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ABSTRACT

High-tech firms are built much more on the intellectual capital of key personnel than on

physical assets, and firms built around the best scientists are most likely to be successful in

commercializing breakthrough technologies.  As a result, such firms are expected to have higher

market values than similar firms less well endowed.  In this paper we develop and implement an

option-pricing based technique for valuing these and similar intangible assets by examining the effect

of ties to star scientists on the market value of new biotech firms.  Since firms with more star ties are

likely to have a greater probability per unit time of making a commercially valurable R&D

breakthrough, we argue and confirm empirically that both the value of the firm and the likelihood of

jumps in the value are increasing in the number of star ties.  These effects can be financially as well

as statistically significant:  for two firms with mean values for other variables, the predicted increase

in market value of a firm with one article written by a star as or with a firm employee is 7.3% or 16

million 1984 dollars compared to a firm with no articles.  
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Michael R. Darby, Qiao Liu, and Lynne G. Zucker

1 Introduction

High-technology industries are frequently formed or transformed as a re-

sult of scienti�c breakthroughs which open new technological opportunities. During the

nascent stage of these scienti�c/technological revolutions, the top scientists making the key

discoveries have a major strategic advantage in exploiting their commercial applications, par-

ticularly where need for tacit knowledge of the new techniques creates natural excludability

of scientists who have not worked at the bench level with the scientists or are incapable of

reverse-engineering their methods from the published articles. Zucker, Darby, and their as-

sociates have demonstrated the key role of star scientists who act as scientist-entrepreneurs

in determining the time and place of entry and the success of �rms exploiting the biotech-

nology revolution.1 For example, in this paper we develop and implement an option-pricing

based techniques for valuing the intellectual human capital implicit in star ties to �rms {

and similar intangible assets { by examining the e�ect of ties to star scientists on the market

value of new biotech �rms.2

Biotech companies with more ties to star scientists have signi�cantly more products in

development and on the market and great employment growth than do those with fewer or

none.3 Empirically, the depth of star scientist involvement in the �rm is measured by the

number of genetic-sequence-discovery articles authored by each of the star scientists as or

with employees of the �rm.

A natural extension of the Zucker-Darby �ndings is the hypothesis that high-tech �rms

with deep star scientist ties should be more highly valued by investors. The size of investors

stakes in the risky business of investing in high-tech �rms should be determined by their



stars. Speci�cally, the question we address is: What is the e�ect on high-tech �rms' stock

market performance of its technology state?4 In this paper, we argue that there indeed

exists such a relationship. In high-tech industries, information about many new discoveries

is suÆciently costly to transfer due either to its complexity or tacitness that others are

e�ectively excluded. At the extreme, scientists wishing to build on the new knowledge must

�rst acquire hands-on experience. If scientists cannot gain access to a research team or

laboratory setting with that know-how, then working in the new area may be very diÆcult

if not impossible. Thus, we expect the following: the �rms with more intellectual human

capital are more likely to make technological breakthroughs. Since the technological know-

how based on those technological innovations will not be easily grasped by other �rms, the

�rms with this technological know-how should enjoy higher rate of return. This type of

higher than normal rate of return will not be competed away until other �rms are able to

come up with similar or more advanced technology. In the stock market, the shareholders or

the �rm's potential investors also appreciate the �rm's ever-increasing technological state.

This eventually will be re
ected in the �rm's stock price, and correspondingly, in the �rm's

market valuation.

Average investors may not be sophisticated enough to tell when the �rm is having tech-

nological breakthrough and how big its e�ects will be. But ex ante, before they make their

investment decisions, they can observe the indicators on the �rm's intellectual human capital

that may contain useful information about the �rm's current technology status and potential

future development. For example, they can count the number of scientists in the �rm, �gure

out how many of them have Ph.D. degrees, consider where they did their graduate work, and

take into account the size of the �rm's R&D expenditure. They can even measure the quality

of �rm's research team by counting how many big names the �rm has or how frequently the

�rm's scientist are cooperating with academic gurus. This type of ex ante recognition of

the �rm's potential to make technological breakthroughs will be re
ected in the investors'

decision making process and consequently be re
ected in the �rm's stock market price. This
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makes it possible for us to use stock market information to study the in
uence of intellectual

human capital on the �rm's overall success. This also provides a way to value the �rm's

valuable technological know-how: we can calculate how much of the �rm's market value

could be explained by certain type of intangible asset, and then value this type of intangible

asset based on its contribution to the �rm's overall market value. This approach, therefore,

could be applied to value such intangible assets as patent citations, scienti�c citations, ties

to star scientists, great ideas.5

As argued in Hall (1999), using �nancial market information to measure the returns of

innovative activities has the following advantages: (1) it avoids the problems of timing of

costs and revenues (confusion in determining when innovative investments occur and when

they generate income stream.) and is capable of forward-looking evaluation; (2) this method

is also potentially useful for calibrating various innovation measures, in the sense that one can

measure their economic impact using the widely available United States �rm data, possibly

enabling one to validate these measures for use elsewhere as proxies for innovation value.

Following the same spirit, our paper propose a structural model to describe the relationship

between the �rm's market valuation and its corresponding knowledge assets (i.e. R&D

expenditures, "Star Scientist" ties).

Since we argue that the technological innovation a�ects the investors' valuation. we

expect that a certain type of discontinuity in the �rm's market value will occur whenever

the �rm makes frontier discoveries. We propose a endogenous jump{di�usion model in

our paper to capture the "jump" nature of technological breakthrough. More speci�cally,

we assume the �rm's valued assets (the weighted sum of its intangible assets and tangibles

assets) follow a jump-di�usion process with jump intensity endogenously related to the �rm's

intellectual human capital measure. Thus, whenever the �rm makes technological innovation,

this breakthrough changes the dynamics of the �rm's valued assets. The jump{di�usion

process is appropriate here because it not only captures the continuous change of �rm's

valued assets, but also captures the discontinuity due to extreme events (frontier discovery
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in our model). In our model, by relating the probability (or frequency) of a jump occurring

to a �rm's intellectual human capital measures (i.e. number of ties to "star scientist"), we

are able to disentangle the e�ect of intellectual human capital measures on the �rm's market

valuation. Our theoretical argument is that owning precious intellectual human capital will

improve the likelihood of the �rm making technological breakthrough. This, in turn, will

in
uence the investors' valuation of the �rm's valued assets, which eventually will be re
ected

in the �rm's stock price. By applying a jump{di�usion model, we are able to study this e�ect

in an ex ante manner, which di�erentiates our approach from the "event study" approach

that has been widely used in corporate �nance research. This may avoid estimation errors

due from identifying "event" and specifying "the windows of event".

The basic framework of this paper is an option-pricing model with underlying asset (val-

ued assets in our paper) following a jump-di�usion process. The basic analytical framework

of our study is similar to Black and Scholes' (1973). Cox and Ross (1976), Merton (1976)

are among the �rst economists to apply jump process to option pricing models. But in their

studies, jump risks are speci�ed to be unsystematic risk and jump intensity is assumed to

be exogenously constant. Bates (1996) and Bakshi, Cao and Chen (1997) study the jump-

di�usion process in a more complicated environment. They, together with Heston (1993),

use the inverse characteristic function method to obtain the closed form solution for the

price of a call option. In this paper, we basically use the same method as the one used

in Bates (1996) and Bakshi, Cao and Chen (1997). One contribution of our paper is that

we assume the jump intensity to be endogenously related to the �rm's intellectual human

capital measure. This is di�erent from the constant jump intensity assumption made in the

models we mentioned above, which makes our modeling more complicated. By applying the

inverse characteristic function technique, we are able to overcome the complexity brought

along with the "endogenized" jump intensity assumption and obtain a closed form solution

to the price of the European call option, which is just the �rm's market valuation in our

model.
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We use the sample we construct for the biotech industry to test whether our jump-

di�usion option pricing model is correctly speci�ed. We compiled the biotech �rms that

went public during the 1980{1992 time period.6 For each of those �rms, we carefully cal-

culated the links or aÆliations to star scientists. We use those "ties" to star scientists as

a measure of the biotech �rm's intellectual human capital. We also retrieve the �rms' ac-

counting information from COMPUSTAT database. By using actual data from the biotech

companies, we �nd that the jump{di�usion option pricing model �ts the actual data very

well, which implies that there actually exist discontinuities in the �rms' market valuation

and this type of discontinuity originates from the �rms' technological breakthroughs which

are made possible by the �rms' intellectual human capital. Robustness analyses also con�rm

that our model is correctly speci�ed. After we estimate the implicit parameters of the jump{

di�usion model, we apply this process to study the e�ect on the �rm's market valuation by

the �rm's intellectual human capital measure | ties to star scientists. Sensitivity analyses

illustrate that the increase in the �rms' intellectual human capital will lead to higher market

valuation. In a reasonable manner, the e�ects depend on the size of the �rm (in terms of

total assets), the R&D stock of the �rm, the amount of the �rm's debts and their maturi-

ties. For a typical biotech �rm (a �rm that has industry average values for its total asset ,

R&D stock, debt level and average maturity), the �rst star scientist will generate almost $

15.73 million in the �rm's market value. The contribution to the �rm's market value goes

down with the increase in the intellectual human capital measure. This is consistent with

the assumption that the jump intensity is concavely related to the �rm's intellectual human

capital measure.

