NBER WORKING PAPER SERIES

EXPLAINING THE POOR PERFORMANCE
OF CONSUMPTION-BASED
ASSET PRICING MODELS

John'Y. Campbell
John H. Cochrane

Working Paper 7237
http://www.nber.org/papersiw 7237

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue
Cambridge, MA 02138
July 1999

Campbell’s research is supported by the National Science Foundation via a grant administered to the NBER,;
Cochrane's research is supported by the National Science Foundation via a grant administered to the NBER
and by the Graduate School of Business. We thank Andrea Eisfeldt, Andrew Abel, George Constantinides,
Lars Hansen, John Heaton, Robert Lucas, and an anonymous referee for helpful comments. All opinions
expressed are those of the authors and not those of the National Bureau of Economic Research.

© 1999 by John Y. Campbell and John H. Cochrane. All rights reserved. Short sections of text, not to



exceed two paragraphs, may be quoted without explicit permission provided that full credit, including © notice,
is given to the source.

Explaining the Poor Performance of
Consumption-Based Asset Pricing Models
John'Y. Campbell and John H. Cochrane
NBER Working Paper No. 7237

Jduly 1999

JEL No. GOO

ABSTRACT

The poor performance of consumption-based asset pricing modds rddive to traditiona portfolio-
based asset pricing moddsis one of the great disappointments of the empirica asset pricing literature. We
show that the externa habit-formationmode economy of Campbell and Cochrane (1999) canexplainthis
puzzle. Though artificia datafrom that economy conform to a consumption-based model by congtruction,
the CAPM and its extendgons are much better approximate models than is the standard power utility
specificationof the consumption-based mode. Conditioning informationisthe centra reason for thisresuilt.
The model economy has one shock, so when returns are measured at sufficiently high frequency the
consumption-based moded and the CAPM are equivaent and perfect conditional asset pricing models.
However, the model economy a so producestime-varying expected returns, tracked by the dividend-price
ratio. Portfolio-based models capture some of this variationin state variables, which a state-independent
function of consumption cannot capture, and so portfolio-based modds are better approximate
unconditional asset pricing models.

John'Y. Campbell John H. Cochrane
Department of Economics Graduate School of Business
Harvard University Universty of Chicago
Littauer Center 213 1101 E. 58th. St.
Cambridge, MA 02138 Chicago, IL 60637

and NBER and NBER

john_campbel | @harvard.edu john.cochrane@gsh.uchicago.edu









1. Introduction

The development of consumption-based asset pricing theory ranks as one of the
major advances in financial economics during the last two decades. The classic pa-
pers of Lucas (1978), Breeden (1979), Grossman and Shiller (1981), and Hansen and
Singleton (1982, 1983) showed how a simple relation between consumption and asset
returns captures the implications of complex dynamic intertemporal multifactor asset
pricing models.

Unfortunately, consumption-based asset pricing models have proved disappointing
empirically. Hansen and Singleton (1982, 1983) formulated a canonical consumption-
based model in which a representative investor has time-separable power utility of
consumption. They rejected the model on US data, finding that it could not simul-
taneously explain the time-variation of interest rates and the cross-sectional pattern
of average returns on stocks and bonds. Wheatley (1988) rejected the model on
international data.

All models can be rejected, and the more important issue is which approximate
models are most useful. Alas, the canonical consumption-based model has performed
no better, and in many respects worse, than even the simple static CAPM. Mankiw
and Shapiro (1986) regress the average returns of the 464 NYSE stocks that were con-
tinuously traded from 1959 to 1982 on their market betas, on consumption growth
betas, and on both betas. They find that market betas are more strongly and ro-
bustly associated with the cross-section of average returns, and they find that market
betas drive out consumption betas in multiple regressions. Breeden, Gibbons and
Litzenberger (1989) study industry and bond portfolios, finding roughly comparable
performance of the CAPM and a model that uses a mimicking portfolio for consump-
tion growth as the single factor, after adjusting the consumption-based model for
measurement problems in consumption. Cochrane (1996) finds that the traditional
CAPM substantially outperforms the canonical consumption-based model in pricing
size portfolios. For example, he reports a root mean square pricing error (alpha)
of 0.094 percent per quarter for the CAPM and 0.54 percent per quarter for the
consumption-based model.

