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1 Introduction

Arguably, one of the most striking asset pricing anomalies is the evidence of large, positive,
short-horizon autocorrelations for returns on stock portfolios, first described in Hawawini
(1980), Conrad and Kaul (1988,1989,1998) and Lo and MacKinlay (1988,1990a). The ev-
idence is pervasive both across sample periods and across countries, and has been linked
to, among other financial variables, firm size (Lo and MacKinlay (1988)), volume (Chordia
and Swaminathan (1998)), analyst coverage (Brennan, Jegadeesh and Swaminathan (1993)),
institutional ownership (Badrinath, Kale and Noe (1995) and Sias and Starks (1997)), and
unexpected cross-sectional return dispersion (Connolly and Stivers (1998)).! The above
results are puzzling to financial economists precisely because time-variation in expected re-
turns is not a high-frequency phenomenon; asset pricing models link expected returns with
changing investment opportunities, which, by their nature, are low frequency events.

As a result, most explanations of the evidence have centered around the so-called lagged
adjustment model in which one group of stocks reacts more slowly to aggregate information
than another group of stocks. Because the autocovariance of a well-diversified portfolio is
just the average cross-autocovariance of the stocks that make up the portfolio, positive auto-
correlations result. While financial economists have put forth a variety of economic theories
to explain this lagged adjustment, all of them impose some sort of underlying behavioral
model, i.e., irrationality, on the part of some agents, that matters for pricing. (See, for
example, Holden and Subrahmanyam (1992), Brennan, Jegadeesh and Swaminathan (1993),
Jones and Slezak (1998), and Daniel, Hirshleifer and Subrahmanyam (1998).) Alternative,
and seemingly less popular, explanations focus on typical microstructure biases (Boudoukh,
Richardson and Whitelaw (1994)) or transactions costs which prevent these autocorrela-
tion patterns from disappearing in financial markets (Mech (1993)). The latter explanation,
however, does not explain why these patterns exist in the first place.

This paper draws testable implications from the various theories by exploiting the relation

between the spot and futures market.? Specifically, while much of the existing focus in the

I Another powerful and related result is the short-term continuation of returns, the momentum effect,
documented by Jegadeesh and Titman (1993). While this evidence tends to be firm-specific, it also produces
positive autocorrelation in short-horizon stock returns (see Grinblatt and Moskowitz (1998) as recent exam-

ples). Moreover, this evidence holds across countries (e.g., Rouwenhorst (1998)) and across time periods.
2Miller, Muthuswamy and Whaley (1994) and Boudoukh, Richardson and Whitelaw (1994) also argue

that the properties of spot index and futures returns should be different. Miller, Muthuswamy and Whaley

(1994) look at mean-reversion in the spot-futures basis in terms of nontrading in S&P 500 stocks, while



literature has been on the statistical properties of artificially constructed portfolios (such as
size quartiles), there are numerous stock indices worldwide which exhibit similar properties.
Moreover, many of these indices have corresponding futures contracts. Since there is a direct
link between the stock index and its futures contract via a no arbitrage relation, it is possible
to show that, under the aforementioned economic theories, the futures contract should take
on the properties of the underlying index. In contrast, why might the properties of the
returns on the index and its futures contract diverge? If the index, or for that matter,
the futures prices are constructed based on mismeasured prices (e.g., stale prices, bid or
ask prices), then the link between the two is broken. Alternatively, if transaction costs on
the individual stocks comprising the index are large enough, then the arbitrage cannot be
implemented successfully. This paper looks at all of these possibilities in a simple theoretical
framework and tests their implications by looking at spot and futures data on 24 stock
indices across 15 countries.

The results are quite remarkable. In particular,

e The return autocorrelations of indices with less liquid stocks (such as the Russell 2000
in the U.S., the TOPIX in Japan, and the FTSE 250 in the U.K.) tend to be positive
even though their corresponding futures contracts have autocorrelations close to zero.
For example, the Russell 2000’s daily autocorrelation is 22%, while that of its respective
futures contract is 6%. The differences between these autocorrelation levels are both

economically and statistically significant.

e Transactions costs cannot explain the magnitude of these autocorrelation differences
as the magnitude changes very little even when adjusting for periods favorable for
spot-futures arbitrage. We view this as strong evidence against the type of irrational

models put forth in the literature.

e Several additional empirical facts point to microstructure-type biases, such as staleness
of pricing, as the most probable source of the difference between the autocorrelations of

the spot and futures contracts. For example, in periods of generally high volume, the

Boudoukh, Richardson and Whitelaw (1994) look at combinations of stock indices, like the S&P 500 and
NYSE, in order to isolate portfolios with small stock characteristics. While the conclusions in those papers
are consistent with this paper, those papers provide only heuristic arguments and focus on limited indices
over a short time span. This paper develops different implications from various theories and tests them

across independent, international data series.



return autocorrelation of the spot indices drops dramatically. The futures contract’s

properties change very little, irrespective of the volume in the market.

e All of these results hold domestically, as well as internationally. This is especially
interesting given that the cross-correlation across international markets is fairly low,

thus providing independent evidence in favor of our findings.

The paper is organized as follows. In Section 2, we provide an analysis of the relation
between stock indices and their corresponding futures contracts under various assumptions,
including the random walk model, a nontrading model, and a behavioral model. Of special
interest, we draw implications for the univariate properties of these series with and without
transactions costs. Section 3 describes the data on the various stock index and futures
contracts worldwide, while Section 4 provides the main empirical results of the paper. In

Section 5, we make some concluding remarks.

2 Models of the Spot-Futures Relation

There is a large literature in finance on the relation between the cash market and the stock
index futures market, and, in particular, on their lead-lag properties. For example, MacKin-
lay and Ramaswamy (1988), Stoll and Whaley (1990), and Chan (1992), among others, all
look at how quickly the cash market responds to market-wide information that has already
been transmitted into futures prices. While this literature shows that the cash and futures
market have different statistical properties, there are several reasons why additional analysis
is needed. First, while there is strong evidence that the futures market leads the cash mar-
ket, this happens fairly quickly. Second, most of the analysis is for indices with very active
stocks, such as the S&P 500 or the MMI, which possess very little autocorrelation in their
return series. Third, these examinations have been at the intraday level and not concerned
with longer horizons that are more relevant for behavioral-based models.

In this section, we provide a thorough look at implications for the univariate statistical
properties of the cash and futures markets under various theoretical assumptions about
market behavior with and without transactions costs. In order to generate these implications,

we make the following assumptions:

e The index, S, is an equally-weighted portfolio of N assets with corresponding futures



contract, F.3

e To the extent possible (i.e., transactions costs aside), there is contemporaneous arbi-

trage between S and F'. That is, the market is rational with respect to index arbitrage.

e Prices of individual securities, S;, © = 1,..., N, follow a random walk in the absence
of irrational behavior. This assumption basically precludes any “equilibrium” time-
variation in expected returns at high frequencies. All lagged adjustment effects, there-
fore, are described in terms of irrational behavior on the part of some agents, i.e., some

form of market inefficiency.

e The dividend processes for each asset, d;, and the interest rate, r, are independent of
the index price, S. Violations of this assumption are investigated in Section 4 and

evaluated for their effect on the relation between the cash and futures market

Under these assumptions, we consider three models. The first is the standard model with
no market microstructure effects or irrational behavior. The implications of this model are
well known, and are provided purely as a benchmark case. The second model imposes a
typical market structure bias, namely nontrading on a subset of the stocks in the index. The
third model imposes a lagged adjustment process for some of the stocks in the index. In
particular, we assume that some stocks react to market-wide information more slowly due to
the reasons espoused in the literature. Transaction costs are then placed on the individual
stocks in the index, as well as on the futures contract, to better understand the relation

between the cash and futures markets.

2.1 Case I: The Random Walk Model

Applying the cost of carry model and using standard arbitrage arguments, the futures price
is simply the current spot price times the compounded rate of interest (adjusted for paid
dividends):*

Fyp = S,eli=0(~1)

3The assumption of equal weights is used for simplicity.
4See, for example, MacKinlay and Ramaswamy (1988). Note that, for the moment, we assume that

interest rates and dividend yields are constant. In practice, this assumption is fairly robust due to the fact
that these financial variables are significantly less variable than the index itself. Violations of this assumption

are explored in Section 4.



where F, 1 is the futures price of the index, maturing in T-t periods,
S; is the current level of the index,
¢ is the continuously compounded rate of interest,
d is the continuously compounded rate of dividends paid, and

T is the maturity date of the futures contract.
Thus, under the cost of carry model, we can write the return on the futures as
TF:TS+A(i—d), (1)

where rr and rg are the continuously compounded returns on the futures and the underlying
spot index respectively, and A(i — d) is the change in the continuously compounded interest
rate (adjusted for the dividend rate).

Several observations are in order. First, under the random walk model, and assuming
that A(i —d) has either low volatility or little autocovariance, the autocorrelation of futures’
returns will mimic that of the spot market, i.e., it will be approximately zero. Second, the
variance of futures’ returns should exceed that of the spot market by the variance of A(i—d),
assuming no correlation between the index returns and either dividend changes or interest
rate changes. Third, even in the presence of transaction costs, these results should hold as
the futures price should still take on the properties of the expected future stock index price,

which is the current value of the index in an efficient market.

