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1  Introduction

In recent decades rising immigration into the United States has steadily increased the share of

immigrants in the total population.  Borjas, Freeman, and Katz (1997) report that this share rose

from 4.8% in 1970 to 6.2% in 1980 and to 7.9% in 1990.  Recent immigrants tend to have much

lower education levels that the typical U.S. worker (Borjas, 1994) and tend concentrate in states

with relatively large populations of previous immigrants, such as California, Florida, New York,

and Texas.  A vast literature examines whether the U.S. regions that have had relatively large

influxes of low-skilled immigrants have also had relatively low wage growth for low-skilled U.S.

native workers.  The near uniform finding is that immigration has, at most, a very small negative

effect on native wages:  there is a near zero correlation between regional immigrant inflows and

changes in relative regional wages (see surveys in Borjas, 1994 and Friedberg and Hunt, 1995).

In this paper we examine whether U.S. regions have absorbed immigrant inflows (or shocks to

endowments more generally) by altering the mix of goods they produce, thus relieving pressure

for wages to change.  The focus on output mix is motivated by the Rybczynski Theorem (1955), a

core result of Heckscher-Ohlin (HO) trade theory.  This theorem states that when a region is open

to trade with other regions, changes in regional relative factor supplies can be fully

accommodated by changes in regional outputs without requiring changes in regional factor prices.

An increase in the relative endowment of a factor increases the output of products which employ

that factor relatively intensively and decreases the output of at least some other products.  This

shift in output mix increases the regional relative demand for the factor whose endowment has

increased, thereby matching the increase in its regional relative supply and eliminating pressure on

factor prices to change.  Trade is essential for this mechanism to work, as regional output changes

are accommodated by corresponding changes in regional exports and imports.  So long as the

region is sufficiently small, these output and trade-flow changes do not affect world prices and

thus do not trigger Stolper-Samuelson (1941) factor-price effects.

Our approach is to treat U.S. states as Heckscher-Ohlin regions and to examine changes over

time in state factor endowments, output mix, and factor usage.  The focus on output mix and
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factor usage distinguishes our work from the previous literature which concentrates on cross-

region variation in wages.  To think of a concrete example, over the last two decades many low-

skilled immigrants settled in California.  During this period, California expanded production and

exports of nonskill-intensive goods, such as apparel, canned food products, and toys.  California's

shift towards these sectors may have helped accommodate its immigrant influx, partially or

entirely obviating the need for California's factor prices to change relative to the rest of the

country.  We examine the plausibility of this story for California and other big states.

Changes in output mix are by no means the only mechanism through which U.S. states could

accommodate immigrant inflows without changes in relative regional factor prices.  An obvious

alternative adjustment mechanism is regional migration of labor or capital.  Native U.S. workers

may have left (or slowed down their migration to) states where immigrants have concentrated.

To the extent that these regional migrations offset each other, net changes in state relative

endowments may have been very small, requiring minimal changes in state output mixes or factor

prices.  The literature is divided about whether immigrant inflows contribute to native

outmigration.  Filer (1992) and Borjas, Freeman, and Katz (1997) find evidence that they do,

while Card (1997) finds evidence that they do not.

We address this issue by focusing on total state labor endowments, rather than on the separate

stocks of native and foreign workers.  We assume that within each education category native and

foreign workers are perfect substitutes, and then examine whether state output-mix changes are

sufficient to accommodate the total change in state labor endowments.  The focus on net

endowment changes, rather than on net immigrant inflows, is one contribution of the paper.

For our empirical analysis we construct a new data set combining real state value added by

industry and state labor employment by industry for four education categories:  high-school

dropouts, high-school graduates, those with some college, and college graduates and beyond.

The data cover a subsample of 15 large U.S. states and 40 sectors, spanning all civilian industries,

in 1980 and 1990.  In much of our analysis we focus on the "gateway" immigrant states of

California, Florida, Illinois, New Jersey, New York, and Texas.  In 1960 60% of all U.S.
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immigrants lived in one of these six states; by 1990 that share had risen to 75% (Borjas, et al

1997).  In 1992 60% of all U.S. legal immigrants came into California or New York alone, while

another 20% entered the other four gateway states (Borjas, et al 1996).

We present two kinds of evidence on the output-mix hypothesis.  Our first approach is to

analyze changes from 1980 to 1990 in state endowment mixes and state output mixes to see

whether state output growth was relatively high (low) in sectors that were intensive in the use of

factors whose relative supplies were expanding (declining).  This attempt to find "direct" evidence

for the output-mix hypothesis is complicated by the fact that during our sample period there likely

were many shocks to preferences and technology, independent of immigration-related endowment

shocks.  For example, in the 1980s there was a sharp increase in the relative demand for skilled

workers, which many authors attribute to skill-biased technological change (SBTC) (Bound and

Johnson, 1992; Katz and Murphy, 1992; Berman, Bound, and Griliches, 1994).  The ex ante

likelihood that factor prices and output mixes have changed for reasons other than immigration

makes it impossible to test the simple textbook version of the Rybczynski Theorem, where the

only exogenous shock is to endowments.  Accordingly, when we decompose how states absorb

endowment shocks we attempt to control for national shocks, such as SBTC.

Our second approach to testing the output-mix hypothesis is to test for factor-price

equalization (FPE) across U.S. states.1  A sufficient condition for our output-mix hypothesis, in

which relative regional wages are insensitive to regional relative factor-supply changes, is that

relative FPE holds across U.S. states – i.e., that factor prices for productivity-equivalent units are

equalized across states.  Relative FPE would be consistent, for instance, with Hicks neutral

technology differences among states (Trefler, 1993).  A sufficient condition for relative FPE

between two states is that for each factor in each industry the two states have the same unit factor

requirements, up to some scalar which is constant across industries.  We test for relative FPE by

                                               
1 The FPE theorem, another core result of HO trade theory, is due to Samuelson (1948).  It is usually expressed in terms of
absolute FPE in which wages are exactly the same for each factor in each region.  See Blackorby, Schworm, and Venables
(1993) on necessary and sufficient conditions for FPE.
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comparing industry unit factor requirements across states.  Relative FPE would imply that the

related states all occupy the same cone of diversification, and thus experience common relative-

wage responses, if any, to an endowment shock in any one state.2  In this way, evidence of

relative FPE is "indirect" support for the output-mix hypothesis.

To preview our results, we find support for the hypothesis that states have absorbed

endowment changes without changes in relative factor prices.  First, we find evidence that state

output-mix changes broadly match state endowment-mix changes.  States whose endowment mix

changed in line with the national endowment mix had output-mix changes in line with national

output-mix changes.  In contrast, states where immigration helped alter the endowment mix had

output-mix changes reflecting the endowment shock.  Second, we find that variation in unit factor

requirements across states is consistent with relative FPE.  Using regression analysis, we retain

the null hypothesis of relative FPE between individual states and a control group of states for the

large majority of cases in our sample.  This finding suggests that U.S. states accommodate state-

specific endowment changes without state-specific factor-price changes.

Our research is related to two bodies of literature.  The first, mentioned above, is that on

immigration and wages in the United States.  Why immigration has had minimal impact on the

wages of U.S. workers remains a puzzle.  Borjas, Freeman, and Katz (1997) comment that local

output-mix changes are one potential explanation for the insensitivity of wages to immigration,

but we are aware of no study before ours which analyzes this mechanism in detail.  Our research

is also related to empirical tests of HO trade theory.  Harrigan (1995, 1997) and Bernstein and

Weinstein (1998) examine whether national outputs vary systematically with national factor

endowments, as predicted by the HO model.  Davis, et al (1997) and Maskus and Webster (1999)

                                               
2  With relative FPE there are no state-specific wage responses to moderate state-specific endowment shocks.  An endowment
shock to any one state triggers an output-mix response in that state.  If that state is small, this response does not affect world
product prices and thus does not induce any Stolper-Samuelson (1941) wage effects.  If that state is big, in contrast, world
product prices do change with the output-mix change.  This triggers Stolper-Samuelson wage changes in the state with the
original shock.  But it also triggers the same Stolper-Samuelson wage changes in all states with which it has relative FPE and
thus shares the same cone of diversification.  In either case, with relative FPE there are no state-specific wage responses to
moderate state-specific endowment shocks.  The qualifier "moderate" highlights the fact that sufficiently large endowment
shocks alter the set of goods produced, and thus factor prices, in the affected state.
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develop tests of FPE to indirectly test the HO model.  The former find evidence consistent with

FPE across Japanese regions, but not across OECD countries.  This methodology is also applied

in Davis and Weinstein (1998), with more favorable results for the HO model. Our work

highlights a limitation of this methodology, and we extend it to develop a sharper test of FPE.

There are four additional sections to this paper.  Section 2 examines state endowment-mix

changes and their link to state output-mix changes.  Section 3 formalizes these results by using an

accounting decomposition derived from the production side of HO trade theory.  Section 4

presents regression evidence on relative FPE among U.S. states.  Finally, section 5 concludes.

2  State Endowment Mixes and State Output Mixes:  Summary Calculations

This section examines changes in state labor endowments and output mixes.  First, we show

that during the 1980s endowment changes varied across U.S. states.  Second, we document that

states also had different output-mix changes:  states tended to expand in sectors that were

intensive in the use of growing factors.

To construct state labor endowments (for both native and foreign workers), we use data from

the 5% Public Use Microsample (PUMS) of the U.S. Census of Population and Housing.  An

individual is included as part of the state labor endowment if he or she is a member of the state

labor force.  Later in the analysis, we will require measures of industry employment and output by

state.  To construct the former, we combine PUMS data with industry employment data from the

U.S. Bureau of Economic Analysis (BEA).  Data on real industry value added at the state level

also come from the BEA.  To match industries from these two data sources we aggregate all

civilian industries into 40 sectors, which are a mix of one-digit and two-digit industry

classifications.  The Data Appendix describes data sources and variable construction.