More recently, multifactor models have improved on the CAPM. Jagannathan
and Wang (1996) and Cochrane (1996) extend the traditional CAPM by scaling the
market factor with “price ratio” variables that reveal market expectations, such as the
dividend-price ratio or the term premium. This extended CAPM can be interpreted
as a conditional CAPM, or as an unconditional multifactor model. Cochrane (1996)
reports pricing errors about half those of the static CAPM on size portfolios. Chen,
Roll, and Ross (1986) and Jagannathan and Wang (1996) reduce pricing errors by
adding macroeconomic factors, and Fama and French (1993) use size and book-market
factors to dramatically reduce the CAPM'’s pricing errors on size and book-market



sorted portfolios.

The canonical consumption-based model has failed perhaps the most important
test of all, the test of time. 25 years after the development of the consumption-based
model, almost all applied work in finance still uses portfolio-based models to correct
for risk, to digest anomalies, to produce cost of capital estimates, and so forth.

This history is often interpreted as evidence against consumption-based models
in general rather than against particular utility functions, particular specifications
of temporal nonseparabilities such as habit persistence or durability, and particu-
lar choices of consumption data and data-handling procedures. But this conclusion is
internally inconsistent, because all current asset pricing models are derived as special-
izations of the consumption-based model rather than as alternatives to it. All current
models predict that expected returns should line up against covariances of returns
with some function of consumption (possibly including leads and lags). For example,
the CAPM is derived by specializing the consumption-based model to two periods,
quadratic time-separable utility, and no labor income (or to log utility and lognor-
mally distributed returns; or to quadratic utility and i.i.d. returns; see Cochrane 1999
for textbook derivations). Portfolio-based models are not derived by the assumption
of explicit frictions that de-link consumption from asset returns. One cannot believe
that the CAPM does hold, but consumption-based models, as a class, fundamentally
do not.

Still, the canonical consumption-based model does poorly in practice relative to
factor-pricing models that use portfolio returns as risk factors, and it is important
to understand why this is so. In this paper, we examine this issue using artificial
data from the Campbell and Cochrane (1999) model economy. A consumption-based
model does hold, exactly and by construction, yet we find that the CAPM outperforms
the canonical specification of the consumption-based model, and that a multifactor
extension of the CAPM performs better still.

Since we study artificial data from a fully specified economy, we are able to ana-
lyze the economic reasons for these results. Conditioning information is the central
element of the story. The model has only one shock, so as the measurement interval
shrinks (eliminating the effects of nonlinearities), consumption growth and the market
return are both perfectly conditionally correlated with the stochastic discount factor.
Thus, consumption growth or the market return both provide a perfect conditional
asset pricing model; conditional expected returns line up perfectly with conditional
betas on the market portfolio or conditional betas on consumption growth.

However, returns are not ii.d., as the model economy generates time-varying
expected returns which can be forecast by dividend-price ratios. This means that
unconditional correlations need not match conditional correlations. It turns out that
the market return is better unconditionally correlated with the true discount factor



than is consumption growth and thus the market return is a better proxy for an
unconditional asset pricing model. The reason for this is that the market return is
affected when the price-dividend ratio changes. The market return therefore reflects
variation in this state variable that consumption growth does not. Equivalently, the
stochastic discount factor is a state-dependent function of consumption growth; the
market return captures some of this state-dependence as well as some correlation with
consumption growth shocks.

One can always argue in principle that perhaps the utility function is misspecified,
but it has been hard to believe that plausible changes in utility functions could explain
the amount by which portfolio-based models outperform the canonical consumption-
based model with power utility. Our contribution is to show in an explicit quan-
titative example that, in fact, portfolio-based models can outperform the canonical
consumption-based model by the amount we see in the data, even when a slightly
more complex consumption-based model holds by construction.

2. The Economic Model

To generate time-varying expected returns, the model economy adds habit per-
sistence to the standard consumption-based specification. As bad shocks drive con-
sumption down towards the habit level, risk aversion rises, stock prices decline, and
expected returns rise. Campbell and Cochrane (1999) describe the model in detail,
and motivate the ingredients.