2.2 Case II: A Nontrading Model

The market microstructure literature presents numerous examples of market structures which
can induce non-random walk behavior in security prices. Rather than provide an exhaustive
analysis of each of these structures, we focus on one particular characteristic of the data
that has received considerable attention in the literature, namely nonsynchronous trading.
Nontrading refers to the fact that stock prices are assumed to be recorded at a particular
point in time from period to period when in fact they are recorded at irregular points in time
during these periods. For example, stock indices are recorded at the end of trading using
the last transaction price of each stock in the index. If those stocks (i) did not trade at the
same time, and (ii) did not trade exactly at the close, then the index would be subject to
nontrading-induced biases in describing its characteristics. The best known characteristic, of
course, is the spurious positive autocorrelation of index returns, as well as the lower variance

of measured returns on the index.



Models of nontrading, and corresponding results, have appeared throughout the finance
literature, including, among others, Fisher (1966), Scholes and Williams (1977), Cohen,
Maier, Schwartz and Whitcomb (1978), Dimson (1979), Atchison, Butler and Simonds
(1987), Lo and MacKinlay (1990b), and Boudoukh, Richardson and Whitelaw (1994). In
this paper, we choose the simple model of Lo and MacKinlay (1990b) to illustrate the rela-
tion between the spot and futures markets. In their model, in any given period, there is an
exogenous probability m; that stock S; does not trade. Furthermore, each security’s return,
r;, i described by one zero-mean, i.i.d. factor, M, with loading, 5;. Lo and MacKinlay
(1990b) show that the measured returns on an equally-weighted portfolio of N securities,

denoted rg, can be written as

o0
rg, = ps + (1 —7ms)Bs Y TEMy i,
k=0

where ug and (g are the average mean and average beta of the portfolio of the N stocks,
and 7y is the probability of nontrading assuming equal nontrading probabilities across the

stocks. Of course, the true returns are simply described by

rsy = ps + Bs My,

where any idiosyncratic risk has been diversified away.
In a no arbitrage world, the price of the futures contract will reflect the present value of

the stock index at maturity. That is,
Fyp = PV(Sp)el=0T=1, (2)

Note that, due to nontrading, the present value of the index is no longer its true value, but
instead a value that partly depends on the current level of nontrading. This is because the
futures price is based on the measured value of the index at maturity, which includes stale
prices. Within the Lo and MacKinlay (1990b) model, nontrading today has some, albeit
small, information about the staleness of prices in the distant future. However, as long as

T—t

the contract is not close to expiration, the effect, which is of order 7% ~*, is miniscule. In

particular, it is possible to show that the corresponding futures return is:
ThRr = Hst Bs(M; — 7TTﬂt]\/[tfﬂ + A(i — d)
= rgy— Bsm "My + A(i — d). (3)

Not surprisingly, in contrast to the measured index returns, futures returns will not be

autocorrelated due to the efficiency of the market and the no arbitrage condition between the



cash and futures market. However, the futures return will differ from the true spot return
because it is priced off the measured value of the spot at maturity. This difference leads to
a lower volatility of the futures return than the true spot return, though by a small factor
for long-maturity contracts. Specifically, within the framework of this model, the variance
T-t)2

ratio between futures returns and true spot returns is (1 — , whereas the ratio between

. . 1—7)2 .
measured index returns and true returns is % Except for very short maturity contracts,

futures returns volatility will be greater than that of the measured index return.’

2.3 Case III: The Partial-Adjustment Model

As an alternative to market microstructure-based models, the finance literature has devel-
oped so-called partial adjustment models. Through either information transmission, noise
trading or some other mechanism, these models imply that some subset of securities partially
adjust, or adjust more slowly, to market-wide information. While there is some debate about
whether these models can be generated in both a reasonable and rational framework, all the
models impose some restrictions on trading so that the partial adjustment effects cannot get
arbitraged away. There are a number of models that produce these types of partial adjust-
ment effects (e.g., see Holden and Subrahmanyam (1992), Foster and Viswanathan (1993),
Badrinath, Kale and Noe (1995), Chordia and Swaminathan (1998) and Llorente, Michaely,
Saar and Wang (1998)).

Here, we choose one particular model, which coincides well with Section 2.2 above, namely
Brennan, Jegadeesh and Swaminathan (1993). We assume that the index is made up of two
equally-weighted portfolios of stocks, Sr and Sp, which for better terminology stand for full
(i.e., F') and partial (i.e., P) response stocks. (Brennan, Jegadeesh and Swaminathan (1993)
consider stocks followed by many analysts versus those followed by only a few analysts.)

Assume that the returns on these two portfolios can be written as

Rpy = pp+ BrM;

5Tt can be shown that futures returns volatility will be greater than that of the measure index return if

(T—t) > m

Inm
N 1
TV 1—a

Even when 7 is 50%, which is a unrealistically large number, the volatility ratio will be greater than one if

the maturity of the futures contract is greater than 1.25 days.
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Rpy = pp+ BpM; +vpM; .

Thus, for whatever reason, the return on the partial response stocks is affected by last period’s
realization of the factor. One offered explanation is that market-wide information is only
slowly incorporated into certain stock prices, yielding a time-varying expected return that
depends on that information. Note that similar to Lo and MacKinlay (1990b) and Section
2.2 above, we have also assumed that these two portfolios are sufficiently well-diversified that
there is no remaining idiosyncratic risk.

Assume that the index contains w of the fully adjusting stock portfolio and 1 — w of
the partially adjusting portfolio. Under the assumption of no transactions costs and no
arbitrage, it is possible to show that the returns on the index and its corresponding futures

contract can be written as:

Rsy = ps+ BsM;+ysMy—q (4)
Rpy = Rg;+A(i—d)
where p1s = wpr + (1 —w)up
Bs = whpr+(1-w)lp
s = (1=w)yp.
The returns on both the stock index and its futures contract coincide, and therefore pick up

similar autocorrelation properties. In fact, their autocorrelations can be solved for

[wBr + (1 = w)Bp|(1 —w)yp
[whr + (1 = w)Bp]? + [(1 — w)yp)*

For indices with relatively few partial-adjustment stocks (i.e., high w) or low lagged response

coefficients (i.e., small vp), the autocorrelation reduces to approximately :

(1 -w)yr
whr+ (1 —w)Bp’

With the additional assumption that the beta of the index to the factor is approximately

one, an estimate of the autocorrelation is (1 — w)vyp. That is, the autocorrelation depends
on the proportion of partially adjusting stocks in the index and on how slowly these stocks
respond. These results should not seem surprising. With the no arbitrage condition between
the cash and futures market, the price of the futures equals the present value of the future
spot index, which is just the current value of the index. That is, though the spot price at

maturity includes lagged effects, the discount rate does also, leading to the desired result.



With nontrading, because the lagged effects are spurious, discounting is done at ug, which
leads to zero autocorrelation of futures returns.

In response, a behavioralist might argue that the futures return does not pick up the
properties of the cash market due to the inability of investors to actually conduct arbitrage
between the markets. Of course, the most likely reason for the lack of arbitrage is the
presence of transactions costs, that is, commissions and bid-ask spreads paid on the stocks
in the index and the futures contract. The level of these transactions costs depend primarily
on costs borne by the institutional index arbitrageurs in these markets. Abstracting from
any discussion of basis risk and the price of that risk, we assume here that arbitrageurs buy
or sell all the stocks in the index, at a multiplicative cost of 6. Thus, round-trip transactions
costs per arbitrage trade are equal to 20. In this environment, it is possible to show that, in

the absence of arbitrage, the futures price must satisfy the following constraints:
—(26 4 0i) < Fyp — Sye=DT=0 < (26 + §i). (5)

In other words, the futures price is bounded by its no arbitrage value plus/minus round-trip
transactions costs.

What statistical properties do futures returns have within the bounds? There is no
obvious answer to this question found in the behavioral literature. If the futures is priced off
the current value of the spot index, then, as described above, futures returns will inherit the
autocorrelation properties of the index return. Alternatively, suppose investors in futures
markets are more sophisticated, or at least respond to information in M fully. That is, they
price futures off the future value of the spot index, discounted at the rate ug. In this case,
the futures returns will not be autocorrelated, and expected returns on futures will just equal
ps + EIA(i — d)].

Of course, if the futures-spot parity lies outside the bound, then arbitrage is possible,
and futures prices will move until the bound is reached. It is possible to show that futures
prices at time ¢ will lie outside the bound (in the absence of arbitrage) under the following

condition: )
20 + 01

o o

That is, three factors increase the possibility of lying outside the bound: (i) large recent

| M| >

movement in the stock index (i.e., |M;|), (ii) low transactions costs (i.e., 0), (iii) large auto-
correlation in the index (i.e., (1 — w)vyp). If condition (6) is met, then, even in the case of

sophisticated futures traders, expected returns on futures will not be a constant, but instead



capture some of the irrationality of the index. Specifically, if (6) is true, then
BulRpd = (1 = w)yeM, — (26 + 0i). (7)

Figure 1 illustrates the pattern in expected futures returns under this model. Within the
bounds, expected futures returns are flat. Outside the bound, futures begin to take on the
properties of the underlying stock index, and futures returns are positively autocorrelated for
more extreme past movements. Figure 1 provides the basis for an analysis of the implications
of futures markets in the presence of index return autocorrelation.