We examine four education categories of labor.  While it would be desirable to also examine

non-labor factors, such as capital and land, there are no industry data on state employment of

these factors.  Within education categories, we aggregate over foreign and native workers, which

is appropriate given that changes in output mix depend on changes in total factor endowments.
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We thus implicitly assume that within each educational category native- and foreign-born workers

are perfect substitutes.3  If changes in output mix are sufficient to absorb changes in total factor

endowments, then by implication changes in output mix can also account for the specific

component of changes in factor endowments due to immigration.

2a  Labor Endowments across U.S. States, 1980-1990

Tables 1a  and 1b present data on labor endowments for 12 states plus the overall United

States in 1980 and 1990.  In addition to the six immigration gateway states (California, Florida,

Illinois, New Jersey, New York, Texas), we include data on six other large states in the northeast

(Massachusetts), midwest (Ohio, Michigan), south (Georgia, North Carolina), and west

(Washington).4  Each row of Table 1a reports the share of the total state (or national) labor force

accounted for by each of the four labor categories; Table 1b reports changes in these shares.5

Table 1a shows that states differ widely in the distribution of the labor force across education

categories.  Relative to the United States as a whole, the labor force in northeastern states (MA,

NJ, NY) is skewed towards college graduates, the labor force in midwestern states (OH, IL, MI)

is relatively concentrated among high-school graduates, and the labor force in southern states (FL,

GA, NC, TX) is relatively concentrated among high-school dropouts.  California is distinct in that

by 1990 its labor force is concentrated in the extremes of the skill distribution, with relatively high

endowment shares for both high-school dropouts and college graduates.

Table 1b shows, consistent with previous findings, that during the 1980s there was a national

increase in the relative supply of more-educated workers (Bound and Johnson, 1992; Juhn,

Murphy, and Pierce, 1993; Katz and Murphy, 1992).  For the United States as a whole, the

endowment shares for those with a high-school education or less declined while the endowment

                                               
3  Illegal immigrants are included in our data, to the extent they are enumerated in the Census of Population and Housing and
work for establishments that are surveyed by the BEA.  Given obvious data constraints, we make no attempt to distinguish
between legal and illegal immigrants.
4  We select large states to guarantee sufficiently large sample sizes of workers by education category at the state and industry
level in the PUMS data (see note 11).
5  Results using the working age population, instead of the total labor force, are similar to those reported in Tables 1-3.
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shares for those with more than a high-school education rose.  Interestingly, this shift varies

markedly across states.  The increase in the endowment share of college graduates was highest in

northeastern states.  In the midwest, changes in endowment shares generally mirrored those in the

rest of the country, though the region did show a relatively large increase in the share of those

with some college.  In the south, there was a relatively large shift away from high-school dropouts

in Georgia and North Carolina, but not in Florida.  In the west, and particularly in California,

there was a relatively small shift away from high-school dropouts and a relatively large shift away

from high-school graduates.

Table 2, which shows the share of individuals in each labor category who are foreign born in

1980 and 1990, provides further insight into state endowment shifts.  The gateway states for

immigration are immediately apparent.  California, Florida, New Jersey, and New York have

relatively high immigrant shares in all education categories, with California being the clear outlier

among these.  Illinois and Texas (and also Massachusetts) have high concentrations of immigrants

among high-school dropouts, but not among other labor categories.  Immigrant concentrations

are much lower in the other states in the midwest, south, and west.  In most states, immigrant

shares rose markedly in each education category during the 1980s.

Comparing Tables 1 and 2, an interesting pattern becomes apparent.  While over the 1980s

the gateway states have high and rising immigrant shares, particularly in the lowest education

categories, all of these states except California still had a moderate to large decline in the relative

supply of very low-skilled workers.  In Florida, the relative supply of high-school dropouts

declined, but less so than in the rest of the country.  This implies that for many states a declining

supply of low-skilled native workers offset immigrant inflows, due to some combination of native

outmigration or labor-force exits.

Table 3, which shows the change in the shares of native-born and foreign-born individuals by

education category in the total labor force, illustrates this pattern clearly.  Despite rising

immigrant shares among the low-skilled, the share of foreign-born high-school dropouts in the

total labor force either is constant or declines in 9 of the 12 states.  Only California, Florida, and
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Texas show a substantial increase in the share of foreign-born high-school dropouts in the total

labor force.  For Florida and Texas, however, the decline in the native-born high-school dropouts

far exceeds the increase foreign-born high-school dropouts.  With the clear exception of

California, shifts in the native-born labor force have mitigated the impact of immigration on state

relative labor endowments in high-immigration states.  This suggests one reason why immigrants

may not have pressured native wages:  native endowment patterns may have partially offset

immigration flows, dampening the net change in regional relative labor endowments.

2b  Changes in Output Mix for U.S. States, 1980-1990

According to our output-mix hypothesis, variation across states in endowment-mix changes

should be systematically related with variation across states in output-mix changes.  For changes

in output mix to matter for how states absorb endowment shocks, industries must differ in the

intensity with which they use different factors.  Table 4 shows this to be the case.  For each of the

40 industries, we list three measures of industry factor intensity:  the ratios of employment of

high-school dropouts, high-school graduates, or those with some college to employment of

college graduates.  All measures in Table 4 use data for national industry employment in 1980 and

1990 (see appendix).

There are substantial differences in factor intensity across industries.  In 1990 for the least

skill-intensive industries, the ratio of high-school dropouts to college graduates is 9.3 in

household services, 7.0 in automotive repair services, and 6.4 in textiles; among the most skill-

intensive industries these ratios are 0.05 in legal services, 0.07 in investment banking, and 0.11 in

education services.  Thus, while household service firms employ about 9 high-school dropouts per

college graduate, law firms employ 20 college graduates per high-school dropout.  Industries that

are intensive in college graduates relative to high-school dropouts also tend to be intensive in

college graduates relative to high-school graduates or those with some college.  The ranking of

factor intensities by industry is relatively similar across the three labor types.  The rank
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correlations of industries by the different factor intensity measures in Table 4 lie between 0.67 and

0.93.  Relative factor intensities are also quite stable over time and across states.

The within-industry decline in the relative employment of low-skilled workers, which has been

documented extensively (Bound and Johnson, 1992; Katz and Murphy, 1992; Murphy, Juhn, and

Pierce, 1993; Berman, Bound, and Griliches, 1994), is apparent in Table 4.  There is a large

decrease in the employment of high-school dropouts and high-school graduates relative to college

graduates (and those with some college) over the 1980s.  Interestingly, this decline is sharpest in

some of the least skill-intensive sectors, such as apparel, leather, and household, personal, and

lodging services.  Combined with the well-documented rise in the wage premium to skilled

workers, these relative-employment shifts suggest skill-biased technical change.

Table 5a presents initial evidence on the output-mix hypothesis.  To see how industry output

growth varies by industry factor intensities, for each state we calculate industry growth as

(1)     ∑ λ−λ∆=
=

N

1n
nmnnm ))(xln(z

where ∆ represents the time-difference operator, xn is real value added in industry n, λmn is the

share of industry n in total state employment of labor type m, and λ 
n 
 is the mean of the λmn terms

across the four labor types for industry n.  λmn measures the intensity of industry n in labor type m

and λ 
n 
 controls for the overall size (or average labor intensity) of industry n.6  There are two

ways of viewing zm.  One is as the growth in demand for labor type m, relative to the growth in

demand for other labor types, implied by growth in industry value added.  The other is as the

                                               
6 This interpretation follows naturally from standard trade theory.  To preview our discussion in Section 3, for a given region
let X be the industry value-added vector, V be the factor-endowment vector, and C be the matrix of unit factor requirements.
From equation (2), factor-market equilibrium implies CX=V.  Suppose there is a small change in factor supplies, which, by
Rybczynski logic, leaves factor prices unchanged.  Using "hats" to indicate percentage changes, we can rewrite the factor-

market clearing condition as, V̂X̂ =λ , where λλ=CXdiag(V)-1 is the matrix of factor shares, which shows the share of each
factor's total endowment that each industry uses in production.  The λλ matrix describes how factor-supply changes are
translated into output-supply changes and is an obvious measure of industry factor intensity.
7 Even if C were constant in our data, a complication with testing the Rybczynski Theorem is that there may be more goods
than factors (N>M), in which case the supply of each individual good is indeterminate and there is no unique mapping from
factor supplies to outputs.  Ethier (1984) develops a method for testing the Rybczynski Theorem that is robust to output
indeterminacy and Bernstein and Weinstein (1998) examine these issues using data for Japanese regions and OECD countries.
To apply the Ethier methodology to our data, we would still need to treat the C matrix as constant over time, which is clearly
unwarranted.
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factor-share-weighted-average change in log value added, normalized by the overall employment-

share-weighted-average change in log value added.  By construction the zm terms sum to zero

across labor types for a given region.  Thus, a positive (negative) entry indicates that a state's

output growth was relatively concentrated (unconcentrated) in sectors that are intensive in the use

of a given labor type.  We calculate zm for each labor type in each state using data on all 40

sectors.  The change in log value added is over the period 1980 to 1990 and each λmn term is

averaged over 1980 and 1990.  In Table 5a, each row corresponds to a different state and each

column corresponds to a different labor type.

The key message of Table 5 is that changes in state output mixes are broadly consistent with

Rybczynski-type effects from changes in state endowment mixes.  In northeastern states, where

relative endowments shifted towards college graduates, growth in real value added is highest in

industries that are intensive in the use of college graduates and lowest in industries that are

intensive in the use of high-school dropouts.  The exception to this pattern is New York, which

had the smallest relative decline in high-school dropouts in the region.   In midwestern states

value added growth generally mirrors that in the nation as a whole, as did endowment changes in

the region.  In southern states, value added growth is lowest in high-school dropout intensive

sectors, which is consistent with the fact that the region had a large decline in the relative supply

of high-school dropouts over the period.  The exception is Florida, which shows no shift away

from high-school-dropout-intensive sectors and which had a much smaller shift away from high-

school dropouts than did the rest of the region.  In the west, there is growth in very low-skill- and

very high-skill-intensive sectors and relative declines in sectors intensive in intermediate skill

levels.  This is consistent with endowment shifts in the region, in particular in California which had

relative growth in both high-school dropouts and college graduates.

