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I. Introduction

When an economy is well organized, it is more productive. Organization

results from the matching of factors of production. But the formation of matches

and the replacement of degraded matches require resources. The most visible use

of resources for reorganization is unemployment. During the time that workers are

trying to find positions that exploit their comparative advantages, they are not

producing output. Consequently, the economy faces a tradeoff between

production and reorganization. The tradeoff is similar to the tradeoff between

producing consumption goods and producing investment goods.

A probabilistic matching model provides a good starting point for studying

reorganization. In the model I use, matches gradually deteriorate over time.

Eventually, the time comes when it is in the interest of the matched factors (here,

two workers) to part company. That decision launches a period when they invest

in reorganization. Each worker makes a new, high-productivity match and

resumes producing output. In the steady state, these decisions occur randomly

over time and the aggregate flow of reorganizational investment is constant over

time.

In the comparison of steady states, there is a single decision—the cutoff

age where matches are broken and reorganization begins. In an economy with a

stringent cutoff that ends matches before they have deteriorated very much, the

flow of reorganizational investment is high. Output available for consumption is

correspondingly lower. On the other hand, the average match has a higher

productivity, so output is higher on that account. If there are no externalities in

matching, the decentralized economy will find the optimal balance of

reorganization and production. As I will show, there is an exact analogy in steady
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states between a model with a flow reorganizational investment and one with a

flow of investment in physical capital.

The opportunity to substitute between reorganization and production

results in interesting dynamics. First, a period when productivity is temporarily

low in the production of goods causes a sharp move toward reorganization, whose

value becomes relatively higher during the period. That is, a temporary decline in

productivity causes a spike in unemployment. The remaining dynamics are

controlled by the speed of matching the burst of unemployed workers.

Second, in a model where the interest rate is an exogenous driving force, a

period of a temporarily increased interest rate can also cause a burst of

reorganization. This may appear paradoxical. An increased interest rate ordinarily

discourages investment. A higher interest rate should keep workers in jobs longer

than normal, because the output they are currently producing has a higher value in

relation to the improved productivity they would enjoy later if they searched for

new jobs. Two realistic factors in the model offset this general tendency,

however. Once is that the model takes physical capital to be complementary to

labor input. Consequently, a temporarily high interest rate induces disinvestment

in that capital, and, at the same time, the release of the corresponding workers to

find new jobs. This mechanism is described in detail in Hall [1999a] with

accompanying empirical evidence. The other factor is to make the period of a

high interest rate occur so quickly that the output that would be produced by

retaining workers who otherwise would have terminated their matches and sought

new ones. This assumption removes the intertemporal substitution effect toward

lower reorganization and leaves only the substitution effect away from physical

capital.
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II. Matching

Matching reorganizes the economy. I will start by examining a particular

matching process, rather than adopt the concept of a general matching function

that has become standard since Diamond [1982] and Mortensen [1982]. The

primary reason to be more specific about matching is to understand the conflicting

forces of agglomeration and congestion in search. Agglomeration—first studied

by Diamond—means that search is more efficient when the number of other

searchers is higher. Congestion means the opposite—searchers interfere with each

others' job seeking. Common sense suggests that congestion dominates, so it is

harder to find a job when unemployment is high than when it is low. Data from

the U.S. economy do not support that view, however. Flows of new hires track

unemployment in rough proportion, which suggests that the job-finding rate is

about the same whether unemployment is high or low. Hall [1991] discusses

evidence supporting the hypothesis that the matching rate is constant, but the

topic is ripe for further investigation; the existing evidence is far from definitive.