Similarly, we can calculate the volatility of the returns on the index and the volatility of
the returns on its corresponding futures contract. Within the bound, using equation (4), it

is possible to show that the return variances are:

e = (B4

2 2 2 2
Ore = (Bs+7s)° 0y + Oai—ay

In other words, as long as g is positive (which is the prevailing view), the volatility of futures
returns will be higher than the volatility of the spot index returns. However, volatility of
interest rate changes aside, the volatility of the spot and futures returns will start to converge
when condition (6) is realized. This is because the futures return takes on the properties of

the index return as index arbitrage forces convergence of the two.

2.4 Implications

The above models for index and corresponding futures prices are clearly stylized and very
simple. For example, the Lo and MacKinlay (1988) model of nontrading has been general-
ized to heterogeneous nontrading and heterogeneous risks of stocks within a portfolio which
provides more realistic autocorrelation predictions (see, for example, Boudoukh, Richardson
and Whitelaw (1994)). Which model is best, however, is besides the point for this paper.
The purpose of the models is to present, in a completely transparent setting, different impli-
cations of two opposing schools of thought. The first school believes that the time-varying
patterns in index returns are not tradeable, and in fact may actually be completely spurious,
i.e., an artifact of the way we measure returns. The second school believes that these pat-
terns are real and represent actual prices, resulting from some sort of inefficient information

transmission in the market. The implications we draw from these models are quite general

10



and robust to more elaborate specifications of nontrading or agent’s ability to incorporate
information quickly.

In particular, according to the models described in Sections 2.2 and 2.3, it is possible
to make several observations about the relative statistical properties of index and futures

returns:

e Under a market microstructure setting, the index returns will be positively autocor-
related while the futures returns will not be autocorrelated (bid-ask bounce aside).
Moreover, the magnitude of these differences will be related to the level of microstruc-
ture biases. In contrast, the behavioral model predicts spot index and futures returns

will inherit the same autocorrelation properties.

e Similar implications occur for the volatility of the index and futures returns. Behavioral
models predict spot and futures returns will have approximately the same volatility
(interest rate volatility aside), while market microstructure models imply different
volatilities. Again, the difference in volatilities will be related to the magnitude of the

microstructure biases.

e In the presence of transactions costs, behavioral models can potentially form a wedge
between the statistical properties of spot index and futures returns. However, this
wedge leads to particular implications, namely that the spot index and futures returns
will behave similarly in periods of big stock price movements and possibly quite dif-
ferently in periods of small movements. For example, the autocorrelation of futures
returns should be zero for small movements, and positive for large movements. Like-
wise, the relative volatility between the futures and spot market should be higher in

the futures market for small past movements versus large past movements.

e Finally, a nontrading-based explanation of the patterns in spot index and futures re-
turns implies the following characteristic of the data. As the nontrading probability 7
goes down, i.e., higher volume, the spot index return’s properties, such as its autocor-
relation, should look like the true return process. Moreover, while the properties of the
index return change with volume, the properties of the futures return should remain

the same for long maturity contracts.

These observations are the basis for an empirical comparison of spot index and corresponding

futures returns. To build up as much independent evidence as possible, this analysis is

11



performed on over 24 indices across 15 countries. Because the daily index returns across
these countries are not highly correlated, the results here will have considerably more power

to differentiate between the implications of the two schools.

3 The Data

All the data are collected from Datastream; specifically, price levels of each stock index and
corresponding futures contract at the close of trade every day, daily volume on the overall
stock market in a given country, daily open interest and volume for each futures contract,
short-term interest rates and dividend yields. The data are collected to coincide with the
length of the available futures contract. For example, if the futures contract starts on June
1, 1982 (as did the S&P 500), all data associated with this contract start from that date.

The futures data are constructed according to usual conventions. In particular, a single
time series of futures prices is spliced together from individual futures contracts prices. For
liquidity, the nearest contract’s prices are used until the first day of the expiration month,
then the next nearest is used, and so on. For a futures contract to be used, we require
at least four years of data (or roughly 1000 observations) to lower the standard errors of
the estimators. This leads us to drop a number of countries such as the Eastern European
block, emerging countries in Asia like Thailand, Korea and Malaysia, as well as some small
stock based indices like the MDAX in Germany. Given this criteria, we are left with 24
futures contracts on stock indices covering 15 countries. Table 1 gives a brief description
of each contract, the exchange it is traded on, its country affiliation, its starting date, as
well as some summary statistics on the futures’ returns, open interest and trading volume.
Summary statistics on the underlying index returns are also provided.

Some observations are in order. First, given the wide breadth of countries used in this
analysis as seen in Table 1, and the fact that daily returns across countries have relatively
small contemporaneous correlations (e.g, with a mean of .39 and a median of .32), the data
in this study provide considerable independent information about the economic implications
described in Section 2. Second, while the unconditional means of the index returns and
corresponding futures returns are basically the same for all contracts, their volatilities are
substantially different. While part of these differences can be explained by interest rate
volatility, the majority of the differences come from some other source (see Section 4). As
shown in Section 2, these types of differences are more commonly associated with market

microstructure biases since behavioral models imply the volatility will be picked up in both

12



markets. Third, the futures contracts have considerable open interest and daily volume in
terms of the number of contracts. Table 1 provides the mean for these contracts, and, for
less liquid ones such as the Russell 2000 and Value Line, these means are still high relative
to less liquid stocks, e.g., 455 and 197 contracts per day respectively. The fact that these
contracts are liquid allows us to focus primarily on market microstructure biases related to
the stocks in the underlying index. Section 4 of the paper addresses any potential biases

related to the futures contracts.

4 Empirical Results

In this section, we focus on providing evidence for or against the implications derived from
the models of Section 2. In particular, we investigate (i) the autocorrelation properties of
the spot index and corresponding futures returns, (ii) the relative time-varying properties of
spot index and future returns conditional on recent small and large movements in returns,
and (iii) the relation between these time-varying properties and underlying stock market

volume.

4.1 Autocorrelations

Table 2 presents the evidence for daily autocorrelations of spot indices and their corre-
sponding futures returns across 24 contracts. The most startling evidence is that, for every
contract, the spot index autocorrelation exceeds that of the futures. This cannot be ex-
plained by common sampling error as many of the contracts are barely correlated given
the 15 country cross-section. Figure 2 presents a scatter plot of the autocorrelations of the
futures and spot indices, i.e., a graphical representation of these results. On the 45 degree
line, the spot and futures autocorrelations coincide; however, as the graph shows, all the
points lie to the right of this line. Thus, all the spot autocorrelations are higher than their
corresponding futures.

Moreover, other than the Nikkei 225 contracts (which have marginally negative values),
all of the spot index returns are positively autocorrelated. Some of these indices, such as
the Russell 2000 (small firm US), ValueLine (equal-weighted US), FTSE 250 (medium-firm
UK), TOPIX (all firms Japan), OMX (all firms Sweden) and Australian All-Share index,
have fairly large autocorrelations — .22, .19, .21, .10, .12 and .10, respectively. Interestingly,

these indices also tend to be ones which include large weights on firms which trade relatively
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infrequently. In contrast, the value-weighted indices with large, liquid, actively-traded stocks,
such as the S&P 500 (largest 500 US firms), FTSE 100 (100 most active U.K. firms), Nikkei
225 (active 225 Japan stocks), and DAX (active German firms), are barely autocorrelated
— .03, .08, -.014 and .02, respectively.

Note that while the autocorrelations of both the index and futures alone are difficult
to pinpoint due to the size of the standard errors, the autocorrelation differences should
be very precisely estimated given the high contemporaneous correlation between the index
and futures. In terms of formal statistical tests, for 21 out of 24 contracts we can reject
the hypothesis that the spot index autocorrelation equals that of its futures contract at the
5% level. To the extent that this is one of the main comparative implications of market
microstructure versus behavioral models, this evidence supports the microstructure-based
explanation.® The evidence is particularly strong as 17 of the differences are significant the
1% level. These levels of significance should not be surprising given that the index and
its futures capture the same aggregate information, yet produce in 12 cases autocorrelation

differences of at least 10% on a daily basis!

4.2 Time-Varying Patterns of Returns

The results in Section 4.1 are suggestive of differences between the time-varying properties
of spot index and futures returns. While this tends to be inconsistent with behavioral-
based explanations of the data, we showed in Section 2.3 that it is possible to construct
a reasonable scenario in which large differences can appear. Specifically, the reason why
behavioral models imply a one-to-one relation between spot and futures returns is that
they are linked via spot-futures arbitrage. If spot-futures arbitrage is not possible due to
transactions costs, then theoretically spot and futures prices might diverge if their markets
are driven by different investors. Figure 1 shows that the implication of this transaction-
based model is that, conditional on extreme recent movements, the statistical properties of
spot and futures returns should be similar; for small movements, they can follow any pattern,
including the spot return being positively autocorrelated and its futures return being serially
uncorrelated.