The rest of the paper proceeds as follows. In section 2, we lay out the model and then

derive the solution to the model. We provide a detailed description of the data we used

in this study in section 3. Econometric methods and the empirical results are provided in

section 4. Section 5 further analyzes the robustness of our model and also contains the results

of sensitivity analyses. Section 6 discusses and concludes. Appendix A contains details of
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the proof and Appendix B contains details about how we construct our data sets.

2 The Theoretical Framework

Exploring the e�ect of intellectual human capital on the �rm's market value, or in other

words, using �rm market as a measure of innovation returns of the �rm's intellectual human

capital, relies on the fact that publicly traded corporations are bundles of assets (both

tangible and intangible) whose values are determined every day in the �nancial markets.

The typical model of market value hypothesizes that the market value of a �rm is a function

of the set of assets that it comprises:

C = G(a1; a2; a3; :::) (1)

where C is the �rm's market value, a1; a2,... are various assets the �rm invests in and G is

unknown function that describes how the assets combine to create value. If the �rm follows

value-maximizing behaviors and the stock market is eÆcient, then the function G will be

the value function. In empirical study, the biggest problem associated with this approach is

that the functional form of equation (1) is unknown. It is not easy to compute it in closed

form if one assumes a realistic pro�t- maximizing approach for the �rm. Most empirical

study on this line of research has to fall back on fairly ad hoc functions, such as linear or

Cobb-Douglas (linear in logs).

In this paper, we aim to �nd a near-structural model, which is able to capture the

technological innovation nature of high-tech �rms. We think this endeavor is able to overcome

the naivete of making ad hoc assumptions about the functional form, G; it is also important

to help people precisely measure the returns of innovative activities.

In this section we lay out the basic model and then derive the general pricing equation

based on our model.
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2.1 The Model

Considering the R&D intensive nature and the importance of intangible assets per se in

high-tech industries, we de�ne a high-tech �rm's valued asset as follows:

V (t) = �A(t) + �S(t); (2)

where A(t) is the value of the �rm's tangible assets at time t and S(t) is the value of the

�rm's intangible assets (this could be proxied by the �rm's discounted cumulative R&D

expenditures7 ) at time t. V(t) in the above equation is the value of the �rm's valued assets.

It captures the total value of the �rm's assets that are valued by the �rm's shareholders.

A recent article shows that the correlation between a �rm's share price and its book value

of equity has dropped from 0.9 in the 60s to about 0.5 in recent years.8 This demonstrates

that the investors not only value the �rm's physical assets, but also value the �rm's other

forms of assets when they make their investment decisions. we think the V(t) we de�ne

above is able to capture this story. Note that in equation (2), � and � can be thought as the

shadow prices of the �rm's tangible assets and intangible assets, respectively. They capture

the weights the investors put on the �rm's assets when they value the �rm. Both� and � in

equation (2) are structural parameters in our model, so we believe them to be stable over

time.

We follow the standard practice and specify from the outset a stochastic structure under a

risk-neutral probability measure. The existence of this measure is equivalent to the absence

of free lunches, and it allows us to value future risky payo� as if the economy were risk-

neutral. We pre-specify that the �rm's valued asset, V(t), evolves according to the following

process:

dV (t)

V (t)
= (R(t)� ��J)dt+

p
�dz(t) + J(t)dq(t); (3)

and

ln[1 + J(t)] � N(ln[1 + �J ]� 1

2
�2
J ; �

2
J); (4)
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where:

R(t) is the time{t instantaneous spot interest rate;

� is the frequency of jumps per year (jump intensity);

� is the di�usion component of the �rm's return variance (conditional on no jump occurring);

z(t) is a standard Brownian motion;

J(t) is the percentage jump size (conditional on jump occurring) that is lognormally, identi-

cally, and independently distributed over time, with unconditional mean �J . The standard

deviation of ln[1 + J(t)] is �J ;

q(t) is a Poisson jump counter with intensity �, that is, Prob[dq(t) = 1] = �dt and

Prob[dq(t) = 0] = 1 � �dt. We also assume the probability of more than one jump is

Prob[dq(t) � 2] = Æ(dt), where a function f(h) is Æ(h) if limh!0
f(h)
h

= 0;

Note that �J also captures the dispersion of jump size.

We further assume

� = �0 + �1X; (5)

where X is the �rm speci�c intellectual human capital measure. By making this assumption,

we relate the probability or frequency of jump occurring to the �rm's intellectual human

capital measure. As we will explain in Section 3, when we estimate the implicit parameters

of the model, we de�ne X to be the square root of the number of ties to star scientists (

X = ties
1

2 ). This type of concave relationship captures the decreasing e�ect of the �rm's

intellectual human capital on the probability of technological innovation.

An intuitive interpretation of above process is the following. Most of the time, the �rm's

total valued assets evolve smoothly, but jumps occur occasionally. The frequency of a jump

occurring is endogenously determined by the �rm's intellectual human capital state| X in

our model. Thus, the above model is able to capture the "technologically innovative" nature

of high-tech industries.

Since we specify our model under risk neutral probability measure, � in above model is

not the actual jump intensity. It is the jump intensity under the risk neutral probability
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adjustment; similarly, �J does not capture the actual jump size either. What it captures is

the risk adjusted jump size. It is important to realize that the exogenous valuation framework

given above can be derived from a general equilibrium in which all risks are rewarded. Bates

(1991, 1996) demonstrate how risk premiums for each factor could be derived from a general

equilibrium model.9

In our model, the jump risks related to the �rm's intellectual human capital have both

systematic and unsystematic components. So the risk premium for each risk factor is not

zero. We are not specifying them in our model, but they have been implicitly internalized in

the stochastic structure. The shortcoming of our approach is that the sign and magnitude

of jump intensity or jump size may be counter-intuitive, given that what they capture are

intensity and size under risk-neutral probability measure.10 The advantage of this approach

is that we do not need to worry about how risk factors interact with each other; So we can

just focus on whether there is a jump occurring and how the jump a�ects the �rm's market

value. Given the purpose of our study, the above modeling speci�cations are appropriate.

As Merton (1974) and many other researchers have pointed out, a �rm's equity market

value could be regarded as a European call option written on the the �rm's valued assets with

strike price equal to the �rm's outstanding debt level and maturity equal to the maturity of

the �rm's debt. The idea is as follows. If the value of the �rm's valued assets is less than the

level of debt, then the �rm has to go bankrupt and the shareholders get nothing. Since the

shareholders get the di�erence between the �rm's valued assets and the portion that goes

to debtsholders. Therefore, the �rm's equity market value has all the characteristics of a

European call option and we can value the �rm's equity market value in a option-pricing

framework.

We have:

C(t; �) = e�R�E(max(V (t + �)�D(t); 0); (6)

where V (t + �) is the value of the �rm's valued assets at time t + � ,D(t)is the �rm's debt

level at time t, � is the maturity of �rm's debt, and C(t; �) is the price of the European
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option and it measures the �rm's equity market value in our model. Note that in equation

(6), E is the expectations operator with respect to the risk-neutral probability measure.

Equation (2); (3); (4); (5); (6) summarize the model we use to calculate the �rm's market

valuation. In the above model, the �rm's market valuation is related to its intellectual

human capital state through the jump component that appears in the dynamics of the �rm's

valued assets. This captures the fact that frontier discoveries in science and technology and

subsequent commercialization made possible by the �rm-speci�c intellectual human capital

(great scientists, great ideas, etc.) have dramatically changed the high-tech industries.

The model we propose above could be seen as a near-structural model. Even though the

functional form of G in equation (1) is still based on some assumptions, we argue that the as-

sumptions we made in above model are appropriate in the R&D intensive and technologically

innovative environment we are studying in this paper.

2.2 The Solution to the Model

In this subsection, we provide the solution to the model.

