




1. Introduction

Small-group decisions are ubiquitous for decisions under uncertainty. Judg-

ment by a jury of one's peers, not by a single person, is the hallmark of the

American criminal justice system. Committees recommend hiring and tenure

decisions, are essential for project and investment undertakings in business

�rms, and are used for many administrative decisions in all organizations.

Group evaluations bring di�erent points of view to bear on a question. They

allow the pooling of information that is not otherwise available to a single

decision-maker. But con
ict among committee members limits the possibil-

ities for information pooling. It is in the self interest of committee members

to manipulate their evidence|to exaggerate favorable data that supports

their preferred outcome, or conceal unfavorable data that works against it.

This paper studies the tension between information aggregation and strategic

manipulation of information in small committee decisions.

The value of aggregating diverse information among group members

is an ancient idea. It at least goes back to Condorcet, who proved that

voting groups with identical preferences but diverse information make better

decisions the larger the group size. The Condorcet Jury Theorem (1785) is a

very early application of the law of large numbers, and is further developed by

Klevorick, Rothschild and Winship (1984). Only recently have economists

and political scientists begun to study how con
icting preferences lead to

strategic considerations that reduce the aggregate value of information in real

committees. Austen-Smith and Banks (1996) show that Condorcet's theorem

holds true only when members vote \sincerely," as if their evidence alone

decides the case. There is a sense in which strategic voting contaminates the

scale economies inherent in larger statistical samples.
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The di�culty of eliciting private preferences for public goods in groups

has been thoroughly studied (Arrow, 1954 : Gibbard, 1973; Satterthwaite,

1975). The subject of this paper is how small groups make decisions when

diverse individual preferences are known to all, but when individuals pos-

sess private information that must be elicited in committee deliberations.

Only recently has research addressed this issue. See especially the recent

papers by Feddersen and Pessendorfer (1996; 1997), who developed the role

of the pivotal voter in voting games with private information, and the related

works on cheap-talk games by Crawford and Sobel (1982) and Austen-Smith

(1990). Our work is built on a more natural and familiar information struc-

ture relevant for many economic quality control decisions. We show how the

likelihood principle is tempered and debased by self-interests of committee

members when preferences con
ict. Even though the information structure

in this model is based on continuously distributed private signals, voting

schemes based on rank are the equilibrium outcomes of the committee de-

cision process. The coarsening of cardinal to ordinal information through

voting necessarily renders committee decisions imperfect in the �rst-best

sense. Nonetheless, imperfect pooling of information in the committee leads

to better decisions than any individual would make based only on own private

information.

We consider a committee that must choose between two alternatives.

Individual committee members are known to have con
icting interests due

to di�erent biases towards the alternatives, but their interests are not di-

ametrically opposed. For example, in a recruitment committee evaluating

two candidates in di�erent academic �elds, each member may be biased in

favor of the job candidate in his own �eld, but each is willing to choose the

other candidate if that candidate is su�ciently better. Con
icting interests
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are compounded by incentives to share information. In the recruitment ex-

ample, committee members may di�er in their perspectives or abilities to

evaluate the quality of research in di�erent �elds. Since assessments are pri-

vate, committee decision can depend only on members' reports about their

information, not on the actual information itself. This is what causes tension

between incentives to manipulate evidence and incentives to share informa-

tion.

We characterize equilibria of strategic information-reporting for given

committee decision rules. The �rst result is that so long as preferences of

individual members are not perfectly aligned, a member will not submit a re-

port that fully reveals his private information. Obfuscation is the rule rather

than the exception in committees. Speci�cally, the equilibrium reporting

strategy is a many-to-one mapping from the private information to the re-

port. We analyze the case where equilibrium strategies transform continuous

data into ordinal information. Members submit one report if the strength

of evidence exceeds a certain personal threshold, and submit another report

otherwise. Equilibria with �ner partitions that allow for more e�cient uti-

lization of private information typically exist, but con
icting interests among

committee members impose an upper bound on how �ne information par-

titioning can be. Great con
icts within the committee make �ne partitions

impossible.

We analyze in detail the two-partition case, which amounts to an equilib-

rium of strategic voting. The two reports of each member can be interpreted

as \yes" (pro) and \no" (con) votes. The voting equilibrium is suboptimal

for two reasons. First, information is coarsened and made noisier. Second,

the category thresholds are chosen strategically rather than cooperatively. In

the recruitment example, anticipating manipulation of evidence by a fellow
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committee member, an individual \exaggerates" evidence that the candi-

date in his �eld produces high quality research by voting \yes" to his favored

candidate even though he would have voted \no" with the same evidence

were all information truthfully revealed. He lowers his own bar because he

knows that other members will raise theirs. The incentives for manipulation

and counter-manipulation generate an area of disagreement larger than that

implied by the inherent con
icts in preferences. They lower the quality of

committee decisions. Still, exaggeration is limited, and information is ag-

gregated by the committee, albeit imperfectly. The area of disagreement is

bounded from above by the need for members to share their private infor-

mation. We show that regardless of personal preferences towards the two

alternatives, each committee member casts the decisive vote less frequently

than if he were to make the decision based on his information only. Moreover,

if some committee members are known to have access to more conclusive ev-

idence about the decision, other members will cast their deciding votes less

frequently. Better informed members are decisive more often.

We also study how information manipulation and information sharing

a�ect the welfare of committee members. For the committee as a whole, gains

from sharing information outweigh distortions from information manipula-

tion. It is never Pareto improving to dissolve the committee and instead take

turns to make the decision based on individual evidence only, or to delegate

the decision to one member and have him make the decision based on his

evidence alone. We show that the ex ante welfare of each individual commit-

tee member decreases as the preferences of fellow members diverge further

from his. When the preferences of fellow members are su�ciently extreme,

the bene�ts to an individual member of sharing information are outweighed
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by biases and distortions in the committee. He would be better o� if he were

to dictate the decision.

The strategic voting model is used to address abstention. Although in-

dividual committee members always have incentives to in
uence the outcome

of committee decision-making to advance their own interests, the gains from

information sharing may be so large that some individual members may �nd

it in their self interest to abstain when their private information turns out

to be relatively uninformative. We show that allowing abstention improves

the quality of committee decision by reducing strategic manipulations in the

committee and allowing information to be used more e�ciently.

In the remainder of the paper, the problem of strategic information ag-

gregation is discussed in the classical context of jury decision-making. The

language of criminal trials o�ers a convenient vocabulary that facilitates the

exposition. Jurors play no role in acquiring the information presented to

them. They have di�erent evidence due to di�erences in perspectives and

capabilities in evaluating the information. For simplicity we assume that

the jury consists of two persons. Section 2 establishes that con
icting be-

liefs and preferences in the committee lead to information garbling. Section

3 studies the strategic voting model, which is a simple equilibrium form of

information garbling, in detail. Simultaneous reporting is assumed for most

of the paper; equilibrium under sequential reporting is described and com-

pared to simultaneous reporting in terms of strategic commitment. Section 4

extends the analysis to committee decision-making situations where absten-

tion is allowed. Section 5 further generalizes to equilibria of the information

game with more partitions and more e�cient information aggregation. The

analysis in this paper focuses on the tension between con
icting preferences

and common interests to share private information for a given committee
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decision rule. In section 6, we brie
y compare committee decision-making

under di�erent decision rules.

2. Manipulation Leads to Garbling

A verdict of \guilty" or \innocent" must be made by a jury of two persons,

A and B. Juror A's prior that the suspect is guilty is 
a, and the personal

costs of type I error of false conviction and type II error of false acquittal

are �a1 and �a2 respectively. Let ka1 = �a1(1 � 
a) and ka2 = �a2

a. The ratio

ka = ka1=k
a
2 represents the cost of false conviction relative to false acquittal.

Juror A also receives an observation (evidence) Y a = ya. The distribution of

Y a is continuous with density function fai (�) if the suspect is innocent, or with

density function fag (�) if the suspect is guilty. Parameters and variables for

juror B are similarly denoted. We assume that Y a and Y b are independently

distributed conditional on guilt or innocence. Con
icts in the jury exist as

long as ka 6= kb, but interests of jurors are not directly opposed as long as

ka and kb are strictly positive and �nite. Both care about false conviction

and false acquittal. Note that there is no di�erence in this model between

bias as manifested in 
 and preference as manifested in �; only their product

matters.

If the vector of signals (ya; yb) is publicly observable, the optimal com-

mittee decision depends on the comparison of conditional expected loss under

conviction and under acquittal. Let �a and �b be relative Pareto weights for

jurors A and B. De�ne k1 = �aka1 + �bkb1, and k2 = �aka2 + �bkb2. It can be
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shown1 that conviction is optimal if and only if

fag (y
a)

fai (y
a)

fbg (y
b)

fbi (y
b)
�

k1
k2
: (2:1)

Throughout this paper, we assume that the signals satisfy a monotone like-

lihood ratio property. The ratio f jg (�)=f
j
i (�) is strictly increasing for j = a; b.

Under this assumption, the optimal decision is monotone in the evidence ya

and yb.