In order to test this implication directly, consider a piecewise linear regression of the

60f course, futures returns, due to either nontrading or bid-ask bounce, should have negative autocor-
relations, which could partially explain the differences even without index microstructure biases. Section 4

looks at the extent to which futures biases can explain the result.
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futures return on its most recent lag. In particular:
TrFi+1 = @ + bl'rF,t + (bg — bl)Max[O, TFt— al] + (bg — bQ)MaX[O, TFt— CLQ] + €11, (8)

where a; and ay are the breakpoints of the piecewise regression. These breakpoints are
equivalent to the transactions costs bounds described in Section 2.3. Here, we choose these
points as -1.0% and 1.0%, respectively. Thus, any daily return of plus/minus 1% or greater
in magnitude allows index arbitrage to take place. The coefficients by, b, and b3 reflect the
slopes of the piecewise relation. In the context of Figure 1, b; and b3 are positive while by is
zero under the behavioral model. In the market microstructure model, bid-ask bounce aside,
these coefficients should be zero.

Table 3A presents the regression results from equation (8) for each contract across the
15 countries. From the behavioral viewpoint, equation (8) implies, as its null hypothesis, a
series of inequality constraints, by > 0 & b3 > 0. Because the constraints are inequalities,
these restrictions are very weak. Nevertheless, thirteen of the twenty-five contracts reject the
behavioral theory at conventional levels using an inequality restrictions-based test statistic
(see Wolak (1987) and Boudoukh, Richardson and Smith (1993) for a description of the

test methodology).”

More important, however, is that, for these cases, all of them give
estimates which are consistent with 6; < 0 and b3 < 0, the exact opposite implication of
the behavioral model. This suggests some amount of symmetric behavior at the extremes.
Perhaps the strongest evidence is that across all 24 contracts, by > 0 only five times, though
not significantly! Thus, for the circumstances most favorable to spot-futures arbitrage, there
is little evidence of local positive autocorrelation of the futures return.

Figure 3 provides a graphical presentation of these results for three contracts which con-
tain illiquid stocks, namely the Russell 2000, TOPIX and FTSE 250. The graph represents
a kernel estimation of the mean of rp;.4, conditional on the value of rp;. As seen from these
three somewhat independent graphs, the implications of the behavioral model (i.e., Figure 1)
are not borne out. Time-variation of expected futures returns, if any, occur for low current

values of returns. Conditional on high values, the relation looks quite flat.® Of course, the

"To understand the nature of how weak inequality restrictions are, consider the test from the perspective
of the microstructure viewpoint, i.e., the null of b; = 0&bs = 0 versus the alternative of by > 0&bs > 0.

Performing tests of this restriction yields not one rejection in favor of the behavioral theory.
8The exception here is the FTSE 250 for current values of rp; > 1.5%. However, for the post 1994

sample period we have here for this contract, there are hardly any observations. Thus, the results fall into

the so-called Star-Trek region of the data, and are unreliable.
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strongest evidence in the graph is that there is not much time-variation in the estimated ex-
pected return on the futures anywhere, which is not a prediction of behavioral-based models.

One potential point of discussion is that the model described in Figure 1 implies a linear
relation between next period’s return and the current period’s return. While this is consistent
with almost all the behavioral models described in the literature, it is not necessarily an
appropriate assumption. The more general implication is that, outside the transaction costs
bounds, the spot and futures return take on similar characteristics, linear or nonlinear as
the case may be. In order to address this issue more completely, we provide an analogous

regression to (8) above, namely
rst+1 —TEt+1 = Q + blrpyt + (b2 — bl)Max[O, Trt— al] + (bg — bg)MaX[O, Trt— ag] + €t11- (9)

Under more general versions of the model of Section 2.3, we would expect b; = b3 = 0, that
is, the spot index and futures return to behave the same under conditions for spot-futures
arbitrage. Table 3B provides results for the regression in (9) across all the countries.

In contrast to this behavioral-based implication, 21 of the 24 contracts reject the hy-
pothesis, by = by = 0, in favor of the microstructure alternative, by > 0,b3 > 0, at the 5%
level. This is especially surprising given that some of these contracts include, for the most
part, actively traded stocks. Almost all the b; and bs coefficients are positive (i.e., only 4
negative estimates amongst 50), which again implies that the time-variation of the expected
spot index returns is both greater than that of its corresponding futures contract and more
positively autocorrelated. To the extent that the microstructure based theory would imply
that all three coefficients (b, by, b3) should be positive, 70 of 75 of them are. Since these
coefficients represent relations over different (and apparently independent) data ranges and

across 15 somewhat unrelated countries, this evidence, in our opinion, is strong.

4.3 Autocorrelations and Volume

One obvious implication of the nontrading-based model of Section 2.2 is that there should
be some relation between the spot index properties and volume on that index, whereas the
futures should for the most part be unrelated to volume. Of course, behavioral-based models
may also imply some correlation between volume and autocorrelations (e.g., as in Chordia
and Swaminathan (1998)), but it is clearly a necessary result of the nontrading explanation.

In order to investigate this implication, we collected data from Datastream on overall

stock market volume for each of the 15 countries. While this does not represent volume for
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the stocks underlying the index, it should be highly correlated with trading in these stocks
because all the indices we look at are broad-based, market indices. That is, on days in which
stock market volume is low, it seems reasonable to assume that large, aggregate subsets of
this volume will also be relatively low. During the sample periods for each country, there has
been a tendency for volume to increase (partly due to increased equity values and greater
participation in equity markets). The standard approach is to avoid the nonstationarity
issue and look at levels of detrended volume. For the US stock market, Figure 4 graphs the
two volume series, and illustrates the potential differences between the two series. For the
purposes of estimation, the detrended series looks more useful.

In order to investigate the effect of trading volumes on autocorrelations of the spot index

and its futures return, we consider the following nonlinear regressions:

rsur1 = oy + [of + a5 (Max(Vol®) — Volj)] e + €/,4 (10)
reg1 = o+ [Oz{ + o (Max(Vol?*) — Vol,f)} e+ €l

where Max(Vol®) is the maximum volume of the stock market during the sample period.
Note that these regressions represent fairly logical representations of the relation between
next period’s return and current returns and volume. Specifically, there are two components
to the time-variation of expected returns: (i) the magnitude of last period’s return, and (ii)
the level of volume in the market.

The hypothesis that the trading volume is a factor that influences autocorrelation differ-

entials can be represented as follows:

(1) The trading volume reduces the autocorrelation of the spot, but not the futures con-

tract:

S
Qs >

o

o O

(2) We can interpret of and of as the autocorrelations of the spot index and the futures
contact returns when the trading volume of the spot is highest. In that case, the

autocorrelation of the spot as well as the futures should be close to zero:



Some observations are in order. Hypothesis (1) is an obvious implication of index returns
being driven by nontrading-based models, and the most important component of our hy-
potheses. Note that it is possible that a;; = 0, in which case af represents the autocorrelation
of the index return in a world in which volume plays no role. With respect to hypothesis
(2), it appears to be redundant given (1). However, we want to be able to test whether
the negative relation is strong enough to bring forth the desired result that the spot index
return autocorrelation becomes zero at the highest level of the trading volume. Finally, an
important hypothesis to test is whether the futures contract’s autocorrelation is independent
of trading volume.

Table 4 provides results for each of the 24 stock indices across the 15 countries. First,
there is a negative relation between the trading volume and the autocorrelation of the spot
index return for most of the countries (i.e., a§ > 0). While the estimators are individually
significant at the 5% level for only a few of the indices (e.g., the Russell 2000’s estimate
is 0.54 with standard error 0.19), 21 of 24 of them are positive. Moreover, relative to the
futures return coefficient on volume (i.e., ag), about 70% have values of af > af. While
only a few of these are individually significant at the 5% level (i.e., S&P 500, Russell 2000,
NYSE, FTSE 250, Switzerland, Amsterdam, Hong Kong, and Belgium), only one contract
goes in the direction opposite to that implied by the nontrading-based theory.

Second, independent of volume, the relation between futures return autocorrelations and
trading volume is very weak. Even though many of the autocorrelation coefficients, ag , are
positive, they tend to be very small in magnitude and are thus both economically and statis-
tically insignificant. Furthermore, the estimates at high levels of nontrading imply negative
autocorrelation in futures returns, which is consistent with the Table 2 results. Combining
the estimates of a{ and ag together in equation (10) implies that the autocorrelations of
futures returns are rarely positive irrespective of volume levels. This result is consistent with
the bid-ask bounce effect which will be looked at in Section 4.5.