Diamond's paper in 1982 studied a pure bilateral matching model, where

workers search for partners. The model has no distinct concept of an employer—

the firm is just the partnership of two matched workers. The huge literature

associated with Mortensen and Pissarides—including Diamond's subsequent work

with Blanchard [1990]—has made the employer a separate economic actor (see

Mortensen and Pissarides [1999]). Employers draw employment opportunities

from a distribution. If the prospective profit warrants, the employer declares a job

vacancy and begins to search for a worker. The flow of matches resulting from

stocks of searching workers and searching employers is described by a matching

function. Generally, the function is taken to have constant returns in the two

stocks. The model is closed by the equilibrium condition that the prospective

profit of an incremental employer is zero.
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I will return to Diamond's simpler model in order to develop ideas about

reorganization. In my model, the extent of the economy's organization depends on

the quality of the matching of workers in productive partnerships. The firm is a

collection of workers. I view the Mortensen-Pissarides model as containing two

kinds of labor: production workers and managers. An unemployed manager is

called a vacancy. My model has only one kind of labor and the firm is a

partnership of two similar workers. There are two essential aspects of the

technology—the matching process and the evolution of the productivity of the

resulting matches.

For the matching process, I consider the following setup. There are N

searchers hoping to form partnerships. They are identical, so they pair off with the

first people they find. The economy has S matching stations. Each period, each

searcher visits a station at random. The probability that a given searcher will visit

a given station is 
1
S

. The distribution of the number of searchers at a given station

is binomial N
S

,
1F

HG
I
KJ . The probability that a given station will have an odd number

of visitors is, for large N and S, 
1

2

2− −e N S/
 (see the Appendix for derivation). All

searchers are matched except one at each station with an odd number of searchers,

so the matching function showing the fraction matched is

m N S
S

N

e N S

∞

−
= −

−
( / )

/
1

1
2

2
(2.1)
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Figure 1. Matching function, no congestion
The vertical axis shows the percentage of searchers matched in one period. The
horizontal axis is the ratio of the number of searchers to the number of matching stations.

Figure 1 shows the matching function. It is strictly increasing—the

likelihood of one searcher finding a partner rises with the number of searchers.

The matching technology has agglomeration effects but no congestion effects.

Agglomeration arises in the following way: When there are few searchers, most

of them visit stations by themselves, so they are odd searchers who do not form

matches. The more searchers there are per station, the lower the fraction of odd

outcomes and the higher the fraction matched. There is no limit to the number of

matches that can occur at a given station.

A simple modification introduces congestion effects that compete with the

natural agglomeration of search. Suppose that the maximum number of

partnerships that can be created at a station is one. Each station generates a pair of

matched workers if two or more searchers show up, and no match otherwise. The

probability that no searcher will visit a given station is, for large N and S, e N S− / .
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The probability that a single searcher will visit is 
N

S
e N S− / . In all other cases,

two workers will be matched. The resulting matching function is

m N S
S

N

N

S
e N S

1 2 1 1( / ) /= − +F
HG

I
KJ

L
NM

O
QP

− (2.2)
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Figure 2. Matching function with congestion.

Figure 2 shows the matching function with congestion. When the number

of searchers is less that about 1.8 times the number of matching stations,

agglomeration effects dominate.1 Increasing the number of searchers raises the

matching rate. As before, agglomeration results from a decline in the fraction of

stations visited by a single searcher. Above the critical ratio, congestion

dominates. With a higher number of searchers, more of them visit stations that
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already have two searchers and therefore cannot make another match. Other

matching functions m N S2 ( / ),  m N S3( / ) , and so on, could be defined by

placing limits of 2, 3, or more on the number of pairs that could be created at each

station. For these matching functions, agglomeration effects would continue at

higher values of S/N.

My discussion presumes that the number of stations is held constant. If, on

the other hand, the number of stations is adjusted to remain in a prescribed

proportion, say r, to the number of searchers, then the matching rate would always

be the constant, m ri ( ) .

If the number of matching stations is chosen optimally given the number

of searchers, then the ratio N/S will exceed the critical level of 1.8. Otherwise, a

reduction in the number of stations would both avoid the costs of those stations

and raise the matching rate. The higher the cost of a station, the more the optimal

ratio exceeds 1.8. Similarly, if the number of matching stations is chosen before

the number of searchers is known, then, roughly speaking, the optimal choice will

aim to place the typical value of the ratio N/S somewhat above 1.8.

Thus, there are two reasons to expect that the matching rate should be

approximately constant: First, the number of matching stations may adjust in

proportion to the number of searchers. Second, the number of matching stations

may be chosen to be a constant so that the ratio of searchers to stations is close to

the maximum of the matching function. Variations in the ratio will take place

across the flat part of the matching function near its maximum. In addition, as I

mentioned earlier, the data suggest that the job-finding rate is roughly constant

across wide variations in the unemployment rate.