Consumption growth is an i.i.d. lognormal endowment process,
ACH.] =g + Ve+1y Vg1 ™~ 1.1.d. N(O, 0'2). (1)
Identical agents maximize the utility function
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Here X, is the level of habit, and § is the subjective or time discount factor. Lowercase
letters denote logarithms of uppercase letters, c¢; = In C;, etc.

It is convenient to capture the relation between consumption and habit by the
surplus consumption ratio

C: — X,

Sy = =t

Ct

A process for the surplus consumption ratio specifies how habit X, responds to the
history of consumption. The log surplus consumption ratio evolves as

St+1= (1 — )5+ ¢ps; + A (s¢) (41 — et — g) . (3)



¢, g and 3 are parameters. It is convenient to specify that the parameter g in (3) is
equal to the mean consumption growth rate g, but this is not essential.

The sensitivity function A(s;) in (3) controls the sensitivity of s,y and thus habit
Z44+1 to contemporaneous consumption c;4;. It is given by

)\(St)={ %,/1—2(st—§)—1, 8t < Smax (4)

0 St 2 Smax
where
8
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and Smayx is the value of s, at which the square root in (4) runs into zero,
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smsg+§(1—s2). (6)

The specification is not as complex as it seems at first glance: Equations (3) and
(4) are almost a familiar square-root process. This specification of A(s;) achieves
three objectives: 1) The riskfree interest rate is constant. As consumption declines
toward habit, consumers in a nonstochastic economy would want to borrow, driving up
interest rates. However, as consumption declines, A(s;) rises. This rise acts in (3) like
an increase in risk, which increases precautionary savings, lowering interest rates. Our
specification of A(s;) makes these two effects offset exactly. 2) Habit is predetermined
at the steady state s, = 5. 3) Habit is also predetermined near the steady state, or,
equivalently, habit moves non-negatively with consumption everywhere. It also turns
out that A(s;) must rise as s, falls in order to generate a time-varying conditional
Sharpe ratio.

Marginal utility and asset prices

We assume that habit is ezternal, people want to “keep up with the Joneses” as
in Abel (1990). Then, marginal utility is given by

'U,C(Ct,Xt) = (Ct - Xt)—’y = St—'YCt—’Y

The intertemporal marginal rate of substitution, or stochastic discount factor, is

Uc (Cri1, Xig1) (St+l Ct+1)-ﬁ7
M ,=6 =6 | ——— .
=000 K 5. G )
The log marginal rate of substitution is
My = 111(6) - (ASH,] + ACH_I)
= In(6) —vg — (¢ — 1)(s: — 8) — ¥(1 + A(5¢))veqa. (8)
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This variable is conditionally normally distributed. The external habit specification
is convenient, because it allows us to ignore terms by which current consumption
might affect future habits. In Campbell and Cochrane (1999) we argue that many of
the aggregate properties of the model are substantially unaffected by the choice of an
external rather than an internal specification.

The real riskfree interest rate is the reciprocal of the conditionally expected

stochastic discount factor,
Rl =1/E, (M) .

Using equation (8) and taking the expectation of the lognormal random variable M,
the log riskfree rate is

/= ~1(6) + 99— 57(1 - 9). ©)

We use a claim to the consumption stream to model the market portfolio. Its
price-dividend ratio satisfies

I _ Cit Py
C, (st) = Eq l:Mt+1_Ct (1 + Cos (S:+1))} : (10)

We solve this functional equation numerically on a grid for the state variable s;,
using numerical integration and interpolation of the P/C(s) function to evaluate the
conditional expectation. Given the price-consumption ratio as a function of state
and the state transition equation (3), we can simulate returns and other interesting
quantities.

We also model a claim to dividends that are imperfectly correlated with consump-
tion. We specify that log dividend growth is also i.i.d., and has correlation coefficient
p with aggregate consumption growth,

Adipr = g+ Wee1; Wi ~ 1i.d. N(0,02), corr(w,,v,) = p. (11)
The price-dividend ratio of this claim is also a function of the state variable s,;, and
we find it in the same way.