Third, at the highest level of trading, the autocorrelations of the spot and futures return
are for the most part insignificantly different from zero. For example, only 3 contracts, all
of which are based on Japanese stock indices (i.e., Nikkei 225, Nikkei 300, and TOPIX),
violate this hypothesis. However, for each of these cases, the autocorrelations are negative
at high volume, and thus do not contradict the nontrading-based theory per se. In fact, 21
of the 24 indices imply negative autocorrelation of the spot index return during periods of
highest volume. While these autocorrelations are not estimated precisely, it does point out

that adjustments for trading volume lead to changes in the level of autocorrelations. For
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example, the Russell 2000’s autocorrelation changes from Table 2’s estimate of 0.22 to -0.09
at highest volume levels in Table 4. The most obvious explanation for the negative values is
misspecification of the regression model in (10).

In order to address this issue, we perform a nonparametric analysis of the effect of trad-
ing volumes on autocorrelations of the spot and futures return for the Russell 2000 contract.
Specifically, using multivariate density estimation methods, we look at the expected return
differential, 75441 — 7F441, on detrended market volume and the most recent stock market
innovation, estimated by current futures returns ;. For multidimensional estimation prob-
lems like this, it is important to document the area of relevant data. Figure 5 provides a
scatter plot of detrended volume and futures returns, which represents the applicable space.
Any results using observations outside this area should be treated cautiously.

Figure 6 graphs the relation between futures returns and past returns and volume, i.e.,
the nonparametric alternative to the regression described in equation (10). For low volume
periods, the differential is positive and particularly steep when past returns are high, and
negative when past returns are low. In other words, low volume periods seem to be an im-
portant factor describing differences in the statistical properties of spot and futures returns.
Interestingly, for average and heavy-volume days, there appears to be little difference in their
time-varying properties. As a finer partition of this graph, Figure 7 presents cut-throughs
of the relation between spot-future return differentials and past market innovations for four
different levels of volume within the range of the data. As seen from Figure 7, while there are
positive differentials for all levels of volume (as consistent with the one-dimensional analysis
of Sections 4.1 and 4.2), the most striking evidence takes place during low volume periods.
To the extent that low volume periods are associated with nontrading, these results provide
evidence supportive of the type of models described in Section 2.2. It is, of course, possible
for researchers to devise a behavioral model that fits these characteristics as well, but they

must do so in the presence of spot-futures arbitrage.

4.4 Volatility Ratios

Section 2 provides implications for the variance ratio between the futures and the underlying
index return. The ratios given in Table 1 do not support the behavioral explanation as
futures return volatility exceeds that of the spot index. In this subsection, we explore these
results more closely by addressing two issues: (I) the effect of the volatility of interest rates

and dividend yields, and (II) the behavior of the volatility ratios in periods most suited to
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spot-futures arbitrage.

With respect to (I), Table 5 provides the ratio of the futures return variance over the
measured spot index return variance, adjusted for the variance (and covariance) of the cost of
carry, A(i —d). Not surprisingly, due to the fact that stock volatility is so much greater than
interest rate volatility, the results from Table 1 carry through here. For every single contract,
the variance ratio exceeds 1, and significantly so for all but one. This result provides strong
evidence in favor of a nontrading-based explanation.

With respect to (II), Section 2.4 showed that the behavioralists imply, for extreme lagged
returns, the variance ratio should be closer to one than for small lagged returns. In practice,
due to heteroskedasticity, one would expect variances to increase during the extreme periods,
but that the ratios stay relatively constant. Since extreme values are more suitable for spot-
futures arbitrage, spot and futures volatility should be closer together (at least outside the
transactions cost range). In contrast to the previous results regarding behavioral hypotheses,
Table 5 provides some (albeit weak) support for the theory. Nineteen of the twenty-five
contracts produce greater variance ratios in normal periods; however, only eight of these are
significant at conventional levels. Microstructure-based explanations do not address this issue
per se. However, if extreme moves tend to be associated with high volume environments,
then rational theories would also suggest that the volatility ratio decline here (i.e., due to
the better measurement of the stock index). In any event, the main prediction, namely that

futures volatility exceeds spot volatility, is strongly supported in the data.

4.5 Can Bid-Ask Bounce Explain the Autocorrelation Differences?

One possible explanation for the differences between spot index and futures’ return autocor-
relations is that the futures contract themselves suffer from microstructure biases. That is, a
behavioralist might argue that the true autocorrelation is large and positive, yet the futures’
autocorrelation gets reduced by bid-ask bounce and similar effects. In fact, it is well known
that bid-ask bias leads to negative serial correlation in returns (see, for example, Roll (1984)
and Blume and Stambaugh (1983)). How large does the bid-ask spread need to be to give
credibility to this explanation?

Consider a variation of the Blume-Stambaugh (1983) model in which the measured futures
price, F', is equal to the true price, F', adjusted for the fact that some trades occur at the
offer or asking price, i.e.,

F" =F(1+6),
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where 0; equals the adjustment factor. In particular, assume that 0; equals § with probability
£ (i.e., the ask price), —3 with probability £ (i.e., the bid price), or 0 with probability 1 —p
(i.e., a trade within the spread). Here, s represents the size of the bid-ask spread, and can be
shown to be directly linked to the volatility of ;. Specifically, we can show that of = p%. In
words, the additional variance of the futures price is proportional to the size of the spread and
the probability that trades take place at the quotes. Using the approximation In(1 +z) ~ z,

it is possible to show that the implied autocorrelation of futures returns is given by
2

—ps
1o, T2 -

Table 6 reports the autocorrelation differences between the stock index and futures re-
turns. If these differences were completely due to bid-ask bias in the futures market, then
equation (11) can be used to back out the relevant bid-ask spread. The last two columns
of Table 6 provide estimates of the size of this spread in percentage terms of the futures
price. The two columns represent two different values of p, the probability of trading at
the ask or bid, equal to either 0.5 or 1.0. Of course, a value of 1.0 is an upper bound on
the effect of the bid-ask spread. The implied spreads in general are much larger than those
that occur in practice. To see this, we document actual spreads at the end of the sample
over a week period, and find that they are approximately one-tenth the magnitude (i.e., see
column (4) of Table 6). Alternatively, using the actual spreads, and the above model, we
report implied autocorrelations, which are all close to zero. Therefore, the differences in
the autocorrelations across the series is clearly not driven by bid-ask bounce in the futures

market.

5 Concluding Remarks

The simple theoretical results in this paper, coupled with the supporting empirical evi-
dence, lead to several conclusions. First, there are significant differences between the sta-
tistical properties of spot index and corresponding futures returns even though they cover
the same underlying stocks. These differences can most easily be associated with market
microstructure-based explanations as behavioral models do not seem to capture the charac-
teristics of the data. Second, in the presence of transactions costs and the most favorable
conditions for behavioral models, the empirical results provide very different conclusions.
When futures-spot arbitrage is possible, the spot and futures contract exhibit the most dif-

ferent behavior, the opposite implication of a behavioral model. Third, an important factor
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describing these different properties is the level of volume in the market, which is consistent
with nontrading-based explanations as well as possibly behavioral-based models linked to
volume.

The unique aspect of this paper has been to differentiate, rather generally, implications
from two very different schools of thought and provide evidence thereon. Our conclusion
is generally not supportive of the behavioral, partial-adjustment models that have become
popular as of late. What then is going on in the market that can describe these large daily
autocorrelations of portfolio returns?

Previous authors (e.g., Conrad and Kaul (1989) and Mech (1993), among others) have
performed careful empirical analyses of nontrading by taking portfolios that include only
stocks that have traded. Their results, though somewhat diminished, suggest autocorrela-
tions are still positive and large for these portfolios. It cannot be the case that exchange-based
rules, like price continuity on the NYSE, explain these patterns because these results hold
across exchanges and apparently across countries. Whatever the explanation, it must be
endemic to all markets.

Rational models predict that the price of a security is the discounted value of its future
cash flow. Within this context, how should we view a trade for 100 shares when there is little
or no other trading? Does it make sense to discard a theory based on a single investor buying
a small number of shares at a stale over- or undervalued (relative to market information)
price, or a dealer inappropriately not adjusting quotes for a small purchase or sale? Our
view is that the important issue is how many shares can trade at that price (either through
a large order or numerous small transactions). What would researchers find if we took
portfolios of stocks that trade meaningfully, and then what would happen if these portfolios
got segmented via size, number of analysts, turnover, et cetera? These are questions which

seem very relevant given the results of this paper.
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Table 1: Sample Statistics for Indices and Futures Contracts

Reported for each contract are the exchange, country, number of observations, start date, end date, mean and standard deviation of index return
and futures return, open interest and futures trading volume.