If Y a and Y b have the same conditional distributions, then for many

special distributions, the mean of the signals is a su�cient statistic. In

such cases the optimal statistical decision rule (2.1) takes the linear form:

\convict if and only if ya+yb � �," where � is some pre-determined function

of the preference and distribution parameters representing the \standard of

proof." More generally, take logarithms of (2.1) and denote the value of the

log likelihood ratios by �a and �b. The optimal rule can be expressed in

terms of a linear aggregation of the evidence, namely, convict if and only if

�a + �b � log(k1=k2).2

The above characterization of the optimal decision rule applies to indi-

vidual decision-making as well. In particular, if juror A has access to both

Y a and Y b, then his optimal decision rule is to convict if and only if

fag (y
a)

fai (y
a)

fbg (y
b)

fbi (y
b)
�

ka1
ka2

: (2:2)

1 See, for example, DeGroot (1970). This optimal decision rule is a special case of the
Neyman-Pearson lemma.

2 One can think of the \evidence" as the value of the log likelihood ratio instead of
the value of the observation itself. In fact, the log likelihood ratio summarizes all the
evidence pertinent to the two hypotheses, guilt versus innocence. Under the assumption
of conditional independence, linear aggregation of the log likelihood ratio is always the
optimal rule. This result holds whether or not Y a and Y b have the same conditional
distributions. See, for example, Edwards (1992).

{ 7 {



Note that as long as the two jurors di�er in preferences or in priors (i.e.,

ka1=k
a
2 6= kb1=k

b
2), their personal optimal standards of proof also di�er. This is

the source of their incentives to misrepresent their own evidence and attempt

to tilt the committee decision to their own advantage when signals are not

publicly observed.

Jury decisions only can be made on the basis of jurors' reports of their

private information. Without loss of generality, suppose that the jury de-

cision rule is to convict if and only if S(ra; rb) � 0, where S(�) is strictly

increasing in its arguments, and ra and rb are reports of the two jurors on

ya and yb respectively. Consider the reporting game where the two jurors

report ra and rb simultaneously after learning about their private evidence

ya and yb. We want to establish that truthful reporting is not an equilibrium

strategy as long as the jury decision rule di�ers from the optimal rule for an

individual juror. Let yb = �(ra) be the implicit solution to S(ra; yb) = 0, and

let yb = �a(ya) be the implicit solution to Sa(ya; yb) = 0, where Sa is the

optimal decision function for juror A (that is, if juror A has access to both Y a

and Y b, his optimal decision rule is to convict if and only if Sa(ya; yb) � 0.)

Suppose juror B always reports his observation yb truthfully. Juror A does

not know the value of B's observation when he submits his report, so he treats

Y b as a random variable. If juror A submits report ra, the probability of

conviction given the jury decision rule is Pr[S(ra; Y b) � 0] = Pr[Y b � �(ra)].

On the other hand, conditional on Y a = ya, the optimal probability of con-

viction for this juror is Pr[Sa(ya; Y b) � 0] = Pr[Y b � �a(ya)]. Thus, juror

A can achieve his optimal conviction probability by choosing ra such that

�(ra) = �a(ya). Since � and �a are di�erent functions as long as the decision

functions S and Sa di�er, ra is not equal to ya in general.3

3 With minor modi�cations, this results extends to committees with more than two
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An example makes the point transparent. Assume that the jurors are

asked to report the value of the log likelihood ratio for their private observa-

tion, and the jury decision rule is to convict if and only if ra+rb � log(k1=k2).

If juror B reports truthfully (rb = �b), then from (2.1) and (2.2) above, juror

A can achieve his �rst best by reporting

ra = �a + log(k1=k2) � log(ka1=k
a
2 ):

Thus, if the cost of conviction for juror A is less than that for the jury

(k1=k2 > ka1=k
a
2), juror A will report a greater likelihood of guilt than is

true. Juror A will exaggerate if juror B always tells the truth.4

Given the incentive to manipulate reports under any jury decision rule,

one may wonder whether there is an equilibrium where each juror takes the

other juror's equilibrium manipulation into account when determining his

own report. A simple revelation principle argument shows that such a pure

strategy equilibrium does not exist. Given any jury decision function, there

is no pure-strategy reporting equilibrium where each juror uses an invertible

strategy. To see this point, assume that given the decision function S(ra; rb)

there is a reporting equilibrium (Ra(ya); Rb(yb)) with invertible functions

Ra(�) and Rb(�). Without loss of generality, assume that both reporting

functions are strictly increasing. Then reporting truthfully (ra = ya and

rb = yb) is an equilibrium of the reporting game when the decision function

is T (ra; rb), where T = S(Ra(ya); Rb(yb)). Since S(�; �) is strictly increasing

members. Truthful reporting can be optimal for some members if others report truthfully,
but it cannot be optimal for all members unless there is no con
ict in the committee.

4 To be sure, exaggeration in the above form of overstatement will not be an equi-
librium strategy given rational expectations. The detailed analysis of equilibrium will be
presented in the following sections.
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in each argument, and Ra(ya) and Rb(yb) are strictly increasing functions,

T (�; �) is strictly increasing in each argument. But we already know that there

is no equilibrium where given the decision function T (�; �) each juror reports

his observation truthfully, a contradiction. Since invertible strategies allow

people to infer the actual observation from the report, the non-existence

of equilibrium with invertible strategies demonstrates incentives to garble

private information in committee decision making.

Our result that manipulation arising from con
icting interests leads to

information garbling is related to Crawford and Sobel's (1982) work on cheap

talk games. However, our model studies the problem of strategic information

aggregation instead of signaling, and talk in our model is not exactly cheap.

We assume the committee decision rule is �xed, and any report submitted

by members is fed mechanically into the rule to yield a decision. As a result

of this feature, it is not an equilibrium of the game for a committee member

to ignore other people's reports and dismiss them simply as cheap talk. To

be sure, in our model there are always many \uninformative" equilibria: for

example, in the case of unilateral conviction in a two-person jury, both jurors

voting for conviction regardless of their private information is an equilibrium.

However, these are not the counterpart of the uninformative equilibrium in

cheap talk games, because in voting to convict jurors disregard their prior

information as well as all the evidence.

3. Voting as Equilibrium Garbling

We study the form of information garbling that maps continuous cardinal

data into intervals or ordinal ranks. These \partition equilibria" of the

{ 10 {



information-reporting game restrict information in a natural way that pre-

vents full revelation of private evidence and sustains pure strategies.5 For the

most part, we focus on the two-partition equilibrium, where each individual's

report takes on only two possible values. This is equivalent to voting.

Suppose that the committee decision rule is to convict if and only if

S(ra; rb) � 0, where S(�) is strictly increasing in its arguments. If rj1 is

the maximum admissible report and rj0 is the minimum admissible report

for each juror j (j = a; b), we must have S(ra1 ; r
b
1) � 0 and S(ra0 ; r

b
0) < 0.

We want to construct an equilibrium where ra1 and ra0 are the only two

reports for A and rb1 and rb0 are the only two reports for B. Suppose that

S(ra1 ; r
b
0) � 0. Then, we must have S(ra0 ; r

b
1) � 0. Otherwise, the committee

decision would depend on A's evidence only: regardless of juror B's report,

conviction ensues if A submits report ra1 (because S(ra1 ; r
b
0) � 0 and S(ra1 ; �)

is increasing), and acquittal ensues if A reports ra0 (because S(ra0 ; r
b
1) < 0

and S(ra0 ; �) is increasing). The case of S(r
a
1 ; r

b
0) � 0 and S(ra0 ; r

b
1) � 0 may

be called \unilateral conviction," because either juror submitting the bigger

report rj1 ensures conviction, and submitting the smaller report rj0 defers the

decision to the other juror. If S(ra1 ; r
b
0) < 0, the opposite happens. For the

committee decision to depend on A's evidence, we must have S(ra0 ; r
b
1) < 0.

This is the case of \unanimous conviction," because submitting a bigger

report e�ectively defers the decision to the other juror while submitting the

smaller report ensures acquittal.

5 Mixed strategies also prevent full revelation of private information. However, adding
independent noises to observed signals cannot be an equilibrium strategy in general, be-
cause it is equivalent to a truthful reporting strategy for the combined \evidence" of signal
plus noise.
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Proposition 3.1. Fix any decision function S(ra; rb). There exists an equi-

librium of the information-reporting game where juror A reports ra0 if ya is

below some threshold and ra1 otherwise, and juror B reports rb0 if y
b is below

some threshold and rb1 otherwise.

(i) For the case of unilateral conviction, the thresholds ta
�
and tb

�
satisfy

fag (t
a
�
)

fai (t
a
�
)

F b
g (t

b
�
)

F b
i (t

b
�
)
= ka;

fbg (t
b
�
)

fbi (t
b
�
)

F a
g (t

a
�
)

F a
i (t

a
�
)
= kb:

(3:1)

(ii) For the case of unanimous conviction, the thresholds ta
��

and tb
��

satisfy

fag (t
a
��
)

fai (t
a
��
)

1� F b
g (t

b
��
)

1� F b
i (t

b
��
)
= ka;

fbg (t
b
��
)

fbi (t
b
��
)

1� F a
g (t

a
��
)

1� F a
i (t

a
��
)
= kb:

(3:2)

Proof. Consider only the �rst case; the second case is similar. Based on

the observation Y a = ya, juror A's posterior on the probability that the sus-

pect is guilty is �
afag (y
a), and the probability that the suspect is innocent

is �(1 � 
a)fai (y
a), where the normalizing factor � is chosen to make the

probabilities sum to one. By submitting report ra1 , juror A ensures convic-

tion. His expected cost (from false conviction) is �ka1f
a
i (y

a). If he submits

report ra0 instead, the verdict depends on juror B's report. From A's point

of view, the suspect will be wrongly convicted with probability 1 � F b
i (t

b
�
),

and wrongly acquitted with probability F b
g (t

b
�
). Juror A's total expected loss

from the two types of errors is then �ka1f
a
i (y

a)[1�F b
i (t

b
�
)]+�ka2f

a
g (y

a)F b
g (t

b
�
).