                                                                                                                    
1 The ratio of searchers to stations that maximizes the matching rate is the positive root of

e r rr = + +1 2 , which is 1.793.
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The rest of my discussion will assume that there is a fixed matching rate.

As I noted earlier, there is evidence supporting this view, but it is far from

conclusive.

III. Reorganization in the Steady State

In the model developed here, the productivity of a match declines with its

age. The economy needs to reorganize itself continually, else aggregate

productivity would drift downward as all matches degrade. At a certain point in

the life of each match, it becomes desirable for the partnership to dissolve and for

the former partners to seek new, more productive matches. Absent such

deterioration of match quality, the economy would organize itself into permanent

partnerships once and for all, and thereafter would never need to reorganize.

In order to focus on the issue of reorganization, I exclude other

determinants of the evolution of the joint value of a match over time. In particular,

I do not consider the accumulation of match-specific capital, nor do I consider

that the partners in a match learn about the value of the match (see Pries [1998]).

These factors help to explain a key feature of the U.S. labor market: a pronounced

decline in the hazard of separation with job duration (see Hall [1982]). In the

simple model of this section, all matches end at the same age, quite contrary to

fact. When I take up the dynamics of the model, I alter this assumption, but I do

not attempt to be realistic with respect to the separation hazard. What matters for

the model is that there are always some matches whose joint value is nearing zero,

so that it is likely that separation will occur soon. In my model, this occurs simply

as a result of the age of the match. In a more realistic model, it is the result of

various random processes—learning about match quality, increases in the values

of opportunities outside the match, and idiosyncratic factors in match quality.
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Let D be the duration of a match. Each period, a fraction 
1
D

 of employed

(matched) workers become unemployed. It will be convenient at this point to

switch to continuous time. Let u be the fraction of workers unemployed. Then the

flow of workers into unemployment is 
1− u

D
 and the flow out is mu, where m is

the matching or job-finding rate derived in the previous section. In the steady

state, the two flows are equal, so u
mD

=
+

1
1

.

The unemployment rate u is the flow of investment in reorganization. A

higher investment rate corresponds to a lower job duration:

D u
u

mu
( ) =

−1
 . (3.1)

In the steady state, matches will be distributed uniformly in the interval

0, D  in age. I assume that the productivity of a match declines from its initial

value of 1 unit of output per worker to e−ωτ  at age τ . The average output of

employed workers is 
1− −e

D

Dω

ω
. Total output is

1
1

−
− −

u
e

D u

D u
b g

ω

ω

( )

( )
(3.2)

This formula embodies the fundamental tradeoff between employment and

reorganization. A higher flow of reorganization—a higher value of u—lowers

output by reducing employment, but it raises output by increasing the productivity

of those who are employed.
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A. Comparison of physical and organizational investment

There is an exact analogy in steady states between the reorganization

model and a two-sector model with physical capital. In the capital-goods sector of

the analog economy, one unit of labor produces one unit of capital. In the

consumption-goods sector, labor and capital combine to produce output according

to the constant-returns production function, Lf K L/b g . Here L is employment in

the consumption sector and K is the capital stock. Let u be the fraction of the

labor force in the capital sector and let δ  be the rate of deterioration of capital.

Normalize the labor force at one. Note that L u= −1 . In the steady state, K
u

=
δ

.

Output of consumption goods is 1
1

−
−

F
HG

I
KJu f

u

u
b g b gδ . Let k

u

u
=

−1b gδ  be the

capital/labor ratio in the consumption goods sector. Then the output of

consumption goods is 1− u f kb g b g .

In the reorganization model, where u is the flow of labor services into

reorganization, output is

1
1

1
1

−
−

−
−

−

u
mu

u

e

u

mub g
ω

ω
 . (3.3)

Let k
mu

u
=

−1
, the steady-state stock of organizational capital. Then the flow of

output is ( ) ( )1− u f k , where

f k m k
e k

( )
/

=
− −

δ
ω

ω1
 . (3.4)
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This is a well behaved neoclassical technology, with ′ ≥f kb g 0  and ′′ ≤f kb g 0 .