Applying the Generalized Ito's Lemma, we know a European call option written on the

�rm's valued asset with strike price D and term to expiration � could be solved through the

following Partial Di�erential Equation (PDE):

0 = (R� ��J � 1

2
�)
@C

@V
+
1

2
�
@2C

@V 2
� @C

@�
�RC

+�IE[C(t; �; V (1 + J); X)� C(t; �; V;X)]; (7)

subject to C(t; �) = maxfV (t + �)�D(t); 0g.
Note that in equation (7), we assume that the risk{free spot interest rate, R(t), and the

volatility of the return of the �rm's valued assets, �, are deterministic. This will reduce the

complexity of our model dramatically and will not change the results qualitatively.

By analogy with the Black-Scholes formula, we guess a solution of the form

C(t; �) = V (t)P1 �D(t)e�R�P2; (8)
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where the �rst term is the present value of the �rm's valued assets upon optimal exercise,

and the second term is the present value of the strike price payment. Both terms have to

satisfy the original PDE (7).

In Appendix A, it is shown that the formula for the price of the European call option is

as follows:

C(t; �) = V (t)�1(t; �; V;X)�D(t)e�R��2(t; �; V;X); (9)

where the risk-neutral probabilities, �1 and �2, are recovered from inverting the respective

characteristic functions:11

�1(t; V;X; �) =
1

2
+

1

�

Z 1
0

Re[
e�i� ln[D]f1(t; �; V;X)

i�
]d�; (10)

and

�2(t; V;X; �) =
1

2
+

1

�

Z 1
0

Re[
e�i� ln[D]f2(t; �; V;X)

i�
]d�: (11)

From Appendix A, we also know:

f1(t; �; V;X) = expf[[�0(1 + �J)[(1 + �J)
i�e

i�

2
(i�+1)�2

J � 1]� �0�J(i�+ 1)

+Ri�+
1

2
�i�(i�+ 1)]� + [[�1(1 + �J)[(1 + �J)

i�

e
i�
2
(i�+1)�2

J � 1]� �1�J(i�+ 1)]�X + ln(V )i�g (12)

and

f2(t; �; V;X) = expf[R(i�+ 1) + �0[(1 + �J)
i�e

i�
2
(i��1)�2

J � 1� �J i�]

+
1

2
�i�(i�� 1)]�

+�1[(1 + �J)
i�e

i�
2
(i��1)�2

J � 1� �J i�]�X

+ ln(V )i�� R�g (13)

Equations(9){(13) provide the solution to the European call option. As discussed above,

the price of this European call option is the same as the �rm's market valuation if we take
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the �rm's equity as a call option written on its valued assets with exercise price equal to its

debt level. Therefore, if we can estimate the implicit parameters (�; �; �J ; �; �
2
J ; �0; �1) in

above equations, then we are able to use this formula to estimate the �rm's market value.

But �rst, we use the actual data to estimate the model and to test whether our model is

correctly speci�ed.

3 Data

This section contains the details on how we construct the data sets for our empirical

study. In this paper, we speci�cally focus on the biotechnology industry. The reasons are as

follows:

� The formation and development of biotechnology industry have been largely deter-

mined by endowment of intellectual human capital speci�c to biotechnology (Zucker,

Darby and Brewer (1998), Zucker, Darby and Armstrong (1998)). The biotechnology

industry is an excellent study �eld for economists seeking to understand how intel-

lectual human capital a�ects high-tech industry formation and each �rm within the

industry;

� As a relatively new industry, biotech has witnessed very active IPO activities. More

than 100 biotech companies have gone public during 1979{ 1992. For each public �rm,

accounting and much other �rm-speci�c data have been archived in public databases

such as COMPUSTAT and CRSP. This equips us with a relatively complete sample

compared to other high-tech �elds, especially, when we study the �rm's stock market

performance. Figure 1 graphs the biotech �rms' birth and IPO activities from 1979 to

1992;12

� Numerous empirical studies about the biotech industry have established that knowledge

assets, or intellectual human capital is crucial to the �rm and the industry. However,

no studies have focused on the stock market performance of biotech �rms; so our
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study will be a good complement to previous studies. Moreover, the results obtained

from our study can be compared to those from other studies, which may deepen our

understanding about the roles played by human capital in biotech industries.

Note that even though we only consider biotech industry in this study, the same approach

can be applied to studying other high-tech industries without any diÆculty. The method

proposed in this paper can be applied to industries with the following features: (1) the �rms

within this industry have substantial intangible assets which have not been valued appro-

priately by traditional accounting procedures; (2) the �rms are competing with others in an

R&D intensive and technologically innovative environment, in which frequent technological

innovations based on the �rms' intellectual capital investment can generate large "jumps"

in the value of the �rms' assets.

3.1 Biotechnology Firms

We use for the starting point for our �rm data set the 752 �rms in Zucker, Darby, and

Brewer (1998) analysis of the adaptation of biotechnology.For these �rms there are extensive

data on their intellectual cpital endowment and other variables. Some of these 752 �rms are

incumbents in this industry, and for these incumbents in industries to which biotechnology is

applied such as drugs and food. For these incumbents biotechnology is often a small part of

the total value of the �rms. In order to focus on the in
uence on the �rm's stock performance

of innovations in biotechnology, we limit our sample to the 511 entrant �rms that were born

after 1975, the "new biotechnology �rms". Moreover, in this study, we only consider the

�rms that have gone IPO. We are able to identify 156 IPOs during 1979-1992 period, but

we can only �nd records for 129 of these public �rms in the COMPUSTAT database. For

those 129 �rms, we retrieved such data as number of outstanding shares, closing stock price,

total assets, physical assets, and debts with di�erent maturities.
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3.2 Measures of Intellectual Human Capital

Given the purpose of our study, intellectual human capital is the key explanatory variable.

In this paper, we measure a biotech �rm's intellectual human capital by counting the number

of links or aÆliations a �rm has to the star scientists. The Data Appendix contains the

detailed information about how Zucker, Darby, and Brewer (1998) de�ned star scientist and

why we think this variable is a reasonable measure of the biotech �rm's intellectual human

capital state.13

After they identi�ed the star scientist, they hand-collected the 4,061 articles authored

by stars and listed in GenBank and recorded the institutional aÆliations of the stars and

their co-authors on each of these articles. These co-authors are called collaborators if they

are not themselves a star. We then de�ne aÆliations as the number of articles authored by

star scientists aÆliated with the �rm and links as the number of articles by non-aÆliated

star scientists writing with one or more �rm aÆliated collaborators as de�ned above. We

use ties | the sum of aÆliations and links to star scientists as the measure for intellectual

human capital speci�c to biotechnology.

In future work we will explore whether or not other measures, such as the number of

patents the �rm issues, the number of patent citations, and the �rm's scienti�c citations,

could also capture �rm speci�c intellectual human capital.

3.3 Other Variables

In this study, we also use some other variables taken from the data sets Zucker and Darby

have constructed for their on-going project on "Intellectual Capital, Technology Transfer, and

The Organization of Leading-Edge Industries: Biotechnology". A full description of the data

and how they are organized can be found in the Data Appendix. Brie
y speaking, a dummy

variable RTECH captures whether a �rm uses recombinant DNA technology. Based on the

U.S. Patent OÆce biotechnology CD{ROM, we have counts of the number of patents granted

to the �rm by year they are granted and by the year in which they were applied for. We call
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them Patentg and Patenta, respectively. Also, in order to control for the e�ects of technology

spillover, we count the number of top-quality universities with bioscience programs in the

same region as the �rm and name it Qual1. From the Venture Economics database, we are

able to obtain how many venture capital rounds the �rm has received in certain year, the

dollar amount of each injection, the stage of venture capital injection. We use NVC to denote

the number of rounds and AVC to denote the dollar amount of venture capital injection in

each year. We also have the number of research grants and dollar amount of each grant

awarded to the �rm under the Small Business Innovation Research (SBIR) Program of the

federal government. We use Grants to denote the number of grants the �rm obtain in certain

year. Table 1 and the Data Appendix contain more information about the data sources and

how they are de�ned. The biotech companies' accounting and �nancial information are

obtain from Standard & Poor's COMPUSTAT data base. The variables used in our study

include: the observed market value of the �rm (C), the debt level (D), the maturity of the

�rm's debt (�),14 total book value of the assets (A), cumulative R&D expenditures (S),15

and the age of the �rm (Firmage). Data Appendix B details how we de�ne each variable. A

full list of the variables used in our empirical study could be found in Table 1.

4 Structural Parameter Estimation and Tests of

Hypothesis

In this section, we estimate the structural parameters implicit in our model. Based on

that, we test the key hypothesis of this paper: Is the actual data from biotech industry able

to provide evidence on the discontinuities in the �rms' market valuation which could be

attributed to star scientists' innovative activities?