Comparing the costs of the two reports shows that submitting ra1 is preferred

to submitting ra0 if and only if

fag (y
a)

fai (y
a)

F b
g (t

b
�
)

F b
i (t

b
�
)
� ka: (3:3)
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The monotone likelihood ratio property implies that reporting ra1 is better

than reporting ra0 for all ya � ta
�
. Furthermore, when juror B is using the

two-partition strategy, no other report gives a strictly lower cost than does

ra1 when ya � ta
�
. The argument for juror B is symmetric. Q.E.D.

The thresholds for the two members depend only on whether convic-

tion is reached unilaterally or unanimously. For any given decision function

S(ra; rb), one can generally �nd many values of the reports (ra0 ; r
a
1 ; r

b
0; r

b
1) to

support the same equilibrium of threshold reporting strategies.6 Similarly,

for given values of the reports (ra0 ; r
a
1 ; r

b
0; r

b
1), one can generally �nd many

functions S(ra; rb) to support the same equilibrium of threshold reporting

strategies. In the following analysis of the two-partition equilibrium, we

make no reference to the decision function S(ra; rb), but instead refer to the

smaller report of each member as a vote for acquittal and the bigger report

as a vote for conviction. The two cases of unilateral conviction and unilat-

eral acquittal give similar results. For brevity of the analysis, we focus on

the case of unilateral conviction. Unless otherwise mentioned, the results for

unanimous conviction are parallel. The two cases are compared towards the

end of this paper.

Notice that Proposition 3.1 derives voting as an equilibrium of infor-

mation garbling under private information; voting is not assumed to be the

committee decision rule. Perhaps an example with an explicit decision func-

tion is helpful to illustrate this point. For many distributions where Y a and

Y b have the same conditional distributions, the sample mean is a su�cient

6 Given any partition equilibrium, the choice of reports has to be coordinated. The
committee may adopt a particular rule to facilitate the coordination. An example is the
point system used in sports like �gure skating or gymnastics.
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statistic for optimal statistical decision when evidence is public information.

The optimal decision rule (2.1) takes the linear form \convict if and only

if ya + yb � �," where � represents \the standard of proof." Now suppose

that evidence is private information and the committee decision function is

S(ra; rb) = ra + rb � �. To avoid uninteresting indeterminacies that may

arise when jurors submit unbounded reports, we assume that reports are re-

stricted to [0; 1]. Then, a meaningful standard of proof � is positive but not

greater than 2. When 0 < � � 1, there is unilateral conviction, and when

1 < � � 2, there is unanimous conviction. Although the space of permissible

reports in the information-reporting game is continuous, the jurors e�ectively

report only \convict" or \acquit" in equilibrium. Furthermore, the standard

of proof � can vary continuously in the information-reporting game, but in

equilibrium, the e�ective standard of proof can only be requiring at least one

vote for conviction (0 < � � 1) or requiring two votes (1 < � � 2).

The equilibrium conditions in the reporting game can be understood

in terms of a \pivotal voter" argument (Feddersen and Pesendorfer, 1997).

Strategic voting requires that each juror cast his vote as if it were pivotal. For

the case of unilateral conviction, juror A's vote is pivotal if and only if juror

B votes for acquittal. The likelihood ratio for the event that Y a = ya and B

votes acquittal is given by the left-hand-side of (3.3). The optimal decision

rule for juror A is to vote for conviction if and only if this likelihood ratio is

greater than or equal to ka. An alternative way to see why pivotal voting is

optimal is to consider how jurors choose the threshold rule before observing

the signal. Anticipating that juror B uses a voting rule with threshold tb
�
,

juror A chooses his threshold ta to minimize the expected loss

ka1 (1� F a
i (t

a)F b
i (t

b
�
)) + ka2F

a
g (t

a)F b
g (t

b
�
):
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In the above expression, juror A's choice of threshold ta a�ects his expected

loss only when Y b < tb
�
. The �rst order condition for an optimal threshold

ta is precisely (3.1).

Information aggregation under strategic voting is analyzed in a series

of papers by Feddersen and Pesendorfer (1996; 1997; 1998). Our model dif-

fers from these models of strategic voting in several respects. By using a

richer information structure with continuously distributed private signals,

we are able to study a richer set of information manipulation in commit-

tee decision-making. Instead of the mixed-strategy equilibria of Feddersen

and Pesendorfer, we study partition equilibria in the information-reporting

game, which will allow us to study in detail obfuscation, exaggeration, and

abstention as distinctive forms of evidence manipulation. Also, we do not

impose voting as the collective decision rule. We start with an information

aggregation rule that is optimal in the absence of strategic manipulation and

derive voting as a possible equilibrium outcome of information garbling. In

the following analysis of the two-partition equilibrium as an equilibrium of

strategic voting, we go beyond the pivotal voting argument of Feddersen and

Pesendorfer, which is valid regardless of whether or not the preferences of

committee members coincide. We emphasize the role of con
icting interests

in committee decision-making, and address how con
icts a�ect information

manipulation and information sharing and the ex ante welfare of the com-

mittee members.

3.1. Uniqueness and stability of equilibrium

Equations (3.1) de�ne \reaction functions," and the equilibrium is an in-

tersection of the two curves in the (ta; tb) plane. For j = a; b, denote
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lj(�) = f jg (�)=f
j
i (�), and Lj

�(�) = F j
g (�)=F

j
i (�). By the monotone likelihood ra-

tio property that lj is an increasing function, Lj
�(�) is also increasing. Thus,

the two reaction functions are downward sloping in the (ta; tb) plane. A

su�cient condition for a unique intersection is that one reaction function is

steeper than the other whenever the two intersect.7 This condition is sat-

is�ed if lj(�)=Lj
�(�) is monotone. Uniqueness of equilibrium is necessary for

analysis of equilibrium properties.

If in addition lj(�)=Lj
�(�) is increasing, then the equilibrium is globally

\stable" in a pseudo-dynamic sense that starting from any initial values the

trajectory of the two thresholds converges to the intersection of the reaction

curves. A su�cient condition for stability is that juror A's reaction function

is steeper than that of juror B. Direct calculations verify that this is true

if lj(�)=Lj
�(�) is increasing. As is the case for many static games, stability in

the pseudo-dynamic sense is required to avoid perverse comparative statics

(Dixit 1986). Figure 1 depicts the reaction functions for the case where Y a

and Y b are normally distributed, which satis�es the increasing condition on

lj(�)=Lj
�(�).

The case of unanimous conviction is analogous. De�ne Lj
��(�) = [1 �

F j
g (�)]=[1� F j

i (�)]. The monotone likelihood ratio property also implies that

Lj
��(�) is an increasing function. Therefore, as in the �rst case, the assump-

tion that lj(�)=Lj
��(�) is increasing is su�cient to ensure that equilibrium is

unique and stable. For example, if Y j is normally distributed given guilt or

innocence, both lj=Lj
� and lj=Lj

�� are monotonically increasing.

7 Existence of an intersection of two functions can be guaranteed under appropriate
assumptions. For example, if for each j = a; b the support of Y j is compact and the
likelihood ratio function lj is unbounded over the support, then the Brouwer �xed-point
theorem can be applied to the equations (3.1) to show that an equilibrium exists.
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Figure 1

Reaction functions in the two-partition equilibrium

A’s reaction curve

B’s reaction curve

t

t

a

b

3.2. Information manipulation and information sharing

This sub-section presents a few comparative statics results for the informa-

tion voting game that illustrate the tension between information manipu-

lation and information sharing. With unilateral conviction, equations (3.1)

imply that if Y a and Y b have the same conditional distributions, then ka > kb

implies ta
�
> tb

�
. That is, if juror A is more biased toward acquittal than juror

B, the equilibrium threshold for conviction is higher for juror A than that

for juror B. For the same observation value Y a = Y b = y, juror A votes to

acquit while juror B votes to convict if y 2 (tb
�
; ta
�
). Therefore jta

�
� tb

�
j can

be thought of as the \area of disagreement" between the two jurors.

The condition that lj=Lj
� is increasing implies that dta

�
=dka > 0 and

dtb
�
=dka < 0. Thus, the area of disagreement increases as con
ict of interests,
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jka � kbj, increases. As juror A becomes more biased toward acquittal and

his standard for conviction increases, juror B counters by lowering his own

standard, which induces juror A to increase ta
�
further. The increase in the

equilibrium threshold ta
�
can be decomposed into two parts: the increase

due to shift of A's reaction function, and the increase along A's reaction

function due to decrease in B's threshold. See Figure 1. The second part

shows that the area of disagreement in committee decision-making is larger

than that implied by inherent con
icts in preferences, due to the strategic

manipulation and counter-manipulation of reporting thresholds. In this sense

con
icts tend to exaggerate favorable evidence. When juror A is more biased

toward acquittal than juror B, juror A raises his threshold not only because

of the concern for false conviction, but also to balance juror B's opposite

tendency to convict. Juror A votes to acquit more often than in the absence

of juror B's manipulation.