Thus the reorganization model is exactly analogous in the steady state to a

member of the class of two-sector models.
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Figure 3. Steady-state Output as a Function of Unemployment

Figure 3 shows steady-state output as a function of the flow of organizational

investment, u. At zero investment, output is zero. Small increments to investment

result in sharp increases in output as they dramatically improve the organization

of the economy by eliminating matches whose productivities have fallen to low

levels thanks to advancing age. Output reaches its maximum at about 5 percent

unemployment. Above this level, improvements in productivity from improved

organization are more than offset by the decline in employment.

The maximum shown in Figure 3 has the same interpretation as the

Golden Rule of Saving. No rational economy would ever invest to a point to the

right of the maximum. With a positive interest rate, the economy will choose a
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point to the left of the maximum, because the opportunity cost of the

organizational capital needs to be considered in choosing the optimum.

B. Reorganization and the vintage capital model

Organizational investment does not satisfy the conditions for capital

aggregation, so there is no strict concept of an organizational capital stock outside

the steady state. Rather, the model developed here is analogous to a two-sector

vintage capital model, where the surviving stock of each previous period's

investment has a distinct role in production. In the analogous vintage capital

model, it takes 
1
m

 units of labor to produce one unit of capital. Production of final

goods requires one unit of labor and one unit of capital. Capital of age τ  produces

e−ωτ  units of output. In the steady state, capital remains in use until it reaches a

cutoff age D.

C. Optimal investment in reorganization

By optimality, I mean the maximization of the present value of output,

given an exogenous interest rate, taken for now as a constant. Consider for the

moment the case of a finite time horizon, T. Let s be the amount of time until T,

s T t= − . Further, let U s( )  be the value associated with searching and let W s( , )τ

be the value associated with a match formed τ  years before the horizon,

measured s years before the horizon (τ ≥ s ). These values obey

& ( ) ( , ) ( )U s mW s s m r U s= − +b g (3.5)

In comparison to the immediate future, the value of searching is higher by the

flow of value from the likelihood of finding a job and exiting search, mW s s( , ) ,

and lower by the “interest” earned from searching, m r U s+b g ( ) .
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The optimal decision between remaining in an aging match and leaving to

search for a new one is governed by the comparison of the values of the two

states. The candidate value of the aging match, say ~( , )W s τ , obeys

∂
∂

= −− −
~

( , ) ~( , )
W s

s
e rW ssτ

τω τb g  . (3.6)

The option to end the match implies

W s W s U s( , ) max ~( , ), ( )τ τ=  . (3.7)

With specified terminal conditions, say U ( )0 0=  and W( , ) ,0 0τ τ= ∀ ,

finding the optimal path is a matter of integrating these equations. Because the

system has all negative roots, it has the turnpike property that the terminal

conditions become unimportant as the horizon becomes distant. It is

straightforward to find the unique match duration D that satisfies the steady-state

condition for the unemployment value,

0 0= − +mW m r Ub g (3.8)

where W W s s0 = ( , )  is the stationary value of new matches and U is the stationary

value of search. In addition, the integral of equation 3.6 is

W
e

r
e U

r D
rD

0
1

=
−

+
+

− +
−

ω

ω

b g
 . (3.9)

Finally, the optimality condition for match duration requires

e rUD− =ω  . (3.11)
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A match should be abandoned when its flow of output is the same as the

opportunity cost of the time, as determined by the value of searching.

These equations do not have a closed-form solution, but it is

straightforward to solve them numerically by searching over D. As noted earlier,

the optimum involves a lower level of investment in reorganization (a lower

unemployment rate) than the Golden Rule. In the example developed earlier,

where the Golden Rule unemployment rate was 4.8 percent, the optimal

unemployment rate at 6 percent annual interest is 4.3 percent.

IV. Reorganization and Search Capital

Whenever a relationship requires search, the successfully matched parties

have search capital. Unless something changes in the environment or in the

benefits of the match, they will remain matched in order to preserve the capital

value of the match. What is the relation between reorganization and search

capital?