4.1 Econometric Method

In Section 2, we explain the logic of taking the �rm's equity market value as a European
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call option written on the �rm's valued assets. We also derived the pricing formula for

this call option under risk neutral probability measure. In applying option pricing models

to estimate the e�ects of intellectual human capital on �rm's market value, one always

encounters the diÆculties that the structural parameters are unobservable. In our model,

the spot volatility of �rm's value assets (conditional on no jump), �; the jump{related

parameters (�0; �1; �J ; �
2
J), the shadow prices of the �rm's tangible assets and intangible

assets, (�; �), need to be estimated. In principle, one can use econometric methods such

as maximum likelihood method (MLE) or the generalized method of moments (GMM) to

obtain the structural parameter estimates. In this paper, we employ GMM by adapting the

following steps:

Step 1. First, we treat the �rm's market valuation as a European call option written on

its valued assets with strike price equal to the debt level. Since the �rm normally issues

debts with di�erent maturities, we cannot simply sum all of �rm's debts and assign a date of

maturity to it. Here, we compute the �rm's total debt level by calculating the present value

of the di�erent types of debts. In other words, we discount the debts that will be mature

in the future by using short-run risk-free interest rate. The �rm's maturity is calculated

as the McCauley Duration of the �rm's debts, as we explained in Section 3. Intuitively, it

could be understood as the weighted average of the maturities of the �rm's di�erent types of

debts. We stack the observations. Note that with an average of only 3.9 annual observations

per �rm, we do not attempt to estimate time-series e�ects and treat each observation as if

an individual �rm. We believe that this approach is appropriate because in our study we

only address the fundamental factors that in
uence the �rm's market value. The structural

parameters in our model are expected to be relatively stable over time. Also, the time-series

e�ects, if there are any, may be controlled for by the instantaneous risk free interest rate,

the age of the �rm, and other variables that relate to the passage of time.

In our empirical study, we intentionally drop the observations with total assets (in 1984

US dollars) less than $15 million. The main reason is that the intellectual human capital

16



measure used in our study is a more appropriate measure of intellectual human capital for the

large �rms. We identi�ed the star scientists by counting the articles published up to 1990.

Using the article counts to identify the �rm's ties to star scientists provides a downward

bias for the �rms that were born late, because those �rms may have been formed by young

scientists who have little chance to be star scientist as de�ned in our paper. Most of the

small �rms dropped from our sample were born in recent years. Including them in our

sample may create noise when estimating the model. In addition, some of those small �rms

have very abnormal stock market behaviors, which we attribute to the well-documented size

e�ect in the empirical �nance literature.16 One possibility is that small �rms have some risks

which have not been observed by investors. In our study, since we cannot control those

unobservable risk factors, it is acceptable to drop the small �rms from our sample. Another

rationale of dropping small �rms is the availability of information. Larger �rms are likely

to be tracked by more and better analysts. They are also more likely to be scrutinized in

the media.17 Thus, the value of �rm-speci�c knowledge assets could be incorporated into the

�rm's fundemental value more eÆciently. In this sense, our model is more appropriate for

�rms with larger size and longer history.

For each of the 343 observations for 90 biotech companies, we calculate the debt level,

D, and corresponding maturity � , and count the number of star scientists ties the �rm has.

Based on this, we calculate the theoretical market value for the �rm's equity by using equa-

tions (9){(13). In other words, we calculate Ci(t; �i;Xi; Di; Vi). Let C�i be the observed

market value for observation i, calculated by multiplying the closing stock price by the num-

ber of outstanding shares. The di�erence between C�i and Ci(t; �i;Di; Vi) is a function of the

values taken by Xi, Ai, Si, Di, �i, R(t), and by 	 = (�; �; �J; �
2
J ; �; �0; �1). For each i, de�ne

�i[	] = C�i � Ci(t; �i;Di; Vi; Xi); (14)

where �i denotes the absolute estimation error of our model.

Step 2. We use the Generalized Methods of Moment (GMM)18 to estimate the implicit
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structural parameters in our model. We assume that our model is correctly speci�ed, thus

we have

E[�] = 0: (15)

We assume that

E[��
0

] = 
; (16)

where 
 is unrestricted. Suppose now for each observation, i, we observe a vector of J vari-

ables, zi, such that zi is uncorrelated with �i. The assumptions imply a set of orthogonality

conditions:

E[zi�i] = 0; (17)

which constitute the moment conditions in our study. It is straightforward that the sample

moments will be

m =
1

n

X
i

zi�i (18)

For our model, we assume that the weighted matrix has the following form:

WGMM =
1

n2

X
i

X
j

ziz
0

jCov[�i�j]

=
1

n2

X
i

X
j

ziz
0

jCov[(C
�
i � Ci)(C

�
j � Cj)] (19)

The minimum distance estimator will be the 	� that minimizes

q = m(	�)0W�1m(	�) (20)

4.2 Estimation and Results

When implementing above procedures, we assume the set of instrumental variables, z,

consists of the following variables:

� �rm-speci�c ties to star scientist, Ties;

� the �rm's total assets, A;
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� the �rm's discounted cumulative R&D expenditures, S;

� the counts of granted patents by their application dates, Patenta;

� dummy variable whether the �rm applies recombinant DNA technology, Rtech;

� the number of top biotech related programs in the same region as the �rm, QUAL1;

� the number of venture capital rounds the �rm receives, NVC;

� the years that the �rm has been practicing biotechnology, Firmage;

� the number of research grants from SBIR, Grants;

� the �rm's debet level, D;

� constant.

Table 2 contains sample statistics for those variables. If our model is correctly speci�ed,

we expect that "Ties" captures the value of the �rm's knowledge based assets. In that case,

we claim that the regressors we de�ned above will be orthogonal to the error term. Note that

we have 7 unknown parameters needed to be estimated and we have 11 moment conditions.

Our objective function (20) is obviously non-linear.

We use the Davidson{Fletcher{Powell (DFP) algorithm to estimate the implicit parame-

ter vector 	. There are two reasons that DFP algorithm is attractive in our study: (1). DFP

algorithm has very strong convergence ability, which is very important for our parameter

estimation; (2). When we do the iteration, we have to update the Hessian Matrix, H. In

most algorithms, this means that we need to calculate the second-order derivatives of our

objective function (20) with respect to the implicit parameters. It is a very demanding task

given the complexity of the objective function we have. Using DFP actually avoids this

problem.

We adopt the sequential optimization techniques in our estimation. We start from cer-

tain starting values and then use DFP algorithm and GMM to estimate the parameters.
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After they converge, we use those estimated values as the starting values and repeat above

procedure. We repeat this process until we cannot improve the estimates any more. All

programs are written in MATLAB. Normally, it takes 7-18 hours to �nish one convergence

on a devoted Sun workstation. The �nal results of the estimates are reported in Table 3.

Panel A of Table 3reports the estimates of the unrestricted model. Obviously, all coeÆ-

cients are signi�cant. However, let us focus on jump-related parameters: �0; �1; �J ; �
2
J . �1 is

signi�cant, which implies that the probability of jump occurring is positively related to the

�rm's intellectual human capital measure. Note that the estimated value of �J in our model

is negative, which is counter-intuitive in sign. But consider the factor that we start our

model from a risk neutral probability framework, so �J here doesn't capture the real jump

size, it only captures the adjusted jump size which already incorporates the risk premium of

jump risk.

We use the method proposed by Newy and West (1987) to test our main hypotheses:

H0 : �1 = 0; (21)

and

H1 : �0 = �1 = 0: (22)

First, we want to test whether there are discontinuities in biotech companies' market

value. In other words, whether our suggested model in Section 2 is correctly speci�ed.

Newey and West(1987) devise a counterpart of LR test in GMM framework. By applying

the same weighted matrix, W, to both unrestricted model and restricted model, we get the

minimum distances de�ned in (20) for both models. The di�erence between these two should

follow a �2 distribution with degree of freedom equal to the number of restrictions imposed

if H1 holds. From Panel C of Table 3, it is easy to see that the di�erence between those

two is 30.9. If H1 holds, it should follow a �2 distribution with degree of freedom equal to

4. Obviously, H1 should be rejected. This means that discontinuities in biotech companies'

market value actually exist.
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Then, we try to �gure out what cause those jumps. We attribute those jumps in the

�rm's market valuation to the intellectual human capital speci�c to biotechnology owned by

each �rm. The argument is straightforward: with that valuable intellectual human capital,

the biotech �rm is able to make frontier technological innovations more frequently and then

convert those innovations to pecuniary bene�ts by commercializing them. From the investors'

perspective, they always face the possibility that the �rm's future cash 
ows may have a

dramatic upward shift due to its intellectual human capital, which will be re
ected in their

valuation of the �rm's assets. This will be embodied in their market behavior. So we argue

that a �rm's stock market performance should re
ect investors' expectation based on the

�rm's intellectual human capital as well as news about outcomes of the R&D. We use the

same method as above to test this hypothesis. As Panel B of Table 3 shows, the di�erence

between the minimum distances for the unrestricted model and restricted model (under

hypothesis H0) is 16.8 . If H0 holds, this di�erence should follow a �2 distribution with

degree of freedom 1. H0 is rejected, con�rming that more intellectual capital increases the

frequency of stock price jumps.

