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This paper presents a general, nonlinear version of existing multifactor models, such as

Longstaff and Schwartz (1992). The novel aspect of our approach is that rather than choosing the

model parameterization out of “thin air,” our processes are generated from the data using
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rates, a major finding is that the volatility of interest rates is increasing in the level of interest rates
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role in determining the magnitude of the diffusion coefficient. As an application, we analyze the

model's implications for the term structure of term premiums.
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1 Introduction

It is now widely believed that interest rates are a�ected by multiple factors. Part of this

view derives from the fact that the returns on bonds of all maturities are not perfectly

correlated.1 In addition to this simple point, a number of theoretical studies promote multi-

factor bond pricing, including Brennan and Schwartz (1979), Schaefer and Schwartz (1984),

Heath, Jarrow and Morton (1988), Longsta� and Schwartz (1992), and Chen and Scott

(1995), among others. Empirical studies of these and related models generally support the

existence of multiple factors (see, for example, Dai and Singleton (1997), Litterman and

Scheinkman (1991), Longsta� and Schwartz (1992), Stambaugh (1988), Pearson and Sun

(1989), and Andersen and Lund (1997)). Despite this volume of evidence, surprisingly few

stylized facts are known about the stochastic behavior of interest rates in a multi-factor,

continuous-time setting.

This lack of evidence is particularly unfortunate as most of our intuition concerning

bond and �xed-income derivative pricing comes from stylized facts generated by single-

factor, continuous-time interest rate models. For example, the �nance literature is uniform

in its view that interest rate volatility is increasing in interest rate levels, though there is

some disagreement about the rate of increase (see, for example, Chan, Karolyi, Longsta� and

Sanders (1992), Ait-Sahalia (1996b), Conley, Hansen, Luttmer and Scheinkman (1995), Bren-

ner, Harjes and Kroner (1996) and Stanton (1997)). If interest rates possess multiple factors,

such as the level and slope of the term structure (Litterman and Scheinkman (1991)), then

this volatility result represents an average over all possible term structure slopes. Therefore,

conditional on any particular slope, volatility may be severely misestimated, with serious

consequences especially for �xed-income derivative pricing.

Two issues arise in trying to generate stylized facts about the underlying continuous-time,

stochastic process for interest rates. First, how do we specify ex ante the drift and di�usion

of the multivariate process for interest rates so that it is consistent with the true process

underlying the data? Second, given that we do not have access to continuous-time data, but

instead to interest rates/bond prices at discretely sample intervals, how can we consistently

infer an underlying continuous-time multivariate process from these data? Recently, in single-

factor settings, there has been much headway at addressing these issues (see, for example,

Ait-Sahalia (1996a), Conley, Hansen, Luttmer and Scheinkman (1995) and Stanton (1997)).

1In a single factor world, the instantaneous returns on all interest rate dependent assets must be perfectly

correlated.
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Essentially, using variations on nonparametric estimators with carefully chosen moments, the

underlying single-factor, continuous-time process can be backed out of interest rate data.

Here, we extend the work of Stanton (1997) to a multivariate setting and provide for

the non-parametric estimation of the drift and volatility functions of multivariate stochastic

di�erential equations. Basically, we use Milshtein's (1978) approximation schemes for writing

expectations of functions of the sample path of stochastic di�erential equations in terms of

the drift, volatility and correlation coe�cients. If the expectations are known (or, in our

case, estimated nonparametrically) and the functions are chosen appropriately, then the

approximations can be inverted to recover the drift, volatility and correlation coe�cients.

In this paper, we apply this technique to the short- and long-end of the term structure for

a general two-factor, continuous-time di�usion process for interest rates.

In contrast, the common approach in the literature for investigating multifactor continuous-

time interest rate models is to develop implications from the a�ne class of term structure

models. For example, Longsta� and Schwartz (1992) specify preferences and production

technologies in such a way that they get closed-form solutions for bond prices and some

�xed-income derivatives. Alternatively, other papers write down a�ne term structure mod-

els, with assumptions about the prices of risk, and value securities using no arbitrage. One

can view the approach taken in this paper as complementary to this literature. Here, we

consider nonlinear speci�cations for the interest rate process and prices of risk. These gen-

eral multifactor models then lead to implications for pricing �xed-income securities (albeit

without closed forms). The novel aspect of our approach is that rather than choosing the

model parameterization out of \thin air", our processes are generated from the data using

the Milshtein (1978) approximation schemes described above. As such, one can consider

our model a general, nonlinear version of existing multifactor models, such as Longsta� and

Schwartz (1992), with the added bene�t that, estimation error aside, the model structure

is reasonable. In fact, we show directly how our model relates to the two-factor model of

Longsta� and Schwartz (1992).

Our paper provides three contributions to the existing literature. First, in estimating this

multi-factor di�usion process, some new empirical facts emerge from the data. Of particular

note, while the volatility of interest rates increases in the level of interest rates, it does so

primarily for sharply upward sloping term structures. Thus, the results of previous studies,

suggesting an almost exponential relation between interest rate volatility and levels, is due

to the term structure on average being upward sloping, and is not a general result per se.

Moreover, our volatility result holds for both the short- and long-term rates of interest.
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Thus, conditional on particular values of the two factors, such as a high short rate of interest

and a negative slope of the term structure, the term structure of interest rate volatilities is

generally at a lower level across maturities than implied by previous work.

The second contribution is methodological. In this paper, we provide a way of linking

empirical facts and continuous-time modeling techniques so that generating implications for

�xed-income pricing is straightforward. Speci�cally, we use nonparametrically estimated

conditional moments of \relevant pricing factors" to build a multifactor continuous-time

di�usion process which can be used to price securities. This process can be considered a

generalization of the Longsta� and Schwartz (1992) two-factor model. Using this estimated

process, we then show how to value �xed-income securities, in conjunction with an estimation

procedure for the functional for the market prices of risk. Since the analysis is performed

nonparametrically without any priors on the underlying economic structure, the method

provides a unique opportunity to study the economic structure's implications for pricing.

Of course, ignoring the last twenty-�ve years of term structure theory and placing more

reliance on estimation error may not be a viable alternative on its own. Nevertheless, we

view this approach as helpful for understanding the relation between interest rate modeling

and �xed-income pricing.

The �nal contribution of the paper is to apply the above methodology to a particular

�xed-income pricing application. In particular, we use our continuous-time model to provide

an analysis of term premiums. There is a considerable literature in �nance on the shape of

the term structure of term premiums. Here, both factors, and the underlying nonlinearities

of the model, play an important role in �xed-income pricing and can be directly linked to

the results in the literature. This is especially interesting given that some of the data, and

the corresponding moments, were not used in estimation of the model.

The paper is organized as follows. In Section 2, we provide some general empirical facts

about the conditional means and volatilities of the short- and long-rate of interest. Formal

tests suggest strong evidence of multi-factor pricing. Section 3 outlines the technique for

estimating the underlying multi-factor continuous-time process, and then applies this method

to estimate a general two-factor process for interest rates over the 1983 to 1998 period. Of

particular interest, this section contains a discussion of several new stylized facts about the

stochastic behavior of interest rates. In Section 4, we link our model of interest rate behavior

with a generalized version of the popular Longsta� and Schwartz (1992) model, and show

how our estimated model can be used to capture an existing stylized fact about interest rates

and bond returns across maturities. Section 5 makes some concluding remarks.
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2 The Stochastic Behavior of Interest Rates: Some Ev-

idence

In this section, we provide some preliminary evidence for the behavior of interest rates

across various points of the yield curve. Speci�cally, under the assumption that there are

two interest-rate dependent state variables, and that these variables are spanned by the

short rate of interest and the slope of the term structure, we document conditional means

and volatilities of changes in the 6-month through 5-year rates of interest. The results are

generated nonparametrically, and thus impose no structure on the underlying functional

forms for the term structure of interest rates.