First, consider an economy that never needs to reorganize. For example,

set ω = 0  in the model just developed. In the steady state, the economy will not

devote any resources to reorganization. Nonetheless, it will have search capital.

Each permanently matched partnership will have a positive joint match value

associated with its original search effort. The total amount of search capital will

be the resources that would be necessary to place all workers back into

partnerships if all of the existing partnerships were destroyed.

In an economy with depreciable search capital, a flow of reorganization

effort will be needed to maintain the optimal allocation. What is fundamental is

the flow of reorganization, not the idea of a capital stock. The stock could just as
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well be labeled the stock of search capital. As the previous section noted, there is

no useful concept of organizational capital except in comparing steady states.

V.  Dynamics

It is more instructive to consider the dynamics in a discrete-time version of

the model. I will also introduce two additional features of the model at this stage.

First, I will make the process of degradation be random rather than

deterministic—this eliminates what would otherwise be extreme and unrealistic

echo effects from bursts of job destruction. The modification does not result in a

realistic separation hazard over job duration, however. With probability π  each

period, the partnership drops from producing 
1

1+
F
HG

I
KJω

τ
 units of output to

1
1

1

+
F
HG

I
KJ

+

ω

τ
; otherwise, it continues to produce the same amount. Second, I will

bring physical capital into the model by assuming that the partnership is required

to hold γ  units of output as capital during the period in order to produce. The

model is the same as in Hall [1999a] except that I do not consider uncertainty.

The value transition equations for the model are, in notation analogous to

that in the previous section,

U
r

m U m Wt
t

t t=
+

− + −+ +
1

1
1 1 0, 1b g d iγ (5.1)

W
r

z W W Ut
t

t t t tτ

τ

τ τω
π π γ, , ,max ,=

+ +
F
HG

I
KJ + − +

L
N
MM

O
Q
PP +

R
S|
T|

U
V|
W|

+ + +
1

1
1

1
1 1 1 1b g (5.2)
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In equation 5.1, the new partnership has to invest in γ  units of capital in order to

set up shop. In equation 5.2, the productivity of all partnerships is perturbed by a

time effect, zt . The partnership has the option of dissolution, in which case it

recovers its capital, γ . The fact that dissolution (job destruction) provides

immediate output is important in the dynamic response to increases in interest

rates, as discussed more extensively in Hall [1999a].

The solution for the dynamic path of employment and unemployment

involves two steps. First, starting from appropriate terminal values (such as the

steady state), iterate equations 5.1 and 5.2 backwards in time to find the values

associated with the productivity states and unemployment. In particular, in each

period, note which states will have positive employment because the left side of

the max in equation 5.2 holds and which states will have zero employment

because the right side holds. Then iterate the allocation transition equations

forward in time. They are:

n mu nt t t0, 1 0, 11= + −− −πb g (5.3)

n n nt t tτ τ τπ π τ, , ,

,

= − +
=

− − −1

0
1 1 1b g  ,  if state  is viable

 otherwise
(5.4)

u m u dt t t= − +−1 1b g (5.5)

Here dt  is job destruction, the sum over all non-viable productivity states of the

right-hand side of equation 5.4.

In the steady state, jobs last until they transit to productivity state D, at

which time they are destroyed and the workers enter the reorganization process by

becoming unemployed. As discussed in section 2, the value of D is chosen to
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maximize the present value of output. The expected duration of a job is 
D

π

periods. The steady-state unemployment rate is u
m

D
=

+

1

1
π

. In the steady state,

employed workers are distributed equally among the D productivity states.

I use the steady state as the initial conditions at t = 0  for the dynamic

system 5.3 through 5.5. Then I use the value transition equations 5.1 and 5.2 with

a perturbed value of either the productivity time effect or the interest rate to

introduce a shock at t = 1. The result is a departure from normal job destruction in

period 1. Then I use equations 5.3 through 5.5 to calculate the dynamic response

to the temporary change in job destruction.