A few other interesting results can be obtained from Table 3. From Panel A, note that

� = 0:8131, which means investors value high-tech �rm's R&D stock; We also �nd that

� > � if we consider jump risk related to �rm's intellectual human capital measure. This

implies that the investors, when evaluating the �rm's value, put a higher weight on the

�rm's tangible assets. In terms of �rm's intangible assets, investors do care about them,

but more cautiously. We think the investors care more about the quality of �rm intangible

assets instead of only considering the quantity. We con�rm this argument by interpreting the

results from the estimation of the restricted model. Once we assume away intellectual human

capital related jump risks, we �nd that the coeÆcient for intangible assets , �, increases to

2.74 (from Panel C of Table 3), which exceeds the shadow price of the �rm's tangible assets,

�. With the explanatory power of star-scientist related jump has shifted into �, which

makes intangible assets more important. We argue that di�erent types of intangible assets
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(i.e. R&D stock, ties to star scientist) play subtly di�erent roles in determining the �rm's

market value.

As noted in Section 3, R&D stock may be a noisy measure of the �rm's intangible assets.

Some researchers have used R&D expenditures as the proxy for intangible assets. In Table 4,

we use R&D expenditures instead of R&D stock as the proxy for S in our model. The story

remains. Now, we notice that � has increased to 1.87. In other words, the shadow price of

R&D expenditures has increased to 1.87. This magnitude is consistent with the results from

other research.19

5 Further Empirical Analysis

5.1 Robustness Analysis of the Model

When applying the option pricing model to value certain assets, we should check whether

the model used is correctly speci�ed. In other words, we need to check whether it misprices

the asset. Our model captures the innovative nature of high-tech companies, it also captures

the subtle role played by the �rm's intellectual human capital measure. The empirical results

in Section 4 also reject the hypotheses that there are no jumps and no intellectual human

capital related jumps in the �rm's market valuation.

In this subsection, we study our model's in-sample pricing �t. Speci�cally, for the model

we propose, we estimate its implicit parameters. We then plug those parameters into the

model to calculate the �rm's model value. By comparing the observed market value and the

model market value, we are able to obtain our model's pricing error. In order to allow for

di�erences in size of the �rms, we use percentage price error as a more appropriate measure

of the model's pricing error. We de�ne the pricing error as " Per", where

Per =
observed market value�model value

observed market value
: (23)

If our model is correctly speci�ed, we should expect that the remaining pricing errors
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of our model, Per, to be uncorrelated with the main explanatory variables in our model

estimation. Panel A of Table 5 provides the results of the correlation analysis. In Panel

A, it is easy to see that the �rm's observed market value, MKV, are signi�cantly correlated

with most of the explanatory variables. Especially, we observe that it is correlated with

ties to star scientists, number of patents by application dates, R&D stock, the dummy

variable for whether the �rm applies rDNA technology, the years the �rm has been practicing

biotechnology, number of top universities with biotech related programs in the same region

as the �rm. We have used those variables as the measures of the �rm's knowledge assets.

However, if our model is correctly speci�ed, then the percentage price errors, Per, should be

uncorrelated with the variables we described above. Panel A con�rms that the model passes

this speci�cation test.

To further understand the structure of remaining pricing errors, we conduct a regression

analysis to study the association between the errors and the factors that are either market-

condition dependent or �rm-speci�c. Empirical studies of option pricing generally �nd that

the pricing errors are related to the moneyness of the option contract. Here, moneyness is

a variable used to measure how deep in or how deep out of the money the option is. In

this paper, strike price is the debt level, D. And the underlying asset price is de�ned as the

valued asset, V = �A + �S. We de�ne D
V
as the moneyness in our model. Since most of

our observations are deep in the money options, we expect moneyness should explain some

of the remaining pricing errors. Also, we have assumed that the structural parameters in

our model are stable over time, but in fact they may be a�ected by overall stock market

situations in di�erent years. We create year dummies and expect that they should have some

explanatory power. We run this regression below for the entire sample:

Peri = �0 + �1MONEY NESSi + �2�12Y EARDUMMIES

+�13�20OTHER V ARIABLESi + �i; (24)

where OTHER VARIABLES in above regression include the natural logarithm of the �rm's

total assets, the natural logarithm of the �rm's R&D stock, ties to star scientist, patents
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by application dates, dummy if the �rm applies rDNA technology, the years the �rm has

been doing biotechnology, number of venture capital rounds, and top universities in the

same region. Panel B of Table 5 reports the regression results based on the whole sample.

Not surprisingly, the pricing errors from our model have some systematic moneyness, and

year related components. In contrast, the percentage pricing errors are not signi�cantly

related to any of the knowledge assets variables and nor to log(total assets) or log(R&D

stock). A natural implication is that our model already captures the explaining power of

those variables, so nothing is left in the remaining pricing errors.

For comparison, in Panel B of Table 5, we also include the regression results of using

log(market value) as the dependent variable. Based on the analyses reported in Table 5, we

think our model is well speci�ed.

5.2 Sensitivity Analysis

Empirical evidence shows that the deviation of the �rm's stock price from the book

value of its assets has increased in recent years. This change has been attributed to ever-

increasing important roles played by the �rm's intangible assets, especially technological

know-how, in determining the �rm's market value. Evidence from biotech industry, semi-

conductor industry and other high-tech industries already prove this point. Our empirical

study provides convincing evidence that the investors do appreciate the intellectual human

capital speci�c to biotechnology owned by biotech �rms. Investors' stakes as measured by

market value are signi�cantly higher for �rms with more star ties. A natural question is how

big is this e�ect. In answering that, the approach we use in our empirical study is shown to

be a new method to value such intangible assets as technology know-how.

Table 6 reports the results from sensitivity analysis for biotech �rms with di�erent size.

Take a biotech �rm that has no star ties but otherwise has the industry average values for

all its variables as the example. Concretely, this �rm has $81.56 million in total assets.

Its R&D stock is valued at $34.36 million. The �rm's overall debt level is $10.71 million,
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and the average maturity of its debts is 1.27 years. Here, we also assume that the annual

risk-free interest rate is 6%. Based on above assumptions, we �nd that this �rm's market

value derived from our model will be $200.94 million. Consider the e�ect of increasing the

number of its ties to star scientists, our key intellectual human capital measure. As the �rm

gains access to star scientists, its estimated market value will be improved dramatically. As

shown in Table 6, the �rst tied article with a star scientist will bring about a 15.73 million

1984 US dollar increase in the �rm's market value, which accounts for almost 7.3% of the

�rm's total market value. This result is very striking given the fact that a lot of factors are

actually a�ecting the �rm's market value. We think this magnitude is reasonable considering

the increased probability of technological innovation brought by this star scientist. He or

she not only is able to bring new research achievements to the �rms, but also able to point

out promising directions, which other scientists of the �rm can follow. Further, there is a

signi�cant reputation e�ect: having some big names on the list of the �rm's research team

makes it easier for the �rm to attract more talented scientists.

As we increase the number of ties, we �nd that the �rm's market value keeps on increasing

(as reported in Table 6). We also notice that the marginal increase of the market value

brought by links or aÆliations to star scientists goes down gradually as the number of star

scientist ties increases. Algebraically, this is implied by the concave relationship between

jump intensity and intellectual human capital measure we assumed in our model. Figure 2

and �gure 3 demonstrate this graphically. In sum, the market value results are consistent

with declining marginal product as star ties increase and other factors held constant.

The approach used in our empirical study provides a possible way of pricing star scientists.

We can value the importance of a star scientist by considering the contribution they may

make to the �rm's market value. Traditional accounting procedures fail to capture the

"tangible" value of the �rm's intangible assets, especially knowledge assets. The methodology

employed in our study, however, values a �rm's intangible assets by taking into account their

contribution to the �rm's market value.
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Our results have some other interesting implications. Financial economists have made

a great deal of e�orts to test CAPM. Most empirical evidence runs against CAPM. It has

been gradually accepted in academic that �rm's systematic risk (�) fails to explain the cross-

sectional di�erence in the �rms' stock return (or more generally, stock market performance).