The output-mix changes summarized in Table 5a are generally supported by looking at

specific industries in individual states.  To give one example, Table 5b shows annualized growth in

state valued added minus growth in national value added by sector for California during the

1980s.  Columns (3)-(5) in Table 5b rank sectors by their California factor intensity, using the
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three measures of factor intensity from Table 4.  The six industries with the highest growth in real

value added included two very skill-intensive sectors -- FIRE and legal services -- and three very

unskill-intensive sectors -- textiles, apparel, and household services.  The sixth industry,

machinery, is not skill-intensive overall but it does contain the skill-intensive computer industry

which, through the expansion of Silicon Valley, accounted for a large fraction of industry growth

in California during the 1980s.  California's growth in very high-skill and very low-skill intensive

industries mirrors the state’s endowment shifts, which, relative to the rest of the country, favored

very high-skilled and very low-skilled labor.  Table 5b also shows that some of the lowest-growth

industries (leather, furniture) were also intensive in low-skilled labor.  This exemplifies how, with

many goods and few factors, output changes are not pinned down for each individual industry

(i.e., there is output indeterminacy).  To address this issue, we now turn to a more formal

application of the production side of the HO model.

3  State Endowment Mixes and State Output Mixes:  Accounting Decompositions

The previous section gave concrete evidence on state endowment changes and suggestive

evidence of state output-mix changes.  To examine output-mix changes more systematically, we

decompose the absorption of state factor supply changes into portions accounted for by changes

in output mix and changes in industry production techniques.  While these accounting

decompositions do not permit causal inference on whether endowment changes have contributed

to output-mix changes, they are useful for identifying the mechanisms through which states absorb

endowment shocks.  Our approach is similar to that in Gandal, Hanson, and Slaughter (1999),

who examine immigration shocks and output-mix changes in Israel.

We begin with the factor-market equilibrium conditions of HO production theory.  Let there

be N total industries and M primary factors of production.  The standard assumptions are constant

returns to scale in production, perfect competition, and no distortions in the economy.  These

assumptions are not essential for the analysis in this section, but will be required in the following

section.  It is conventional in production theory to focus on net industry outputs, but we work
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with value-added industry outputs because we only have value added data  (in Section 4 we

revisit the implications of using value-added data).  In each state, factor-market equilibrium at

each point in time is given by the following equation:

(2) V = CX

where V is an Mx1 vector of state primary factor endowments; X is an Nx1 vector of real state

value-added output; and C is an MxN matrix of direct unit factor requirements in the state, such

that element cmn shows the units of factor m required to produce one dollar of real value added in

industry n.  Equation (2) says that the total supply of each factor equals total demand for each

factor.  We construct the data such that equation (2) holds as an identity for all states in all years

(see the appendix).  This requires defining the endowment vector V to equal total employment of

factors in a state.  Since we lack industry employment data on capital and land, we limit our

attention to the rows of V, C, and X that apply to labor inputs.

Were it the case that immigration caused state labor endowments to change very quickly, we

could examine changes in V and X holding C constant.  This would allow us to test the

Rybczynski Theorem directly by seeing whether states absorbed the observed changes in factor

supplies through changes in output supplies, with constant factor prices and thus constant unit

factor requirements.  In our case we observe factor-supply changes over a ten-year period, so it is

absurd to treat unit factor requirements as constant.  During this period there were many shocks

to product demand and technology, which surely caused changes in product and factor prices and

thus in unit factor requirements.  We must confront the fact that the C matrix is changing for

reasons unrelated to changes in factor supplies.  Our approach is simply to calculate the relative

contribution of changes in outputs and changes in production techniques to absorption of factor

supply changes.  As we shall see, this exercise is informative both about the type of shocks states

experience and how states adjust to these shocks.7

 To convert equation (2) into the accounting decomposition we desire, we take first differences

over time, which yields,

(3) ∆∆V = .5(C0+C1)∆∆X + .5∆∆C(X0+X1)
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The subscripts indicate time periods 0 and 1, and ∆∆V, ∆∆X, and ∆∆C are level changes across time.

This equation decomposes the observed change in a state’s factor supplies (∆∆V) into two

portions:  that accounted for by output-mix changes (the first term on the right in (3)) and that

accounted for by changes in production techniques (the second term on the right in (3)).

Since equation (3) holds as an identity, it yields no insights about causal relationships between

∆∆V, ∆∆X, and ∆∆C.  For instance, X depends on endowments, product prices, and technology, and

C depends on technology and factor prices, which in turn depend on endowments, product prices,

and technology.  From (3), we can make no direct inferences about the source of changes in X

and C.  Still, equation (3) is useful in an important respect.  Since we can construct (3) on a state-

by-state basis, we can control for changes in production techniques at the national industry level,

which is an indirect way of controlling for national shocks to technology, product prices, and

factor prices.  This will reveal idiosyncratic changes in production techniques across states and

thus possible violations of relative FPE.

Tables 6a-6d show the three components of equation (3) for high-school dropouts, high-

school graduates, those with some college, and college graduates, respectively, for the twelve

states.  There are 40 industries in each state, and the change in variables is over the period 1980

to 1990.  Column (1) shows the change in state factor supplies, column (2) shows mean unit

factor requirements times the change in industry value added (summed over industries in a state),

and column (3) shows the change in unit factor requirements times mean industry value added

(summed over industries in a state).  To control for regional business cycles, we divide both sides

of equation (1) by total state employment and then perform the first difference in equation (3).

This makes the factor supply changes in column (1) equal to the change in the share of a given

labor type in total state employment.

Consider first the results for high-school dropouts and high-school graduates in Tables 6a and

6b.  The negative values in column (1) show that there was a decline in the share of employment

for less-educated workers in all states.  All states had positive real value added growth on

average, which increased demand for all factors as indicated by the positive values in column (2).
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What allowed states to accommodate the fall in the relative labor supply of less-educated workers

was a decline in unit labor requirements for these workers, as indicated by the negative values in

column (3).  Given that the relative wage of these workers also fell over the 1980s, this is

consistent with skill-biased technological change.  California had a relatively small shift away from

high-school dropouts, but a relatively large shift away from high-school graduates.

Next, consider the results for those with some college and college graduates, shown in Tables

6c and 6d.  Rising employment shares for more-educated workers in the 1980s, as indicated by

the positive values in column (1), was accommodated by an increase in labor demand due to

growth in real value added (positive values in column (2)) and increases in unit labor requirements

(mostly positive values in column (3)).  Interestingly, the changes in output mix in column (2)

account for a relatively large fraction of the change in labor supplies in column (1).  This is

surprising in light of results by Davis and Haltiwanger (1991), Berman, Bound, and Griliches

(1994) and others, which suggest that within-industry changes in factor usage, captured in our

analysis by changes in the C matrix, account for most of the observed change in relative labor

demand.  Our findings suggest that between industry changes in output supplies are also an

important part of the story, at least for more-educated workers.

Table 6 indicates that changes in the supply of different labor types have been accommodated

by a combination of output changes and factor usage changes.  It says nothing, however, about

the shocks that caused these changes.  Changes in factor usage at the state level could be due to

changes in factor prices – resulting from technological change, product price changes, or other

shocks – that differed across states.  Such a scenario would be inconsistent with our output-mix

hypothesis, since it would violate relative FPE across states.

To examine whether changes in unit labor requirements vary across states, we extend the

decomposition in equation (3) to control for national changes in factor usage.  To the extent that

state changes in unit factor requirement mirror national changes, there is little scope for large

deviations in relative factor prices across states.  For each state, we decompose the change in the

input requirement matrix, ∆∆C, into two components:  (i) the generalized change in factor usage,
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equal to the state C matrix in 1980 times the percentage change in input requirements (on an

industry-by-industry and factor-by-factor basis) for all other U.S. states over the period 1980-

1990, and (ii) the idiosyncratic change in factor usage, equal to the residual, ∆∆C minus the

generalized change in factor usage.  The larger is the idiosyncratic component of changes in factor

usage, the larger are the implied changes in relative state factor prices – due to state-specific

changes in endowments, technology, or other factors – and the more likely it is that relative FPE

is violated.  Equation (4) describes this decomposition as

(4) ∆∆V = .5(C0+C1)∆∆X + .5∆∆CG(X0+X1) + .5∆∆CI(X0+X1)

where the subscripts G and I index generalized and idiosyncratic changes, respectively.

Columns (4) and (5) of Tables 6a-6d report the results for equation (4).  Overall, idiosyncratic

changes in unit factor requirements account for a small portion of state absorption of factor

supply changes.  Similar to column (3), generalized factor-usage changes in column (4) are large

and negative for those with a high-school education or less (Tables 6a and 6b) and moderate and

positive for those with at least some college (Tables 6c and 6d).  For those with high school or

less, idiosyncratic changes in factor usage in column (5) are much smaller in absolute value than

the generalized changes, which suggests that changes in factor usage for less-educated workers

were relatively similar across states.  For those with some college and college graduates,

idiosyncratic changes in column (5) are also smaller in absolute value relative to generalized

changes, except for northeastern states and California which had a smaller shift towards more

educated workers than did the rest of the country.  These states may have adopted production

techniques that favored more-skilled workers ahead of other states, in which case the results in

column (5) would indicate technological convergence across states.

The results of this section suggest that during the 1980s changes in output mix helped

accommodate changes in state factor supplies and that changes in unit factor requirements were

relatively similar across states.  Both findings are consistent with the output-mix hypothesis.  One

important unanswered question is whether variation in unit labor requirement across states is

consistent with relative FPE.  If relative FPE is violated, then it seems unlikely that changes in
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state output mixes could have accommodated state endowment shocks without changes in relative

state factor prices.  We now address this issue by testing for relative FPE directly.