The parameters and steady-state values of the driving forces in my

calculations are:

Parameter or variable Interpretation Value

m Matching rate 0.3 per quarter
ω Productivity degradation step 1.3 percent
γ Capital/output ratio 6
π Probability of productivity

degradation
13 percent per quarter

r Stationary interest rate 2 percent per quarter
D Threshold productivity step 9
u Unemployment rate 4.6 percent

Notice that the allocation transition equations 4.3 through 4.5 are a first-

order Markoff process during any period when the value transition equations 4.1

and 4.2 are at their stationary point. Thus, for any impulse that affects the values

only in the first period, the impulse response functions will have the same shape

and will be governed by the Markoff process. The key assumption underlying this

property is the constancy of the matching rate. Decisions about ending
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partnerships are not influenced by the number of people currently searching for

partners.

Figure 5.1 shows the impulse response function for unemployment for any

impulse that triggers job destruction in one extra duration category in period 1 but

returns to normal job duration thereafter.

Impulse Response Function
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Figure 5.1 Impulse Response Function for Unemployment

In the steady state, partners remained paired through the eighth

productivity degradation. The impulse underlying Figure 5.1 causes the cutoff to

switch to the seventh degradation just in period one. Unemployment jumps

upward by the 11 percent of the labor force who would have been at the eighth

step. As the bulge of unemployed workers make new matches, unemployment

declines. After 6 quarters, unemployment drops below its steady-state value. The

impulse response function has the property of concentration, described in Hall

[1999b]. A burst of job destruction is followed by a period of lower than normal
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likelihood of further job destruction—the impulse response function drops below

normal for a period before leveling out to its steady-state average.

A. Technology shocks

Consider a shock that lowers the time effect in productivity, zt , only in

period 1: z1 1<  and z tt = >1 1,  . The interest rate is at the same level, r, in all

periods. The value transitions linking period 1 to the future are:

U
r

m U m W1 2 0,2
1

1
1=

+
− + −b g d iγ (5.6)

W
r

z W W Uτ

τ

τ τω
π π γ, ,2 ,2max ,1 1 1 1

1
1

1
1

1=
+ +

F
HG

I
KJ + − +

L
N
MM

O
Q
PP +

R
S|
T|

U
V|
W|

+b g (5.7)

Equation 5.6 shows that the value of being unemployed in period 1 is at its

steady-state value in period 1—a decline in the value of working in period 1 does

not affect the value of search, because the earliest a new match could be formed

would be in period 2, when productivity is back to normal. Two features of the

model result in this key simplification: the constant match rate and the exogenous

interest rate. Equation 5.7 shows that the lower value of z1  implies that fewer

productivity states will be viable in period 1. In addition to normal job destruction

resulting from the random arrival of matches at the steady-state cutoff

productivity state, there is extra job destruction from moving the cutoff to a

lower-numbered productivity state. The actual level of cutoff productivity does

not change, but the lower value of z1  means that the cutoff is achieved at a lower-

numbered state.

The effect of a temporary decrease in the productivity of goods production

is to shift resources into reorganization. If there is a period when it is not as
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desirable as usual to use labor to produce goods, that becomes a good time to

schedule reorganization. This is the idea in Hall [1991] made formal in this

model. My earlier paper stressed that there is a perfectly elastic supply of labor

for the production of goods, because of the alternative use of labor in reorganizing

the economy. Equation 5.7 embodies that horizontal labor supply schedule. The

opportunity cost of labor used in production, indexed by U1 + γ , is not affected

by the temporary shift in productivity. Any theory of employment volatility has,

at its heart, an explanation of highly elastic labor supply. I find this explanation

more plausible, than, for example, theories where the alternative activities are

leisure or time spent working at home (see Hall [1998]).

Because the response to the one-time technology shock causes job

destruction only in period 1, Figure 5.1 applies. The figure shows the response of

the unemployment rate to a reduction in aggregate technology of 2 percent. This

reduction is sufficient to trigger the destruction of jobs after the seventh step of

degradation as well as the usual destruction after the eighth step.

B. Interest-rate Shock

The analysis of a one-shot increase in the interest rate is a bit more

complicated, though the story comes out the same. With the technology index

held at its steady-state value of 1, the relevant versions of the value transition

equations are:
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A level of r1  above its normal level depresses both Wτ ,1  and U1  below their

normal levels. I will show that the reduction in Wτ ,1  exceeds the reduction in U1 .