2.1 Data Description

Daily values for constant maturity treasury yields on the 3-year, 5-year and 10-year U.S.

government bond were collected from Datastream over the period January 1983 to Decem-

ber 1998. In addition, 3-month, 6-month and 1-year T-bill rates were obtained from the

same source, and converted to annualized yields. This provides us with roughly 4,000 daily

observations.

The post-1982 period was chosen because there is considerable evidence that the period

prior to 1983 came from a di�erent regime (see, for example, Huizinga and Mishkin (1984),

Sanders and Unal (1988), Klemkosky and Pilotte (1992), and Torous and Ball (1995)). In

particular, these researchers argue that the October 1979 change in Federal Reserve operating

policy led to a once-and-for-all shift in the behavior of the short term riskless rate. Since

the Federal Reserve experiment ended in November 1982, it is fairly standard to treat only

the post late 1982 period as stationary.

In estimating the conditional distribution of the term structure of interest rates, we

employ two conditioning factors. These factors are the short rate of interest | de�ned here

as the 3-month yield | and the slope of the term structure | de�ned as the spread between

the 10-year and 3-month yield. These variables are chosen to coincide with interest rate

variables used in other studies (see Litterman and Scheinkman (1991) and Chan, Karolyi,

Longsta� and Sanders (1992), among others). Figure 1 graphs the time series of both the

short rate and spread. Over the 1983 to 1998 period, the short rate ranges from 3.00% to

11.50%, while the spread varies from -0.51% to 3.50%. There are several distinct periods

of low and high interest rates, as well as spread ranges. Since the correlation between the
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short rate and spread is �0:40, there exists the potential for the two variables combined to

possess information in addition to a single factor.

Figure 2 presents a scatter plot of the short rate and term structure slope. Of particular

importance to estimating the conditional distribution of interest rates is the availability of

the conditioning data. Figure 2 shows that there are two holes in the data ranges, namely at

low short rates (i.e., from 3{5%) and low spreads (i.e., from -0.5{2%), and at high short rates

(i.e., from 9.5{11.5%) and low spreads (i.e., from -0.5{1.5%). This means that the researcher

should be cautious in interpreting the implied distribution of interest rates conditional on

these values for the short rate and spread.

2.2 The Conditional Distribution of Interest Rates: A First Look

In order to understand the stochastic properties of interest rates, consider conditioning the

data on four possible states: (i) high level (i.e., of the short rate)/high slope, (ii) high

level/low slope, (ii) low level/low slope, and (iv) low level/high slope. In a generalized

method of moments framework, the moment conditions are2:

E
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2]� It;lr:hs
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= 0; (1)

where �i�t;t+1 is the change in the � -period interest rate from t to t + 1, ���j� is the mean

change in rates conditional on one of the four states occurring, ���j� is the volatility of the

change in rates conditional on these states, and It;�j� = 1 if [�j�] occurs, zero otherwise. These
moments, �� and �� , thus represent coarse estimates of the underlying conditional moments

of the distribution of interest rates.

These moment conditions allow us to test a variety of restrictions. First, are ��hr:hs = ��hr:ls

and ��lr:hs = ��lr:ls? That is, does the slope of the term structure help explain volatility at

various interest rate levels? Second, similarly, with respect to the mean, are ��hr:hs = ��hr:ls

2We de�ne a low (high) level or spread as one that lies below (above) its unconditional mean. Here, this

mean is being treated as a known constant, though, of course, it is estimated via the data.
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and ��lr:hs = ��lr:ls? Table 1 provides estimates of ���j� and ���j�, and the corresponding test

statistics. Note that the framework allows for autocorrelation and heteroskedasticity in the

underlying squared interest rate series when calculating the variance-covariance matrix of

the estimates. Further, the cross-correlation between the volatility estimates is taken into

account in deriving the test statistics.

Several facts emerge from Table 1. First, as documented by others (e.g., Chan, Karolyi,

Longsta� and Sanders (1992), and Ait-Sahalia (1996a)), interest rate volatility is increasing

in the short rate of interest. Of some interest here, this result holds across the yield curve.

That is, conditional on either a low or high slope, volatility is higher for the 6-month, 1-year,

3-year and 5-year rates at higher levels of the short rate. Second, the slope also plays an

important role in determining interest rate volatility. In particular, at high levels of interest

rates, the volatility of interest rates across maturities is much higher at steeper slopes. For

example, the 6-month and 5-year volatilities rise from 6.23 and 6.89 to 8.28 and 8.43 basis

points, respectively. Formal tests of the hypothesis ��hr:hs = ��hr:ls provide 1% level rejections

at each of the maturities. There is some evidence in the literature that expected returns on

bonds are higher for steeper term structures (see, for example, Fama (1986) and Boudoukh,

Richardson, Smith and Whitelaw (1999a,1999b)), which may provide a link to the volatility

result here. Third, the e�ect of the slope is most important at high interest rate levels. At

low short rate levels, though the volatility at low slopes is less than that at high slopes, the

e�ect is much less pronounced. This is con�rmed by the fact that a number of the p-values

are no longer signi�cant at conventional levels for the test of the hypothesis, ��lr:hs = ��lr:ls.

Fourth, the conditional means, though not in general reliably estimated, are consistent with

existing results in the literature (e.g., Chan, Karolyi, Longsta� and Sanders (1992), Ait-

Sahalia (1996a), and Stanton (1997)). That is, at low levels of interest rates, the mean

tends to be greater than at high interest rates, which can be explained by mean reversion.

However, the table also provides an interesting new result, namely that the e�ect of the

slope is of higher magnitude than the level. Further, low slopes tend to be associated with

negative changes in rates, while high slopes are linked to positive interest rate changes.

To understand the joint properties of interest rates, Table 1 presents the average corre-

lation between the 6-month through 5-year yields, conditional on the four possible states.

Conditional on a particular interest rate level, there is little di�erence between the correla-

tions across interest rates, for low versus high term structure slopes. In contrast, for a given

term structure slope, low interest rate levels tend to be associated with lower correlations.

For example, conditional on a steep term structure, the correlation is 0.87 and 0.79 at high
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levels and low levels, respectively.

The results of Table 1 suggest a complex variance-covariance structure for changes in

the term structure of interest rates, conditional on the current level and slope of the term

structure. Below, we take a closer look at this structure by estimating the conditional

distribution between interest rate changes and the level and slope.

2.3 The Conditional Distribution of Interest Rates: A Closer Look

We employ a kernel estimation procedure for estimating the relation between interest rate

changes and components of the term-structure of interest rates.3 Kernel estimation is a non-

parametric method for estimating the joint density of a set of random variables. Speci�cally,

given a time series �i�t;t+1, i
r
t and i

s
t (where i

r is the level of interest rates, and is is the slope),

generated from an unknown density f(�i� ; ir; is), then a kernel estimator of this density is

f̂(�i� ; ir; is) =
1

Thm

TX
t=1

K

 
(�i� ; ir; is)� (�i�t;t+1; i

r
t ; i

s
t )

h

!
; (2)

where K(�) is a suitable kernel function and h is the window width or smoothing parameter.

This �xed window width estimator is often called the Parzen estimator. The density at any

point is estimated as the average of densities centered at the actual data points. The further

away a data point is from the estimation point, the less it contributes to the estimated

density. Consequently, the estimated density is highest near high concentrations of data

points and lowest when observations are sparse.