Returns Open Interest Trading Volume
Index Futures

Contract Exchange Country | No Start End Mean  Std  Mean  Std Mean Std Mean Std

S&P 500 CME UsS 4350 06/01/82 02/03/99| 0.0559 0.9851 0.0560 1.1911|274693.78 130827.85  62089.07 32102.39
RUSSELL 2000 CME UsS 1558 02/11/93 02/03/99| 0.0396 0.7813 0.0396 0.9418| 5466.76 4002.12 455.17 705.14
NIKKEI 225 CME Us 2169 10/10/90 02/03/99|-0.0215 1.4357 -0.0204 1.5385| 20324.65 8122.63 1732.23  1905.72
NYSE-STOCK NYSE UsS 4368 05/06/82 02/03/99| 0.0495 0.9081 0.0495 1.1799| 6740.36  3691.51 6132.52  3975.41
MAXI VALUE LINE KCBT UsS 2791 05/23/88 02/03/99| 0.0503 0.6635 0.0512 0.9025| 2498.05 2006.71 197.13 303.51
FTSE 100 LIFFE UK 3848 05/03/84 02/03/99| 0.0430 0.9486 0.0432 1.0964| 93947.63 67882.48 9041.89 10053.11
FTSE 250 LIFFE UK 1287 02/25/94 02/03/99| 0.0214 0.5607 0.0211 0.6330| 5232.38  1872.38 N/A N/A
TOPIX TSE Japan 2716 09/05/88 02/03/99|-0.0241 1.1789 -0.0241 1.3280| 61164.59 41705.49 9940.63  6469.21
NIKKEI 225 0SX Japan 2716 09/05/88 02/03/99|-0.0242 1.4150 -0.0244 1.4166| 152646.3 75833.12 37204.19 23681.51
NIKKEI 300 0SX Japan 1296 02/14/94 02/03/99|-0.0214 1.1622 -0.0208 1.3256|120634.89 29613.88 7940.81 12508.13
DAX EUREX Germany [1981 07/01/91 02/03/99| 0.0580 1.1717 0.0576 1.2450(175100.14 90140.25 18856.4 11907.66
SWISS MARKET EUREX Switzerland |2147 11/09/90 02/03/99| 0.0760 1.0570 0.0757 1.0970| 23893.42 28975.27 6623.03  8699.17
AEX AMSTERDAM | Netherlands | 2681 10/24/88 02/03/99| 0.0577 1.0526 0.0579 1.1169| 21538.75 14465.87 4751.23  5574.94
BELFOX-20 BELFOX Belgium |1372 10/29/93 02/03/99| 0.0665 0.8718 0.0667 0.9214| 6616.48 4061.94 1429.17  1933.21
HANG SENG HKFE Hong Kong (2881 01/18/88 02/03/99| 0.0462 1.7099 0.0459 1.9631| 31604.23 24939.12 11800.48 12777.53
IBEX 35 PLUS MEFF Spain 1771 04/20/92 02/03/99| 0.0729 1.2625 0.0725 1.4750| 36196.55 21435.12  14519.69 15056.57
MIB 30 MIF Italy 1091 11/28/94 02/03/99| 0.0792 1.5513 0.0776 1.6605| 19685.53 9234.24  14008.73  9486.82
OMX-STOCK OMX Sweden {2370 01/02/90 02/03/99| 0.0530 1.3241 0.0524 1.5853| 59106.35 68598.88 N/A N/A
ATX OTOT Austria 1692 08/07/92 02/03/99| 0.0248 1.1096 0.0258 1.2468| 30523.44 15544.54 1596.17  1489.93
NIKKEI 225 SIMEX Singapore |3148 01/06/87 02/01/99|-0.0084 1.4153 -0.0088 1.6491| 13222.81 11834.87 152646.30 75833.12
NIKKEI 300 SIMEX Singapore |1042 02/03/95 02/03/99|-0.0196 1.2327 -0.0194 1.3230| 14816.72  8380.19 N/A N/A
TORONTO 35 TFE Canada 2071 02/25/91 02/03/99| 0.0328 0.8464 0.0324 1.0129| 14508.86 7204.8 645.20 997.97
AUSTRALIA SFE Australia {3937 01/03/84 02/03/99| 0.0334 0.9983 0.0331 1.4475| 23745.64 34674.36 1345984.04 868007.19
CAC 40 MATIF France |2698 01/03/88 02/03/99| 0.0401 1.1692 0.0399 1.2503| 47530.65 62667.04 4910.75  7712.68
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Table 2: Daily Autocorrelations of Index and Futures Returns

Reported are daily autocorrelations of index and futures returns. The x? statistic tests p/m% = pfuture - Standard errors are serial correlation
and heteroskedasticity-adjusted using Newey and West (1987).
Contract Exchange prndex s.e. pFuture s.e. X3 p-value
S&P 500 CME 0.0267 0.0269 -0.0386 0.0278 26.5625 0.0000
RUSSELL 2000 CME 0.2155 0.0457 0.0668 0.0399 45.5922 0.0000
NIKKEI 225 CME -0.0346 0.0261 -0.0910 0.0264 6.6635 0.0098
NYSE-STOCK NYSE 0.0589 0.0282 -0.0582 0.0288 45.3751 0.0000
MAX VALUE LINE KCBT 0.1877 0.0309 -0.0270 0.0357 61.6370 0.0000
FTSE 100 LIFFE 0.0836 0.0312 0.0262 0.0284 12.3201 0.0004
FTSE 250 LIFFE 0.2082 0.0663 0.1201 0.0563 4.6523 0.0310
TOPIX TSE 0.0985 0.0260 -0.0114 0.0260 44.6339 0.0000
NIKKEI 225 0SX -0.0141 0.0242 -0.0275 0.0246 1.1324 0.2873
NIKKEI 300 0SX 0.0132 0.0347 -0.0760 0.0322 33.8410 0.0000
DAX EUREX 0.0249 0.0277 0.0010 0.0297 4.2482 0.0393
SWISS MARKET EUREX 0.0539 0.0299 0.0298 0.0288 4.9607 0.0259
AEX AMSTERDAM 0.0356 0.0254 0.0034 0.0278 6.5739 0.0103
BELFOX-20 BELFOX 0.1510 0.0390 0.1008 0.0355 4.0746 0.0435
HANG SENG HKFE 0.0124 0.0429 -0.0529 0.0450 21.8761 0.0000
IBEX 35 PLUS MEFF 0.1270 0.0294 0.0076 0.0311 37.6380 0.0000
MIB 30 MIF 0.0108 0.0369 -0.0379 0.0375 10.0323 0.0015
OMX-STOCK OMX 0.1179 0.0262 -0.0357 0.0370 18.0804 0.0000
ATX oTOoT 0.0897 0.0374 -0.0102 0.0395 67.2461 0.0000
NIKKEI 225 SIMEX -0.0163 0.0263 -0.0433 0.0299 0.6547 0.4184
NIKKEI 300 SIMEX 0.0091 0.0379 -0.0435 0.0369 10.7257 0.0011
TORONTO 35 TFE 0.0841 0.0311 -0.0799 0.0702 5.2843 0.0215
AUSTRALIA SFE 0.1025 0.0290 -0.0744 0.0385 23.5963 0.0000
CAC 40 MATF 0.0474 0.0217 0.0129 0.0222 12.4701 0.0004
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Table 3A: Daily Autocorrelations of Futures Returns: Piecewise Regression Analysis

Reported are daily autocorrelations of futures returns. Extreme movements in lagged futures returns are based on the cut-off points -1.0% and
1.0%. The regression is

ﬁmL =a+byrl + (by —by) Max[0,7] — ay] + (b3 — by) Max[0, 7! — ay] + mm.T
where a; = —0.01 and as = 0.01. The x»? statistic tests Hy: by >0 & b3 > 0 vs H, : by 20 or by 0. Standard errors are serial correlation
and heteroskedasticity-adjusted using Newey and West (1987).

Contract Exchange by s.e. bs s.e. bs s.e. Y22 p-value
S&P 500 CME -0.1398 0.0687 0.0136 0.0358 0.0316 0.0876 4.1394 0.0540
RUSSELL 2000 CME -0.1910 0.1209 0.2241 0.0517 -0.0793 0.1855 3.0496 0.0931
NIKKEI 225 CME -0.1901 0.0810 -0.0931 0.0524 0.0129 0.0710 5.5107 0.0255
NYSE-STOCK NYSE -0.1435 0.0730 0.0005 0.0334 -0.0320 0.0774 3.8699 0.0626
MAX VALUE LINE KCBT -0.3946 0.1107 0.1233 0.0421 -0.0106 0.0804 12.7142 0.0006
FTSE 100 LIFFE 0.0651 0.1253 0.0552 0.0349 -0.1109 0.1344 0.6804 0.3871
FTSE 250 LIFFE -0.2898 0.2225 0.3097 0.0594 -0.4351 0.2919 3.3905 0.0800
TOPIX TSE -0.1021 0.0843 0.0211 0.0429 0.0153 0.0807 1.4645 0.2332
NIKKEI 225 0OSX -0.0556 0.0799 -0.0504 0.0468 0.0350 0.0740 0.4832 0.4402
NIKKEI 300 OSX -0.2271 0.1076 0.0129 0.0600 -0.0994 0.1061 6.0696 0.0184
DAX EUREX 0.0071 0.1330 0.0211 0.0478 -0.0484 0.0877 0.3270 0.5123
SWISS MARKET EUREX 0.0298 0.1401 0.0891 0.0470 -0.1158 0.0799 2.1042 0.1591
AEX AMSTERDAM -0.0921 0.0936 0.1053 0.0374 -0.1173 0.0875 2.5778 0.1238
BELFOX-20 BELFOX 0.2066 0.1667 0.1107 0.0435 -0.0411 0.0972 0.1789 0.5600
HANG SENG HKFE -0.1892 0.0932 0.2104 0.0792 -0.1329 0.0827 4.3282 0.0517
IBEX 35 PLUS MEFF 0.0207 0.0873 0.1000 0.0557 -0.1616 0.1065 2.2996 0.1432
MIB 30 MIF 0.0930 0.1213 0.0473 0.0790 -0.2656 0.0729 13.2769 0.0005
OMX-STOCK OMX -0.2223 0.0766 0.2455 0.0517 -0.2149 0.1334 13.5719 0.0004
ATX oTOoT -0.2811 0.1118 0.1996 0.0608 -0.1043 0.0932 6.3696 0.0172
NIKKEI 225 SIMEX -0.0693 0.0929 0.0638 0.0489 -0.1303 0.0805 4.5310 0.0405
NIKKEI 300 SIMEX -0.2587 0.1209 0.0602 0.0690 -0.0454 0.1133 5.5742 0.0235
TORONTO 35 TFE -0.2504 0.0888 0.2113 0.0523 -0.4903 0.1806 24.1307 0.0000
AUSTRALIA SFE -0.1290 0.0557 0.0433 0.0517 -0.1726 0.1775 5.6866 0.0238
CAC 40 MATF -0.0049 0.0886 0.0452 0.0421 -0.0372 0.0703 0.2809 0.5121
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Table 3B: Daily Autocorrelations of Spot-Futures Return Spread: Piecewise Regression Analysis

