemporally (¢ close to
zero), they optimally choose to consume the long-term yield on wealth—allowing for
some precautionary savings. Panel B shows that the optimal consumption-wealth
ratio of an investor with 4 = 40 and ¢ = 1/40 is remarkably close to the long-term
expected return on her wealth portfolio. For investors with v still close to zero but
less risk averse, it is optimal to invest a larger fraction of their wealth in stocks;
hence they choose a larger consumption-wealth ratio—though precautionary savings
also increase, as they take on more risk. This explains the pattern we observe as
we move upwards in Panel A from the south-east corner. When the expected return
on wealth is smaller than the rate of time preference, investors who are willing to

substitute consumption intertemporally value current consumption more than future
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consumption; hence the increasing pattern in consumption-wealth ratios we observe
as we move to the left in Panel A. As we move upwards in the panel this pattern
becomes less pronounced—or even reverses—because the long-term expected return

on wealth increases and eventually is larger than the rate of time preference.

Table V reports the percentage, annualized volatility of the log consumption-
wealth ratio for the monthly sample. Proposition 4 shows that any investor with
elasticity of intertemporal substitution different from one is willing to accept volatil-
ity (time-variation) in her consumption-wealth ratio. From equation (2) and Propo-
sition 4, the instantaneous volatility of the log consumption-wealth ratio is equal
to —Ao,/y;. Table VI reports this volatility when y; is at its long-term mean 0.
This table shows that highly risk-averse investors with low elasticity of intertemporal
substitution choose the most volatile consumption-wealth ratios. But even for these
investors, the log consumption-wealth ratio exhibits low volatility, both in absolute
terms and relative to its mean. For example, for ¢ = 1/40, volatility ranges from
2.4% when v = 1 to .07% when ~ = 40. This volatility implies a mean-volatility ratio

around 4 when v = 1 and around 26 when v = 40.%

Finally, Table V investigates the effect of covariation between expected returns
and volatility on optimal portfolio choice. We assume that expected excess returns
are linear in the instantaneous variance of stock returns as in equation (26) of section
5. An estimation of this model using the monthly data set shows that «; is not
statistically significant—the point estimate is .75 with a standard error of .41. Hence

we choose to compute optimal allocations for a set of values of o, around zero, holding

22Incidentally, this result suggests that the approximate analytical solution is likely to be accurate

for values of 9 close to zero.
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the rest of the parameters at the values implied by the monthly dataset. Each row of
the table reports allocations corresponding to this set of values of a; given a particular
value of . All entries in the table assume 1) = 1/2. Proposition 5 shows that both
components of optimal portfolio demand (myopic and hedging) are affine functions of
the reciprocal of instantaneous volatility. Panel A reports the mean optimal allocation
to stocks, while Panel B reports the percentage value of the intercept of the hedging
demand and Panel C reports the percentage value of the slope of the hedging demand

times 6 (the unconditional mean of y, = 1/vy).

Panel A shows that 7; is increasing in a;. Panels B and C show that this effect
operates mainly through the increase in myopic demand caused by an increase in ;.
As shown in section 5, the intercept of the hedging demand is always positive for p > 0
and vy > 1, while the slope is always negative. The slope of the intertemporal hedging
demand captures hedging effects due to uncompensated changes in volatility, while
the intercept captures hedging effects of compensated changes in volatility—it is zero
when expected excess returns are constant, and it increases as a; becomes larger in
absolute value. Table I shows that the effect of the slope is relatively more important
than the effect of the intercept, at least for values of «; close to zero. However, both
terms are too small in absolute value to have any significant impact on total portfolio

demand when using parameter estimates based on the monthly dataset.

8 Conclusion

Time-varying conditional volatility is a pervasive characteristic of asset returns. This

paper explores the implications of this phenomenon for optimal portfolio choice of
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long-horizon investors using an intertemporal model where consumption is also en-
dogenously determined. We use the Duffie-Epstein (1992) formulation of recursive
utility in continuous-time to model investors’ preferences. Recursive utility disentan-
gles investors’ attitudes towards the intertemporal substitution of consumption from
their willingness to take on financial risk, which in the standard power utility model

are represented by the same parameter.

We show that optimal portfolio demand for stocks is proportional to precision,
the inverse of stock volatility, provided that expected excess returns are constant and
all time-variation in the asset’s Sharpe ratio is in the denominator. Portfolio demand
depends on the investor’s coefficient of relative risk aversion, but not on her elasticity
of intertemporal substitution; by contrast, optimal consumption relative to wealth
depends on both preference parameters. We also show that stochastic volatility pro-
duces an optimal intertemporal hedging demand for stocks. This hedging component
of portfolio demand is negative when changes in volatility are instantaneously neg-
atively correlated with excess stock returns for those investors whose coefficient of
relative risk aversion is larger than one. The absolute size of this demand increases
with the size of this correlation, and also with the persistence of shocks to volatility.