Although con
icts cause manipulation, incentives to exaggerate favor-

able evidence are balanced in equilibrium by incentives to share information.

Comparing the equilibrium with how each juror would make the decision

based on his own private information shows how jurors share information. If

juror j (j = a; b) makes the decision alone, the optimal decision rule convicts

if and only if own evidence yj exceeds a threshold t̂j that satis�es:

f jg (t̂
j)

f ji (t̂
j)

= kj : (3:4)

Comparing (3.4) to the equilibrium condition (3.1), since Lj
�(�) < 1, t̂j is

lower than tj�. When juror j observes evidence yj between t̂j and tj�, he

votes to acquit even though he would have chosen conviction if he were the

only decision-maker. Juror j thus utilizes the information of the other juror
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by casting the decisive vote for conviction less frequently. Note that this is

true independent of juror j's preferences. Even if juror j is biased toward

conviction, the need to utilize the fellow juror's information still makes him

more \conservative" towards conviction. In the case of unanimous convic-

tion, the decisive vote is acquittal instead of conviction: each juror utilizes

the information of the other juror by voting for acquittal less frequently than

if the decision were made on the basis of own information.

Incentives to share information under con
icting interests can also be

examined by considering how voting behavior changes when one juror's signal

becomes more discriminating. To borrow from the concept of statistical

power, we say that a signal is more discriminating than another if it results

in a lower probability of type I error, holding �xed the probability of type

II error. Consider a modi�cation of the structure of information available to

the jurors. Juror A still observes Y a. Juror B observes Y b with probability

1 � �, and observes the true state of guilt or innocence with probability �.

An increase in � improves the power of the signal available to juror B. The

event that B votes acquittal has a likelihood ratio Lb
�
, where

Lb
�
=

(1� �)F b
g (t

b
�
)

� + (1� �)F b
i (t

b
�
)
:

The numerator of Lb
�
is the probability of committing a type II error by juror

B, and the denominator is one minus the probability of his committing a type

I error. Since Lb
�
is decreasing in �, a higher value of � corresponds to more

discriminating evidence. In Figure 1, an increase in � causes A's reaction

function to shift to the right. The e�ect is the same as an increase in A's

bias toward acquittal: ta
�
increases and tb

�
decreases. The interpretation is

straightforward. Voting to convict decides the verdict regardless of the value
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of the other juror's signal. Voting to acquit, on the other hand, defers the

decision to the other juror. When jurorB gains access to more discriminating

evidence, juror A takes advantage of the improved information by raising

ta
�
and deferring the decision to juror B. This is achieved by raising the

conviction threshold ta
�
.

The analysis is symmetric for the case of unanimous conviction. Given

the modi�ed information structure,

Lb
��

=
� + (1 � �)(1 � F b

g (t
b
��
))

(1� �)(1 � F b
i (t

b
��
))

:

An increase in � increases Lb
��
, so ta

��
falls and tb

��
rises. Voting to acquit

decides the �nal outcome of the case. Juror A avoids submitting a decisive

vote in order to take advantage of the more discriminating evidence from

juror B. He therefore lowers ta
��

and votes for acquittal less often. Even

if juror A is biased toward acquittal, the need to utilize the fellow juror's

superior information still makes him more conservative towards casting the

decisive vote.

3.3. Con
icts and welfare

Con
icts reduce the ex ante welfare of jurors. There is a close relation

between the extent of divergence in preferences, jka�kbj, and expected losses

in the information voting game. With unilateral conviction, equilibrium

expected loss to juror A is given by

E[Ca(Y a; Y b)] = ka1 (1� F a
i (t

a
�
)F b

i (t
b
�
)) + ka2F

a
g (t

a
�
)F b

g (t
b
�
):

Di�erentiating with respect to kb and using the equilibrium condition (3.1)

for juror A,

dE[Ca(Y a; Y b)]

dkb
= [�ka1f

b
i (t

b
�
)F a

i (t
a
�
) + ka2f

b
g (t

b
�
)F a

g (t
a
�
)]
dtb

�

dkb
: (3:5)
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Since dtb
�
=dkb > 0 when lj=Lj

� is increasing, dE[Ca(Y a; Y b)]=dkb has the

same sign as kb� ka. For example, if kb > ka, a further increase in kb raises

juror A's expected loss in the equilibrium.

Con
icts reduce welfare because strategic manipulation becomes more

important. A committee with less cooperation uses information less e�-

ciently and welfare in the voting game is lower than in a full information

equilibrium. Equation (3.5) shows that dE[Ca(Y a; Y b)]=dkb has the same

sign as kb�ka, and similarly dE[Cb(Y a; Y b)]=dka has the same sign as ka�kb.

If ka = kb there is no con
ict of interest in the jury, and equilibrium thresh-

old choices minimize the expected loss for both jurors. If ka < kb, raising the

equilibrium threshold for juror A and lowering it for juror B will reduce the

expected loss for both jurors, because the �rst order gain will outweigh the

second order loss. If we de�ne \cooperative decision-making" as choosing

thresholds to minimize a weighted sum of expected loss for the two jurors,

then con
icts in preferences generate incentives to deviate from the cooper-

ative decision-making. Starting from the cooperative solution, if juror A is

more concerned with false acquittal than juror B is, A will lower his thresh-

old for conviction, which induces B to raise his threshold in order to balance

A's bias for conviction. In equilibrium, both jurors are made worse o�.

3.4. Do-it-yourself, delegation, and taking turns

Since con
icting preferences lead to strategic manipulation in voting and wel-

fare loss for both jurors, do the gains from information sharing in a committee

will be su�cient to outweigh the losses from strategic voting? In general the

answer is \yes." Even though votes are manipulated, aggregation produces

better outcomes than alternatives that do not aggregate private information

when con
icts are not too large.
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Let E[Ca(Y a)] denote juror A's unconditional expected loss when he

alone makes the decision based on his own information. Then

E[Ca(Y a)] = ka1 (1� F a
i (t̂

a)) + ka2F
a
g (t̂

a);

where the optimal threshold t̂a satis�es condition (3.4). Consider the di�er-

ence Da
1 = E[Ca(Y a; Y b)]�E[Ca(Y a)] as a function of kb. We showed above

that dE[Ca(Y a; Y b)]=dkb < 0 for kb < ka and dE[Ca(Y a; Y b)]=dkb > 0 for

kb > ka. Since E[Ca(Y a)] is independent of kb, the di�erence Da
1 decreases

for kb < ka and then increases for kb > ka, reaching a minimum at kb = ka.

In the limiting case when kb approaches in�nity, juror B always votes ac-

quittal and lets juror A make the decision. Therefore, Da
1 = 0. At the other

limit, when kb approaches zero, juror B ensures conviction by himself. Juror

A's expected loss is then simply ka1 , and the di�erence Da
1 is given by

ka1F
a
i (t̂

a) � ka2F
a
g (t̂

a):

By the de�nition of t̂a, we have ka1f
a
i (y

a) > ka2f
a
g (y

a) for all ya < t̂a. Inte-

grating over the range ya � t̂a then establishes that Da
1 > 0. Figure 2 shows

Da
1 as a function of k

b. FromA's point of view, do-it-yourself decision-making

is preferred to jury decision-making only if kb is su�ciently smaller than ka.

Note that Da
1 is negative at kb = ka. With no con
ict of preferences, jury

decision-making dominates do-it-yourself decision-making because informa-

tion is better.

Let E[Cb(Y a)] denote juror B's unconditional expected loss when ju-

ror A alone makes the decision based on his private information. Clearly, if

Y a and Y b have identical conditional distributions, E[Cb(Y b)] � E[Cb(Y a)].

That is, each juror always prefers deciding by himself to letting the other ju-

ror make the decision. Let Db
2(k

b) be the di�erence between the expected loss
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Figure 2

Welfare comparison: do-it-yourself versus committee

ka

0

kb

Da
1

to juror B under jury decision-making and his expected loss if he delegates

the decision to A. Then, for all ka,

Db
2 = Db

1 +E[Cb(Y b)]� E[Cb(Y a)] � Db
1:

From Figure 2 (interchanging the roles for A and B), a necessary (but not

su�cient) condition for Db
2 to be positive is that ka < kb.