The econometrician has at his discretion the choice of K(�) and h. Results in the kernel

estimation literature suggest that any reasonable kernel gives almost optimal results; thus, we

employ the commonly used independent multivariate normal kernel. The other parameter,

the window width, is chosen based on the dispersion of the observations. For the independent

multivariate normal kernel, Scott (1992) suggests the window width,

ĥ = k�̂iT
�1

m+4 ;

where �̂i is the standard deviation estimate of each variable zi, T is the number of obser-

vations, m is the dimension of the variables, and k is a scaling constant often chosen via

cross-validation. Here, we employ a cross-validation procedure to �nd the k which provides

the right trade-o� between the bias and variance of the errors. Across all the data points,

3For examples of kernel estimation methods in the empirical asset pricing literature, see Pagan and Hong
(1991), Harvey (1991), Ait-Sahalia (1996a) and Boudoukh, Richardson and Whitelaw (1995).
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we �nd the k's which minimize the mean-squared error between the observed data and the

estimated conditional data. This mean-squared error minimization is implemented using a

Jackknife-based procedure. In particular, the various implied conditional moments at each

data point are estimated using the entire sample, except for the actual data point and its

nearest neighbors.4 Once the k is chosen, the actual estimation of the conditional distri-

bution of interest rates involves the entire sample, albeit using window widths chosen from

partial samples.

Two moments of interest rate changes are particularly interesting to �nancial economists,

namely the mean and volatility. Intuitively, within the kernel estimation procedure, one can

view estimates of the volatility and the mean as nonlinearly interpolating between functions

of data points (albeit in a multidimensional space). In particular, one can interpret these

estimates as a weighted combination of either observed interest rate changes (i.e., for the

mean estimate) or squared interest rate changes (i.e., for the volatility estimate). Speci�cally,

it is possible to show that

�̂�i� (i
r; is) =

TX
t=1

wt(i
r; is)�i�t (3)

�̂2�i� (i
r; is) =

TX
t=1

wt(i
r; is)(�i�t � �̂�i� (i

r; is))2; (4)

where wt(i
r; is) = K

�
(ir;is)�(ir

t
;is
t
)

h

�
=
PT

t=1K
�
(ir;is)�(ir

t
;is
t
)

h

�
. The weights, wt(i

r; is), are deter-

mined by how close the chosen state, i.e., the particular values of the level and slope, ir and

is, is to the observed level and slope of the term structure, irt and ist .

As an illustration, using equations (3) and (4), Figures 3-4 provide estimates of the mean

and volatility of daily changes in the 1-year rate, conditional on the current level of the short

rate and the slope of the term structure (i.e., irt and i
s
t ). While Figures 3-4 provide estimates

for only the 1-year rate, the same e�ects carry through to the rest of the yield curve and

have therefore been omitted for purposes of space. The �gure maps these estimates to the

relevant range of the data, in particular, for short rates ranging from 3% to 11% and slopes

ranging from 0.0% to 3.5%. As seen from Figure 2, there are no observations of both low

spreads and either very low or very high interest rate levels. Thus, the parts of the �gures

relating to these areas of the data should be treated with caution.

4Due to the serial dependence of the data, we performed the cross-validation omitting 100 observations,
i.e., four months in either direction of the particular data point in question. Depending on the moments in
question, the optimal k's range from roughly 2.1 to 11.4, which implies approximately twice to eleven times
the smoothing parameter of Scott's asymptotically optimal implied value.
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The cross-validation procedure provides a high smoothing parameter for the estimation

of the interest rate's drift. One way to interpret this result is in the context of the existing

literature which shows how di�cult it is to estimate low fequency phenomena, like mean

reversion, in interest rates (see, for example, Bandi (1998), Chapman and Pearson (1998),

Jones (1998) and Pritzker (1998)). While the reliability of the estimates in Figure 3 are,

therefore, in question, it is interesting to note that the shape of the curve falls in line with

standard intuition. At higher rates and lower spreads, the drift is most negative; as the

term structure slope increases, and rates are in theory expected to rise, the drift increases

to re
ect this rise. One notable point is that the drift is everywhere negative. This results

from the unfortunate fact that (i) on average, rates drifted down during the sample period,

and (ii) the data is oversmoothed to re
ect the estimation problems of interest rate drifts.

With respect to Figure 4, while Table 1 gave a rough approximation of these conditional

moments, the �gure provides a precise functional form (albeit estimated). For example, both

pieces of information suggest that volatility for the 1-year rate (and, in fact, all other points

on the yield curve) are maximized at high interest rate levels and high slopes. However, the

�gures shows that the functional relation is relatively smooth and monotonic. That is, rather

than being a result about averages, we �nd that larger squared changes in daily interest rates

over the 1983 to 1998 period tend to occur during times of steeper term structure slopes and

higher interest rate levels. Furthermore, a 1% change in the slope is much more important

than a 1% increase in rates at higher interest rate levels. It should be noted though that a

1% change in the slope is much more dramatic than a corresponding change in rates.

Figures 5 and 6 present cut-throughs of Figure 4 across the term structure at short rates of

8.0% and 5.5%, respectively. From Figure 2, these levels represent data ranges in which there

are many di�erent slopes; thus, conditional on these levels, the estimated relation between

the volatility of the 6-month, 1-year, 3-year and 5-year rates as a function of the slope is

more reliable. Several observations are in order. First, as seen from the �gures, volatility is

increasing in the slope for all maturities, though primarily only for steep term structures, i.e.,

above 2.0%. Second, volatility is also higher at greater magnitudes of the short rate, though

this di�erence is more pronounced at higher slopes. These results suggest that any valuation

requiring a volatility estimate of interest rates should be done with caution. For example,

estimating volatility when the term structure is 
at relative to upward sloping should lead

to quite di�erent point estimates. Third, the relation between volatility and the slope is

nonlinear, which, as it turns out in Section 3.3, will lead to a nonlinear continuous-time

di�usion process. This feature can be potentially important as most of the multifactor, term
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structure pricing models are derived from the a�ne class.

Alternatively, Figures 7 and 8 provide cut-throughs of Figure 4 across the term structure

at slopes of 2.75% and 1.00%, respectively. These slopes represent data ranges in which there

are a number of observations of the interest rate level. The �gures show that the estimated

relation between the volatility of the 6-month, 1-year, and especially the 3-year and 5-year

rates as a function of the level depends dramatically on the slope of the term structure. For

example, the volatility of the 3- and 5-year interest rate change is almost 
at over levels of

3.0% to 8.5% at low slopes, whereas it increases 2 basis points daily (or approximately 31

basis points on a 250 trading day scale) at high slopes. Similarly, even at the short end of

the yield curve, the increase in volatility is 4 basis points daily versus 1.0 basis points at

high versus low slopes, respectively.

3 Estimation of a Continuous-Time Multi-factor Dif-

fusion Process

The results of Section 2 suggest that the distribution of changes in the term structure of

interest rates depends on at least two factors. As proxies for the information content of

these factors, we used the level and slope of the term structure, as measured respectively

by the short rate of interest (i.e., the 3-month rate) and the spread between the long (i.e.,

the 10-year rate) and short rate. In particular, Figures 3-8 provide functional forms for

important moments of the conditional distribution of future interest rate changes, conditional

on current information about the interest rate factors. Given the importance of continuous-

time mathematics in the �xed income area, the question arises as to how these results can

be interpreted in a continuous-time setting. In particular,

� How can these results for discretely sampled data be made to coincide with a continuous-

time process?

� What do these results imply for the speci�cation of the drift and di�usion of the two-

factor process for interest rates?

� How can this two-factor process then be used to generate implications for valuing

�xed-income contingent claims?