The ratio of hedging demand to total portfolio demand is constant.

If excess returns covary linearly with volatility, optimal portfolio demand and
its hedging component are both affine functions of precision. We show that, when
the instantaneous correlation between changes in volatility and excess stock returns
is negative and the investor’s coefficient of relative risk aversion is larger than one,
the intercept of the hedging component is positive, while the slope is negative. The

intercept, which is zero when expected returns are constant, captures hedging ef-
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fects of compensated changes in volatility, while the slope captures hedging effects of

uncompensated changes in volatility.

Our solution to the intertemporal optimization problem is exact provided that
investors’ elasticity of intertemporal substitution is one. In all other cases, this so-
lution is approximate, based on a continuous-time loglinear approximation. This
approximation is equivalent to the loglinear approach to portfolio choice developed
by Campbell and Viceira (1998, 1999) for discrete-time models, and it can be viewed
as a particular class of the perturbation methods described in Judd (1998).

To evaluate the importance of stochastic volatility for portfolio choice we estimate
the process for stochastic volatility using monthly U.S. stock returns from 1926 to
1997 and annual stock returns from 1871 to 1997. To this end we apply the Spec-
tral Generalized Method of Moments of Chacko and Viceira (1998). Spectral GMM
provides a flexible instrument to estimate continuous-time models for which ML es-
timation is not possible because the density function is unknown. This methodology

instead utilizes the characteristic function, which is known for a wide array of models.

Our estimates indicate that empirically the instantaneous correlation between
changes in volatility and stock returns is large and negative. This negative correlation
implies negative hedging portfolio demands for stocks when investors are more risk
averse than logarithmic investors. Our estimates also indicate that shocks to volatility
are moderately persistent when returns are measured at a monthly frequency, but
they much more persistent when returns are measured at an annual frequency. This
difference in persistence has important implications for the size of hedging demands.
Shocks to volatility must be highly persistent to generate large hedging demands

by long-horizon investors. For example, our estimate of the persistence of shocks
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to volatility at a monthly frequency implies only modest hedging demands, even for
highly risk averse investors, while the persistence of shocks at an annual frequency
implies much larger hedging demands at all levels of risk aversion. In fact, a sensitivity
analysis shows that persistence in shocks to volatility is considerably more important

than correlation in determining the size of hedging demands.
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A Appendix A: Alternative Approximate Analyt-
ical Solution to the Bellman Equation

This appendix derives the second perturbation approach to find an approximate ana-

lytical solution to the problem. This second approach works by finding a solution to

the nonlinear ODE (18) around the exact solution that obtains when ¢ = 1—which

is derived in section 3.

We first restate the Bellman equation obtained in (18) above:

1 = (n—r)? po(p—r)
= — YT I I I I
0 1—?/15 I +1—2/J6 + 2 Yyt + 5 yYt + 7
2 2 2 2
peo” (1) 1 o
—_— — k(0 — — LY.
27 It Yt + 1 — y/{( yt) + 2 (1 o /7) yyyt (30)

We apply the perturbation approach by simply taking a 1st-order expansion of the

1-w L
first term, I'" Lv, around the parameter value ) = 1. This yields

1— 1—
TS A T4 %Ilog I

Substituting this into (30) gives

B’ B’ Y (p—r)? po(p—r)
= — I— ITlogl + —p31 + —=—1 —] 1
0 T T og +1—1/1ﬁ+ o Y + 5 yYe + 7
2 2 2 2
po (1) 1 o
I,k(0 — R T
+ 27 It yt + 1 - 7 yH( yt) + 2 (1 _ ’7) yyyt

We can now solve this equation exactly. The solution is given by
I =exp{Ay; + B},

where A satisfies the following quadratic equation:
aA? +bA+c=0,
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with

a = o (;T ” [y (1=p%) + 7], (31)
(o o g o
¢ = (p 2—77”) ’ (33)

and B is given by the following expression:

1=y ([ K0 By 3’
B = 57 (1_714—1-1_1/}—1_1#—}—7“).

Note that equations (31)-(33) are identical to equations (15)-(17).