The recent literature has tried to use size, industry factors, unrecognized sources of risk, etc.

to explain the deviation from CAPM model. Our empirical study demonstrates that in high-

tech industries, �rm-speci�c intellectual human capital measures have signi�cant power to

explain the �rm's stock market performance. For example, in this paper, we �nd ties to star

scientists increases the �rm's expected market value. We believe other intellectual human

capital measures (such as patents, the citations to the �rm's patents by other patents) should

also a�ect the �rm's changes in market value. This paper provides some insights for those

�nancial economists who are struggling to �gure out the "fundamental values" of the �rm's

assets. Our future research will focus on these issues, especially whether there exists an

intellectual human capital index which re
ects investors' valuation of the �rm's knowledge

assets.

6 summary and discussion

Intellectual human capital measured by star ties has been demonstrated previously as a

crucial factor that a�ects high-tech companies' entry and potential for future success. In this

paper, we propose a methodology to study whether those intellectual human capital measures

have the same e�ects on �rm's stock market performance. By using the data constructed

for the biotechnology industry, we are able to identify discontinuities in biotech companies'

market valuation. We attribute these discontinuities to more frequent technological advance

due to more �rm-speci�c intellectual human capital. Since investors know how crucial those

intellectual capital measures are for the �rm's success, they include these intellectual human

capital measures in their valuation process. Our empirical study provides very convincing

evidence.
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The approach we used in this paper can also be generalized to value other types of

intangible assets, especially when they have the same sort of "innovative" nature involved.

We believe our approach provides a method to value �rm's intangible assets, an issue on

which traditional accounting theory provides little guidance.

Our empirical results also have implications for a widely argued issue: whether CAPM

holds? Our study demonstrates that at least we can identify some �rm-speci�c source which

can explain �rm's stock market performance. Our paper doesn't tackle this issue directly,

but it provides convincing evidence that intellectual human capital measures are able to

explain some cross-sectional di�erences in �rms' stock market performance.

In our paper, we are not able to test whether other intellectual human capital measures

have the same e�ect. Also, we only look at evidence obtained from biotechnology industry

due to the constraints of the data sets we have. Studying other intellectual human capital

measures and applying the same approach to other industries are on our future research

agenda. We want to compare how di�erent measures capture investors' notice and whether

there exists some industry-speci�c factors which have the same e�ects as the e�ects we

discovered with star scientists.

Last, but not least, in our study, we take the �rm-speci�c intellectual human capital

measure, ties to star scientist, as exogenously given. This is consistent with the view that they

largely measure the quality of the scientist-entrepreneurs who start the �rm and determine

its technological identity. An alternative model would make star ties endogenously chosen by

�rms that are trying to maximize the bene�ts attached to that intellectual human capital.

In other words, the �rms will also take into account the e�ects of intellectual human capital

on their stock prices when they decide whether they are going to increase their investment

in obtaining more advanced technology. Our future work should address this issue.
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Endnotes

1. See, for example, Zucker and Darby (1996, 1998), Zucker, Darby, and Brewer (1998) and

Zucker, Darby, and Armstrong (1998).

2. As in Zucker, Darby, and Armstrong (1998), the biotech �rms ties to star scientists as

indicated by aÆliateions listed on their genetic-sequence- discovery publications is used as

the measure of the �rm's intellectual human capital state. The de�nition of star scientists

is laid out in the Data Appendix.

3. Those stars have been very productive. Even though 327 stars are only 0.75 of one percent

of the authors in Genbank(1990), they accounted for 17.3 percent of the published articles,

almost 22 times as many articles as the average scientist.

4. As a recent article in the Wall Street Journal (February 21, 1999) argues:

: : : Market to book values are at an all time high. What are we to make of this?

Some would say the market is simply irrational. Perhaps it is. Another interpre-

tation is that the book value shown on balance sheets doesn't re
ect intangible

assets such as human capital, management information systems, software and dig-

ital distribution systems that are increasingly important in a knowledge-based

economy.

We believe that a high-tech �rm's human capital plays an even more important role in ex-

plaining the �rm's stock price.

5. Our paper is complementary to the strand of literature that use �nancial market infor-

mation to value the �rm's knowledge assets. See Cockburn and Griliches (1987), Griliches

(1981), Hall (1993), Pakes (1985).

6.156 biotech �rms went public during this period. However, we were only able to �nd 129

�rms that have records in COMPUSTAT database. Among those 129 �rms, we intention-

ally dropped observations with total assets (in 1984 US dollars) less than $15 million. The

reasons will be explained in later section.

31



7.This, however, is a very noisy measure of the �rm's intangible assets. In this paper, we

de�ne di�erent variables to capture intangible assets. Also, given that we have a structural

model, we are able to explore di�erent roles played by di�erent types of intangible assets in

our paper.

8. See " A Viking with A Compass", The Economist, June 6th, 1998.

9. Bates(1991) also shows the relationship between the actual jump components and the risk-

adjusted jump components. He convincingly demonstrates that the actual jump probability

normally have the same sign as the risk-adjusted jump probability, but the risk-adjusted

jump size is always downwardly biased compared to actual jump size.

10.As you will see in Section 4, in our estimates, the jump size, �J , takes a negative sign. But

as shown in Bates (1991), given our parameter estimates, the jump size will take a negative

sign if we assume the investors have a preference with degree of risk aversion greater or equal

to 3. This is not an outrageous assumption at all.

11.Bates (1996), Heston (1993), Bakshi, Cao and Chen (1997) use the same approach.

12.Births are plotted 1976{1989 only because we are relying on the Zucker, Darby, and

Brewer (1998) data base for births which covers 1976{1989.

13.These variables have been validated in many studies as an appropriate proxy for a biotech

�rm's intellectual human capital state. See, for example, Zucker, Darby, and Brewer (1998),

Zucker, Darby, and Armstrong (1998).

14.It is calculated as the McCauley duration of the �rm's debts.

15.When we calculate the �rm's cumulative R&D expenditures, we assume that the �rm's

R&D investment depreciates by 15 percent annually.

16.For details about "size e�ect", see Fama and French (1992), Berk (1995), Daniel and

Titman (1997).

17.A number of small �rms appear to have been the short-lived results of fraudulent IPOS.

18.See Hansen (1982), Newey and West (1987)for details about GMM.

19.See Hall (1999) for a survey.
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Appendix A: Proof of the Option Pricing Formula in Main Text

The valuation partial di�erential equation (PDE) in main text can be rewritten as:

0 = (R � ��J � 1

2
�)
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@L
+
1

2
�
@2C

@L2
� @C

@�
�RC

+�IE[C(t; �; L+ ln(1 + J); X)� C(t; �; L;X)] (A. 1)

where we have applied the transformation L(t) = lnV (t). Inserting the following conjectured

solution

C(t; �) = V (t)�1(t; �; V;X)�De�R��2(t; �; V;X) (A. 2)

into (A.1) produces the PDEs for the risk-neutralized probabilities, �j, for j = 1; 2:

0 = (R� ��J � 1
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and

0 = (R� ��J � 1
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� @�2
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+�IE[�2(t; �; L+ ln(1 + J); X)� �2(t; �; L;X)] (A. 4)

Equations (A.3) and (A.4) are the Fokker-Planck forward equations for probability functions.

This implies that �1 and �2 must indeed be valid probability functions, with values bounded

between 0 and 1. These PDEs are separately solved subject to the terminal conditions

�j(t+ �; 0; L;X) = 1L(t+�)�ln[D]; (A. 5)

where j = 1; 2. The corresponding characteristic functions for �1 and �2 will also satisfy

similar PDFs:

0 = (R� ��J � 1
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� @f1
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� ��Jf1

+�IE[(1 + ln(1 + J))f1(t; L + ln(1 + J); X; �)� f1(t; L;X; �)] (A. 6)
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and

0 = (R� ��J � 1
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+�IE[f2(t; L + ln(1 + J); X; �)� f2(t; L;X; �)] (A. 7)

subject to the terminal conditions

fj(t + �; 0; X;�) = ei�L(t+�): (A. 8)

for j = 1; and2. Conjecture that the solutions to the PDEs (A.6) and (A.7) are respectively

given by

f1(t; �) = expfu(�) + y�(�)X(t) + i� ln[V (t)]g (A. 9)

and

f2(t; �) = expfz(�) + yx(�)X(t) + i� ln[V (t)]� R�g (A. 10)

with u(0) = y�(0) = 0 and z(0) = yx(0) = 0. By the separation of variable technique, we

can solve the PDEs as follows:

f1(t; �) = expf[[�0(1 + �J)[(1 + �J)
i�e

i�
2
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e
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(i�+1)�2J � 1]� �1�J(i�+ 1)]�X + ln(V )i�g (A. 11)

and

f2(t; �) = expf[R(i�+ 1) + �0[(1 + �J)
i�e
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J � 1� �J i�]
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+ ln(V )i�� R�g (A. 12)

Q.E.D.
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Appendix B: Data

In this paper, we used the data sets developed for the ongoing project on "Intellectual

Capital, Technology Transfer and the Organization of Leading-Edge Industries: The case

of Biotechnology."(Lynne G. Zucker, and Michael R. Darby, Principal Investigators). A

detailed description of the basic data sets developed for above project is presented in Zucker,

Darby and Brewer (1998). All data used in this paper will be archived upon completion of

the project in the Data Archives at the UCLA Institute for Social Science Research.