Over the past several years, there has been a 
urry of research on the estimation of

continuous-time interest rate models. The primary reason for this explosion in the literature
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is the predominance of continuous-time mathematics in the �xed-income area. Using data

on bond prices, and explicit theoretical pricing models (e.g., Cox, Ingersoll and Ross (1985)),

Brown and Dybvig (1989), Pearson and Sun (1994), Gibbons and Ramaswamy (1994) and

Dai and Singleton (1997) all estimate parameters of the underlying interest-rate process

in a fashion consistent with the underlying continuous-time model. Recently, researchers

have taken to more direct examinations of the interest-rate process. For example, Chan,

Karolyi, Longsta� and Sanders (1992) examine a continuous-time single-factor model of

interest rates by empirically investigating its discrete-time counterpart. However, this type

of approximation is di�cult to interpret, at least formally, in a continuous-time setting.

As a result, a new literature has emerged which allows estimation and inference of fairly

general continuous-time di�usion processes using discretely sampled data. By employing the

in�nitesimal generators of the underlying continuous-time di�usion processes, Hansen and

Scheinkman (1995) and Conley, Hansen, Luttmer and Scheinkman (1995) construct moment

conditions which make the investigation of continuous-time models possible with discrete

time data. In a nonparametric framework, Ait-Sahalia (1996a,b) develops a procedure for

estimating the underlying process for interest rates using discrete data by choosing a model

for the drift of interest rates and then nonparametrically estimating its di�usion function. As

an alternative method, Stanton (1997) employs approximations to the true drift and di�usion

of the underlying process, and then nonparametrically estimates these approximation terms

to back out the continuous-time process (see also Bandi (1998), Chapman and Pearson (1998)

and Pritzker (1998)). The advantage of this approach is twofold: (i) similar to the other

procedures, the data need only be observed at discrete time intervals, and (ii) the drift and

di�usion are unspeci�ed, and thus may be highly nonlinear in the state variable.

In this section, we extend the work of Stanton (1997) to a multivariate setting and pro-

vide for the non-parametric estimation of the drift and volatility functions of multivariate

stochastic di�erential equations. Similar to Stanton (1997), we use Milshtein's (1978) ap-

proximation schemes for writing expectations of functions of the sample path of stochastic

di�erential equations in terms of the drift and volatility coe�cients. If the expectations

are known (albeit estimated nonparametrically in this paper) and the functions are chosen

appropriately, then the approximations can be inverted to recover the drift and volatility

coe�cients.
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3.1 Drift, Di�usion and Correlation Approximations

Assume that no arbitrage opportunities exist, and that bond prices are functions of two state

variables, the values of which can always be inverted from the current level, Rt, and a second

state variable, St. Assume that these variables follow the (jointly) Markov di�usion process

dRt = �R(Rt; St) dt+ �R(Rt; St) dZ
R
t (5)

dSt = �S(Rt; St) dt+ �S(Rt; St) dZ
S
t ; (6)

where the drift, volatility and correlation coe�cients (i.e., the correlation between ZR and

ZS) all depend on Rt and St. De�ne the vector Xt = (Rt; St).

Under suitable restrictions on �, �, and a function f , we can write the conditional

expectation Et [f(Xt+�)] in the form of a Taylor series expansion,5

Et [f(Xt+�)] = f(Xt) + Lf(Xt)� +
1

2
L2f(Xt)�

2 + : : :+
1

n!
Lnf(Xt)�

n +O(�n+1); (7)

where L is the in�nitesimal generator of the multivariate process fXtg (see Oksendal (1985)
and Hansen and Scheinkman (1995)), de�ned by

Lf(Xt) =

 
@f(Xt)

@Xt

!
�X(Xt) +

1

2
trace

"
�(Xt)

 
@2f(Xt)

@Xt@X 0
t

!#
;

where

�(Xt) =

 
�2R(Rt; St) �(Rt; St)�R(Rt; St)�S(Rt; St)

�(Rt; St)�R(Rt; St)�S(Rt; St) �2S(Rt; St)

!
:

Equation 7 can be used to construct numerical approximations to Et[f(Xt+�)] in the

form of a Taylor series expansion, given known functions �R, �S, �, �R and �S (see, for

example, Milshtein (1978)). Alternatively, given an appropriately chosen set of functions

5For a discussion see, for example, Hille and Phillips (1957), Chapter [11]. Milshtein (1974, 1978) gives

examples of conditions under which this expansion is valid, involving boundedness of the functions �, �, f

and their derivatives. There are some stationary processes for which this expansion does not hold for the

functions f that we shall be considering, including processes such as

dx = � dt+ x3 dZ;

which exhibit \volatility induced stationary" (see Conley, Hansen, Luttmer and Scheinkman (1995)). How-

ever, any process for which the �rst order Taylor series expansion fails to hold (for linear f) will also fail if

we try to use the usual numerical simulation methods (e.g. Euler discretization). This severely limits their

usefulness in practice.
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f(�) and nonparametric estimates of Et[f(Xt+�)], we can use Equation 7 to construct ap-

proximations to the drift, volatility and correlation coe�cients (i.e., �R, �S, �, �R and �S)

of the underlying multifactor, continuous-time di�usion process. The nice feature of this

method is that the functional forms for �R, �S, �, �R and �S are quite general, and can be

estimated nonparametrically from the underlying data. Rearranging Equation 7, and using

a time step of length i� (i = 1; 2; : : :), we obtain

bEi(Xt) � 1

i�
Et [f(Xt+i�)� f(Xt)] ;

= Lf(Xt) +
1

2
L2f(Xt)(i�) + : : :+

1

n!
Lnf(Xt)(i�)

n�1 +O(�n): (8)

From Equation 8, each of the bEi is a �rst order approximation to Lf ,
bEi(Xt) = Lf(Xt) +O(�):

Now consider forming linear combinations of these approximations,
PN

i=1 �i
bEi(Xt). That is,

from Equation 8,

NX
i=1

�i bEi(Xt) =

"
NX
i=1

�i

#
Lf(Xt) +

1

2

"
NX
i=1

�ii

#
L2f(Xt)� +

1

6

"
NX
i=1

�ii
2

#
L3f(Xt)�

2 + : : : : (9)

Can we choose the �i so that this linear combination is an approximation to Lf of order

N?

For the combination to be an approximation to Lf , we require �rst that the weights

�1; �2; : : : ; �N sum to 1. Furthermore, from Equation 9, in order to eliminate the �rst order

error term, the weights must satisfy the equation

NX
i=1

�ii = 0:

More generally, in order to eliminate the nth order error term (n � N�1), the weights must

satisfy the equation,
NX
i=1

�ii
n = 0:

We can write this set of restrictions more compactly in matrix form as0BBBBBBBBB@

1 1 1 � � � 1

1 2 3 � � � N

1 4 9 � � � N2

...
...

...
. . .

...

1 2N�1 3N�1 � � � NN�1

1CCCCCCCCCA
� � V � =

0BBBBBBBBB@

1

0

0
...

0

1CCCCCCCCCA
:
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The matrix V is called a Vandermonde matrix, and is invertible for any value of N . We can

thus obtain � by calculating

� = V �1

0BBBBBB@
1

0
...