We simulate our model at a monthly frequency. We construct time-averaged
annual consumption data by summing consumption during the year. This procedure
is a crude way to capture the effect of time-aggregation in measured consumption.

Choosing Parameters

We use the same parameter values as in Campbell and Cochrane (1999), calibrated
to postwar (1947-1995) annual NIPA nondurable and services per capita consump-
tion together with data from the CRSP value-weighted NYSE stock portfolio. Table 1
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summarizes the parameter choices. The mean and standard deviation of log consump-
tion growth, g and o, match the consumption data. We choose the serial correlation
parameter ¢ to match the serial correlation of the log price-dividend ratio. We choose
the riskfree rate to match the average real return on Treasury bills. We choose the
utility curvature parameter v to match the market Sharpe ratio. We calibrate the
standard deviation and consumption growth correlation of the dividend process from
the CRSP value-weighted return data as well. Parameters §, S, Smax follow from
these choices via (9), (5) and (6).

Campbell and Cochrane (1999) show that the model with these parameter choices
matches a wide variety of phenomena including the equity premium, the predictability
of stock returns from price-dividend ratios, violations of volatility tests and the lever-
age effect by which lower prices imply more volatile returns. This point is important.
for the current exercise: Our story is based on time-varying conditioning information,
and one wants reassurance that the assumed time-variation in return distributions is
sensible.

Table 1. Parameter choices.

Assumed parameters
Mean consumption growth* ¢, % | 1.89
Standard deviation of consumption growth* o,% | 1.50
Log riskfree rate* »/, % | 0.94
Persistence coefficient* ¢ | 0.87
Utility curvature v | 2.00
Standard deviation of dividend growth* o,,% | 11.2
Correlation between consumption, dividend growth p | 0.2

Implied parameters
Subjective discount factor* 6 | 0.89

Steady state surplus consumption ratio S | 0.057
Maximum surplus consumption ratio Sy, | 0.094

Starred (*) table entries are annualized values, e.g. 12g, V120, 1277, ¢12, 612, /120,
since the model is simulated at a monthly frequency. 6, S and Sy.y are calcu-
lated using (9), (5) and (6) respectively.

3. Implications for Cross-Sectional Tests of Asset Pricing Models

Now we can answer our basic question. How do the standard power utility
consumption-based model, the CAPM, and multifactor extensions compare in ar-
tificial data from our model?



False Models

We specify the alternative asset pricing models in terms of their stochastic discount
factors, which we denote Y. We use Y to distinguish false discount factor proxies
from the true discount factor M. The alternative models are:

1. The canonical consumption-based model with time-separable power utility,
Ci+1 ) -1
Yie1 = . 12
i =8(4 (12)

We use 8 and 7 to emphasize that these coefficients need not be equal to the parame-
ters 6 and ~y of the data-generating model. This is the classic form studied by Hansen
and Singleton (1982).

2. A consumption-based linear factor model,

Ct+1)
—a+b , 1
Yo =a+b (=2 (13)

A discount factor that is a linear function of a set of variables implies that expected
returns are linear in betas, i.e., multiple regression coeflicients of returns on those
variables. Thus (13) corresponds to tests that compare expected returns with con-
sumption betas, without imposing the nonlinear structure of (12), as in Mankiw and
Shapiro (1986) and Breeden, Gibbons and Litzenberger (1989).

3. The traditional static CAPM,
Yivi =a+ bRy, (14)

where R" is the consumption claim (wealth) return.

4. A multifactor or conditional CAPM,

Yir1 = a0 + ai(dy — pt)] + [br + b2(d: — p1)] R, (15)
= ag+ai(ds — pi) + biRY, + by [(de — po) BE - (16)

The first equation expresses this model as a conditional CAPM—a CAPM with time-
varying coefficients. The second equation expresses the same model as an uncondi-
tional multifactor asset pricing model.

Our model is particularly good motivation for this form of a conditional CAPM.
The canonical consumption-based model with power utility implies

Yer1 = In(B) — n{cr1 — ). (17)

The true model is, from (8),

Mepr = In(6) + [vgA(s:) — ¥(¢ — 1)(s: = 5)] — ¥(1 + A(se))(cer — cv).
(18)



The true model has the same form as the canonical consumption-based model (17),
except that it makes the intercept and slope on consumption growth functions of the
slow-moving state variable s;. The multifactor model (15) also has this form, but it
is driven by the market return rather than by consumption growth.