As a result, a sufficiently large increase in the interest rate will trigger job

destruction beyond what occurs in the steady state.

Consider any productivity state τ  that is viable in the steady state. From

equations 5.6 and 5.9,

d

dr
W U

r
W U

1
1 1

1
1 1

1
1τ τ, ,− = −

+
−d i d i  . (5.10)

The hypothesis of steady-state viability implies that

W Uτ γ,1 1≥ + (5.11)

Thus the derivative of the viability criterion with respect to the interest rate is

strictly negative as long as the capital/labor ratio γ  is strictly positive. An

increase in the interest rate is likely to result in the destruction of jobs that are

near the margin of viability in the steady state.

In general, an increase in the interest rate will discourage all forms of

investment, both in physical capital and in reorganization. The experiment

considered here, however, relates only to the intertemporal effect on physical

capital, which is transmitted to employment because of the complementarity of

capital and labor in production. The technology permits the release of output at

the beginning of period 1 by reducing the level of capital carried through the

period. A high value of the interest rate r1  signifies a high price of output

delivered at the beginning of period 1 in relation to output delivered at the

beginning of period 2. This intertemporal substitution mechanism is the subject of

Hall [1999a].
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On the other hand, the reorganization channel does not allow any

alteration in the amount of output delivered at the beginning of period 1. Keeping

workers on the job rather than destroying their jobs could increase output in

period 2 at the expense of reorganization investment, but would not change the

amount of output available at the beginning of period 1 (if γ  were zero) and

would actually reduce the output available then if γ  were positive. A higher

interest rate in period 2 would induce job-preservation in period 1 with a

sufficiently low value of γ .

If r1  is sufficiently above its steady-state level to trigger the destruction of

jobs in one additional productivity state, then the impulse response function will

be the one shown in Figure 5.1.

VI. Concluding Remarks

The economy faces an interesting tradeoff across steady states and over

time between producing goods and reorganizing. A higher permanent flow of

reorganization—modeled here as more search effort and higher unemployment—

results in higher productivity. But it reduces the fraction of the labor force

employed making goods. There is an optimal steady state that balances these

factors. The considerations governing the optimum are exactly the same as for the

tradeoff in the steady state between producing consumption and investment

goods.

The intertemporal tradeoff seems a promising way to explain the volatility

of employment and unemployment. One way or another, any successful theory of

volatility has to invoke high elasticity of labor supply. The theory of wage rigidity

is one approach, though its foundations in contract theory are yet to be poured.

The idea that workers substitute freely between work and leisure or other
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activities at home—the basis of employment volatility theories in the real

business cycle tradition—receives only modest support from the evidence on

individual behavior, despite heroic recent attempts. The idea promoted in this

paper takes unemployment seriously and not just as the residual from

employment. Unemployment is a productive economic activity. Although

unemployment increases arise from adverse developments—declines in

productivity or jumps in the interest rate—they can be understood in the

framework of value-maximizing behavior. Workers turn to reorganizing—finding

better job matches—when the relative reward to work declines temporarily or

when the interest rate is high.

The impulses I have considered are strictly temporary. Technology and the

interest rate return to normal after a single period. Persistent movements of

employment and unemployment are entirely the result of the dynamics of

matching. It is well known that simple matching is completely inadequate to

explain the observed persistence of unemployment (Cole and Rogerson [1996]).

But it appears that a more sophisticated view of matching dynamics, incorporating

the extreme hazard of separation early in matches, can explain persistence (Hall

[1995] and Pries [1998]).

The standard of modern macroeconomics is the dynamic stochastic

general equilibrium model. I have not made much progress developing the ideas

in this and related papers in general equilibrium. Of course, the exogenous real

interest rate could be rationalized in general equilibrium with linear intertemporal

preferences, but that is not a plausible specification. In an otherwise standard

DSGE model, I believe that it would be fairly easy to replicate my findings in this

paper for technology shocks, if the model contains a job destruction mechanism

along the lines of the one developed here. The reason is that almost nothing

happens to the interest rate in a standard DSGE model in response to technology

shocks. The interest rate is locked to the marginal product of physical capital. But
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its is correspondingly impossible to generate enough movement in the interest rate

to trigger job destruction from that source.