0:

1CCCCCCA : (10)

For example, for N = 3, we obtain

� =

0BBB@
1 1 1

1 2 3

1 4 9

1CCCA
�10BBB@

1

0

0

1CCCA ; (11)

=

0BBB@
3

�3
1

1CCCA : (12)

Substituting � into Equation 9, and using Equation 8, we get the following third order

approximation of the in�nitesimal generator of the process fXtg:

Lf(Xt) =
1

6�
[18Et (f(Xt+�)� f(Xt))� 9Et (f(Xt+2�)� f(Xt)) + 2Et (f(Xt+3�)� f(Xt))]

+O(�3):

To approximate a particular function g(x), we now need merely to �nd a speci�c function f

satisfying

Lf(x) = g(x):

For our purposes, consider the functions

f(1)(R) � R� Rt;

f(2)(S) � S � St;

f(3)(R) � (R� Rt)
2 ;

f(4)(S) � (S � St)
2 ;

f(5)(R; S) � (R� Rt) (S � St) :

From the de�nition of L, we have

Lf(1)(R) = �R(R; S);

14



Lf(2)(S) = �S(R; S);

Lf(3)(R) = 2(R� Rt)�R(R; S) + �2R(R; S);

Lf(4)(S) = 2(S � St)�S(R; S) + �2S(R; S);

Lf(5)(R; S) = (S � St)�R(R; S) + (R �Rt)�S(R; S) + �(R; S)�R(R; S)�S(R; S):

Evaluating these at R = Rt, S = St, we obtain

Lf(1)(Rt) = �R(Rt; St);

Lf(2)(St) = �S(Rt; St);

Lf(3)(Rt) = �2R(Rt; St);

Lf(4)(St) = �2S(Rt; St);

Lf(5)(Rt; St) = �(Rt; St)�R(Rt; St)�S(Rt; St):

Using each of these functions in turn as the function f above, we can generate approximations
to �R, �S, �R, �S and � respectively. For example, the third order approximations (taking
square roots for �R and �S) are

�R(Rt; St) =
1

6�
[18Et (Rt+� �Rt)� 9Et (Rt+2� �Rt) + 2Et (Rt+3� �Rt)]

+O(�3); (13)

�S(Rt; St) =
1

6�
[18Et (St+� � St)� 9Et (St+2� � St) + 2Et (St+3� � St)]

+O(�3);

�R(Rt; St) =

r
1

6�

�
18Et

h
(Rt+� �Rt)

2
i
� 9Et

h
(Rt+2� �Rt)

2
i
+ 2Et

h
(Rt+3� �Rt)

2
i�

�S(Rt; St) =

r
1

6�

�
18Et

h
(St+� � St)

2
i
� 9Et

h
(St+2� � St)

2
i
+ 2Et

h
(St+3� � St)

2
i�

�RS(Rt; St) =
1

6�
(18Et [(Rt+� �Rt) (St+� � St)]� 9Et [(Rt+2� �Rt) (St+2� � St)]

+ 2Et [(Rt+3� �Rt) (St+3� � St)]) :

The approximations of the drift, volatility and correlation coe�cients are written in

terms of the true �rst, second and cross moments of multiperiod changes in the two state

variables. If the two-factor assumption is appropriate, and a large stationary time series is

available, then these conditional moments can be estimated using appropriate nonparametric

methods. In this paper, we estimate the moments using multivariate density estimation,

with appropriately chosen factors as the conditioning variables. All that is required is that
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these factors span the same space as the true state variables.6 The results for daily changes

were provided in Section 2. Equation 13 shows that these estimates are an important part

of the approximations to the underlying continuous-time dynamics. By adding multiperiod

extensions of these nonparametric estimated conditional moments, we can estimate the drift,

volatility and correlation coe�cients of the multifactor process described by Equations 5

and 6.

Figure 9 provides the �rst, second and third order approximations to the di�usion of

the short rate against the short rate level and the slope of the term structure.7 The most

notable result is that a �rst order approximation works well; thus, one can consider the

theoretical results of this section as a justi�cation for discretization methods currently used

in the literature, e.g., Chan, Karolyi, Longsta� and Sanders (1992). The description of

interest rate behavior given in Section 2, therefore, carries through to the continuous-time

setting. The question then is what does Figure 9, and more generally the rest of the estimated

process, mean for �xed-income pricing?

4 A Generalized Longsta� and Schwartz (1992) Model

Longsta� and Schwartz (1992) provide a two-factor general equilibrium model of the term

structure. Their model is one of the more popular versions within the a�ne class of models

for describing the yield curve (see also Cox, Ingersoll and Ross (1985), Chen and Scott

(1993) and Du�e and Kan (1996)). In the Longsta� and Schwartz setting, all �xed-income

instruments are functions of two fundamental factors, the instantaneous interest rate and

its volatility. These factors follow di�usion processes, which in turn lead to a fundamental

valuation condition for the price of any bond, or bond derivative. As an alternative, here we

also present a two-factor continuous-time model for interest rates. The results of Section 2

suggest that the a�ne class may be too restrictive.

While our results shed valuable light on the factors driving interest rate movements, how-

ever, there are potential problems in using this speci�cation to price interest rate contingent

claims. A general speci�cation for Rt and St (and the associated prices of risk) may allow

6See Du�e and Kan (1996) for a discussion of the conditions under which this is possible (in a linear

setting).
7Figures showing the various approximations to the drift of the short rate, the drift and di�usion of the

slope, and the correlation between the short rate and the slope are available upon request.
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arbitrage opportunities if either of these state variables is a known function of an asset price.8

Of course, this point is true of all previous estimations of continuous-time processes to the

extent that they use a priced proxy as the instantaneous rate. If we are willing to assume

that we have the right factors, then there is no problem in an asymptotic sense. That is,

since we are estimating these processes nonparametrically, as the sample size gets larger, our

estimates will converge to the true functions, which are automatically arbitrage-free (if the

economy is). Nevertheless, this is of little consolation if we are trying to use the estimated

functions to price assets.

To get around this problem, we need to write the model in a form in which neither state

variable is an asset price or a function of asset prices. In this paper, we follow convention by

using the observable 3-month yield as a proxy for the instantaneous rate, Rt. Furthermore,

suppose that the mapping from (R; S) to (R; �R) is invertible,
9 so we can write asset prices

as a function of R and �R, instead of R and S.10 Since �R is not an asset price, using this

variable avoids the inconsistency problem.

Speci�cally, suppose that the true model governing interest rate movements is a general-

ization of the two factor Longsta� and Schwartz (1992) model,

dRt = �R(R; �) dt+ � dZ1; (14)

d�t = ��(R; �)dt+ �(R; �)s(R; �) dZ1 +
q
1� �2s dZ2; (15)

where dZ1 dZ2 = 0.11 In vector terms,

d(Rt; �t) = M dt+ � dZ;

8See, for example, Du�e, Ma and Wong (1995). The problem is that, given such a model, we can price

any bond, and are thus able to calculate what the state variable \ought" to be. Without imposing any

restrictions on the assumed dynamics for Rt and St, there is no guarantee that we will get back to the same

value of the state variable that we started with.
9That is, for a given value of Rt, the volatility, �R is monotonic in the spread, S. This is the case in

most existing multifactor interest rate models, including, for example all a�ne models, such as Longsta�

and Schwartz (1992).
10This follows by writing

V (R;S) = V (R;S(R; �R)) � U(R; �R):

11This speci�cation is the most convenient to deal with, since we now have orthogonal noise terms. The

correlation between the di�usion terms is �, and the overall variance of � is s2 dt.
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where

M �
0@ �R

��

1A ;

� �
0@ � 0

�s
p
1� �2s

1A :

Asset prices, and hence the slope of the term structure, can be written as some function of

the short rate and instantaneous short rate volatility, S(R; �).

From Equations 14 and 15, how do we estimate the underlying processes for R and �

given the estimation results of Section 3? Although the short rate volatility, �, is not directly

observable, it is possible to estimate this process. Speci�cally, using Ito's Lemma, together

with estimates for �R, �R, �S, �S and �, it is possible to write

d�t = �RdRt+�SdSt+
1

2

h
�RR�

2(Rt; St) + �SS�
2
S(Rt; St) + 2�RS�(Rt; St)�S(Rt; St)�(Rt; St)

i
dt:

Given this equation, and the assumption that the function S(R; �) is invertible, the dynamics

of �t can be written as a function of the current level of R and � in a straightforward way.