Thus, the value function, J(X;,y) = J(X;, 1/v;), is given the expression

1 A X
J(Xt,—):exp{—+B} :
Vg Vg 1—7

from which optimal consumption and portfolio choice may be calculated by simply

plugging into the first-order conditions (9) and (10).

B Appendix B: Derivation of Optimal Policies Un-
der Time-Varying Expected Returns

The simplified ODE for this problem is given by:

1— o? o (1 — H
0 = —p'H'+y3+ (1= 9) (2aoa1 + ogye + —1> _prll=y) (coys + 1) =Ly,
2y Yt ¥ H
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po*(l —~)* (H, ’ H,
+r(1—¢)+ m (ﬁ) Ye — ?/{(9 — )
2 . 2 2
+% (—i _Z} - 1) (%) Ye — %—}gtyyt- (34)

We now guess that H = exp{A;logy: + Asy: + B} and we make the substitution
BYH™ ' ~ hy+ hi(ct — ),
and

—logy, = logu
1
log 0, + o (v—20,)

v

Q

KO —o? 1

K yt.

= logn—log(nQ—aZ) -1+

After collecting terms in 1/y:, y; and 1 we find:

0 = LM—{G(hl—l—fﬂ)—(%—Fl)(ﬂ—i—w]/h—l—a/ﬁ, (35)

2y 2 Y
1— 2 1—
2y gl
0 = —hy—hywlogB—hy (logk —log (k0 — 02) — —2— ) Ay + hy B + 43
Kkl — o2
2(1— 11—
4 ( 2@{;)040041 _PU( 7) (agA; + ay Ay) + 7 (1 — )

+2(1A1A2 + K (Al - 19142) s

where a is given in (23). The optimal policies obtain immediately from substitution

of the value function into the first order conditions (9) and (10).

Coefficient A; obtains as the solution to the quadratic equation (35). When

v > 1, this equation has two real roots of opposite sign. However, only the root
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associated with the negative root of the discriminant maximizes the value function
and ensures that A; = 0 when a; = 0—i.e., it ensures the mutual consistency between
the solution given in Proposition 4 and this solution. It is immediate then to show

that A;/(1 — ) > 0 when v > 1. Note that A; does not depend on «.

Similarly, A, obtains as the solution to the quadratic equation (36). Simple in-
spection of this equation and equation (21) shows that they are identical except that
ag replaces (1 — 7) in (36). Hence the analysis of A presented in section 4 is also
valid for A;, so that A; is given by the root associated with the positive root of the
discriminant of equation (36). It is immediate then to show that Ay/(1 — ) < 0

when v > 1, and As = 0 when oy = 0. Note that As does not depend on ;.

C Appendix C: Derivation of the Conditional Char-

acteristic Function.

The conditional characteristic function for the (log) stock price process is given by

the solution to the following Kolmogorov backward equation (KBE):

1 8% 1. 96 9 1, 9%
0 = 2 atogsy T ) Flegs TR WGy, TG,
02 0
+po ¢ 99 (37)

d(log S,)dy, O’
where ¢ = ¢ (log S;, yi, 7;0,w). The boundary condition for this partial differential

equation is simply

¢ (log Stsrs Yeir, T; 0,w) = expliwlog Sy ).
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Due to the 1/2y, terms in (37), this equation clearly does not fit into the affine
specification required in Chacko and Viceira (1998). However, we will use a Taylor-

series expansion to linearize this term. We use the approximation

1 2 1
~ ﬁyt

—_— ~

v 0
With this linearization, the KBE becomes

2 1 024 12 1 9o 9o
(5~ ?yt)a(log CAE 3G~ pWlgigs, T~ w3,
27 Moz TP 9(0g )0y, ar

0 = —=

N —

(38)

+

Since the KBE is now a linear equation, we know from Chacko and Viceira (1998)

that the characteristic function is exponential affine. The solution to (38) is given by

¢ (log Sy, yt, 7; 0, w) = explA(7) log S; + B(7)y: + C(7)], (39)
where
AlT) = iw,
50 = 22 (ot s
C(r) = (b— %)in + %(iw)QT + (kO + paiw)% log L"z exp(n:; : :1 Y -
r o= —%/ﬂ—i-%\//#—i-g—ziw(iw—l),
ry = —%&—%\/&Q—f-;—jiw(iw— 1).