The above analysis implies that mutually agreed delegation cannot oc-

cur. For juror B to prefer delegating to A, Db
2 must be positive. For juror

A to accept the delegation, Da
1 must be positive. A necessary condition

for the former is that ka < kb, and a necessary condition for the latter is

kb < ka. These two conditions are incompatible. The intuition of this result

is clear from its derivation. For the delegation of decision-making to A to be
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agreeable to both jurors, the bene�ts of using B's information in committee

decision-making must be small to both A and B. Since conviction can be

ensured unilaterally, the bene�ts are small to B only if A is more biased

toward conviction, and the bene�ts are small to A only if B is more biased

toward conviction. Thus, if delegating decision-making to A is acceptable to

A, it will not be so to B.8

We can also show that it is never a Pareto improvement for the two

jurors to dissolve the committee and make decisions by taking turns. Let

Da
3 = (Da

1 + Da
2 )=2 be the di�erence in juror A's expected loss from jury

decision-making and his expected loss from taking turns. Since kb < ka is a

necessary condition both for Da
1 � 0 and for Da

2 � 0, it is also a necessary

condition for Da
3 � 0. On the other hand, for juror B to prefer taking turns

to jury decision-making (i.e., Db
3 � 0), a necessary condition is kb > ka. It

follows that at least one party will object to dissolving the committee and

making decisions by taking turns instead.9

Welfare comparisons between jury decision-making and delegation or

taking turns, do not change if conviction is reached unanimously instead of

unilaterally. With unanimous conviction, the decisive vote is acquittal. For

the delegation of decision-making from to B to be agreeable to both jurors,

8 Side payments can result in mutually agreed delegation. If A cares about both false
conviction and false acquittal su�ciently more than B, there will exist side payments from
A to B that the delegation of decision-making to A is acceptable to both. Unfortunately,
side payments involve inter-personal comparisons of expected loss, which are not mean-
ingful in our model. Individual juror's behavior is not changed as long as the ratio of type
I cost to type II cost is the same, but comparisons of expected loss depend on the level of
the two costs.

9 The conclusion that it is never Pareto optimal to make decisions by taking turns may
not hold when individual members must bear the cost of gathering their own information.
The reason is that information is a public good in committee decision-making, and is
under-provided due to the free-rider problem. For implications of the free-rider problem
to committee decision-making, see Li (1999).
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the bene�ts of using A's information in committee decision-making must be

small to both A and B. Since acquittal can be ensured unilaterally, the bene-

�ts are small to A only if B is more biased toward acquittal, but the bene�ts

are small to B only if A is more biased toward acquittal. Delegation or tak-

ing turns can never Pareto dominate jury decision-making because the gains

from information sharing will outweigh the loss from strategic information

manipulation for at least one juror.

3.5. Sequential voting

The preceding analysis of equilibrium assumes that individuals submit votes

without knowing what votes others have cast. In many settings individuals

in a committee express their positions one by one, so that people know the

votes of those who voted before them. How does sequential voting di�er from

simultaneous voting?

Consider the strategy for the juror B. Suppose that juror A votes �rst

and adopts a two-partition strategy: convict if and only if ya � ta. With

unilateral conviction, if A votes for conviction, there is no decision for B to

make. If A votes for acquittal, then B's vote will be decisive. In this case,

B knows that Y b = yb and ya < ta. If he votes to convict, his expected loss

from false conviction is �kb1f
b
i (y

b)F a
i (t

a), where � is a normalizing factor. If

he votes to acquit, his expected loss from false acquittal is �kb2f
b
g (y

b)F a
g (t

a).

Juror B therefore votes to convict if and only if yb � tb, where tb satis�es

fbg (t
b)

fbi (t
b)

F a
g (t

a)

F a
i (t

a)
= kb:

This condition is exactly the in equation (3.1). Now consider A's problem.

If A votes to convict, the case is decided regardless of juror B's vote. If A
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votes to acquit, he expects juror B to adopt a two-partition strategy with

the threshold determined by the above equation. But the decision problem

A faces as a �rst-mover is exactly the same as the problem he faces when

the two members vote simultaneously. Thus, the sequential voting game has

the same as simultaneous voting.

There are two reasons sequential voting is equivalent to simultaneous

voting in this particular setting. First, the pivotal voting argument is equally

valid in both situations: the threshold of the second juror does not depend

on whether he knows how the �rst juror has voted. Second, the �rst mover

is unable to commit to a decision rule. Unlike, say, in an oligopoly game

where the strategy is directly observable in a sequential model, the strategy

in the strategic voting game is not observable even when the reports are

sequentially submitted. Strategies in this game take the form of reporting

some number if and only if the private signal exceeds a certain threshold.

While the threshold value can be made public through various devices, the

value of the signal is not public by assumption. As a result, any attempt to

commit to a certain strategy is not veri�able. Because of this inability to

commit, juror A cannot manipulate juror B's decision rule, even though B's

threshold depends on A's threshold through equation (3.1).

To see the latter point, suppose A could commit to a decision rule before

he observes his signal. Then, his optimal threshold ta would minimize the

unconditional expected cost, E[Ca(Y a; Y b)]. At ta equal to ta
�
, the equilib-

rium value without commitment, the derivative of expected loss with respect

to ta is

dE[Ca(Y a; Y b)]

dta
= [�ka1F

a
i (t

a
�
)fbi (t

b
�
) + ka2F

a
g (t

a
�
)fbg (t

b
�
)]
dtb

dta
; (3:6)
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where the function tb(ta) is de�ned according to the reaction function of B.

Since dtb=dta < 0 and the term in brackets in (3.6) has the same sign as

kb � ka, dE[Ca(Y a; Y b)]=dta has the same sign as ka � kb at ta = ta
�
. Thus,

unless ka = kb, A always has incentives to manipulate his threshold in order

to in
uence the second juror's threshold, if A could commit to a decision

rule. In particular, if ka > kb, juror A has incentives to lower his equilibrium

threshold for conviction. By doing so, he raises the equilibrium threshold for

juror B.

The above analysis implies that both jurors are better o� when juror

A can commit to a threshold than when he is unable to commit.10 It was

shown above that manipulation of thresholds by the two jurors under simul-

taneous voting leads to ine�ciency loss for both of them relative to what can

achieved through a commitment to jointly chosen thresholds. In particular,

manipulation implies that the di�erence between the equilibrium thresholds

is greater than what is implied by the di�erence in the preferences of the two

jurors. The same sub-optimal outcome results under sequential voting when

the �rst voter cannot commit to a threshold. But if that juror were able

to commit, he would no longer face the incentive to respond to the other's

threshold after observing his private signal. This improves juror B's welfare

as well as juror A's. More precisely, suppose ka > kb, so that juror A is more

biased than juror B toward acquittal. Juror A would lower his conviction

threshold, making B better o�. Juror B would raise his own threshold in

response, which makes A better o�.

10 As in oligopoly models, commitment of the �rst-mover to a threshold decision rule
can be di�cult because it is time-inconsistent. However, credible commitment may be
achieved by delegating decision-making through clear procedures and rules. Our result here
is consistent with the observation that a bene�cial side of bureaucratic decision-making
procedures is reduction in strategic manipulations of information in the committee.
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4. Abstention

So far abstention has not been allowed in voting. This assumption may

appear innocuous. In the case of unilateral conviction, for example, allowing

jurors to abstain from voting after observing their evidence will not change

behavior because abstention is equivalent to voting for acquittal. However,

if abstention is allowed, jurors take the abstention of others into account

and equilibrium thresholds change. In this model abstention improves the

quality of decision-making.

We need to specify what happens when both jurors decide to abstain.

The simplest way is to specify a \default decision" when both abstain. If

the default is acquittal, abstaining is still equivalent to voting for acquittal

and therefore has no e�ect on the equilibrium. But suppose the default is

conviction. Then a vote to acquit by A results in conviction only if B votes

to convict, while abstention by A results in conviction when B either votes

to convict or abstains. Since abstention is more likely to result in conviction

than a vote for acquittal, we expect equilibrium strategies to involve two

thresholds, tj1 < tj2, such that a juror strategy is

Rj(yj) =

8>><
>>:

\convict"; if yj � tj
2

\abstain"; if tj2 > yj � tj1

\acquit"; if yj < tj1.

Using similar reasoning as in the proof of Proposition 3.1, we can estab-

lish that the thresholds for juror A satisfy:

fag (t
a
1)

fai (t
a
1)

F b
g (t

b
2)� F b

g (t
b
1)

F b
i (t

b
2)� F b

i (t
b
1)

= ka;

fag (t
a
2)

fai (t
a
2
)

F b
g (t

b
1)

F b
i (t

b
1)

= ka;

(4:1)
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and a symmetric pair of equations holds for juror B. The term (F b
g (t

b
2) �

F b
g (t

b
1))=(F

b
i (t

b
2)� F b

i (t
b
1)) in the �rst equation of (4.1) is the likelihood that

B abstains. In that case, A can guarantee acquittal only if he votes to

acquit. The term F b
g (t

b
1)=F

b
i (t

b
1) in the second equation is the likelihood that

B votes to acquit. In that case, A can guarantee acquittal if he abstains. The

monotone likelihood ratio condition implies that (F j
g (t

j
2)�F j

g (t
j
1))=(F

j
i (t

j
2)�

F j
i (t

j
1)) > f jg (t

j
1)=f

j
i (t

j
1) and F

j
g (t

j
1)=F

j
i (t

j
1) < f jg (t

j
1)=f

j
i (t

j
1). Then, if t

b
2 > tb1,

(4.1) implies that ta2 > ta1, and vice versa. Thus, the thresholds (ta1; t
a
2 ; t

b
1; t

b
2)

de�ned by (4.1) form a Nash equilibrium.