4  Testing for Relative FPE across U.S. States

In the previous section we saw that in all states during the 1980s there was a large shift away

from the use of less-educated workers and that in most states this shift matched the national shift

away from these workers.  Our main concern is whether changes in unit labor requirements were

sufficiently different across states to be inconsistent with relative FPE.  If we find this to be the

case, then we cannot rule out the possibility that variation across states in changes in unit labor

requirements reflect variation across states in changes in factor prices, indicating that one way in

which states adjust to endowment shocks is through changes in factor prices relative to the rest of

the country.  In this section, we examine whether variation in unit labor requirement across states

is consistent with relative FPE.

4a  Methodology

Our test for relative FPE across U.S. states extends the methodology of Davis, et al (1997).

Suppose that factor-market equilibrium is given by equation (1).  Davis, et al (1997) claim that if

two regions have equal factor prices and use identical production technologies, the regions will

also have identical unit factor requirements.  In our case, in which we use value-added data rather

than the gross-output data they use, the test of FPE they propose is equivalent to seeing whether

for two regions, i and j,

(5) Vj = CiXj.

That is, the test involves seeing whether we can predict factor endowments for region j by

combining output in region j with unit factor requirements in some other region i.  If the answer is

yes, then the conclusion is that factor prices are equalized between i and j.

One problem with using equation (5) to test FPE is that it is a necessary, but not sufficient,

condition for FPE.  If the number of goods exceeds the number of factors (N>M), which is
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typically the case, there is output indeterminacy:  for a given V and C, there is not a unique X

vector which satisfies equation (1) (Ethier, 1984).8  Following this logic, for a given V and X,

there is also not a unique C matrix which satisfies equation (1).  Suppose that equation (5) holds

for two regions, i and j.  For a given Ci and Vj we could arbitrarily change the elements of the Xj

vector and still satisfy the proposed condition for FPE.  Similarly, for a given Xj and Vj, we could

arbitrarily vary the elements of the Ci matrix and still satisfy the proposed condition for FPE.

Satisfying (5) is not sufficient to determine whether FPE holds between two regions.

We propose a test for relative FPE which, while similar in spirit to Davis, et al (1997), is

based on sufficient conditions for FPE.  Let B be the MxN matrix of direct unit factor

requirements, whose elements show the quantity of each primary factor that each industry uses

directly to produce one real dollar worth of gross output; let A be the NxN input-output matrix,

whose elements show the real dollar value of intermediate inputs each industry purchases from

other industries to produce a dollar of gross output.  Then D=B(I-A)-1 is the MxN matrix of total

(direct plus indirect) unit factor requirements, whose elements show the quantity of each primary

factor each industry uses in total to produce one real dollar worth of net output.  A sufficient

condition for FPE to hold between two regions i and j is that firms in the two regions use identical

input requirements (Dixit and Norman, 1980), in which case,

(6) Di = Dj.

We cannot test (6) because we do not have state net-output data to construct D matrices.

However, we do have C matrices for states, which shows unit factor requirements for value

added.  The two matrices are related, in that C=B(I-A’)-1, and so C is a function of the same two

matrices as D.  Our test for FPE is to examine whether for any pair of regions i and j,

(7) Ci = Cj

which has as a maintained hypothesis that (6) is satisfied.
                                               
8 Bernstein and Weinstein (1998) find evidence consistent with output indeterminacy for Japanese regions but not for OECD
countries, which they interpret to mean that output indeterminacy is more likely to arise where trade costs between regions are
low.  We also find evidence of output indeterminacy across U.S. states.  Harrigan (1997) uses international data to estimate the
impact of factor-endowment changes on output shares.  We estimated specifications similar to Harrigan's on our state data but
obtained very imprecise coefficient estimates, as would be consistent with output indeterminacy.
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It is important to emphasize that (6) and (7) are sufficient, but not necessary, conditions for

FPE.  If there are increasing returns to scale, regional differences in production technologies, or

externalities in production, then regional unit factor requirements may not be equalized, even if

there is regional FPE.  Equal unit factor requirements across regions requires not just equal factor

prices, but also the absence of significant scale effects, externalities, or arbitrary cross-state

differences in production technologies.  In testing for FPE using (7), we are forced to assume that

these additional effects are inconsequential for relative regional factor prices.

There are certain types of factor-productivity differences across states for which we can and

do control.  If there are Hicks neutral technology differences across states or if, within education

categories, average worker ability varies across states, then labor quantities will not be measured

in productivity equivalent units.  In this case, observed factor prices may differ in two states even

if the “true” factor prices for productivity-equivalent units are the same.  Following Trefler

(1993), we control for factor-specific but industry-neutral productivity differences between states

by respecifying equation (7) as,

(7’) Ci = diag(ΠΠj)Cj

where ΠΠj is an Mx1 vector which converts factor quantities in region j into productivity

equivalent units for region i.  Equation (7’) is a sufficient condition for relative FPE to hold

between regions i and j.

Equation (7’) highlights the advantage of using unit factor requirements, rather than direct

data on factor prices, to test for FPE.  There is abundant evidence that nominal wages vary across

states (Coehlo and Ghali, 1971; Johnson, 1983; Montgomery, 1992).  Regional nominal wage

differences could be due to differences in unobserved worker abilities, differences in regional

technologies, factor immobility, or other sources. Wage data alone give no insight into whether

inter-regional wage differences violate relative FPE, or just absolute FPE.  By exploiting variation

across industries in unit factor requirements, we can test for relative FPE while controlling for

factors that cause deviations from absolute FPE.  Relative FPE is consistent with wage

differentials across states, as long as these differentials are due to differences in technology or
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average factor quality that are uniform across industries.  We allow wages to be relatively high in

California, for instance, as long as this is due to factors in California being uniformly more

productive in all industries (for whatever reason).

Over our sample period, there may have been many national shocks to preferences and

technology, which produced national changes in factor price changes that were common across

states.  If conditions are such that relative FPE across states was maintained, state factor prices,

and hence state unit factor requirements, should move in unison.  We test for relative FPE by

estimating (7’) in first differences, on a factor-by-factor and state-by-state basis, as

(8) ∆ln(cmni) = αmi + β∆ln(cmn0) + ηmni  ,

where cmni is the unit labor requirement for factor m in sector n in state i; cmn0 is the unit labor

requirement for factor m in sector n in the control region 0; αmi and β are coefficients to be

estimated, where αmi=∆ln(πmi) captures differences in productivity growth between region i and

region 0 that are specific to factor m and uniform across industries; and ηmni is an error term

whose structure is discussed below.  Under the null hypothesis of relative FPE, β = 1.9

4b  Estimation Issues

There are three important estimation issues that merit further discussion.  A first issue is that

some of the 40 sectors in our data include industry groupings that are not comparable across

states.  This problem is particularly severe in agriculture.  Given differences across states in land

quality and soil composition, states specialize in very different agricultural products.  California

and Florida, for instance, specialize in perishable fruits and vegetables, while midwestern states

specialize in grains.  Petroleum refining is another problem industry since some states, such as

California and Texas, have petroleum reserves while most other states do not.  With little or no

overlap across states in the goods that are produced in these sectors, there is no reason to expect

unit labor requirements to be the same, with or without FPE.

                                               
9  In related work, Maskus and Webster (1999) compare U.K. and U.S. unit factor requirements as a means of
testing the HO model, while allowing for cross-country differences in technology.
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We control for this possibility in two ways. First, based on the above considerations we omit

from the sample agricultural sectors (agriculture, agricultural services, tobacco) and petroleum

refining.  This leaves us with 35 sectors per state.10  Second, we exclude from the control group

states that specialize mainly in agriculture (plains states) or other natural-resource intensive

activities (mountain states).  We also exclude small (mainly southern) states from the control

group, where sample sizes of individuals by education group and industry in the PUMS are very

small.11  The control group we use has the 15 largest U.S. states, which include the 12 states

described earlier plus Connecticut, Indiana, and Pennsylvania.  In 1990, these 15 states accounted

68% of U.S. GDP and 65% of U.S. employment.  For a given state, the control region is the 14

other states in the control set, such that the control group varies across states.

A second estimation issue is classical measurement error in the independent variable, the unit

labor requirement for the control region.  Unit labor requirements for a given state are calculated

by combining BEA data on state value added, BEA data on state industry employment, and

PUMS data on the share of workers in a given state industry that belong to a given education

group (see appendix).  Each of these values may be measured with error.  A compounding factor

is that the average ability of workers by education group may vary across states.  These problems

may be partially ameliorated by aggregating across states in constructing unit labor requirements

for the control region.  Still, we remain concerned that both cmni and cmno are subject to errors in

measurement, which will tend to bias the OLS regression coefficient β in (8) towards zero, and

thus lead us to reject relative FPE when it is true.12

There are several options for addressing measurement error.  Since we have a single

regressor, one option is to estimate the "reverse regression" (Klepper and Leamer, 1984) by

                                               
10 Preliminary regressions revealed that investment banking was an extreme outlier whose presence in the sample caused very
large changes in coefficient estimates for certain states (NY, NJ, and IL).  We also exclude this industry from the sample.
11 To concord PUMS data with BEA data, we must start with three-digit Census industries, which exceed 200 in number.
Once we separate workers by education group and industry in the PUMS, we have cell sizes for small states in the low single
digits.  For this reason, we exclude small states from the sample.
12 Time differencing data may tend to exacerbate measurement error.  This problem tends to be less severe for long time
differences, as in our case where we work with the time difference between 1980 and 1990.  Our results confirm this intuition,
as estimates of β  from equation (8) expressed in levels or first differences are very similar.
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making the ∆ln(cmni) the independent variable and ∆ln(cmn0) the dependent variable in equation

(8).  Asymptotically, the OLS estimate of β from (8) is a lower bound for the true value of

β while the inverse of the OLS coefficient from the reverse regression is an upper bound for the

true value of β.  We estimate equation (8) and its reverse regression to determine whether the

lower and upper bounds for β span the value of one.  If measurement error is severe enough,

however, the bounds may be so wide as to be uninformative.