Pricing errors

We want to know, how big are the pricing errors of the false models when applied
to a cross-section of assets? Our single-shock model does not naturally give rise
to an interesting cross-section of assets such as the size, book-to-market, industry,
government bond, corporate bond, or international portfolios studied in the asset
pricing literature. Therefore, we use a distance measure introduced by Hansen and
Jagannathan (1997) and related to Shanken (1987) to find the maximum pricing error
that the false models can produce.

Hansen and Jagannathan show that the maximum possible pricing error, expressed
in Sharpe ratio units as expected return error (Jensen’s alpha) per unit of standard
deviation, is proportional to the standard deviation of the difference between the
true and false discount factors. To express these ideas formally, let EY (£) denote the
expected value of a payoff £ predicted by the false discount factor Y. Then

_B©O-BO| _am-v)
@ o® EM)

(19)

The left hand side of (19) is the definition of the maximum pricing error per unit of
standard deviation. The right hand side, the Hansen-Jagannathan distance measure,
relates the pricing error to the standard deviation of the difference between true and
false discount factors.

Each of our false discount factor models has free parameters. We fix the free
parameters in two alternative ways, either by minimizing the maximum pricing error,
or by “estimating” parameters that best price the riskfree rate and the market return.
When the discount factor Y is a linear function of factors, Y = b’f, these procedures
are related. In this case, minimizing the maximum pricing error is the same as
ensuring that the false model correctly prices the factors,

min (M —b'£)?] = E(Mf) = E(f (f'b)) = E(Y). (20)

Minimizing the maximum pricing error is also equivalent to an OLS regression of the
true discount factor M on the factors f. From (20),

b = E(ff')" E(Mf).



Derivation and further interpretation
To understand the Hansen-Jagannathan result, consider a payoff £ with price P.
The pricing relation P = E(M¢) implies

P cov(M, €)
E(§)=E(M)_ E(M)

The expected payoff (return) predicted by the false discount factor Y is given by

P cov(Y, &)
EY) EY)

EY(¢) =

Suppose the approximate model gives the same average price of a riskiree rate, i.e.
E(Y) = E(M). We pick parameters to ensure this equality in our application, in order
to focus entirely on models’ ability to correct for risk. Then the expected return error
is
(M — Y o(M—-Y)o
B (6) - Bl = | O)| oM =Y)o(e)
E(M E(M)

The payoff £* = M ~Y makes the mequahty tight. Sensibly, this worst-priced payoff
is perfectly correlated with the difference between the true and false discount factors.
Hansen and Jagannathan (1997) derive the result in a much more general setting.

It is both the advantage and disadvantage of this technique that it depends only
on the model, not on the set of test portfolios. Approximate models can work well on
some portfolios but poorly on others. The CAPM, for example, works well on beta-
sorted stock portfolios, decently on industry- and size-sorted portfolios, but poorly
on portfolios sorted by book-market ratio. Kandel and Stambaugh (1995) and Roll
and Ross (1994) show how the pricing errors of an approximate model can depend
dramatically on arbitrary choices of test portfolios.

The advantage, then, is that the Hansen-Jagannathan procedure eliminates this
arbitrariness by evaluating the pricing error of the worst possible portfolio, the one
generates the largest possible pricing error. The search for the worst-priced payoff
extends over all possible contingent claims, including all dynamic strategies. £* =
M —Y will typically be a function of consumption growth as well as asset returns.

This is also the disadvantage, as our experience with the relative performance of
the CAPM and consumption-based model is based on a quite limited set of assets,
especially when compared to the set of all contingent claims. For example, if the
maximum pricing error of a false model occurs for a portfolio that is a highly non-
linear function of consumption growth, does that really tell us much about which
models price stock portfolios well? Even within the limited set of assets that has been
examined, results seem to be sensitive to the asset choice; Breeden, Gibbons and
Litzenberger (1989) used industry and bond portfolios, and found better results for
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the canonical consumption-based model than did Mankiw and Shapiro (1986) using
individual stocks or Cochrane (1996) using size portfolios.