Comparing the thresholds in the equilibrium with abstention with the

equilibrium thresholds without abstention shows that allowing abstention

makes committee members more \careful" in casting their votes. If the

evidence is not very strong either way, a juror chooses to abstain. Standards

of evidence for voting to convict or to acquit are raised so that the probability

of voting either way is reduced for both members.

Proposition 4.1. If lj(�)=Lj
�(�) is monotonically increasing for each j = a; b,

then tj2 > tj� > tj1.

Proof. See the appendix. Q.E.D.

Allowing abstention is formally identical to allowing each committee

member to submit three reports instead of two.11 With no con
ict of prefer-

ences, truthful revelation of private evidence is an equilibrium. Abstention

11 In the case of unilateral conviction, the two reports r
j
0
and r

j
1
for each juror j

satisfy the property that S(ra
1
; rb

0
) � 0, S(ra

0
; rb

1
) � 0, and S(ra

0
; rb

0
) < 0. Find a report

�ra 2 (ra
0
; ra

1
) for juror A such that S(�ra ; rb

0
) < 0. Since S(�ra; rb

1
) > S(ra

0
; rb

1
) � 0, we can

�nd a report �rb 2 (rb
0
; rb

1
) for juror B such that S(�ra; �rb) � 0 and S(ra

0
; �rb) < 0. The three

reports rj
0
< �rj < r

j
1
for each juror j, together with the decision function S(ra; rb), then

implement the voting rule with conviction as the default decision when both abstain.
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cannot improve the quality of committee decision, because valuable evidence

is thrown away. However, when preferences con
ict and abstention is not

allowed, members are forced to take more extreme positions in voting. This

is shown in Proposition 4.1. Allowing abstention improves the expected wel-

fare of committee members by reducing harmful strategic manipulations in

the committee. Moreover, abstention allows each juror to adopt a report-

ing strategy involving three partitions instead of two. Finer partitioning of

information improves the welfare of the committee.

To illustrate how the option to abstain improves welfare of the commit-

tee, we consider a Cournot tatonnement process that begins with the two-

partition equilibrium without abstention and converges towards the three-

partition equilibrium with abstention. Note that any two-partition strategy

can be viewed as a three-partition strategy by adding an additional threshold

for each juror appropriately. For j = a; b, let yj and yj be the lower and the

upper bound of the support Y j . If za1 = ya and za2 = ta
�
are juror A's two

thresholds, and zb1 = tb
�
and zb2 = yb are B's two thresholds, the voting out-

come is the same as the two-partition equilibrium de�ned by (3.1). In each

iteration of the Cournot tatonnement, the new thresholds are chosen as best

responses to the previous thresholds. This process converges monotonically

to the three-partition equilibrium. See Figure 3. Furthermore, expected cost

for each juror falls in each iteration.

Proposition 4.2. Expected loss under the three-partition equilibrium is

lower than expected loss under the two-partition equilibrium for each com-

mittee member.

Proof. See the appendix. Q.E.D.
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Figure 3

Cournot tatonnement: from two-partition to three-partition equilibrium

• •

• •| | |

| | |

y t t t ya a a a a
_ 1 * 2

_

y t t t yb b b b b
_ 1 * 2

_

z za a
1 2

z zb b
1 2

Juror A is relatively biased toward conviction and B toward acquittal.

The proof of Proposition 4.2 shows that the reduction in the expected loss is

due to two e�ects of abstention. One e�ect arises from the common interests

in the committee to use whatever information available: allowing abstention

provides a �ner partition of information. The other e�ect is the increase in

A's threshold of conviction and the corresponding decrease in B's threshold

of acquittal. Juror A becomes more reluctant to unilaterally convict and

juror B lowers the threshold of voting for acquittal. This strategic e�ect

arises from the con
icting interests in the committee. It disappears when

ka = kb. Thus, the option to abstain has the additional bene�t of softening

the positions that committees members are forced to take when abstention

is disallowed.

5. Finer Partitions

If the option to abstain increases the e�ective number of partitions in the

information-reporting game from two to three, are there other equilibria that
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support �ner partitioning of information? The answer is yes, but di�erences

in preferences limit how �ne the partitions can be.

Fix any number N � 1 and a committee decision rule \convict if and

only if S(ra; rb) � 0" with a strictly increasing function S. We construct an

equilibrium where each juror j (j = a; b) uses a (N + 1)-partition strategy,

with reports rj0 < rj1 < : : : < rjN , such that for each n = 0; : : : ;N , rjn is re-

ported if yj 2 [tjn; t
j
n+1), where t

j
1; : : : ; t

j

N are the N thresholds (tj0 = yj and

tjN+1
= yj are de�ned as the lower and upper bound of the support of Y j .)

The reports rj0; : : : ; r
j
N satisfy the property (and a symmetric one by inter-

changing the roles of a and b) that for each n = 0; 1; : : : ;N , S(raN�n; r
b
n) � 0

and S(raN�n�1; r
b
n) < 0. This is a \pivotal" condition for the reports. Un-

like the equilibrium with two-partition strategies, each juror can convey the

strength of his evidence by choosing di�erent reports. A report rbn by ju-

ror B results in conviction only when juror A chooses a report at least as

large as raN�n. We consider the case of unilateral conviction by assuming

S(raN ; r
b
0) � 0 and S(ra0 ; r

b
N ) � 0: submitting a report rjN ensures conviction

regardless of the report of the other juror.

Existence of the reports that satisfy the above property can be shown

by induction, similar to how Section 4 showed that abstention can be imple-

mented by adding another report for each committee member. Moreover, if

jurorA adopts the above reporting strategy with the N+1 reports ra0 ; : : : ; r
a
N ,

juror B has no incentives to use reports other than rb0; : : : ; r
b
N . For exam-

ple, any report rb 2 (rbn; r
b
n+1) such that S(raN�n�1; r

b) < 0 is the same as

rbn (because both result in conviction if and only if ra � raN�n), and any

rb 2 (rbn; r
b
n+1) such that S(raN�n�1; r

b) � 0 is the same as rbn+1. As in the

two-partition case, many sets of reports satisfy the pivotal conditions for an

(N + 1)-partition equilibrium, but they all lead to the same equilibrium.
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For illustration, suppose each juror submits a score of 1 to 10, and the

verdict is conviction if the total score is at least 7. Then submitting any

score of 7 or above will ensure conviction unilaterally and is strategically

equivalent. Each juror has therefore 7 strategically distinct reports. A re-

port of, say, 4 leads to conviction if and only if the other juror submits a

report at least as large as 3. This decision rule induces a 7-partition equi-

librium. If the committee convicts whenever the total score is at least 15,

then submitting any score of 4 or below will ensure acquittal unilaterally.

This induces another 7-partition equilibrium corresponding to the case of

unanimous conviction.

Deriving conditions for the (N+1)-partition equilibrium is a straightfor-

ward extension of the proof of Proposition 3.1. A pivotal voting argument is

also available. By construction, for each n = 1; : : : ;N , a choice between ran�1

and ran for juror A is pivotal only if juror B reports rbN�n: if juror A reports

ran�1 there is acquittal, and if he reports r
a
n there is conviction. JurorA there-

fore makes the choice between the two reports conditional on his evidence

Y a = ya and on juror B's report rb = rbN�n (that is, yb 2 [tbN�n; t
b
N�n+1)).

The expected loss to juror A from choosing Ra
n is

�ka1f
a
i (y

a)(F b
i (t

b
N�n+1)� F b

i (t
b
N�n));

and from choosing ran�1 is

�ka2f
a
g (y

a)(F b
g (t

b
N�n+1)� F b

g (t
b
N�n));

where � is a probability normalization factor under Bayesian updating. The

term F b
k (t

b
N�n+1)� F b

k (t
b
N�n) (k = i; g) is the probability that B's evidence
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lies in the interval that allows A to be pivotal. Thus, reporting ran instead of

ran�1 is optimal if and only if ya � tan where the threshold tan satis�es

fag (t
a
n)

fai (t
a
n)

F b
g (t

b
N�n+1) � F b

g (t
b
N�n)

F b
i (t

b
N�n+1) � F b

i (t
b
N�n)

= ka: (5:1)

From the monotone likelihood ratio property, we can establish that [F j
g (u)�

F j
g (v)]=[F

j
i (u)�F j

i (v)] is increasing in both u and v for all u > v.12 Since the

above argument holds for n = 1; : : : ;N , the thresholds de�ned by equations

(5.1) satisfy ta1 < : : : < taN . Thus, the pivotal voting argument proves that if

juror B uses a reporting strategy with thresholds tb1 < : : : < tbN , the strategy

de�ned by (5.1) is optimal for juror A.

To conclude, the thresholds for an equilibrium with a (N +1)-partition

strategies are described by the N equations in (5.1), plus a symmetric set

of N equations for juror B. The conditions (3.1) for the two-partition equi-

librium and conditions (4.1) for the three-partition equilibrium are special

cases of (5.1). If jurors have identical preferences, the partitions get �ner

and �ner as N increases. The solution converges to that implied by the

Neyman-Pearson lemma, and full information revelation occurs. However,

con
icts from di�erences in preferences place an upper bound on how �ne

the partitions can be in equilibrium.13

12 The derivative of this ratio with respect to u has the same sign as fjg (u)[F
j

i
(u) �

F
j

i
(v)] � f

j

i
(u)[F

j
g (u) � F

j
g (v)]. By the monotone likelihood ratio property, fjg (u)f

j

i
(y) �

f
j
i
(u)fjg (y) for all y � u. Integrating over y from v to u gives fjg (u)[F

j
i
(u) � F

j
i
(v)] �

f
j

i
(u)[F j

g (u)� F
j
g (v)]. Monotonicity in v can be proved in a similar manner.