26

References

Caballero, Ricardo J. and Mohamad L. Hammour. 1996 “On the Timing and
Efficiency of Creative Destruction,” Quarterly Journal of Economics.
111805-852. August.

Caballero, Ricardo J. and Mohamad L. Hammour. 1998. “Jobless Growth:
Appropriability, Factor Substitution, and Unemployment,” presented to
the Carnegie-Rochester Public Policy Conference. April.

Caballero, Ricardo J., Eduardo M.R.A. Engel, and John Haltiwanger. 1997.
“Aggregate Employment Dynamics: Building from Microeconomic
Evidence,” American Economic Review 87:115-137, March

Cole, H. L. and R. Rogerson (1996), “Can the Mortensen-Pissarides matching
model match the business cycle facts?” Federal Reserve Bank of
Minneapolis Research Department, Staff Report 24.

Davis, Steven J., and John Haltiwanger. 1990. “Gross Job Creation and
Destruction: Microeconomic Evidence and Macroeconomic Implications,”
NBER Macroeconomics Annual 5: 123-168.

Davis, Steven J., and John Haltiwanger. 1992. “Gross Job Creation, Gross Job
Destruction, and Employment Reallocation,” Quarterly Journal of
Economics 107:819-863.

Davis, Steven J., John C. Haltiwanger, and Scott Schuh. 1996. Job Creation and
Destruction. Cambridge: MIT Press.

Diamond, Peter A. 1982a. “Wage Determination and Efficiency in Search
Equilibrium,” Review of Economic Studies 29: 217-227

___________. 1982b. “Aggregate Demand Management in Search Equilibrium,”
Journal of Political Economy 90: 881-894

Diamond, Peter, and Olivier Blanchard. 1990. Brookings Papers on Economic
Activity.

Hall, Robert E. 1982. “The Importance of Lifetime Jobs in the U.S. Economy,”
American Economic Review 72: 716-724, September.

___________. 1991. “Labor Demand, Labor Supply, and Employment
Volatility,” NBER Macroeconomics Annual.



27

___________ (1995). “Lost Jobs,” Brookings Papers on Economic Activity 1:221-
273.

___________. 1998. “Labor-Market Frictions and Employment Fluctuations” in
John Taylor and Michael Woodford (eds.) Handbook of Macroeconomics,
North-Holland, forthcoming. National Bureau of Economic Research
Working Paper 0000.

___________. 1999a. “Aggregate Job Destruction and Inventory Liquidation,”
National Bureau of Economic Research Working Paper 6912, February
1999

___________. 1999b. “The Concentration of Job Destruction,” National Bureau
of Economic Research Working Paper 0000, March 1999

Mortensen, Dale. 1982. “Property Rights and Efficiency in Mating, Racing, and
Related Games,” American Economic Review 72: 968-979.

Mortensen, Dale, and Christopher Pissarides. 1999. In John Taylor and Michael
Woodford (eds.) Handbook of Macroeconomics (forthcoming).

Pries, Michael. 1998. “Persistence of Employment Fluctuations: A Model of
Recurring Job Loss,” Department of Economics, Stanford University,
November.



</ref_section>



28

Appendix: Derivations of Matching Functions

I am grateful to Elizabeth O'Neil and Patrick O'Neil for the first of these

derivations.

A. Unlimited matching at each station
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Now let r N S= /  and consider the limit as N become large and r is held constant.

Note that lim
x

xx e
→

− =
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1
1b g . Thus
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At the S stations, Sπ  searchers fail to be matched. This is a fraction 
S
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of the searchers. The fraction matched is
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B. Limit of One Match per Station

The (binomial) probability that no searcher will visit a given station is

1
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KJS
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, which is e N S− /  for large N and S. The probability that one searcher

will visit is N
S S

N1
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−
, which is 

N

S
e N S− /  for large N and S. The rest of the

derivation appears in the body of the paper.