Biotechnology Firms

The starting point for our �rm data set covered the industry as of April 1990 and was

purchased from NCBC(1991), a private �rm which tracks the industry. An intensive e�ort

was also made to supplement the NCBC data with information from Bioscan (1989� 1993)

and an industry data set provided by a �rm in the industry which was also the ancestor of

the Bioscan data set (Cetus Corp. 1988).

Based on above e�orts, Zucker, Darby, and Brewer (1998) identi�ed 752 US biotech

enterprises, of which 512 are classi�ed as entrants, 150 as incumbents and another 90 could

not be classi�ed clearly into either subcategory. In this study, we focus on the 512 entrants.

In other words, we only look at the �rms that were born after 1975. Since our study is about

the e�ects of intellectual human capital on �rms' stock market performance, we thus include

in our sample only the companies that had gone IPO during 1976{1992. Thus our sample

size is reduced to 156 �rms. Among these 156 �rms, we can only �nd 130 �rms that have

entries in COMPUSTAT database. So the �nal number of biotech companies in our study

is 130.

Intellectual Human Capital Measure

Given the purpose of our study, intellectual human capital is the key explanatory variable.
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In this study, we measure a biotech �rm's intellectual human capital by counting the number

of linkage or aÆliations a �rm has to the "star scientist". The primary criterion for selections

of star scientists was the discovery of more than 40 genetic sequences as reported in Genbank

(1990) through April 1990. However, 22 scientists were included based on writing 20 ore more

articles each reporting one or more genetic sequence discoveries. Thus, Zucker, Darby and

Brewer (1998) identi�ed a set of 327 star scientists. These 327 stars were only 3=4 of one

percent of the authors in Genbank(1990) but accounted for 17.3 percent of the published

articles, almost 22 times as many articles as the average scientist.

They hand-collected the 4,061 articles authored by stars and listed in Genbank and

recorded in institutional aÆliation of the stars and their co-authors on each of these articles.

These co-authors are called collaborators if they are not themselves a star. They then de�ne

aÆliations as the number of articles authored by star scientists aÆliated with the �rm and

links as the number of articles by unaÆliated star co-authoring with �rm scientists. An

article with n stars is counted as a link or aÆliation for each star. In this paper, we use

the sum of aÆliations and links to star scientists ties as the measure for intellectual human

capital speci�c to biotechnology.

other variables

In this paper, we also use a number of other variables. We obtained the patent data for

each biotech �rm from the CD-ROM Patent Technology Sets, Capital oÆce of Electronic

Information Products and Services, US Patent and Trademark OÆce. We collected patents,

which are classi�ed in the following areas of US patent Classi�cation System: Class 935, all

subclasses; and class 435, subclass 172.3.

The �rms' accounting information are all obtain from COMPUSTAT database, Based

on the information we retrieved from COMPUSTAT, we calculate the variables necessary

for our study. The variable list is in Table 1, in which we explain how we construct each
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variable.

We also use some of the variables that have been used in Zucker, Darby, and Armstrong

(1998). We de�ne Rtech as a dummy to capture whether the �rm has recombinant DNA

technology. Also, we de�ne Qual1 to capture the spillover e�ects of technology. Considering

the important role played by venture capitalists in the formation and development of biotech

companies, we also use the information about the �rm's venture capital �nancing. It is

retrieved from Venture Economics database.
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Table 1: Descriptions of the Variables

Section 3 in the text and the Data Appendix include detailed information about the data sources and how
we organize our sample. All nominal variables in this list have been converted into 1984 US dollars by
using CPI . When we calculated the firm’s total debt level, we also included the debt-like liabilities. This
solves the problem that some biotech companies never issue debts. When we calculated R&D stock, we
only considered the R&D expenditures since the firm went public (we don’t have R&D information before
the firm went public). So our calculation biases downwardly the size of the firm’s R&D stock. As a remedy
to this problem, we also use R&D expenditures in certain year as the proxy for intangible assets. Note also
that we choose 15% as the depreciation rate of R&D investment because most researchers think this as a
reasonable level (see Jaffe (1986)).
Variables                                                          Descriptions

Ties                             ties to star scientists: count of number of articles by star scientists who either are
                                    affiliated with  the firm or  co-authored with scientists affiliated with the firm.

X                                 firm specific intellectual human capital measure in our study: defined as the square
                                    root of ties to capture the concave relationship between the firm’s market value
                                    and its intellectual human capital measure.

C                                 observed market value: C = closing price X number of outstanding shares.

D                                 the debt level:  calculated as the discounted cumulative value of the firm’s debts
                                    where the  interest rate on 6-month treasury bill was used as the discount rate.
τ maturity: calculated as the McCauley duration of the firm’s debts.

A                                 total assets: the book value of the total physical assets the firm owns, taken directly
                                    from COMPUSTAT database, item 6.

R&D                           firm’s R&D expenditures: taken from COMPUSTAT, item 46.

S                                  R&D stock: the depreciated cumulative value of the firm’s R&D expenditures with
                                    depreciation rate assumed to be 15%.

Patenta                        number of patents by application year.

Rtech                          dummy variable : = 1 if  the firm applies the recombinant DNA
                                   Technology, 0 otherwise.

Firmage                      the years that the firm has been practicing biotechnology: defined as year-entry year.

Grants                         number of research grants by Small Business Innovation Research (SBIR).

NVC                           number of venture capital rounds received by the firm in current year.

AVC                           dollar amount of the venture capital injected into the firm in current year

Qual1                          number of universities in the same BEA defined functional economic area as the firm
                                    which have biotech related programs rated 4.0 or higher in the NRC 1982 survey.

R                                 short-run instantaneous interest rate: we use the interest rate on 6-month treasury bill.



                                                         Table 2

                                         Characteristics of the Sample

The sample consists of 343 observations. According to our data, there are 156 biotech firms going public
during 1979-1992. For those 156 firms, only 129 have records in the COMPUSTAT database. After
dropping the observations with total assets less than $15 million (in 1984 US dollars). The sample size is 90
firms and 343 observations. Note that all nominal variables in this table are expressed in millions of 1984
US dollars.

Variable                                                                    Mean        Std.. Dev.     Minimum          Maximum

Ties to star scientist                                                0.638             2.816                   0                   28

Square root of ties ( X)                                           0.247             0.761                   0                   5.29

Observed market value                                         254.77             660.62                4.496             7334

Total asset                                                              81.566            130.37                15.01             979.56

R&D stock                                                             34.36                62.4                   0.295            623.11

R&D expenditure                                                  12.25                 21.25                 0                  192.55

Number of patents by application dates                  0.796              1.811                  0                    14

Number of patents by grant dates                            0.900             1.89                     0                    13

Top universities in the same BEA                           1.82               1.019                   0                     3

Grants from SBIR                                                    0.096             0.411                   0                      5

Number of venture capital rounds                           0.064             0.31                      0                     2

Years the firm has been doing biotechnology          7.33              2.98                      0                    16

Debt level                                                                 10.71            24.45                     0.13              292.19

Maturity of the debt                                                   1.27             0.415                    1                     3.68

Number of observations: 343 ( 90 firms observed for a total of 343 years).



Table 3: Estimation of Implicit Parameters and Tests of Hypotheses

The sample consists of 343 observations for 90 biotech public companies. We use GMM method to
estimate the implicit parameters. Panel A contains the results for the unrestricted model. After we figure
out the unrestricted estimates, we use them to calculate the weighted matrix, W. In Panel B and Panel C,
we use GMM to estimate the minimum distance estimators for the restricted models. Note that the weighted
matrix we use in Panel B and Panel C is the unrestricted matrix that is solved out in Panel A. Panel D
includes the details of our hypothesis tests.  Also note that we use R&D stock as the proxy for the firm’s
intangible assets.