Reported are daily autocorrelations of the spot-futures return spread. Extreme movements in lagged futures returns are based on the cut-off
points -1.0% and 1.0%. The regression is

Jmi - ﬁMI =a+ Sﬁw + (b — by) zmiouﬁwj —ay] + (bs — bo) ZEAE“%W —ag] + mw.ﬂmuu

where a; = —0.01 and ay = 0.01. The x»? statistic tests Hy: by = b3 =0 vs Hy: by >0 & by > 0. Standard errors are serial correlation and
heteroskedasticity-adjusted using Newey and West (1987).

Contract Exchange b, s.e. bs s.e. bs s.e. Y22 p-value
S&P 500 CME 0.0602 0.0339 0.1288 0.0119 -0.0105 0.0472 5.5935 0.0268
RUSSELL 2000 CME 0.1666 0.0332 0.1339 0.0183 0.1363 0.0548 28.0097 0.0000
NIKKEI 225 CME 0.3706 0.0669 0.2150 0.0332 0.2163 0.0445 48.8751 0.0000
NYSE-STOCK NYSE 0.0988 0.0419 0.1727 0.0147 0.0722 0.0657 5.7848 0.0244
MAX VALUE LINE KCBT 0.3470 0.0873 0.1323 0.0222 0.0990 0.0555 19.4654 0.0000
FTSE 100 LIFFE 0.1654 0.0291 0.0516 0.0124 0.0790 0.0359 41.0167 0.0000
FTSE 250 LIFFE -0.0462 0.0420 0.0164 0.0275 0.4978 0.2388 7.5059 0.0097
TOPIX TSE 0.1204 0.0391 0.1818 0.0170 0.0257 0.0286 9.4947 0.0034
NIKKEI 225 0OSX 0.0186 0.0271 0.0735 0.0204 0.0004 0.0374 0.4875 0.4325
NIKKEI 300 0SX 0.0588 0.0400 0.1373 0.0204 0.0449 0.0357 3.8178 0.0623
DAX EUREX 0.1035 0.0362 0.0025 0.0149 0.0381 0.0170 13.0757 0.0005
SWISS MARKET EUREX 0.0192 0.0198 0.0708 0.0113 0.0325 0.0164 4.6248 0.0409
AEX AMSTERDAM 0.0114 0.0282 0.0485 0.0114 0.0350 0.0172 4.2490 0.0498
BELFOX-20 BELFOX -0.0665 0.0621 0.0956 0.0202 0.0009 0.0405 0.0341 0.6553
HANG SENG HKFE 0.0816 0.0329 0.1525 0.0292 0.0866 0.0332 8.7237 0.0053
IBEX 35 PLUS MEFF 0.1110 0.0271 0.1388 0.0267 0.2095 0.0681 24.9556 0.0000
MIB 30 MIF 0.0376 0.0247 0.0967 0.0255 0.0737 0.0286 8.1299 0.0066
OMX-STOCK OMX 0.1972 0.0610 -0.0023 0.0298 0.2689 0.0980 20.1802 0.0000
ATX oToT 0.1320 0.0229 0.0892 0.0167 0.1209 0.0257 53.1407 0.0000
NIKKEI 225 SIMEX -0.0455 0.1398 0.1008 0.0473 0.0924 0.0199 22.8572 0.0000
NIKKEI 300 SIMEX 0.0375 0.0405 0.0901 0.0224 0.0486 0.0485 1.9027 0.1803
TORONTO 35 TFE 0.1020 0.0666 0.0509 0.0403 0.4369 0.1803 11.5582 0.0010
AUSTRALIA SFE 0.6983 0.1019 0.1796 0.0557 0.4143 0.1250 52.1736 0.0000
CAC 40 MATF 0.0046 0.0237 0.0711 0.0122 0.0073 0.0133 0.3108 0.4951
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Table 4: Daily Autocorrelations and Trading Volume

Reported are the regression coefficients describing the relationship between the daily autocorrelations of spot and futures returns and the trading volume of
the lagged spot index. The regressions are

ﬂmt = af + Tw + a5 ﬁzmx?\o_mv - <o_m: e+ mwt

ﬁmi Q% + T% + QW ﬁzm«x?\o_mv — <o_wz ﬁw + mM&

The x3 statistic tests af = af” = 0, and the z — value statistic tests a5 — ad” > 0. Standard errors are serial correlation and heteroskedasticity-adjusted using
Newey and West (1987).

Contract Exchange al s.e. af s.e. al s.e. af s.e. X3 p-value z-value p-value
S&P 500 CME -0.0912 0.1038 -0.0541 0.0839 0.0791 0.0553 0.0122 0.0464 | 0.9858 0.6108  2.7059  0.0034
RUSSELL 2000 CME -0.0909 0.1374 -0.0649 0.1255 0.5395 0.1894 0.2231 0.1751 | 0.4411 0.8021  2.6527  0.0040
NIKKEI 225 CME -0.0767 0.1469 -0.0420 0.1891 0.0092 0.0261 -0.0070 0.0339 | 0.2726 0.8726  0.4862 0.3134
NYSE-STOCK NYSE -0.0646 0.1078 -0.0447 0.0825 0.0831 0.0570 -0.0100 0.0449 | 0.3589 0.8357  3.0447 0.0012
MAX VALUE LINE KCBT -0.0368 0.1351 -0.1708 0.1436 0.2412 0.1221 0.1543 0.1269 | 1.6147 0.4460 0.7341 0.2315
FTSE 100 LIFFE -0.0385 0.1890 -0.0300 0.1502 0.0868 0.1249 0.0345 0.1016 | 0.0421 0.9792  1.0850 0.1390
FTSE 250 LIFFE 0.0794 0.2135 0.1037 0.1722 0.2252 0.2464 0.0363 0.2029 | 0.7737 0.6792 19764 0.0241
TOPIX TSE 0.0603 0.0813 -0.1411 0.0756 0.0144 0.0231 0.0385 0.0197 | 10.4209 0.0055 -1.1928 0.8835
NIKKEI 225 0SX -0.0812 0.0773 -0.1120 0.0829 0.0213 0.0214 0.0248 0.0227 | 1.8738 0.3918 -0.3197 0.6254
NIKKEI 300 0OSX -0.1241 0.1263 -0.2255 0.1316 0.1162 0.0865 0.1138 0.0897 | 5.4123 0.0668  0.0650 0.4741
DAX EUREX -0.1711 0.2144 -0.3306 0.1905 0.0733 0.0787 0.1246 0.0688 | 5.9837 0.0502 -1.4791 0.9304
SWISS MARKET EUREX -0.0363 0.0878 0.0325 0.0662 0.0546 0.0436 0.0004 0.0312 | 2.7580 0.2518  2.2095 0.0136
AEX AMSTERDAM | 0.1622 0.0853 -0.0030 0.1167 -0.0268 0.0141 0.0014 0.0207 | 14.4554 0.0007 -2.3730 0.9912
BELFOX-20 BELFOX -0.1362 0.2184 0.0990 0.1569 0.1410 0.1021 -0.0009 0.0730 | 2.6858 0.2611  1.8761  0.0303
HANG SENG HKFE -0.2912 0.1232 -0.2384 0.1472 0.1926 0.0609 0.1192 0.0708 | 12.2509 0.0022  3.5046  0.0002
IBEX 35 PLUS MEFF 0.0822 0.1563 0.0687 0.1302 0.0226 0.0665 -0.0241 0.0556 | 0.3068 0.8578  1.1286 0.1295
MIB 30 MIF -0.1473 0.1332 -0.2030 0.1246 0.1538 0.1052 0.1551 0.0994 | 4.3753 0.1122 -0.0391 0.5156
OMX-STOCK OMX 0.0610 0.2270 -0.2349 0.2342 0.0154 0.0584 0.0538 0.0619 | 2.2468 0.3252 -0.6963 0.7569
ATX OTOT -0.3985 0.2680 -0.3835 0.2846 0.1840 0.0907 0.1376 0.0939 | 2.2953 0.3174 1.6024 0.0545
NIKKEI 225 SIMEX -0.0816 0.0772 -0.2536 0.1015 0.0213 0.0214 0.0545 0.0244 | 6.4681 0.0394 -1.5575 0.9403
NIKKEI 300 SIMEX -0.1217 0.1404 -0.1154 0.1451 0.1177 0.0977 0.0487 0.1072 | 0.7569 0.6849  1.0256 0.1525
TORONTO 35 TFE -0.0789 0.0753 -0.3695 0.2108 0.2183 0.0798 0.3976 0.2261 | 3.5942 0.1658 -0.8296 0.7966
AUSTRALIA SFE -0.2421 0.0912 -0.6325 0.2734 0.1391 0.0348 0.1978 0.0925 | 7.6987 0.0213 -0.7807 0.7825
CAC 40 MATF -0.1311 0.0953 -0.1198 0.1030 0.0685 0.0341 0.0501 0.0378 | 1.9053 0.3857  0.9663 0.1670
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Table 5: Volatility Ratios