A second option for addressing measurement error is to use instrumental variables (IV).

Valid instruments are often difficult to find.  There are few exogenous variables which are likely

to be correlated with unit factor requirements in the control region, but not with those in the state

on which an observation is taken.  Accordingly, we use the current and lagged ranks of cmn0 as

instruments for ∆ln(cmn0).  One concern is that if ranks are noisy instruments, as may be the case,

IV may increase the standard errors of the coefficient estimates.

A third option is to use extraneous information on the variance of the measurement error to

estimate equation (8) (Judge, et al, 1980).  If we know the ratio of the variances of the “true” and

observed values of ∆ln(cmn0), then we can obtain a consistent estimate of β.  We do not observe

this ratio directly, so we approximate it using information on ∆ln(cmnUS), the change in unit labor

requirements for the United States as a whole.  If we assume that this value is measured with zero

error and that its variance equals the variance of the true value of ∆ln(cmn0), then we can use the

ratio of the variance of ∆ln(cmnUS) to the variance of ∆ln(cmn0) to measure the ratio of the

variances for the true and observed values of ∆ln(cmn0).  In theory, this ratio ranges from zero to

one, with higher values indicating that measurement error is less of a problem.  Estimates from

this errors-in-variables (EIV) approach equal OLS estimates when the ratio equals one.13

A final estimation issue relates to efficient strategies for estimating β in (8).  For each state we

                                               
13 Asymptotically, βEIV =  

βOLS
ratio.  But in our small samples this link need not hold exactly.  Also, nothing in the data

necessarily prevents the estimated ratio from exceeding one.  For cases where this was the case we set the ratio equal to one.
14 In California, for instance, SUR estimates of β range from 0.65 to 0.75 while OLS estimates are from 0.85 to 0.99.  In
general, the asymptotic properties of the SUR estimator apply as the number of observations per equation (which is 35 in our
case) becomes large, not as the number of equations times the number of observations becomes large (Greene, 1997).
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have four equations, one per labor type.  The disturbance term in (8) represents measurement

error in unit labor requirements and shocks to factor usage that are idiosyncratic to specific states.

These disturbances are likely to be correlated across labor types for a given industry in a given

state.  Even under standard assumptions, OLS estimates of β in (8) will not be efficient.

Efficiency is of great concern since, for a true β that is close but not equal to one, standard errors

that are too large will cause us to fail to reject relative FPE when it is in fact false.  Generalized

Least Squares (GLS) techniques, such as the Seemingly Unrelated Regression (SUR) framework,

are the standard approach to obtain efficient coefficient estimates in this context.  One potential

problem with the SUR estimator is it may perform poorly in small samples, as in our case with 35

observations per factor and per state.  Unreported results bear out this concern.  For several

states, SUR estimates of β are much lower than OLS estimates.14

Our solution to this problem is to estimate (8) by OLS (or IV) for each state by stacking the

equations for the four labor types, allowing β to differ by factor, and then correcting the standard

errors for both heteroskedasticity and correlation of the errors across factors for a given industry

(Greene, 1997).  This approach may be somewhat less efficient than SUR, but we avoid the

potentially grave small sample problems associated with this and related estimators.  For our EIV

specifications we adjust for measurement error separately for each factor in each state;

accordingly, our EIV estimation treats each factor separately rather than stacking.

4c  Estimation Results

If the null hypothesis of relative FPE is true, then this result should be abundantly clear in the

data:  changes in each element of a state's C matrix should equal changes in each corresponding

element of the C matrix for the control group (up to some scalar constant).  To demonstrate that

in our data this is indeed the case, Figure 1 plots the data for California; data plots for the other

immigration gateway states are very similar.  Each graph plots, for one of the four labor types,

changes in unit labor requirements for the control group of states on the horizontal axis and
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changes in those for California are on the vertical axis.  To show how the data line up, the 45-

degree line passing through the origin is also shown.

Figure 1 gives broad visual support for relative FPE.  Under absolute FPE, in each graph all

industries should lie exactly along the 45-degree line.  Under relative FPE, all industries should

exactly along a 45-degree line -- but not necessarily the one through the origin.  In every graph

there are clearly some industries off a 45-degree line, which may indicate measurement error.  But

the overall impression is that the large majority of observations appear consistent with relative

FPE.  For example, the drop in Cs for high-school dropouts in California was uniformly smaller

than in the control group, which confirms the finding in Table 6a.  This is consistent with relative

FPE, but not absolute FPE.  For the other three labor groups in California the graphs also look

consistent with relative FPE, and perhaps even absolute FPE.

Tables 7 through 9 report results for our OLS, IV, and EIV estimation, respectively.  In

Tables 7 and 8, for each state we regress the change in industry unit labor requirements on the

change in industry unit labor requirements for the control group of states, where we allow each of

the four labor types to have distinct constant terms and slope parameters.  That is, we stack the

regression in equation (8) for the four labor types within a state and estimate a separate α and β

for each type.  Standard errors are adjusted for heteroskedasticity and correlation in the errors

across factors within an industry (Greene, 1997).

The regression results in Tables 7 and 8 include two sets of hypothesis tests.  First, we test the

null hypothesis that the regression slope coefficient, β in equation (8), equals one, on a factor-by-

factor basis.  We report the p-values for this test, which indicate the level of significance at which

the null would be rejected.  This is an initial indication of whether the correlation in unit factor

requirements across states is consistent with relative FPE.  The relative FPE hypothesis, however,

implies that β equals one for all factors in a state.  Accordingly, the second hypothesis we test is

the joint null that the regression slope coefficient is one for all labor types in a given state.  We

also report the F statistic and the associated p-value for this test.  Table 9 with our EIV results is

structured similar to Tables 7 and 8.  The main difference is that the EIV approach allows us to
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test for relative FPE only on a factor-by-factor basis because we adjust for measurement error

separately for each factor.  In Table 9, for each factor-state case "Reliability" indicates the ratio of

the variance of ∆ln(cmnUS) to the variance of ∆ln(cmn0), our estimate of the ratio of the variances

for the true and observed values of ∆ln(cmn0) in (8).

For all specifications, we must pick a significance level to use for deciding whether to reject

relative FPE.  Since the goal is to determine whether the data are consistent with the null of

relative FPE, we are particularly concerned about failing to reject the null when it is false (type II

errors).  We can raise the power of the test by choosing a higher significance level, but at the

potential cost of rejecting the null when it is true (type I errors).  To reconcile these competing

objectives, we summarize test results for several different significance levels.

To begin, consider the OLS results in Table 7.  Overall, we fail to reject the null hypothesis

that slope coefficients equal one at reasonably high significance levels for the vast majority of

state-factor cases.  The results are somewhat weaker when we consider the joint null of unity for

all factors in given states.  It is clear in Table 7 that the relative FPE hypothesis does particularly

poorly in two states, Georgia and Washington, neither of which, it is important to note, are

gateway states for immigration.  In both these states we reject the null of unity for three of the

four factors and reject the joint null of unity for all four factors at any significance level.  For the

other 10 states, however, there is much stronger support for relative FPE.

For high-school dropouts, coefficient estimates range from 0.75 in Illinois to 1.13 in

Massachusetts, with most estimates between 0.85 and 1.  We fail to reject the null of unity for 9

of the 10 remaining states (5 of the 6 gateway states) at the 15% significance level.  For high-

school graduates, coefficient estimates range from 0.81 in New York to 1.28 in North Carolina.

We fail to reject the null of unity for 8 of the 10 states (all gateway states) at the 25% significance

level and in 9 of 10 states at the 10% level.  For those with some college, coefficient estimates

range from 0.79 in Ohio to 1.21 in North Carolina.  We fail to reject the null of unity in 9 of 10

states (all gateway states) at the 15% level and in all 10 states at the 5% level.  For college

graduates, coefficient estimates range from 0.76 in Massachusetts to 1.05  in Illinois.  We fail to
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reject the null of unity in all 10 states at the 20% level.  Finally, for the joint null that slope

coefficients for all four labor types equal one in a state, we turn to the penultimate column in

Table 7.  Excluding Georgia and Washington, we fail to reject the joint null of unity in 7 of 10

states (3 of 6 gateway states) at the 15% level of significance.

One troubling aspect of the regression results in Table 7 is that most slope coefficients are less

than one.  Since the control group of states is composed mainly of the other states in the table

(plus CT, IN, and PA), we would expect that roughly half of the slope coefficients would exceed

one and roughly half would be less than one.  That most fall below unity is a possible indication of

estimation bias due to measurement error.

Our first approach for handling measurement error is to estimate the reverse regressions of

equation (8) for each factor-state case.  In 44 of the 48 cases, the coefficient estimate from the

reverse regression was smaller than that from the forward regression.15  Given differences in

regional size, we suspect measurement error to be more severe for state data than for the control-

group data, so this comparison supports concerns about measurement error.  In all 48 cases the

reverse coefficient was less than one, which mean the forward-reverse-regression coefficients

interval brackets one in 37 of 48 (77%) cases.  The 11 cases where the interval lies strictly above

one can easily be seen in Table 7:  they are the 11 cases where the forward regression coefficient

exceeds one.  That the forward-reverse coefficient estimates span one in more than three-quarters

of the state-factor cases is further evidence in support of relative FPE.