                                      Panel A: Unrestricted Model

                                              α                β              σ              λ0           λ1            µJ              σ2
J

Estimate                            2.0134       0.8131      0.1164      0.3014     0.2846    -0.3705      0.0938

Standard Deviation           0.0000       0.0000      0.0003       0.0001    0.0001     0.0002       0.0000

χ2 statistic = 14.77;   degree of freedom = 4.

                                       Panel B: Restricted Model ( with λ1= 0)

                                              α                β              σ              λ0           λ1            µJ              σ2
J

Estimate                            2.9369          1.4370     0.1152      0.2989                  -0.4321      0.1209

Standard Deviation           0.0000       0.0000      0.0017      0.0016                     0.0024       0.0000

χ2 -statistic = 31.62;   degree of freedom = 5.

                                       Panel C: Restricted Model ( with   λ0 = λ1= 0)

                                              α                β              σ              λ0           λ1            µJ              σ2
J

Estimate                            2.3400         2.7400     0.1085

Standard Deviation           0.0000       0.0000      0.0000

χ2 -statistic = 45.69;   degree of freedom = 8.

                                       Panel D: Tests of Hypotheses

H1: λ0 = λ1= 0 .   By using Newy and West (1987)’s D-test, we know that χ2(4) = 30.92, which is
significant at 1% confidence level and  H1 is rejected. Jumps in the firm’s market valuation exist.

H0: λ1 = 0.        Similarly, we use the D-test. Here, we have χ2 (1) = 16.85, which is significant at 1%
confidence level, so H1 is rejected. Jumps in the firm’s market value are related to firm’s intellectual human
capital as measured by ties to star scientists.



                                                        Table 4

                Estimation of Implicit Parameters Using R&D Expenditures Instead of R&D Stock

One challenge to our study is to find the appropriate proxy for the firm’s intangible assets. In Table 3, we
use R&D stock as the proxy. R&D stock may be a noisy measure of the firm’s intangible assets. Some
researchers have used R&D expenditures directly as the measure of intangible assets. In this table, we use
R&D expenditure (in 1984 US dollars) to proxy intangible assets, S.
The estimation results are reported below.  The shadow price of intangible assets, β, has increased from 0.8
to 1.8. The magnitude of increase is consistent with  findings of  other researchers.(See Hall (1999) for a
survey.)

                                              α                β              σ              λ0           λ1            µJ              σ2
J

Estimate                            2.0481*     1.8720*      0.1181*      0.3001*    0.1223*   -0.3795*      0.0903*

Standard Deviation           0.0000       0.0000       0.0013       0.0004     0.0000     0.0006       0.0000

χ2 statistic = 13.03;   degree of freedom = 4.

  *   significant at 1% confidence level.



Table 5  Robustness Analyses of the Model

We first define the estimation error of the model as Per: the difference between the observed market value
and model value divided by observed market value. Per  measures how well the model fits in the actual
data. If our model is correctly specified, we expect Per to be uncorrelated with the main explanatory
variables in our empirical study. Panel A of this table provides the correlation coefficients for Per and for
market value and the other variables. The P-values are included in the brackets. In Panel B, with Per as the
dependent variable, OLS regression shows that the estimation errors of our model are mainly explained by
the moneyness of the option (defined as debt level / firm’s valued asset) and year dummies. This confirms
that our model indeed is correctly specified and is able to capture the effects of intellectual human capital
and technological innovations on the firm’s market valuation.

                       Panel A: Correlation Analysis     N = 343 (Pearson Correlation Coefficients/P-values)

Variables                                                                                Observed Market value    Estimation error (Per)

Ties to star scientist                                                               0.45256 (0.0001)              0.06417 (0.2359)
Debt level                                                                              0.88806 (0.0001)              0.06271 (0.2468)
Maturity                                                                                 0.01122 (0.8360)             -0.01704 (0.7532)
Total assets                                                                            0.81585 (0.0001)              0.09658 (0.0740)
R&D stock                                                                             0.66666 (0.0001)             0.07550 (0.1627)
Number of patents by application dates                                0.14573 (0.0069)             0.01290 (0.8119)
Dummy if the firm applies rDNA technology                       0.12671 (0.0189)             -0.01043 (0.8474)
Number of top universities in the same region as the firm   0.13342 (0.0134)             -0.01402 (0.7959)
Number of venture capital rounds                                        -0.04878 (0.3678)             0.07485 (0.1666)
Number of SBIR grants                                                       -0.05285 (0.3292)              0.02499 (0.6446)
The years the firm has been doing biotechnology                0.30759 (0.0001)              -0.01307 (0.8094)
                                               Panel B: Regression Analysis (absolute t-statistics are in parentheses)
Independent Variables                                                                       Dependent variables
                                                                                        --------------------------------------------------------------
                                                                                                Log (market value)          Estimation error (Per)

Ties to star scientists                                                               0.04693** (3.17)                0.0217   (0.76)
Number of patents by application dates                                 -0.01584   (0.67)                0.0061   (0.13)
SBIR grants                                                                            -0.31367   (0.38)                -0.1044  (0.06)
Venture capital rounds                                                            0.09234    (0.83)                0.2244   (1.05)
Top universities in the same BEA as the firm                        -0.01826   (0.51)               -0.0937   (1.36)
Log (total assets)                                                                       0.91328** (17.77)             0.1926  (1.89)
Log (R&D stock)                                                                     0.11122** (2.53)                -0.0339  (0.38)
The years the firm has been doing biotechnology                   0.00510   (0.38)                0.0008   (0.03)
Dummy if the firm applies rDNA technology                        -0.10000   (1.33)               -0.1094  (0.75)
Dummy if year = 1986                                                            -0.01384   (0.11)               -0.0287  (0.12)
Dummy if year = 1989                                                            -0.19923   (1.70)               -0.2600  (1.15)
Dummy if year = 1990                                                            -0.33940** (2.92)               -1.0487**(4.67)
Dummy if year = 1991                                                             0.45514** (4.78)                0.5273** (2.87)
Constant                                                                                   0.86361** (5.17)                -0.6093  (1.82)
Moneyness ( D/(2.0134xA+0.8131xS))                                                                            -3.2712** (2.25)

Adjusted R2                                                                                                                        0.72                                    0.10
F- Statistic                                                                               68.59                                   3.74
Number of observations                                                          343                                      343

 ** significant at 5% confidence level.



                                                                 Table 6

                 Sensitivity Analysis of the effects of Ties on the Firm’s Market Valuation

In this table, we calculate the model values for firms with different sizes. We then calculate how the firm’s
model value increases with the increase of the firm-specific intellectual human capital measure, ties. We
choose the firms which are 25th percentile, 50th  percentile, 75th percentile, 90th  percentile and also the firm
which takes industry mean values for its total asset, R&D stock, debt level and maturity. Here, we assume
that the short run risk free interest rate is 6%. Based on our model, the contribution of star scientist to the
firm’s market value depends on the size of the firm. If the star scientists are tied to larger firms, they would
bring more value to the firms. All variables are in millions.

                                                     25%                                      50%                                         75%
                                              -------------------------              --------------------------           ----------------------
 number of ties                     model value  increase             model value  increase          model value increase

            0                                 55.55                                        96.61                                   203.70
            1                                 58.85            3.30                    102.73          6.12                 221.15        17.45
            2                                 60.32            1.47                    105.48          2.75                 229.16         8.01
            3                                 61.50            1.18                    107.67          2.19                 235.64         6.48
            4                                 62.52            1.02                    109.58          1.91                 241.37         5.73
            5                                 63.44            0.92                    111.31          1.73                 246.56         5.19
            6                                 64.30            0.86                    112.91          1.60                 251.43         4.87
            7                                 65.10            0.80                    114.42          1.51                 256.04         4.61
            8                                 65.86            0.76                    115.85          1.43                 260.45         4.41
            9                                 66.59            0.73                    117.23          1.38                 264.71         4.26

                                                   90%                                      mean
                                              -------------------------              --------------------------
 number of ties                     model value  increase             model value  increase

            0                                440.42                                     200.94
            1                                494.38          53.9                    216.67           15.73
            2                                520.05          25.67                  223.82            7.15
            3                                541.23          21.18                  229.60            5.78
            4                                560.15          18.92                  234.65            5.05
            5                                577.67          17.52                  239.23            4.58
            6                                594.23          16.56                  243.55            4.32
            7                                610.09          15.86                  247.61            4.06
            8                                625.41          15.32                  251.48            3.87
            9                                640.32          14.91                  255.21            3.73



Figure 1 Entries of Biotech Enterprises vs IPOs of Biotech Firms: 1976--1992
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Figure 2: Estimated Effect of Number of Star Ties on a Firm's Market Value
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Figure 3:Marginal Increase of Market Value due to Ties as the Number of Ties Increases
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