With a specific set of traded assets in mind, one could generalize the Hansen-
Jagannathan technique to characterize only the pricing errors of traded assets. Equa-
tion (19) generalizes to

B (€) - B(e)| . oM-Y) (21)
{Ianea;c(} o(€) (M P=EI{11&!%()VXEX} E(M)

where X denotes the space of traded assets, and P and X denote a price and payoff
of a traded asset.

One could generate a limited set of traded assets, by generating multiple dividends
of the form (11) and pricing them via the true model. One could then evaluate pricing
errors of false models via (21). However, the fundamental economic characteristics
that drive the cross-sectional variation in observed equity returns are poorly under-
stood and are unlikely to be well modeled by simple processes such as (11). Therefore,
we do not limit the space of portfolios over which to search for large pricing errors.

Results

Table 2 gives the maximum pricing errors in artificial data from the Campbell-
Cochrane model. These are population moments, recovered from a simulation of
100,000 months of artificial data time-aggregated to an annual frequency.

We start with the static CAPM, using the consumption-claim return as the market
return, in row a. The maximum pricing errors have a 0.40 Sharpe ratio, or 7.9%
average return at a 20% standard deviation. This is roughly the size of the worst
CAPM pricing errors in the literature. For example, Fama and French (1993) find
the CAPM does nothing to explain the roughly 10% expected return variation across
book-market sorted portfolios, and they report that the high-minus-low book-market
portfolio earns a Sharpe ratio roughly that of the market portfolio, despite a very low
market beta.

The scaled CAPM in row b does a bit better than the static CAPM. The im-
provement in performance is not dramatic, possibly because we search for the largest
pricing error among all contingent claims, rather than among a set of portfolios sorted
on the same basis as the factors. Since these are population moments, there is no
mechanical improvement as one adds additional factors.

10



Table 2. Maximum pricing errors from approximate asset pricing models

Panel A: Basic Results

Model a/a a(%) Py.mMm T
a) CAPM, Y1 =a+ bRy, 040 7.9 0.77
b) Scaled CAPM, Y;11 = ap + ay(pd:) + [bo + b1(pd:)|Res1 | 0.36 7.1 0.82
c) Power utility, Yi41 = 8(Ciar/Ct) ™" 0.52 103 0.56 29
d) Power utility, 3,7 chosen to price R”, RS 1.01 202 0.56 78
e) Risk-neutral, ¥, = 1/R/ 062 125 O

Panel B: Variations

Model Ot/O' a(%) PY .M
f) CAPM, monthly simulated data 0.13 2.5 0.97
g) Power utility model, monthly simulated data 023 47 0.91
h) Consumption factor model, Y;1; = a + b(Ci41/Ct) 0.54 10.8 0.50
i) Consumption factor model, a, b chosen to price R¥, Rf | 0.93 18.5 0.50
i) CAPM , dividend claim return Y;4; = a + bR%, 048 9.5 0.65
k) Scaled CAPM, dividend claim return 035 7.0 0.83

Note to Table 2. /o gives the maximum expected return pricing error per
unit of standard deviation produced by each of the false discount factor models.
This is calculated by a/o = o(M — Y)/E(M). a(%) evaluates the pricing
error at a 20% annual standard deviation, expressed as an annual percentage
average return. 7) gives the estimated curvature coefficient in the consumption-
based models. py ar gives the unconditional correlation between true and false
discount factors. The monthly results in rows f and g are annualized by
multiplying by v/12.

We always choose parameters so that the false discount factor model cor-
rectly prices the riskfree rate. In rows a,b,c we minimize the maximum pricing
error, which is equivalent to correctly pricing the factors in row a,b. In row d
we pick 7 to correctly price the consumption claim return. Results are based
on 100,000 months of simulated data, which are time-aggregated to an annual
frequency except where otherwise noted.

Row c presents the canonical consumption-based model with power utility. In this

row, we estimated the parameters of the model to minimize the maximum pricing
error. This is as good as the power-utility model can do, and it fares a good deal
worse than the CAPM. The maximum pricing error is about 30% larger than that of
the CAPM. We estimate a large coefficient of risk aversion (7 = 29), as in real data.