Before we proceed to estimate the model, we first need to integrate the unob-

servable variable y, out of the characteristic function. This is easily accomplished as
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follows. Let f(y) denote the unconditional density of volatility. Then,

/Oooaﬁ(bg Se,Ye, T;0,w) f(y) dy: = /OOO exp[A(7)log Sy + B(7)y: + C(7)] f (1) dy:

— explA(r)log S, + C(r)] / " explB(r)yilf () dye

Of course, [, exp[B(7)y:] f(ye) dy; is simply the moment-generating function of the
square-root process (2). This moment generating function is well known. Therefore,
we have the result that the characteristic function of log S conditional only on the

prior observation of the stock price, log Sy, is given by

N

K0

¢ (log Sy, 730, w) = exp|A(7) log S; + C(7)] {ﬁ’ZB(T)] . (40)

&

Thus, we have effectively integrated out the unobservable state variable, 1, from the

characteristic function and, therefore, from the estimation process.
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TABLE 1

Estimates of the Stochastic Process
for Returns and Volatility

Model:
dS;/S; — dBy/ By = (. — r)dt + \/v;dWs,
ve=1/y,
dy; = k(0 — y.)dt + o\/y;dW,,
AW,dW, = pdt

Parameter estimates (s.e.):

1926.01 - 1997.12 1871 - 1997

p—r .0799 0841
(.0238) (.0370)

K 3413 0426
(.3114) (.0445)

6 27.7088 24.7718
(1.8153) (12.6946)

o 6512 1.1786
(.4855) (.7065)

p 5355 3708

(.2381) (.3769)




TABLE II

Mean Optimal Percentage Allocation to Stocks
and Percentage Hedging Demand Over Myopic Demand
(Sample: 1926.01 - 1997.12)

R.R.A. E.LS.

(A) Mean optimal allocation to stocks (%):
E [7¢(y¢)] = w(8) x 100

.00 1/1.5 1/2  1/4  1/10 1/20 1/40

1.00 221.39 221.39 221.39 221.39 221.39 221.39 221.39
1.50  145.93 145.95 145.95 145.97 145.97 145.98 145.98
2.00 108.84 108.84 108.84 108.84 108.83 108.83 108.83
4.00 53.98 5396 5394 5392 5391 53.90 53.90
10.0 2149 2147 2146 2145 2144 21.43 2143
20.0 10.73 1072 10.71 10.70 10.70 10.69 10.69
40.0 5.36 5.35 5.35 5.35 534 534 534

(B) Ratio of hedging demand over myopic demand (%):

.00 1/1.5 1/2  1/4 1/10 1/20 1/40

1.00 0.00 0.00 0.00 0.00 000 0.00 0.00
1.50 -1.13 -112 -1.11 -1.10 -1.10 -1.10 -1.10
2.00 -1.67 -1.68 -1.68 -1.68 -1.68 -1.68 -1.68
4.00 -247  -252  -254  -258 -2.60 -2.61 -2.61
10.0 -293 302 -3.06 -313 -318 -3.19 -3.20
20.0 -3.09 -319 -324 -332 -337 -339 -340
40.0 -3.16  -3.27  -3.33 342 -347 -349 -3.50




TABLE III

Mean Optimal Percentage Allocation to Stocks
and Percentage Hedging Demand Over Myopic Demand
(Sample: 1871 - 1997)

R.R.A. E.LS.

(A) Mean optimal allocation to stocks (%):
E [7¢(y¢)] = w(8) x 100

.00 1/1.5 1/2  1/4  1/10 1/20 1/40

1.00  208.33 208.33 208.33 208.33 208.33 208.33 208.33
1.50  131.87 131.95 131.99 132.06 132.10 132.11 132.12
2.00 96.79 96.60 96.49 96.32 96.21 96.17 96.15
4.00 47.02 46.67 46.48 46.15 4592 45.85 45.80
10.0 18.52 1831 18.20 18.00 17.87 17.82 17.80
20.0 9.21 9.10 9.04 893 88 883 882
40.0 4.59 4.54 450 445 441 440  4.39

(B) Ratio of hedging demand over myopic demand (%):

.00 1/1.5 1/2  1/4 1/10 1/20 1/40

1.00 0.00 0.00 0.00 0.00 000 0.00 0.00
1.50 -5.05 499 -496 491 -4.89 -488 -4.87
2.00 -7.08 -7.27 -737 -7.53 -7.64 -7.68 -7.69
4.00 -9.72 -10.38 -10.76 -11.40 -11.82 -11.98 -12.06
10.0 -11.12 -12.09 -12.65 -13.58 -14.21 -14.44 -14.56
20.0 -11.57 -12.64 -13.25 -14.28 -14.97 -15.22 -15.35
40.0 -11.78 -12.90 -13.54 -14.62 -15.34 -15.60 -15.73




TABLE IV

Optimal Consumption-Wealth Ratio and
Long-Term Expected Return on Wealth
(Sample: 1926.01 - 1997.12)

R.R.A. E.LS.