This procedure requires estimation of a matrix of second derivatives. Although there are

well-known problems in estimating higher-order derivatives using kernel density estimation

techniques, it is possible to link the results of Section 2 and 3 to this generalized Longsta�

and Schwartz (1992) model. In particular, using estimates of the second derivatives (not

shown), several facts emerge. First, due to the small magnitudes of the estimated drifts of

the state variables R and S, the drift of � depends primarily on the second order terms.

Consequently, the importance of the second factor (the slope) is determined by how much

the sensitivity of short rate volatility to this factor changes relative to the changes in the

sensitivty to the �rst factor (the level). From Figure 9, it is clear that the second derivatives

are somewhat unstable, especially in the R dimension. Nevertheless, the general pattern is

that volatility increases at a slower rate for high slopes and levels. Consequently, for high

volatilities, the drift of volatility is negative, generating mean reversion. The e�ect of the

second factor is to reinforce this phenomenon. Second, the di�usion of � is determined by the

sensitivities of short rate volatility to the two factors and the magnitudes of the volatilities

of the factors. Based on the estimates of the volatilites and derivatives, the slope has the

dominant in
uence on this e�ect. In particular, the volatility of � is high for upward sloping

term structures, which also correspond to states with high short rate volatility. Moreover,

sensitivity of this di�usion to the two factors is larger in the slope direction than in the level

direction.
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As an alternative to the above method, we can estimate an implied series for � by

assuming that the function S(R; �) is invertible, i.e., that we can equivalently write the

model in the form

dRt = �R(Rt; St)dt+ �(Rt; St)dZ
�
1

dSt = �S(Rt; St)dt+ �S(Rt; St)dZ
�
2 ;

where Z�
1 and Z

�
2 may be correlated. To estimate the function �(R; S), we apply the method-

ology described in Section 3.1 to the function f(3)(R; S) � (R�Rt)
2. Applying the estimated

function to each observed (R; S) pair in turn yields a series for the volatility �, which we

can then use in estimating the generalized Longsta� and Schwartz (1992) model given in

Equations 14 and 15.12 This procedure is in stark contrast to that of Longsta� and Schwartz

(1992), and others, who approximate the dynamics of the volatility factor as a Generalized

Autoregressive Conditional Heteroskedasticity (GARCH) process. The GARCH process is

not compatible with the underlying dynamics of their continuous-time model; here, the

estimation is based on approximation schemes to the di�usion process and is internally con-

sistent. Due to the di�culties in estimating derivatives, we choose this second approach to

estimate the continuous-time process.13

4.1 A General Two Factor Di�usion Process: Empirical Results

Figures 11-14 show approximations to the drift and di�usion coe�cients for the generalized

Longsta� and Schwartz (1992) process as a function of the two factors, the instantaneous

short rate and its volatility. It is important to point out that there is little available data at

low short rates/high volatilities and high short rates/low volatilities, which corresponds to

the earlier comment about interest rates and spreads (see Figure 10). Therefore, results in

these regions need to be treated cautiously. With respect to the interest rate drift, Figure

11 shows a very similar �gure to that of Figure 3. Here, interest rate volatility is proxying

for the slope of the term structure, or vice versa. Again, the �gure is dramatically smoothed

through cross-validation due to the inability of the estimation method (or for that matter

any method) to uncover reliable functional forms for mean reversion in interest rates.

12Although the use of an estimated series for � rather than the true series may not be the most e�cient

approach, this procedure is consistent. That is, the problem will disappear as the sample size becomes large,

and our pointwise estimates of � converge to the true values.
13Though the �rst approach provides similar results to the second approach, the functional forms under-

lying the second method are more smooth and thus more suitable for analysis.
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More interesting, Figures 12 and 13 provide the estimates of the continuous-time process

for the second interest factor, namely its volatility. Several observations are in order. First,

there is estimated mean-reversion in volatility; at low (high) levels of volatility, volatility

tends to drift upward (downward). The e�ect of the level of interest rates on this relation

appears minimal. Second, and perhaps most important, there is clear evidence that the

di�usion of the volatility process is increasing in the level of volatility, yet is a�ected by the

level of interest rates only marginally. Moreover, volatility's e�ect is nonlinear in that it takes

a�ect only at higher levels. This �nding suggests extreme caution should be applied when

inputting interest rate volatility into derivative pricing models. Most of our models take

the relation between the level and volatility for granted; however, with increases from 3% to

11% in the interest rate level, only mild increases in volatility are being reported for both

volatility's drift and di�usion. On the other hand, changes in the volatility level of much

smaller magnitudes have a much larger impact on the volatility process. This �nding links

the spread result documented earlier in the paper to a second factor, namely the volatility

of the instantaneous rate.

As the �nal piece of the multifactor process for interest rates, Figure 14 graphs a third

order approximation of the correlation coe�cient between the short rate and the volatil-

ity, given values of the two factors. Taken at face value, the results suggest a complex

variance-covariance matrix between these series in continuous-time. In particular, while the

correlation decreases in the volatility for most interest rate levels, there appears to be some

nonmonotonicity across the level itself. Why is correlation falling as volatility increases?

Perhaps, high volatility, just like the corresponding high term structure slope, is associated

with aggregate economic phenomena that are less related to the level of interest rates. Given

that interest rates are driven by two relatively independent economic factors, namely expec-

tations about both real rates and in
ation, this argument seems reasonable. It remains an

open question, however, what the exact relation is between Figure 14 and these economic

factors.

4.2 Valuation of Fixed-Income Contingent Claims

Given the interest rate model described in equation (15), we can write the price of an

interest rate contingent claim as V (r; �; t), depending only on the current values of the two
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state variables plus time. Then, by Ito's Lemma,

dV (r; �; t)

V (r; �; t)
= m(r; �; t) dt+ s1(r; �; t) dZ1 + s2(r; �; t) dZ2; (16)

where

m(r; �; t)V = Vt + �r(r; �)VR + ��(r; �)V� +
1

2
trace

h
�T r2V (r; �) �

i
;

= Vt + �r(r; �)Vr + ��(r; �)V� +
1

2
�2Vrr +

1

2
s2V�� + ��sVr�; (17)

s1(r; �; t)V = �Vr + �sV�;

s2(r; �; t)V =
q
1� �2sV�:

The volatility of the asset, �V , is given by

�V V =
q
(�Vr + �sV�)

2 + (1� �2) s2V 2
� ;

=
q
�2V 2

r + 2��sVrV� + s2V 2
� :

With a one factor interest rate model, to prevent arbitrage, the risk premium on any asset

must be proportional to its standard deviation.14 Similarly, with two factors, absence of

arbitrage requires the excess return on an asset to be a linear combination of its exposure

to the two sources of risk. Thus, if the asset pays out dividends at rate d, we can write

m = r � d

V
+ �r(r; �)

Vr
V

+ ��(r; �)
V�
V
; (18)

where �r and �� are the prices of short rate risk and volatility risk respectively. Substituting

equation (18) into equation (17), and simplifying, leads to a partial di�erential equation

that must be satis�ed by any interest rate contingent claim, assuming the usual technical

smoothness and integrability conditions (see, for example, Du�e (1988)),

1

2
�2Vrr + [�r � �r]Vr +

1

2
s2V�� + [�� � ��]V� + ��sVr� + Vt � rV + d = 0; (19)

subject to appropriate boundary conditions. To price interest rate dependent assets, we need

to know not only the processes governing movements in r and �, but also the prices of risk,

�r and ��.