11



The performance of the power-utility model is sensitive to parameter choices.
Choosing parameters by minimizing the maximum pricing error forces the CAPM
to correctly price the market proxy, but this is not true for the consumption-based
model. In row d we pick n to correctly price the market return. (Precisely, we
minimize the pricing error, and it turns out that n = 78 sets the error to zero. We
always choose 3 to match the risk-free rate.) This is the same condition used to pick
CAPM parameters, and it more closely mirrors practice, where we pick parameters
to minimize pricing errors of a cross-section of traded assets rather than to minimize
the maximum pricing error.

The pricing errors in row d are now more than double those of the CAPM: a 1.01
Sharpe ratio corresponding to a 20.2% average return for a 20% standard deviation.
This pricing error is larger than the spread in expected returns in most studies. It
is also larger than the pricing error of a risk-neutral model shown in row e. The
consumption-based model is literally worse than useless.

To understand these results, note that there is only one shock in the Campbell-
Cochrane model] economy, so consumption growth, returns, and the discount factor
become perfectly conditionally correlated as the time interval of the model shrinks.
(Nonlinearities are the only reason the correlation isn’t perfect in the discrete-time
version of the model.) However, the sensitivities of consumption growth, returns,
and the discount factor to the underlying shock vary over time and from each other.
Thus, consumption growth or returns are imperfectly unconditionally correlated with
the discount factor, and are thus imperfect proxies for unconditional asset-pricing
models.

The CAPM performs better because the stock return is more closely uncondition-
ally correlated with the marginal rate of substitution than is consumption growth, as
one can see from the correlation coefficients in Table 2. Recall that the marginal rate
of substitution is given by

Si41 Cra ) -

5, G, (22)

My =96 (
Changes in the surplus consumption ratio reduce the unconditional correlation be-
tween consumption growth and marginal utility growth. The stock return moves
when consumption (its dividend) moves, but the stock return also moves when there
is a change in the surplus consumption ratio, so the stock return is better correlated
with marginal utility growth. Time-aggregation (and, in real life, measurement error)
add to the advantage of the stock return as a proxy.

The scaled CAPM controls for variation in conditioning information by making
parameters functions of state. It produces somewhat lower pricing errors than the
CAPM, and somewhat higher correlation with the true discount factor. A conditional
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CAPM that uses a square root transformation of a state variable does even better,
as one might expect from (8).

Panel B of Table 2 presents several variations on the theme. Rows f and g
present CAPM and power-utility results in our monthly simulated data with no time-
aggregation. The CAPM produces about half the pricing errors of the power-utility
model. This calculation verifies that the relative performance of the two models is cen-
trally due to conditioning information, and not just to time-aggregation in the annual
consumption data. Variation in conditioning information is more important at. shorter
investment horizons, which is why the relative performance of the CAPM is even bet-
ter in monthly artificial data, despite the lack of consumption time-aggregation.

Rows h and i present pricing errors for a model that uses consumption growth as a
factor, but does not impose the nonlinear specification of power utility, as in Breeden,
Gibbons and Litzenberger (1989) and Mankiw and Zeldes (1985). The pricing errors
are almost identical to those of the nonlinear power-utility model. This calculation
verifies that the poor performance of the consumption-based model is not due to the
occasional spectacular outliers that result from raising consumption growth to the
-78 power.

Rows j and k use a claim to dividends poorly correlated with consumption as the
market proxy in the CAPM. We present these results with some reservations. First, it
1s true that empirical work almost always uses the stock market portfolio rather than
a larger wealth portfolio in evaluating the CAPM. On the other hand, this empirical
work also almost always only tests the CAPM on similar assets (stocks), rather than
testing the model on bonds, options, foreign exchange, real estate, human capital
or other returns. Since we do not limit the space of returns when looking for pric-
Ing errors, it seems to us that the consumption-claim CAPM is a more appropriate
benchmark than the dividend-claim CAPM. Second, our model of dividend growth
1s unrealistic in an important dimension. The correlation between dividend and con-
sumption growth undoubtedly rises at longer horizons. The two series are very likely
to be cointegrated, as it is hard to envision a growth path in which the ratio of div-
idends to aggregate consumption rises to infinity or declines to zero. Our model of
dividends was useful for showing that the aggregate asset pricing results in Campbell
and Cochrane (1999) are insensitive to which aggregate asset is priced, but one would
want a better dividend model to use the return as a factor to price other assets.
Such a model would involve the addition of at least one additional state variable, the
dividend-consumption ratio, which is not worth the space and complexity it would
entail for the purposes of this robustness check.