13 For any given N , the equations (5.1) de�ne a Nash equilibrium. Existence of the
equilibrium for an arbitrary N can be guaranteed in the same way as in the two-partition
case. This existence result does not contradict the result in the following proposition that
the number of partitions is bounded on any strict subset of the support of evidence. For
a larger N , more of the corresponding equilibrium thresholds are squeezed into the two
ends of the support.
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Proposition 5.1. If ka 6= kb, then for any interval [yjmin; y
j
max] in the

support of Y j there is an � > 0, such that for any equilibrium thresholds

tjn; t
j
n�1 2 [yjmin; y

j
max], t

j
n � tjn�1 > �.

Proof. The monotone likelihood ratio property implies that, for all u > v,

lj(u) > (F j
g (u)� F j

g (v))=(F
j
i (u)� F j

i (v)) > lj(v);

where lj(�) = f jg (�) = f ji (�). From this result and from the equilibrium

conditions for tan�1 and for tbN+1�n, we have

la(tan�1)l
b(tbN+1�n) < ka;

lb(tbN+1�n)l
a(tan) > kb:

(5:2)

Adding these inequalities:

lb(tbN+1�n)l
a0(�)(tan � tan�1) > kb � ka;

where � is between tan and tan�1. Similar manipulations using the equations

for tan and for tbN+1�n yield

lb(tbN+1�n)l
a0(�)(tan � tan�1) > ka � kb:

Therefore

tan � tan�1 >
jka � kbj

lb(tbN+1�n)l
a0(�)

:

If tan� tan�1 � �, then since � can be arbitrarily small and since lb(�) and la0(�)

are both bounded over any �xed interval, the above inequality contradicts

ka 6= kb. Q.E.D.
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Figure 4

Con
icts and bound on �neness of partitions

t

t

(

)

t a
n-1 t a
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l  l  = k 

l  l  = k 

a b a

a b b

Figure 4 illustrates the argument of Proposition 5.1 for the case of kb >

ka. The monotone likelihood ratio property imposes bounds on the relevant

thresholds as represented by the two inequalities (5.2). Since kb > ka, the

curve lalb = kb is to the right of lalb = ka in Figure 4. For any �xed threshold

tan�1 of juror A, the corresponding threshold tbN+1�n of B is bounded from

above through the �rst inequality of (5.2). Once tbN+1�n is bounded from

above, the corresponding threshold tan of A is bounded from below through

the second inequality of (5.2). Thus, the distance between tan�1 and tan is

bounded from below. Proposition 5.1 implies that the number of partitions

in an equilibrium strategy of juror A is at most (yamax � yamin)=� on the

interval [yamin; y
a
max]. Figure 4 makes explicit that the upper bound on the

�neness of equilibrium partitions for a given interval depends negatively on
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the di�erence in preferences, jka � kbj. If the two jurors have a greater

di�erence in preferences, the two curves in Figure 4 are further apart, and

the lower bound on the distance between adjacent thresholds for each juror

becomes larger. Great con
icts within the committee make �ne partitions

impossible.14

6. Decision Rules and Decision-making

In a two-partition equilibrium, there are essentially just two decision rules

for a committee of two members, unilateral conviction and unanimous con-

viction. It might seem that requiring two votes for conviction instead of one

is a more \stringent" standard of proof. But this is only true when jurors

cast their votes without regard to the voting rule. Since each juror cares

only about the �nal verdict rather than his own vote, he votes to convict less

cautiously when unanimity is required, knowing that the other juror may

have information that will lead to a vote against conviction. On the other

hand, if one vote is su�cient for a guilty verdict, each juror is more cautious

in casting a vote to convict, knowing that such a vote would have a decisive

e�ect regardless of the other juror's information. More precisely, the mono-

tone likelihood ratio property implies that for each j = a; b, Lj
�(�) � 1 and

Lj
��(�) � 1. It then follows from Proposition 3.1 that tj� � tj��. Thus, both ju-

rors set a lower standard of conviction when the decision rule is changed from

unilateral conviction to unanimous conviction.15 This aspect of comparison

14 Crawford and Sobel (1982) establish a similar result in the context of an information
reporting game with one sender and one receiver.

15 This comparison of decision of decision rules complements the works of Sah and
Stiglitz (1986; 1988), who consider committees without the strategic manipulations that
arise from con
icting interests.
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Figure 5

Con
icts and personal preference over decision rules

1

1.04

d

0.38 1.36

C  / C 

C  / C 

C  / C 

C  / C 

_ _

_ _

b b

* **

b b

* **

a a

* **

a a

* **

of decision rules illustrates the common interests in sharing information in

committee decision-making.

The extent of con
icts in the committee a�ects members' preference over

decision rules. When the two jurors have identical interests, they agree on

which decision rule should be used in committee decision-making. By con-

tinuity, small di�erences in preference do not generate disagreement about

the ex ante choice of decision rule. However, as con
icts increase in the

committee, strategic manipulations of information amplify the di�erences

in personal preference over decision rules. For a numerical example, let

Fi � N(0; 1) and Fg � N(1; 1) be the common distribution functions, condi-

tional on innocence and on guilt. Then, if the common preference k exceeds

1 so that both jurors are relatively biased toward acquittal, unanimous con-
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viction is preferred to unilateral conviction. Now, consider how an individual

juror's preference over the decision rule changes in the following compara-

tive statics exercise. Let ka1 = k � d, kb1 = k + d, and ka2 = kb2 = 1. As d

increases from 0 to k, ka decreases and kb increases. To examine the role of

equilibrium manipulations of information, de�ne a \cooperative" threshold

�t� under unilateral conviction that satis�es l(�t�)L�(�t�) = k. By construction,

�t� minimizes the equally-weighted sum of expected cost to the two jurors un-

der unilateral conviction, regardless of the extent of con
icts d. Similarly,

de�ne �t�� under unanimous conviction that satis�es l(�t��)L��(�t��) = k. Fig-

ure 5 illustrates how each juror j's preference over plurality changes with d,

by plotting the ratio of his expected cost under unilateral conviction to the

cost under unanimous conviction. With \cooperative" thresholds, juror B's

preference for unanimous conviction becomes stronger as he becomes more

biased toward acquittal (i.e., �Cb
�
= �Cb

��
increases with d). Juror A initially

shares B's preference, as shown by �Ca
�
= �Ca

��
, but switches his preference to

unilateral conviction as he becomes more concerned with false acquittal. In

the numerical example shown (where k = 2), this happens around d = 1:36.

In contrast, equilibriummanipulations of information arising from increasing

con
icts between A and B in the non-cooperative game imply a larger di�er-

ence in personal preference over decision rule. Figure 5 also plots the ratio of

each juror j's equilibrium expected cost Cj
� under unilateral conviction to the

cost Cj
�� under unanimous conviction. As with cooperative decision-making,

the di�erence between Cb
�
=Cb

��
and Ca

�
=Ca

��
becomes greater as d increases,

but the divergence goes much faster. Juror A switches his preferred decision

rule from unanimous conviction to unilateral conviction around d = 0:38,

but would prefer unanimous conviction if standards were set cooperatively.
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7. Conclusion

Committee members' incentives to manipulate private information to tilt

decisions toward their personally preferred outcome imply that information

cannot be e�ciently aggregated by committees. Perhaps this is the basis

for the old joke: \Ques. How do committees make decisions? Ans. Badly."

Nonetheless, committees are used to make many business and other decisions.

We have illuminated some of the reasons for their continued use and survival.

True, self interest and strategic considerations make information pooling

in committees imperfect, but that is relative to some unattainable ideal.

Strategic noise introduced by attempted manipulations of the outcome still

leads to better decisions for all members together than if one of them acted as

\dictator" and made the decision without bene�t of other, albeit strategically

manipulated, information. Decisions are better in the sense that not all

members would prefer ex ante to dissolve the committee and randomly select

a \dictator" among them to make less informed decisions.

The reason is that viable committees must share some common goals,

even though individual members might weigh outcomes somewhat di�erently.

And members certainly want to gain the statistical advantages of information

sharing and sharpening the signal to noise ratio. What makes the process

work is that the committee rules and procedures are themselves chosen to

temper and control strategic misrepresentations and �lter the data in the

best way possible, given self-interested behavior. Procedures are adopted

that coarsen the reporting of information and put a natural limit on feasible

manipulations. They control con
ict in an acceptable way. The greater

the di�erences of a priori opinion among members, the coarser the rules

must be to control con
ict. The quality of committee decisions necessarily
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declines with the degree of con
ict. Yet poor as committee decisions might

be when con
icts are reasonably large, they still might be better than what

one person could achieve for the combined interests of the group as a whole

from unilateral, and less-informed, decisions.