Results for our second approach for handling measurement error, instrumental variables, are

in Table 8.  Comparing the results in Tables 7 and 8, IV coefficient estimates are closer to one for

most, but not all, state-factor combinations.  The results improve most dramatically for the two

problem states, Georgia and Washington.  We fail to reject the null of unity for three of four

factors at the 10% significance level in either state, though we still reject the joint null of unity for

                                               
15 The four cases where the reverse coefficient exceeds the forward are all "problem" cases for us in that the forward
coefficient is significantly less than one:  high-school graduates in NY, high-school dropouts in IL, and both factors in GA (see
Table 7).
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both states.  For the 10 remaining states, there is also stronger support for relative FPE.  We fail

to reject the null of unity for just 2 of 40 state-factor cases at the 15% level and we fail to reject

the joint null of unity in just one of the 10 states at the 10% level.  Overall, at least some of the

improvement from IV comes from larger coefficient estimates, as would be consistent with

measurement error:  in 22 cases the IV estimate is larger than the OLS estimate.

Finally, Table 9 reports our results for EIV estimation, our third strategy for addressing

measurement error.  As expected, results improve somewhat relative to OLS.  At the 10% (5%)

significance level we reject the null of relative FPE in only seven (five) of 48 cases, and all these

problem cases were such for the OLS estimation as well.  In 20 of the 48 cases our methodology

indicated no measurement error (i.e., Reliability equals one).  The largest EIV adjustment relative

to OLS was for college graduates in California (reliability = 0.927).  These results further confirm

support for the null of relative FPE.

4d  Discussion of Estimation Results

In unreported results, we examined the sensitivity of our findings to alterations in the

specification and to further restrictions on the sample of states and industries.  The requirement

that the log change in unit factor requirements are exactly equal across states is quite stringent.  A

less restrictive model would allow state and industry-specific shocks to technology that dissipate

over time, as technology diffuses across states.  The error correction model, which would modify

equation (8) by adding the regressor ln(cmni, t-1) - ln(cmn0,t-1), is a natural specification of slow

technology diffusion across states.  In this framework, the change in unit factor requirements in a

state is increasing in the change in unit factor requirements in other states, but decreasing in the

difference of the initial levels.  OLS and IV estimation of equation (8) including the regressor

ln(cmni, t-1) - ln(cmn0,t-1), produced very similar results to those in Tables 7 and 8.  We again found

that the vast majority of slope coefficients are not statistically different from unity.  As additional

extensions, we experimented with dropping industries that produce mainly non-traded outputs

(services, mining, construction), testing for FPE in other large states (CT, IN, PA), restricting the



27

control region to be the six gateway states (NY, NJ, IL, FL, TX, CA), and weighting the

regressions by the average industry share of state employment over the time period.  The results

for these modifications are very similar to those that we report.

Based on evidence in the literature, which shows substantial variation in nominal wages across

regions within the United States, the prior of most researchers may be that we would easily reject

relative FPE.  Relative to this prior, our results are rather surprising.  It is important to re-

emphasize, however, that our results on relative FPE are consistent with nominal factor-price

differences across states.  What we find is that inter-state productivity differences are uniform

across industries and therefore consistent with relative FPE.  By allowing for factor-specific

productivity differences across states, we have permitted unit labor requirements for a given labor

type to vary between two states by a scalar constant.  If this scalar constant changes over time,

due to changes in average factor quality or neutral changes in technology that vary across states,

then observed wage differentials will change over time.  Recent work by Bernard and Jensen

(1999) suggests that wage differences between states have changed over time.  Our results

suggest that any such changes are likely due to changes in technology or factor quality that are

uniform across industries within states.

5 Conclusion

In this paper we examine whether state factor prices could be invariant to state-specific shocks

to factor supplies.  The motivation for this exercise is the apparent insensitivity of U.S. regional

wages to large immigrant inflows during the 1980s.  Following the logic of the Rybczynski

Theorem from HO theory, if states are open to trade they can absorb shocks to relative factor

endowments by altering their mix of outputs without any changes in relative factor prices.  We

have looked for evidence supporting this output-mix hypothesis using a newly constructed data

set covering four factors, 40 sectors, and 15 states in 1980 and 1990.

We have two key findings.  The first is that during the 1980s there were substantial shifts in

relative labor supplies across U.S. states which were broadly matched by state output-mix
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changes.  The northeast became more concentrated in highly-educated labor, southern states had a

relatively large shift away from labor with low education levels, and California became relatively

concentrated in both very high-skilled and very low-skilled labor.  While changes in the size of the

native labor force offset immigrant inflows in many states, in California a large influx of low-

education immigrants maintained its relative supply of low-skilled workers.  Matching these

endowment shifts, we find that state output growth tended to be high in sectors that are intensive

in expanding factors.  California, for instance, had highest relative growth in industries intensive in

either high-school dropouts or college graduates.  Beyond these stylized facts, our accounting

decompositions of HO factor-market equilibrium conditions indicate that both output changes and

changes in unit factor requirements account for how states absorb changes in factor supplies.  But

changes in factor usage are relatively similar across states, which suggests that changes in state

unit factor requirements are due largely to national shocks rather than state-specific wage

responses to state-specific shocks.

The second main finding is that relative FPE holds across states for the vast majority of state-

factor cases in our sample, including the gateway states for immigration.  Relative FPE is

"indirect" support for the output-mix hypothesis, in that relative FPE implies that the related

states all experience common relative-wage responses, if any, to an endowment shock in any one

state.  This happens either through changes in the import or export of goods in response to

output-mix changes or through inter-state migration and capital flows.

Overall, these results suggest that states adjust to immigration shocks through mechanisms

other than changing relative factor prices across states.  In closing, we make two comments on

our findings to highlight possible areas for future research.

First, our results do not show a causal linkage between endowment changes and output

changes.  We instead have searched for conditions that are consistent with the output-mix

hypothesis.  In particular, our finding of relative FPE across states is silent on the source(s) of the

adjustment process to endowment shocks.  Changes in inter-state trade flows in response to

output-mix changes or inter-state migration and investment flows are both plausible processes.
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An important topic for future research is to identify the relative importance of these mechanisms

for how states adjust to changes in factor supplies and other shocks.

Second, throughout the paper our unit of analysis has been individual states.  We have not

analyzed how the United States as a whole accommodates immigration inflows, or endowment

shocks more generally.  The evidence that state-specific endowment shocks do not trigger state-

specific wage responses does not imply that the United States overall had no wage response to

increased immigration.  For the latter to be the case, any change in national output mixes from

immigration would have to have had no effect on world product prices and thus not triggered

Stolper-Samuelson wage effects.  We have not addressed this issue, but we regard it as an

important topic for future research.
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Data Appendix

Output and Employment by Industry and State:  We measure industry output at the state level as
real value added in 1992 dollars.  These data come from the United States Department of
Commerce, Bureau of Economic Analysis (the raw data were obtained from
http://www.bea.doc.gov/bea/regional/data.htm).  We measure industry employment at the state
level using total employment (all full and part-time workers) from the Regional Economic
Information System of the Bureau of Economic Analysis (1969-1996 REIS CD ROM).  For both
output and employment, we use data for 1980 and 1990.  The industries cover all civilian sectors
of the economy.  Data for 1980 were classified by the 1972 Standard Industrial Classification
(SIC) code; data for 1990 were classified by the 1987 SIC code. We matched the 1990 data back
to the 1972 SIC code, using the concordance from Wayne Gray which accompanies the National
Bureau of Economic Research Manufacturing Productivity Data Base. The raw BEA data are
available at the two-digit SIC level.  In a few cases, concording data between years required us to
aggregate several two-digit industry into a single sector (e.g., in our data the electrical machinery
industry combines SIC industries 36 and 38).  To concord BEA data to PUMS data (described
below), we combined two-digit SIC industries into 40 sectors (listed in Table 4), which are a mix
of one-digit and two-digit SIC industries, using the concordance given in, “The Relationship
between the 1970 and 1980 Industry and Occupation Classification Systems,” Technical Paper 59,
Bureau of the Census, U.S. Department of Commerce.

State Labor Endowments by Education Category:  We measure the total state labor force by four
education categories:  high-school dropouts, high-school graduates, those with some college, and
college graduates.  These data come from the 1980 and 1990 Public Use Microsamples (PUMS)
of the U.S. Census of Population and Housing.  An individual is counted as in the labor force if
he or she is employed or unemployed but looking for work.  We calculate state labor endowments
by summing the population weights given in the 5% PUMS across all individuals that live in a
given state, are part of the labor force, and belong to a given educational category.

Employment and Unit Labor Requirements by State, Industry, and Education Category:  To
calculate employment by state, industry, and education category, we combine data from the BEA
and the PUMS.  Beginning with the PUMS, we sum the earnings weights for all individuals who
are employed (at work or with a job but not at work) in a given industry, work in a given state,
and belong to a given educational category.  We then use these totals to calculate the share of
individuals in a given state and industry that belong to each education category.  Multiplying these
shares by total employment, as measured by the BEA, we obtain total employment by state,
industry, and education category.  To obtain unit labor requirements by state, industry, and
education category, we simply take the ratio of employment by state, industry, and education
category to value added by state and industry.
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Table 1a:  U.S. State Labor Endowments, Levels in 1980 and 1990

State Year HSDO HSG SC CG

United States 1980 25.0 34.8 22.5 17.7

1990 18.1 29.9 29.6 22.4

New York 1980 23.6 33.1 22.0 21.2

1990 17.3 28.4 27.3 27.0

New Jersey 1980 24.0 35.6 19.5 20.9

1990 16.6 30.6 24.8 28.0

Illinois 1980 25.1 34.4 22.5 18.0

1990 16.9 29.0 30.4 23.8

Florida 1980 25.9 34.1 24.0 16.1

1990 20.3 29.3 30.6 19.8

Texas 1980 29.4 29.2 23.6 17.8

1990 21.8 26.0 30.5 21.7

California 1980 21.5 28.1 30.2 20.2

1990 20.2 21.5 33.8 24.5

Massachusetts 1980 21.0 34.1 22.9 22.1

1990 14.5 27.9 27.6 30.1

Ohio 1980 24.2 41.0 19.5 15.2

1990 16.6 36.5 27.7 19.2

Michigan 1980 23.4 37.7 23.3 15.6

1990 15.9 31.4 33.3 19.5

North Carolina 1980 34.8 32.5 18.8 13.9

1990 22.0 31.5 28.1 18.3

Georgia 1980 33.1 32.3 18.9 15.7

1990 21.8 31.5 26.0 20.7

Washington 1980 17.9 34.4 28.2 19.6
1990 13.1 26.4 36.3 24.2

Notes:  Each cell reports the share of that state's total labor force (employed plus unemployed) accounted for by the factor
in that cell.  "HSDO" designates high-school dropouts; "HSG" designates high-school graduates; "SC" designates those
with some college; and "CG" designates college graduates and beyond.
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Table 1b:  U.S. State Labor Endowments, Changes Over the 1980s