Given estimates for the process governing movements in r and �, and also for the functions

�r and ��, we can value interest rate dependent assets in one of two ways. The �rst is to solve

14Suppose this did not hold for two risky assets. We could then create a riskless portfolio of these two

assets with a return strictly greater than r, leading to an arbitrage opportunity (see Ingersoll(1987)).
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equation (19) numerically using a method such as the Hopscotch method of Gourlay and

McKee (1977). The second is to use the fact that we can write the solution to equation (19)

in the form of an expectation. Speci�cally, we can write V , the value of an asset which pays

out cash 
ows at a (possibly path dependent) rate Ct, in the form

Vt = E

"Z T

t
e�
R
s

t
(bru) duCs ds

#
; (20)

where br follows the \risk adjusted" process,

dbr� = [�r(br� ; b�� )� �r(br� ; b�� )] d� + b�� dZ1; (21)

db�� = [��(br� ; b�� )� ��(br� ; b�� )] d� + �s(brtau; b�� ) dZ1 +
q
1� �2s dZ2; (22)

for all � > t, and where

brt = rt;b�t = �t:

This says that the value of the asset equals the expected sum of discounted cash 
ows paid

over the life of the asset, except that it substitutes the risk adjusted process (br; b�) for the
true process (r; �).

This representation leads directly to a valuation algorithm based on Monte Carlo simu-

lation. For a given starting value of (rt; �t), simulate a number of paths for br and b� using

equations (21) and (22). Along each path, calculate the cash 
ows Ct, and discount these

back along the path followed by the instantaneous riskless rate, brt. The average of the sum
of these values taken over all simulated paths is an approximation to the expectation in

equation (20), and hence to the security value, Vt. The more paths simulated, the closer the

approximation.

4.2.1 Estimating the Prices of Risk

Recall that to price interest rate dependent assets, we need to know not only the processes

governing movements in r and �, but also the prices of risk, �r and ��. Equation (18) gives

an expression for these functions in terms of the partial derivatives Vr and V�, which could

be used to estimate the prices of risk, given estimates of these derivatives for two di�erent

assets, plus estimates of the excess return for each asset. As mentioned above, it is di�cult

to estimate derivatives precisely using nonparametric density estimation. Therefore, instead
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of following this route, we shall avoid directly estimating the partial derivatives, Vr and

V�, by considering the instantaneous covariances between the asset return and changes in

the interest rate/volatility, cV r and cV �. From equations (14), (15) and (16) (after a little

simpli�cation), 0@ cV r

cV �

1A �
0@ dV dr=V dt

dV d�=V dt

1A =

0@ �2 ��s

��s s2

1A0@ Vr=V

V�=V

1A : (23)

This can be inverted, as long as j�j < 1, to obtain0@ Vr=V

V�=V

1A =

0@ �2 ��s

��s s2

1A�10@ cV r

cV �

1A ;

=
1

1� �2

0@ 1=�2 ��=�s
��=�s 1=s2

1A0@ cV r

cV �

1A :

To preclude arbitrage, the excess return on the asset must also be expressible as a linear

combination of cV r and cV �,

m = r � d

V
+ ��

r(r; �)cV r + ��
�(r; �)cV �: (24)

Given two di�erent interest rate dependent assets, we can estimate the instantaneous co-

variances for each in the same way as we estimated �(r; �) above. We can also estimate the

excess return for each asset, mi(r; �) � r as a function of the two state variables. The two

excess return can be expressed in the form0@ m1 � r

m2 � r

1A =

0@ c1V r c1V �

c2V r c2V �

1A0@ ��
r

��
�

1A ;

which can be inverted to yield an estimate of the prices of risk,0@ ��
r

��
�

1A =

0@ c1V r c1V �

c2V r c2V �

1A�10@ m1 � r

m2 � r

1A :

Finally, for estimates of the more standard representation of the prices of risk, �r and ��,

equate equations (18) and (24), using equation (23), to obtain0@ �r

��

1A =

0@ �2 ��s

��s s2

1A0@ ��
r

��
�

1A :
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Figures 15 and 16 provide estimates of the prices of risk for the instantaneous rate and

volatility in terms of the current levels of these variables. While the researcher needs to

be a little cautious in interpreting the results due to the range of observed data, several

observations are in order. First, the price of short rate risk tends to be negative. One way

of interpreting this result is that, for a given volatility and interest rate level, the short

rate needs to be risk-adjusted upward. The main e�ect of a negative price is to make term

premiums positive and upward sloping. Second, the price of short rate risk is more negative

at lower rates; in contrast, the e�ect of volatility has an ambiguous e�ect on this price.

Third, the price of volatility risk seems to be relatively 
at for most values of the interest

rate level and its volatility. Only at higher volatilities does the price of risk vary, with low

(high) rates imposing a high (low) price.

4.3 The Term Structure of Term Premiums

Figures 11-16 provide a complete description of the underlying processes for interest rates

and interest rate risk. Using these estimates, and the valuation theory outlined in Section

4.2, we can begin to address the following question:

What are the implications of the empirical facts, such as the especially high volatility at

steep slopes, for expected returns on bonds?

This is an important question, which, to date, is unanswered in the literature due to the

multifactor, nonlinear nature of these facts. Below, we provide a �rst pass at understanding

these implications by focusing on the term structure of term premiums.

There is substantial support in the literature for time-varying risk premia on bonds. For

example, Shiller, Campbell and Schoenholtz (1983), Fama (1984, 1986), Keim and Stam-

baugh (1986), Fama and Bliss (1987), Stambaugh (1988), Campbell and Shiller (1991),

Klemkosky and Pilotte (1992) and Engle and Ng (1993) all report evidence that the risk

premia on bonds of various maturities are predictable. Moreover, a common conditioning

variable is the slope of the term structure, since it can be shown to embed expectations

about future rates as well as risk premiums on bonds. In this paper, we have transformed a

two-factor world with the level and slope into a generalized Longsta� and Schwartz (1992)

model.

Figure 17 documents the term structure of term premiums at two di�erent short rates as

implied by the pricing model described earlier in this section. The short rates were chosen

to coincide with the available data and the earlier Figures 5 and 6. Speci�cally, we report
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the ex ante excess return on the 6-month, 1-year, 3-year and 5-year par bonds, as a function

of the short rate's volatility. Several observations are in order. First, these term premiums

vary with both the level and the volatility. Recall from equation 18 that these excess returns

are determined by two components: (i) the prices of risk, and (ii) the sensitivities of the

bond prices to the interest rate factors. The former component is dominated by the short

rate (see Figures 15 and 16), while the latter component is related to interest rate volatility,

which is related mostly to the slope (see Figure 9).

Second, the predictability appears highly nonlinear, with both the level of the short

rate and the degree of interest volatility playing important roles. For example, given high

levels of volatility, the term structure of term premiums is at a higher level at rates of 5.5%

than at rates of 8%. In contrast, at low levels of volatility, the term structure of term

premiums is similar, irrespective of the interest rate level. Third, and most interesting, is

that the overall e�ect of multiple factors is consistent with the stylized facts in the term

premium literature (see, for example, Fama (1986), Fama and Bliss (1987) and Boudoukh,

Richardson, Smith and Whitelaw (1999a,1999b)). In particular, it is well-documented that

there exists a positive relation between the term structure slope and the term structure of

expected returns on bonds. Given the link between volatility and the slope, it should not

be surprising then that, for low levels of volatility, the term structure of term premiums is

relatively 
at compared to that for high levels of volatility.

5 Conclusion

This paper provides a method for estimating multifactor continuous-time Markov processes.