The two-partition voting mechanism studied in detail here is a very clear

analytical representation of these ideas. In the statistical decision problem

from which it is constructed, all sample information is perfectly aggregated

into a \score." Minimizing the loss function sets a critical score. If the sample

score exceeds the threshold, the object is put into one category, and if it falls

short of the threshold it is put in the other category. Voting in a committee

is a cruder kind of scoring system, but a scoring system nonetheless. Each

person sets his own critical standard endogenously. The object is placed

into one category or another by the committee depending on the proportion

of members whose sample information place it above or below their own

strategically determined personal thresholds.

Some classi�cations that would be chosen by a hypothetical perfect ag-

gregation scheme cannot occur in a committee. This ine�ciency cannot be

eliminated unless there is no con
ict. Personal thresholds are chosen to

\undo" the presumed biases and preferences of other members, but not by

enough to completely nullify the information of others. For instance, mem-

bers defer to those who have more informed sample information|members

who have greater expertise and who are drawing their data out of probability

distributions with greater precision|in the sense that the better informed

members are decisive more often.

While there are few general analytical results on how voting thresholds|

simple majority, super-majority, or unanimity|a�ect the quality of commit-

tee decisions, the analysis illuminates some of the economic considerations
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involved in these debates. It is interesting that though requiring unanim-

ity for conviction makes each member pivotal for conviction, self-interest

and strategy makes them less cautious in voting to convict because others

are more likely to have information against conviction. On the other hand,

requiring unanimity for acquittal makes voters more cautious in voting for

conviction. These are precisely the reasons why Condorcet's Theorem fails

when strategic considerations play a role in voting (Austin-Smith and Banks,

1996; Feddersen and Pessendorfer, 1998). Strictly speaking in our model,

each issue coming before the committee would have an optimal partition

and an optimal committee cuto� score on votes. These could be simulated,

as illustrated in the previous section. We have chosen not to pursue this line

because our model is not su�ciently well structured for that kind of analysis.

Committee rules are chosen to achieve a certain kind of durability to a broad

variety of issues that come before it. But the nature of preferences, voting

rules, incentives to collect information and even what issues are likely to

come up before the committee (Li, 1999), the presentation of arguments and

rhetoric in committee deliberations (Posner, 1998; Dewatripont and Tirole,

1999), intertemporal vote trading in future deliberations for ongoing com-

mittees are all likely to be important for understanding these things. This

model is too crude to incorporate such things.

In conclusion, voting is said to be an inferior allocation mechanism be-

cause it does not allow the intensity of one's preferences to be expressed in

the �nal tally. And so it is for purely private decisions in which information

and tastes of others are not directly germane. But in decisions where social

gains possibly arise from the pooling information, the intensity of di�erences

in preferences leads to discordance among members that causes trouble. Var-

ious kinds of voting procedures bound the expression of intensity and discor-
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dance among voters and lead to better informed decisions. Perhaps this is

the main lesson in this paper.

Appendix

A.1. Proof of Proposition 4.1

Suppose ta
�
� ta2 . Then, using the second equation in (4.1) and the �rst

equation in (3.1), we have tb1 � tb
�
. From the monotonicity of lj(�)=Lj

�(�), we

get
lb(tb1)

Lb
�
(tb1)

la(ta
�
)

La
�
(ta
�
)
�

lb(tb
�
)

lb(tb
�
)

la(ta2)

La
�
(ta
2
)
:

Cross multiplying and using (3.1) and (4.1) again, we get lb(tb1)L
a
�
(ta2) � kb.

The condition for the threshold tb1 is described by the equation

lb(tb1)
F a
g (t

a
2)� F a

g (t
a
1)

F a
i (t

a
2)� F a

i (t
a
1)

= kb:

Thus, La
�
(ta2) � [F a

g (t
a
2) � F a

g (t
a
1)]=[F

a
i (t

a
2) � F a

i (t
a
1)], which contradicts the

monotone likelihood ratio property.

Suppose ta
�
� ta1. In the equilibrium without abstention, lb(tb

�
)La

�
(ta
�
) =

kb. In the equilibrium with abstention, lb(tb2)L
a
�
(ta1) = kb. These two condi-

tions imply that tb
�
� tb2. We can then follow the same method as above to

derive a contradiction. Q.E.D.

A.2. Proof of Proposition 4.2

The proof proceeds in two steps. Step 1 shows that the two-partition equilib-

rium converges monotonically to the three-partition equilibrium in a Cournot
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tatonnement process. Step 2 shows that expected loss for each juror falls in

each iteration of the tatonnement.

Step 1: The equilibrium conditions for the thresholds of juror A speci�ed

in (4.1) can be used to de�ne the reaction functions za1 = g1(zb1) and za2 =

g2(zb1; z
b
2). The reaction functions for juror B can be speci�ed analogously.

Note that all the reaction functions are strictly decreasing in their arguments.

If we de�ne x = (za1 ; z
a
2 ;�z

b
1 � zb2) and let h : IR4 ! IR4 be the reaction

function in the rede�ned variables, then h(x) is monotonic increasing in x.

The Cournot tatonnement is speci�ed by the process x(t) = h(x(t�1)). The

initial thresholds are speci�ed near the two-partition equilibrium, x(0) =

(ya; ta
�
+�;�tb

�
;�yb), where � > 0 is arbitrarily small. An induction argument

establishes that x(t) increases monotonically. Suppose x(t) � x(t�1). Then,

because the reaction function h(�) is monotonic,

x(t + 1) = h(x(t)) � h(x(t � 1)) = x(t):

Furthermore, using the conditions for the two-partition equilibrium, it can be

veri�ed that x(1) = h(x(0)) � x(0), and the induction argument is complete.

A bounded and monotonic sequence converges to a limit point x̂. By the

continuity of the payo� functions, this point must also be an equilibrium

point, x̂ = h(x̂). To see this, note that Cj(xj(t); x�j (t�1)) � Cj(xj ; x�j(t�

1)) for all xj (j = a; b) because x(t) is the best response to x(t � 1). Since

Cj is continuous in xj and x(t)! x̂, we have Cj(x̂j ; x̂�j ) � Cj(xj ; x̂�j ) for

all xj . Therefore x̂ is indeed a three-partition equilibrium point.

Step 2: Let the expected loss to juror j be

C(za; zb; kj) =kj [1� F a
i (z

a
2 ) + (F a

i (z
a
2 )� F a

i (z
a
1 ))(1 � F b

i (z
b
1)) + F a

i (z
b
2))]

+ [(F a
g (z

a
2 ) � F a

g (z
a
1 ))F

b
g (z

b
1) + F a

g (z
a
1 )F

b
g (z

b
g)]:
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Without loss of generality, assume ka � kb. The change in cost for juror A

between two successive iterations is

C(za(t + 1); zb(t + 1); ka)� C(za(t); zb(t); ka)

=[C(za(t + 1); zb(t + 1); ka) � C(za(t); zb(t+ 1); ka)]

+ [C(za(t); zb(t + 1); ka)� C(za(t); zb(t); ka)]

�DzaC(z
a(t+ 1); zb(t+ 1); ka)(za(t + 1)� za(t))

+DzbC(z
a(t); zb(t+ 1); ka)(zb(t+ 1) � zb(t));

where DzaC and Dzb are the gradient vectors of C with respect to za and

zb. The inequality above follows from the convexity of the cost function.

Because convergence is monotonic, we have za(t+2) � za(t+1). Convexity

of the cost function in za and the fact that za(t + 2) is a best response to

zb(t + 1) then imply

DzaC(z
a(t+ 1); zb(t+ 1); ka) � DzaC(z

a(t + 2); zb(t + 1); ka) = 0:

Furthermore, since DzbC is decreasing in k, and since ka � kb, we have

DzbC(z
a(t); zb(t+ 1); ka) � DzbC(z

a(t); zb(t+ 1); kb) = 0:

Finally, the monotonicity of the convergence process implies that za(t+1)�

za(t) � 0 and zb(t + 1) � zb(t) � 0. Thus the change in cost for juror A is

negative.

For juror B, we follow a di�erent decomposition to get

C(za(t + 1); zb(t + 1); kb)� C(za(t); zb(t); kb)

=[C(za(t + 1); zb(t + 1); kb) � C(za(t+ 1); zb(t); kb)]

+ [C(za(t + 1); zb(t); kb)� C(za(t); zb(t); kb)]

�DzbC(z
a(t+ 1); zb(t+ 1); kb)(zb(t+ 1)� zb(t))

+DzaC(z
a(t+ 1); zb(t); kb)(za(t+ 1)� za(t));
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Because convergence is monotonic, we have zb(t+2) � zb(t+1). Convexity

of the cost function in zb and the fact that zb(t + 2) is a best response to

za(t + 1) then imply

DzbC(z
a(t+ 1); zb(t+ 1); ka) � DzaC(z

a(t+ 1); zb(t+ 2); ka) = 0:

Furthermore, since DzaC is decreasing in k, and since ka � kb, we have

DzaC(z
a(t + 1); zb(t); kb) � DzaC(z

a(t + 1); zb(t); ka) = 0:

Finally, since za(t + 1) � za(t) � 0 and zb(t + 1) � zb(t) � 0, the change in

cost for juror B is also negative. Q.E.D.
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