State HSDO HSG SC CG

United States -6.9 -4.8 7.1 4.7 

New York -6.4 -4.8 5.3 5.8 

New Jersey -7.4 -5.0 5.4 7.0 

Illinois -8.3 -5.5 7.9 5.8 

Florida -5.6 -4.8 6.7 3.8 

Texas -7.6 -3.3 7.0 3.9 

California -1.3 -6.6 3.6 4.3 

Massachusetts -6.5 -6.2 4.7 8.0 

Ohio -7.6 -4.5 8.2 4.0 

Michigan -7.6 -6.3 10.0 3.9 

North Carolina -12.8 -1.0 9.3 4.4 

Georgia -11.3 -0.8 7.1 5.0 

Washington -4.8 -8.0 8.2 4.6 

Notes:  Each cell reports the level change from 1980 to 1990 in the share of that state's total labor force (employed plus
unemployed) accounted for by the factor in that cell.  "HSDO" designates high-school dropouts; "HSG" designates high-
school graduates; "SC" designates those with some college; and "CG" designates college graduates and beyond.
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Table 2:  U.S. Immigrant Shares of Education Groups, 1980 and 1990

State Period HSDO HSG SC CG

United States 1980 10.1 4.6 5.6 7.2 
1990 18.6 6.1 6.8 9.3 

New York 1980 23.4 12.0 11.9 13.0
1990 32.8 15.5 14.6 15.9

New Jersey 1980 17.4 8.6 8.9 11.2
1990 25.2 11.2 11.5 15.1

Illinois 1980 13.7 5.0 6.1 9.3 
1990 22.5 7.2 6.8 9.7 

Florida 1980 15.4 9.3 10.9 11.4
1990 25.4 11.9 12.4 13.4

Texas 1980 11.9 4.0 4.2 5.2 
1990 25.7 6.1 5.7 7.9 

California 1980 33.0 11.4 11.0 14.0
1990 54.5 19.3 16.0 19.4

Massachusetts 1980 17.5 6.2 4.8 6.3 
1990 23.1 8.2 7.1 8.6 

Ohio 1980 3.1 1.8 2.5 4.4 
1990 2.9 1.5 2.0 4.8 

Michigan 1980 5.2 3.0 3.6 6.1 
1990 5.3 2.5 2.8 6.6 

North Carolina 1980 0.9 1.3 1.7 2.7 
1990 2.0 1.3 1.9 3.8 

Georgia 1980 1.1 1.7 2.6 3.1 
1990 3.8 2.3 3.1 5.2 

Washington 1980 8.6 4.6 5.1 6.7 
1990 15.1 5.4 5.4 7.6 

Notes:  Each cell reports the share of that state's total labor force (employed plus unemployed) in that cell's education
group accounted for by immigrants.  "HSDO" designates high-school dropouts; "HSG" designates high-school graduates;
"SC" designates those with some college; and "CG" designates college graduates and beyond.
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Table 3:  U.S. State Endowments of Natives and Immigrants, Change 1980-1990

State Worker Type HSDO HSG SC CG

United States Natives -7.8 -5.1 6.4 3.9 
Immigrants 0.8 0.2 0.8 0.8 

New York Natives -6.5 -5.2 4.0 4.3 
Immigrants 0.1 0.4 1.4 1.5 

New Jersey Natives -7.4 -5.4 4.3 5.2 
Immigrants 0.0 0.4 1.1 1.9 

Illinois Natives -8.6 -5.8 7.2 5.2 
Immigrants 0.4 0.3 0.7 0.6 

Florida Natives -6.8 -5.1 5.5 2.9 
Immigrants 1.2 0.3 1.2 0.8 

Texas Natives -9.7 -3.7 6.2 3.1 
Immigrants 2.1 0.4 0.8 0.8 

California Natives -5.2 -7.6 1.5 2.4 
Immigrants 3.9 0.9 2.1 1.9 

Massachusetts Natives -6.2 -6.3 3.8 6.8 
Immigrants -0.3 0.2 0.8 1.2 

Ohio Natives -7.4 -4.3 8.1 3.7 
Immigrants -0.3 -0.2 0.1 0.3 

Michigan Natives -7.2 -6.0 9.9 3.6 
Immigrants -0.4 -0.4 0.1 0.3 

North Carolina Natives -12.9 -1.0 9.2 4.1 
Immigrants 0.1 0.0 0.2 0.3 

Georgia Natives -11.8 -1.0 6.8 4.4 
Immigrants 0.5 0.2 0.3 0.6 

Washington Natives -5.2 -7.8 7.6 4.1 
Immigrants 0.4 -0.2 0.5 0.5 

Notes:  Each cell reports the level change in the share of that state's total labor force (employed plus unemployed)
accounted for by the factor in that cell.  "HSDO" designates high-school dropouts; "HSG" designates high-school
graduates; "SC" designates those with some college; and "CG" designates college graduates and beyond.
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Table 4:  U.S. Industry Factor Intensity, 1980 and 1990
Industry HSDO/CG HSDO/CG HSG/CG HSG/CG SC/CG SC/CG 
Name 1980 1990 1980 1990 1980 1990

Agriculture 5.69 4.66 4.56 3.82 1.82 2.15
Agr. Services 2.11 1.90 1.41 1.49 1.20 1.58

Mining 1.62 0.91 2.21 1.76 1.25 1.31
Construction 3.86 2.47 4.68 3.68 2.29 2.52
Food Products 3.71 2.57 3.59 3.12 1.52 2.02

Tobacco 3.29 0.92 3.71 2.62 1.86 1.56
Textiles 9.49 6.41 7.20 8.05 1.76 3.41
Apparel 12.29 5.39 9.29 4.47 2.43 2.12
Lumber 8.69 4.79 8.06 6.28 2.84 3.49
Furniture 5.72 4.41 4.79 4.38 1.74 2.94

Paper 2.72 1.81 3.64 4.13 1.36 1.82
Printing 1.05 0.55 2.13 1.32 1.34 1.21

Chemicals 0.82 0.41 1.67 1.15 0.91 1.01
Petro. Refining 0.71 0.28 1.65 1.20 0.96 1.49

Rubber 2.59 2.73 4.05 4.40 1.28 2.85
Leather 14.25 4.04 14.25 5.93 2.63 2.03

Stone/Clay/Glass 4.81 1.75 6.74 3.17 2.63 1.94
Primary Metals 3.77 2.03 5.05 3.78 1.90 2.20
Metal Products 3.83 2.13 5.36 3.99 2.34 2.60

Machinery 1.76 0.80 3.43 1.74 1.78 1.63
Elec. Machinery 1.50 0.62 2.54 1.23 1.48 1.24
Tranport Equip. 1.71 0.73 3.14 1.70 1.60 1.61
Misc. Manuf. 3.12 1.58 3.91 2.02 1.80 1.68

Transport/Utilities 1.79 0.82 3.78 2.21 2.28 2.11
Wholesale Trade 1.47 0.65 2.57 1.49 1.73 1.45

Retail Trade 3.88 2.30 4.39 3.16 2.90 2.82
FIRE 0.41 0.22 1.71 1.02 1.37 1.37

Investment Finance 0.13 0.07 0.44 0.30 0.67 0.57
Lodging Services 4.67 2.30 4.18 3.07 2.61 2.74
Personal Services 5.70 1.70 8.02 3.30 4.32 2.69
Business Services 0.39 0.27 0.75 0.53 0.80 0.83

Auto Services 7.11 6.96 7.76 8.70 3.24 6.03
Repair Services 4.53 3.01 6.12 4.86 3.28 3.62
Entertainment 1.51 1.08 1.57 1.26 1.47 1.59

Health Services 0.69 0.33 1.18 0.77 1.20 1.22
Legal Services 0.04 0.05 0.37 0.24 0.43 0.43
Educ. Services 0.18 0.11 0.30 0.26 0.34 0.35
Social Services 0.53 0.37 0.74 0.65 0.77 0.82

Household Services 22.80 9.26 8.30 5.58 3.90 3.31
Government 0.55 0.23 1.49 0.96 1.18 1.37

Notes:  Each cell reports the ratio of national employment of that cell's two factors for the industry and year of that cell.
"HSDO" designates high-school dropouts; "HSG" designates high-school graduates; "SC" designates those with some college;
and "CG" designates college graduates and beyond.  Industry categories combine one- and two-digit SIC industries.
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Table 5a:  U.S. State Output-Mix Changes, 1980 to 1990

State HSDO Weights HSG Weights SC Weights CG Weights

United States 0.03 -0.16 -0.05 0.18

New York -0.04 -0.14 -0.04 0.21

New Jersey -0.33 -0.21 0.12 0.42

Illinois -0.02 -0.18 -0.08 0.27

Florida 0.00 -0.07 0.00 0.06

Texas -0.21 -0.20 -0.02 0.43

California 0.12 -0.09 -0.14 0.10

Massachusetts -0.41 -0.21 0.12 0.50

Ohio 0.02 -0.14 -0.08 0.19

Michigan 0.13 -0.06 -0.18 0.10

North Carolina -0.19 -0.04 0.03 0.19

Georgia -0.13 -0.18 0.06 0.26

Washington 0.19 -0.10 -0.13 0.04

Notes:  Each cell reports the weighted-average change in log real state value added across all 40 sectors, as defined by
equation (1) in the text.  Each row corresponds to a different state, and the weights vary across the four columns.  The
weights are an industry's share of state-wide employment for a given factor type, averaged over 1980 and 1990.  To control
for the fact that over the sample period some states grew faster than others, the value reported in each cell is normalized
by subtracting off the weighted-average change in log real state value added using as weights total employment by industry
(calculated as the average of the weights for the four labor types, such that values in each row sum to zero).
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Table 5b:  California Output-Mix Changes, 1980 to 1990
Industry Annualized HSDO/CG HSG/CG SC/CG 