(A) Consumption-Wealth ratio (%):
Ci/X¢ = exp{E[ct — z¢]} x 100

.00  1/1.5 1/2  1/4  1/10 1/20 1/40

1.00 6.00 7.45 817 9.26 991 10.13 10.24
1.50 6.00 6.42 6.63  6.94 7.13 7.20 7.23
2.00 6.00 5.92 5.88 5.82 5.79 5.78 5.77
4.00 6.00 5.20 4.80  4.19 3.83 3.7 3.65
10.0 6.00 4.78 416  3.24 2.69 2.51 2.42
20.0 6.00 4.64 3.96 2.93 2.32 2.12 2.01
40.0 6.00 4.57 3.85 2.78 2.13 1.92 1.81

(B) Long-Term expected return on wealth (%):
(w(@)(p — r) + r) x 100

1.00 1/1.5 1/2  1/4 1/10 1/20 1/40

1.00 19.19 1919 19.19 19.19 19.19 19.19 19.19
1.50 13.16 13.16 13.16 13.16 13.16 13.16 13.16
2.00 10.20 10.20 10.20 10.20 10.20 10.20 10.20
4.00 5.81 5.81 5.81 5.81 5.81 5.81 5.81
10.0 3.22 3.22 3.21 3.21 3.21 3.21 3.21
20.0 2.36 2.36 2.36 2.36 2.35 2.35 2.35
40.0 1.93 1.93 1.93 1.93 1.93 1.93 1.93




TABLE V

Volatility of the
Optimal Log Consumption-Wealth Ratio (%)
(Sample: 1926.01 - 1997.12)

— Ao+ x 100

R.R.A. E.LS.

100  1/1.5 1/2  1/4 1/10 1/20 1/40

1.00 0.00 0.88 1.29 1.89 224 235 2.40
1.50 0.00 0.59 0.87 1.30 1.55 1.64 1.68
2.00 0.00 0.44 0.66  0.99 1.19 1.26 1.29
4.00 0.00 0.22 033  0.51 0.61 0.65  0.67
10.0 0.00 0.09 013 0.21 025 026 027
20.0 0.00 0.04 0.07 010 013 013 0.14
40.0 0.00 0.02 0.03 0.05 006 0.07 0.07




TABLE VI

Mean Optimal Percentage Allocation to Stocks
When Expected Excess Returns Vary Linearly
With Volatility
(Sample: 1926.01 - 1997.12)

Et[dSt/St — ’l"dt] = —|— a1 Vg

(A) Mean optimal allocation to stocks (%):

-075  -0.50 -0.25 0.00 025 050 @ 0.75

1.00 146.39 171.39 196.39 221.39 246.39 271.39 296.39
1.50 96.10 112.67 129.29 145.95 162.67 179.44 196.25
2.00 71.52  83.91 96.34 108.84 121.39 133.99 146.65
4.00 35.35 41.51 47.70 5394 60.22 66.54 72.90
10.0 14.04 16.50 1897 2146 2397 26.50 29.05
20.0 7.00 823 947 1071 11.97 13.23 14.51
40.0 3.50 4.11 4.73 535 598  6.61 7.25

(B) Intercept of hedging demand (%):

-0.75  -0.50 -0.25 0.00 025 050 0.75

1.00 0.00 0.00 000 0.00 000 0.00 0.00
1.50 0.21 0.09 0.02 000 0.02 009 019
2.00 023 010 003 000 003 010 0.22
4.00 0.18 0.08 002 000 002 0.08 0.18
10.0 0.08 0.04 0.01 0.00 0.01 0.04 0.09
20.0 0.04 0.02 0.01 0.00 0.01 0.02  0.05
40.0 0.02  0.01 0.00 0.00 000 0.01 0.02

(C) Slope of hedging demand times 0 (%):

-0.75  -0.50 -0.25  0.00 0.25 0.50  0.75

1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
1.50 -1.70  -1.68 -1.67v -1.64 -1.61 -1.58 -1.54
2.00 -191 -1.89 -1.88 -1.86 -1.83 -1.81 -1.77
4.00 -142  -1.42 -141 -141 -140 -1.39 -1.37
10.0 -0.68 -0.68 -0.68 -0.68 -0.68 -0.67 -0.67
20.0 -0.36 -0.36 -036 -0.36 -0.36 -0.36 -0.36
40.0 -0.18  -0.18 -0.18 -0.18 -0.18 -0.18 -0.18
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