At any rate, the static dividend-claim CAPM in row j has substantially higher
pricing errors than the static consumption-claim CAPM in row a, yet still lower than
those of the power-utility model. When we scale the dividend-claim CAPM in row
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k, we find that its pricing errors fall close to those of the scaled consumption-claim
CAPM in row b. This shows that scaling is more important when using the noisier
dividend-claim return as a proxy. (In monthly simulated data, without consump-
tion time-aggregation, the unscaled dividend-claim CAPM slightly underperforms
the power-utility model.)

It is tempting to continue, using our artificial data to evaluate other models and
to study the effects of alternative data transformations. One could examine the per-
formance of more complex consumption-based models, such as Ferson and Constan-
tinides’ (1991) habit specification, or Epstein and Zin’s (1991) non-expected-utility
formulation. One could try ad-hoc leads and lags of consumption. Porter and Wheat-
ley (1999) find that time-aggregation can lead one to estimate a habit where there
is none; one could see if time-aggregation leads one to a biased habit estimate given
that the true model does have habits. We could calculate sampling distributions as
well as population values of statistics. Such exercises are of limited value however.
First, a consumption-based model is true in our artificial data, by construction. As
more complex models approach the assumed model, they are guaranteed to do bet-
ter. But how good various other consumption-based models are as approximations
to our model is a question of limited interest; we want to know how good they are as
approximations to the truth.

4. Conclusion

We generate artificial time series from a consumption-based model, but the CAPM
is a much better approximate asset pricing model than is the canonical power-utility
consumption-based model, and multifactor extensions of the CAPM that use price
information are better still. We conclude that this finding in real data should be
interpreted as evidence against specific functional forms and parameterizations rather
than as evidence against consumption-based models in general. Since conditioning
information is at the heart of the story, we also conclude more generally that asset
pricing models which take account of time-varying conditioning information are likely
to perform better than models that do not do so.

We left out measurement error in consumption data, and our model only rec-
ognizes a single shock, so that all series are perfectly correlated at high frequency.
Generalizing both limitations will provide an even more realistic comparison, and will
further degrade the relative performance of consumption-based models in our model
economy. On the other hand, we regard it as an interesting success that so much of
the relative performance of portfolio-based models can be captured by the effect of
conditioning information alone.

Of course, this analysis does not establish that our specification of habit persis-
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tence explains the actual cross-section of expected returns based on measured con-
sumption data. Such a test has not yet been performed. There is some hope: Camp-
bell and Cochrane (1999) show that historical consumption data, when fed into the
calibrated model, produce stock market swings that are similar in many ways to the
actual history of the stock market. However, one must take seriously measurement
error and specification error in consumption data before estimating and testing any
consumption-based model and especially in comparing it to portfolio-based models.

Furthermore, pricing error comparisons between consumption-based and portfolio-
based asset pricing models are fundamentally not that revealing. Returns are far
better measured than consumption data, so even if we knew the true utility function, a
return-based model (using the mimicking portfolio for marginal utility) would produce
smaller pricing errors than the underlying consumption-based model. Such a return-
based model would continue to be the best specification for non-structural questions
including risk adjustment, anomaly exploration and cost of capital calculations, and
for most practitioners, especially at high frequency. Ad-hoc portfolio factors can more
closely approximate the ex-post mean-variance efficient portfolio and thus will seem
to do even better in any statistical horse race. Consumption-based models will always
be used to understand the deeper economic forces that determine the prices of risk
in portfolio-based models, to help sort out which ones really work and which were
just lucky in particular samples, and to answer structural questions which change the
distribution of risks or risk aversion.
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