Using Milshtein's (1978) approximation schemes for writing expectations of functions of the

sample path of stochastic di�erential equations in terms of the drift, volatility and correlation

coe�cients, we provide non-parametric estimation of the drift and di�usion functions of

multivariate stochastic di�erential equations. We apply this technique to the short- and

long-end of the term structure for a general two-factor, continuous-time di�usion process

for interest rates. In estimating this process, one major result is that the volatility of

interest rates is increasing in the level of interest rates, only for sharply, upward sloping term

structures. Thus, the result of previous studies, suggesting an almost exponential relation

between interest rate volatility and levels, is due to the term structure on average being

upward sloping, and is not a general result per se. Moreover, the slope of the term structure,

on its own, plays a large role in determining the magnitude of the di�usion coe�cient. These
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volatility results hold across maturities, which suggests that a low dimensional system (with

nonlinear e�ects) may be enough to explain the term structure of interest rates.

There are several advantages of the procedure adopted in this paper. First, there is

a constant debate between researchers on the relative bene�ts of using equilibrium versus

arbitrage-free models. Here, we circumvent this issue by using actual data to give us the

process and corresponding prices of risk. Since the real world coincides with the intersection

of equilibrium and arbitrage-free models, our model is automatically consistent. Of course, in

a small sample, statistical error will produce estimated functional forms that do not conform.

This problem, however, is true of all empirical work. Second, one of the motivations of

this paper is to use our estimates of the underlying multifactor continuous-time di�usion

process to generate pricing results, which may lead to an explanation of some of the stylized

facts in the literature. We show how our results can be interpreted within a generalized

Longsta� and Schwartz (1992) framework, that is, one in which the drift and di�usion

coe�cients of the instantaneous interest rate and volatility are both (nonlinear) functions of

the level of interest rates and the volatility. Very preliminary results suggest that this more

generalized model will have some success at explaining the term structure of bond premiums

in a uni�ed framework. Third, the approach of this paper may be useful in providing forecasts

of the conditional distribution of changes in the term structure of interest rates. As a �rst

pass, the model is reasonably adept at replicating some of the important characteristics of

the estimated conditional distribution. Due to the Markov property of the model, these

forecasts are not limited to the frequency of the observed data. We are currently working on

research along these lines. Fourth, and perhaps most important, the pricing of �xed-income

derivatives depends crucially on the level of volatility. The results in this paper suggest that

volatility depends on both the level and slope of the term structure. This result, coupled

with the prices of risk, lead us to believe that the model produced here may have insights

into the pricing of these derivatives. We are currently analyzing the implications of these

types of models for valuing interest rate caps and 
oors.
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TABLE 1: Conditional Moments of Daily Interest Rate Changes (basis points)

High Level, High Slope High Level, Low Slope Low Level, High Slope Low Level, Low Slope
6-month 1-year 6-month 1-year 6-month 1-year 6-month 1-year

Mean 0.008 0.007 -0.346 -0.401 0.093 0.114 -0.165 -0.190
(Std. err) (0.288) (0.302) (0.222) (0.247) (0.152) (0.165) (0.132) (0.147)
Hypothesis (HR,HS)=(HR,LS) 6-mth (HR,HS)=(HR,LS) 1-yr (LR,HS)=(LR,LS) 6-mth (LR,HS)=(LR,LS) 1-yr
�2 Test 0.951 (.33 p-val) 1.093 (.30 p-val) 1.657 (.20 p-val) 1.889 (.17 p-val)

High Level, High Slope High Level, Low Slope Low Level, High Slope Low Level, Low Slope
3-year 5-year 3-year 5-year 3-year 5-year 3-year 5-year

Mean -0.063 -0.122 -0.312 -0.234 0.049 0.021 -0.217 -0.229
(Std. err) (0.296) (0.293) (0.249) (0.245) (0.184) (0.184) (0.174) (0.176)
Hypothesis (HR,HS)=(HR,LS) 3-yr (HR,HS)=(HR,LS) 5-yr (LR,HS)=(LR,LS) 3-yr (LR,HS)=(LR,LS) 5-yr
�2 Test 0.415 (.52 p-val) 0.087 (.77 p-val) 1.104 (.29 p-val) 0.962 (.33 p-val)

High Level, High Slope High Level, Low Slope Low Level, High Slope Low Level, Low Slope
6-month 1-year 6-month 1-year 6-month 1-year 6-month 1-year

Vol 8.275 8.685 6.229 6.925 5.328 5.813 4.480 4.996
(Std. err) (0.526) (0.534) (0.247) (0.292) (0.227) (0.214) (0.227) (0.213)
Hypothesis (HR,HS)=(HR,LS) 6-mth (HR,HS)=(HR,LS) 1-yr (LR,HS)=(LR,LS) 6-mth (LR,HS)=(LR,LS) 1-yr
�2 Test 12.160 (.00 p-val) 8.181 (.00 p-val) 6.772 (.01 p-val) 7.048 (.01 p-val)

3-year 5-year 3-year 5-year 3-year 5-year 3-year 5-year
Vol 8.514 8.427 6.996 6.887 6.476 6.480 5.890 5.984
(Std. err) (0.494) (0.475) (0.288) (0.273) (0.205) (0.208) (0.215) (0.209)
Hypothesis (HR,HS)=(HR,LS) 3-yr (HR,HS)=(HR,LS) 5-yr (LR,HS)=(LR,LS) 3-yr (LR,HS)=(LR,LS) 5-yr
�2 Test 6.888 (.01 p-val) 7.729 (.01 p-val) 3.680 (.06 p-val) 2.680 (.10 p-val)

Average Correlation
High Level, High Slope High Level, Low Slope Low Level, High Slope Low Level, Low Slope

0.870 0.842 0.787 0.794

Table 1 presents summary statistics for daily changes in the 6-month, 1-year, 3-

year, and 5-year yields on U.S. government securities over the 1983 to 1998 period.

Speci�cally, the table provides the mean, volatility, and cross-correlation of these

series, conditional on whether the level of the short rate and slope of the term structure

are either low or high. A Wald test that the conditional moments are equal is also

provided for the mean and volatility of these series.
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Figure 1: Time series plot of the 3-month rate and term structure slope (i.e., the spread
between the 10-year and 3-month rate) over the 1983-1996 period.
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Figure 2: Scatter plot of the 3-month rate vs. the term structure slope over the 1983-1996
period.
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Figure 3: The mean of the daily change in the 1-year yield (in basis points), conditional on
the short rate and the slope of term structure.
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Figure 4: The volatility of the daily change in the 1-year yield (in basis points), conditional
on the short rate and the slope of term structure.
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Figure 5: The volatility of the daily change in yields vs. the spread, with the short rate �xed
at 8%.
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Figure 6: The volatility of the daily change in yields vs. the spread, with the short rate �xed
at 5.5%.
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Figure 7: The volatility of the daily change in yields vs. the short rate, with the spread �xed
at 2.75%.
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Figure 8: The volatility of the daily change in yields vs. the short rate, with the spread �xed
at 1%.
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Figure 9: First, second, and third order approximations to the di�usion (annualized) of the
short rate vs. the short rate and the slope of the term structure.
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Figure 10: Scatter plot of the 3-month rate vs. the term structure volatility over the 1983-
1996 period.
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Figure 11: First order approximation to the drift (annualized) of the short rate vs. the short
rate and the volatility of the term structure.
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Figure 12: First order approximation to the drift (annualized) of the volatility vs. the short
rate and the volatility of the term structure.
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Figure 13: First order approximations to the di�usion (annualized) of the volatility vs. the
short rate and the volatility of the term structure.
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Figure 14: First order approximation to the correlation coe�cient between changes in the
short rate and the volatility vs. the short rate and the volatility of term structure.
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Figure 15: The price of short rate risk vs. the short rate and the volatility of the term
structure.
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Figure 16: The price of volatility risk vs. the short rate and the volatility of the term
structure.
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Figure 17: Term structure of term premia
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