Reported are volatility ratios of the futures and spot returns. ¢ is o?(R¥)/0? (R® + A(i — d)). A(4) is defined as [In(1 + ¢, ;) — In(1 +4¢)] /6, i.e., the change
in continuously compounded 2-month interest rates. A(d) is similarly computed. ¢, and ¢, stand for the volatility ratios for the normal range and extreme
range of M;, respectively. Specifically, extreme movements in lagged futures returns are based on the cut-off points -1.0% and 1.0%. The regressions are

ﬁwtw = tmmH — L)+ pf mm +efy ﬁhtw = twﬁml L) + pl I + mwt
e = op A—L)+0) L+el, ey = éuopy (1—1)+ ¢l I +¢f,

where I, = 0 if —0.01 < ﬁmI < 0.01; otherwise I, = 1. The z-value statistic tests ¢, — ¢ > 0. Standard errors are serial correlation and heteroskedasticity-
adjusted using Newey and West (1987).

Contract Exchange 10) s.e. On s.e. e s.e. z-value p-value
S&P 500 CME 1.4488 0.1231 1.2764 0.0208 1.6581 0.2048 -1.8529 0.9681
RUSSELL 2000 CME 1.4456 0.0530 1.5522 0.0557 1.3154 0.0869 2.5419 0.0055
NIKKEI 225 CME 1.1450 0.0430 1.2572 0.0721 1.0586 0.0550 2.1472 0.0159
NYSE-STOCK NYSE 1.6714 0.1171 1.5368 0.0376 1.8408 0.2123 -1.3907 0.9178
MAX VALUE LINE KCBT 1.8343 0.0980 1.9619 0.0986 1.5944 0.1269 3.0624 0.0011
FTSE 100 LIFFE 1.3237 0.0356 1.4133 0.0529 1.2004 0.0850 1.7271 0.0421
FTSE 250 LIFFE 1.2570 0.0807 1.2663 0.0777 1.2350 0.1540 0.2104 0.4167
TOPIX TSE 1.2660 0.0391 1.3805 0.0555 1.1646 0.0704 2.0736 0.0191
NIKKEI 225 0SX 1.0002 0.0236 1.0539 0.0258 0.9580 0.0361 2.1363 0.0163
NIKKEI 300 0SX 1.2975 0.0575 1.3466 0.0983 1.2378 0.0506 0.9608 0.1683
DAX EUREX 1.1296 0.0337 1.1595 0.0415 1.0891 0.0338 1.7010 0.0445
SWISS MARKET EUREX 1.0731 0.0209 1.0925 0.0190 1.0477 0.0378 1.0930 0.1372
AEX AMSTERDAM 1.1189 0.0251 1.1337 0.0267 1.1004 0.0433 0.6728 0.2505
BELFOX-20 BELFOX 1.1133 0.0430 1.1357 0.0557 1.0644 0.0464 1.1090 0.1337
HANG SENG HKFE 1.3138 0.0396 1.3422 0.0333 1.2956 0.0625 0.6587 0.2550
IBEX 35 PLUS MEFF 1.3639 0.0495 1.4767 0.0698 1.2508 0.0533 2.8952 0.0019
MIB 30 MIF 1.1397 0.0294 1.1750 0.0418 1.1065 0.0365 1.3303 0.0917
OMX-STOCK OMX 1.4433 0.0875 1.3577 0.0656 1.5153 0.1497 -0.9774 0.8358
ATX OTOT 1.2588 0.0250 1.2780 0.0339 1.2342 0.0410 0.7972 0.2127
NIKKEI 225 SIMEX 1.1303 0.0499 1.0986 0.0408 1.1613 0.0883 -0.6478 0.7414
NIKKEI 300 SIMEX 1.1483 0.0338 1.1595 0.0514 1.1378 0.0418 0.3325 0.3697
TORONTO 35 TFE 1.4338 0.2347 1.1669 0.0620 1.9188 0.6497 -1.1478 0.8745
AUSTRALIA SFE 2.0811 0.3024 2.4615 0.1780 1.8776 0.4293 1.3342 0.0911
CAC 40 MATF 1.1442 0.0184 1.1367 0.0253 1.1541 0.0232 -0.5358 0.7039
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Table 6: Futures Return Autocorrelations and the Bid-Ask Spread

Table 6 reports the difference between autocorrelations of the spot index and futures return for each contract, and the actual estimated bid-ask spread of each
futures contract. Using a Blume-Stambaugh (1993) bid-ask model, the table provides (I) implied autocorrelation differences based on actual spreads, and (II)
the implied spread necessary to explain the actual autocorrelation differences. Low probability (i.e., 50%) and high probability (i.e., 100%) states refer to the
probability that the trades take place at the quotes rather than within the quoted spreads.

Implied AC Implied Spread
Contract AC Diff. Vol. Spread low prob. high prob. low prob. high prob.
S&P 500 0.0653 1.1911 0.037 0.0001 0.0002 0.86 0.61
Russell 200 0.1487 0.9418 0.150 0.0032 0.0063 1.03 0.73
Nikkei 225 0.0564 1.5385 0.060 0.0002 0.0004 1.03 0.73
NYSE 0.1171 1.1799 0.040 0.0001 0.0003 1.14 0.81
Value Line 0.2147 0.9025 0.100 0.0015 0.0031 1.18 0.84
FTSE 100 0.0574 1.0964 0.150 0.0023 0.0047 0.74 0.53
FTSE 250 0.0881 0.6330 NA NA NA 0.53 0.38
TOPIX 0.1099 1.3280 0.038 0.0001 0.0002 1.25 0.88
Nikkei 225 0.0134 1.4166 0.059 0.0002 0.0004 0.46 0.33
Nikkei 300 0.0892 1.3256 0.500 0.0178 0.0356 1.12 0.79
DAX 0.0239 1.2450 0.060 0.0003 0.0006 0.54 0.38
Swiss 0.0241 1.0970 0.014 0.0000 0.0000 0.48 0.34
AEX 0.0322 1.1164 0.089 0.0008 0.0016 0.57 0.40
BELFOX 20 0.0502 0.9214 0.217 0.0069 0.0139 0.58 0.41
Hang Seng 0.0653 1.9631 0.037 0.0000 0.0001 1.42 1.00
IBEX 35 0.1194 1.4750 0.070 0.0003 0.0006 1.44 1.02
MIB 30 0.0487 1.6605 0.068 0.0002 0.0004 1.04 0.73
OMX 0.1536 1.5853 0.032 0.0001 0.0001 1.76 1.24
ATX 0.0999 1.2468 0.308 0.0076 0.0153 1.11 0.79
Nikkei 225 0.0270 1.6491 0.060 0.0002 0.0003 0.77 0.54
Nikkei 300 0.0526 1.3230 0.375 0.0100 0.0201 0.86 0.61
Toronto 35 0.1640 1.0129 0.127 0.0020 0.0039 1.16 0.82
Australia 0.1769 1.4475 0.032 0.0001 0.0001 1.72 1.22
CAC 40 0.0345 1.2503 NA NA NA 0.66 0.46
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Figure 1: The theoretical relation between the futures return (Rf:rl) and the lagged market inno-
vation (M) in the lagged adjustment model with transaction costs (solid line) and the nontrading
model (dashed line).
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Figure 4: Trading volume in the U.S. spot market (In (1 4+ vol)) and detrended trading volume.
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Figure 5: Scatter plot of detrended trading volume in the U.S. spot market and the return on the
Russell 2000.
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Figure 6: Three dimensional plot of the kernel estimate of the relation between the spot-futures
return spread, the lagged return on the futures and detrended trading volume for the Russell 2000.
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Figure 7: Two-dimensional cut-through of the relation between the lagged futures return (r}") and
the current spot-futures spread (TtSH - rf_H) of the Russell 2000 at different values of the lagged
log-volume (In (1 4 vol3)).
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