Name Output Growth Rank Rank Rank
Machinery 4.32 25 26 29

Household Services 3.89 1 2 2 
Apparel 3.86 3 16 18

FIRE 2.76 36 31 27
Textiles 2.54 11 19 24

Legal Services 2.32 40 40 40
Elec. Machinery 1.74 29 30 31

Construction 1.41 20 10 7 
Wholesale Trade 1.41 22 24 20

Transport/Utilities 1.40 28 21 11
Lodging Services 1.29 17 14 13
Personal Services 1.16 15 6 4 

Entertainment 1.14 27 32 25
Printing 1.02 31 27 28

Stone/Clay/Glass 0.92 16 8 12
Food Products 0.73 13 17 21
Government 0.71 37 34 26

Business Services 0.71 35 37 37
Agriculture 0.70 4 18 16
Retail Trade 0.49 18 11 6 

Auto Services 0.39 6 1 1 
Social Services 0.23 33 35 36

Chemicals 0.19 24 29 34
Agr. Services 0.12 14 22 23

Repair Services -0.01 10 4 3 
Rubber -0.09 9 13 17

Misc. Manuf. -0.18 21 20 19
Health Services -0.20 34 36 35
Primary Metals -0.36 8 7 10

Investment Finance -0.39 39 38 38
Transport Equip. -0.40 30 33 32
Educ. Services -0.46 38 39 39
Metal Products -0.69 12 9 9 

Lumber -0.80 7 3 5 
Paper -0.86 19 12 15
Mining -1.07 26 25 30
Leather -1.23 2 15 14

Furniture -1.60 5 5 8 
Petro. Refining -2.54 32 28 33

Tobacco -19.62 23 23 22

Notes:  Each industry's output growth rate is the California annualized growth rate less the U.S. annualized growth rate, all
in terms of real value added.  For the factor-intensity measures, the ranks are constructed as the average of the ranks in
1980 and 1990.  Within each ranking, lower (higher) numbers indicate more unskill-intensive (skill-intensive) industries.
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Table 6a:  Employment Decompositions for High-School Dropouts, 1980 to 1990

State ∆ V .5(C 0 +C1 ) ∆ X .5∆ C(X 0 +X 1 ) .5∆ C g (X 0 +X 1 ) .5∆ C I (X 0 +X 1 ) 

New York -6.01 3.11 -9.12 -8.51 -0.61 

New Jersey -7.41 3.62 -11.03 -9.78 -1.24 

Illinois -7.52 1.51 -9.03 -9.02 -0.01 

Florida -5.18 2.47 -7.65 -9.13 1.48

Texas -8.39 1.32 -9.71 -11.40 1.70

California -0.99 2.88 -3.88 -8.17 4.29

Massachusetts -6.90 3.32 -10.22 -8.31 -1.91 

Ohio -7.15 1.78 -8.93 -8.87 -0.07 

Michigan -6.82 0.76 -7.58 -8.03 0.45

North Carolina -12.82 4.46 -17.28 -14.75 -2.53 

Georgia -11.11 4.13 -15.24 -13.41 -1.83 

Washington -4.30 0.85 -5.14 -6.31 1.17
Notes:  The decomposition for each state in this table follows equations (3) and (4) in the text.  Column (1) shows the change in a
given factor's share of total state employment, column (2) shows the contribution of changes in output to changes in factor
employment, and column (3) shows the contribution of changes in unit labor requirements to changes in factor employment.
Columns (4) and (5) further decompose column (3) into the contributions of generalized changes in unit labor requirements
common across all states (column (4)) and changes in unit labor requirements that are idiosyncratic to a given state (column (5)).

Table 6b:  Employment Decompositions for High-School Graduates, 1980 to 1990

State ∆ V .5(C 0 +C1 ) ∆ X .5∆ C(X 0 +X 1 ) .5∆ C g (X 0 +X 1 ) .5∆ C I (X 0 +X 1 ) 

New York -5.81 5.02 -10.83 -8.30 -2.53 

New Jersey -5.95 6.98 -12.93 -9.82 -3.11 

Illinois -6.40 2.14 -8.55 -8.80 0.26

Florida -5.74 3.44 -9.18 -7.24 -1.93 

Texas -3.55 1.59 -5.15 -7.37 2.22

California -6.94 3.30 -10.24 -5.86 -4.38 

Massachusetts -7.35 7.09 -14.43 -9.00 -5.43 

Ohio -5.78 3.15 -8.93 -10.83 1.89

Michigan -7.79 0.89 -8.68 -9.32 0.64

North Carolina -1.56 5.39 -6.95 -8.57 1.62

Georgia -1.16 4.72 -5.89 -8.03 2.14

Washington -8.59 0.91 -9.49 -7.44 -2.06 
Notes:  The decomposition for each state in this table follows equations (3) and (4) in the text.  See notes to Table 6a.
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Table 6c:  Employment Decompositions for Some College, 1980 to 1990

State ∆ V .5(C 0 +C1 ) ∆ X .5∆ C(X 0 +X 1 ) .5∆ C g (X 0 +X 1 ) .5∆ C I (X 0 +X 1 ) 

New York 5.72 4.36 1.37 4.84 -3.48 

New Jersey 5.84 5.33 0.51 4.26 -3.75 

Illinois 8.05 2.06 6.00 4.39 1.61

Florida 7.23 3.18 4.05 5.89 -1.84 

Texas 7.64 2.06 5.59 4.15 1.43

California 3.30 4.29 -0.99 7.07 -8.06 

Massachusetts 4.78 6.76 -1.97 4.98 -6.95 

Ohio 8.73 2.07 6.65 4.18 2.48

Michigan 10.26 0.27 9.99 5.26 4.73

North Carolina 9.58 4.15 5.43 4.54 0.89

Georgia 6.96 3.94 3.02 4.30 -1.27 

Washington 7.96 0.74 7.21 6.28 0.93
Notes:  The decomposition for each state in this table follows equations (3) and (4) in the text.  See notes to Table 6a.

Table 6d:  Employment Decompositions for College Graduates, 1980 to 1990

State ∆ V .5(C 0 +C1 ) ∆ X .5∆ C(X 0 +X 1 ) .5∆ C g (X 0 +X 1 ) .5∆ C I (X 0 +X 1 ) 

New York 6.09 4.89 1.20 3.37 -2.16 

New Jersey 7.51 5.81 1.70 2.08 -0.38 

Illinois 5.88 2.28 3.60 2.48 1.12

Florida 3.68 2.06 1.62 2.93 -1.31 

Texas 4.30 2.29 2.00 1.61 0.39

California 4.63 3.37 1.26 3.40 -2.14 

Massachusetts 9.46 7.62 1.84 3.36 -1.51 

Ohio 4.21 1.87 2.34 1.96 0.38

Michigan 4.35 0.68 3.68 2.42 1.26

North Carolina 4.80 2.77 2.03 1.72 0.31

Georgia 5.32 3.25 2.06 2.25 -0.19 

Washington 4.93 0.88 4.04 3.12 0.93
Notes:  The decomposition for each state in this table follows equations (3) and (4) in the text.  See notes to Table 6a.
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Table 7:  OLS Regressions Testing For Relative FPE
State Quantity HSDO HSG SC CG Joint Test R Squared 

New York β 0.900 0.814 0.955 0.844 
σ 0.083 0.056 0.065 0.135 3.12

p-value for   β =1 0.235 0.002 0.495 0.256 0.027 0.887 

New Jersey β 0.968 0.854 1.032 0.991 
σ 0.249 0.186 0.189 0.144 0.39

p-value for   β =1 0.900 0.439 0.865 0.953 0.813 0.598 

Illinois β 0.748 0.976 0.979 1.047 
σ 0.076 0.068 0.107 0.096 3.66

p-value for   β =1 0.002 0.731 0.844 0.631 0.014 0.907 

Florida β 0.899 0.908 0.951 1.033 
σ 0.136 0.120 0.189 0.162 0.37

p-value for   β =1 0.463 0.448 0.798 0.839 0.830 0.635 

Texas β 0.969 0.979 0.946 1.018 
σ 0.134 0.178 0.205 0.203 0.16

p-value for   β =1 0.820 0.901 0.793 0.928 0.958 0.757 

California β 0.835 1.038 0.901 0.860 
σ 0.111 0.154 0.131 0.135 3.01

p-value for   β =1 0.147 0.804 0.454 0.307 0.031 0.763 

Massachusetts β 1.129 0.888 0.855 0.758 
  σ 0.187 0.126 0.144 0.202 0.94
  p-value for   β =1 0.494 0.383 0.320 0.239 0.454 0.804 

Ohio β 0.900 0.864 0.794 0.858 
  σ 0.074 0.118 0.121 0.126 1.42
  p-value for   β =1 0.184 0.258 0.096 0.266 0.250 0.822 

Michigan β 0.960 1.027 1.141 0.953 
σ 0.145 0.091 0.102 0.142 0.53

p-value for   β =1 0.786 0.766 0.176 0.743 0.715 0.803 

North Carolina β 0.853 1.278 1.211 0.953 
σ 0.267 0.167 0.204 0.208 1.73

p-value for   β =1 0.586 0.104 0.309 0.824 0.165 0.754 

Georgia β 0.763 0.743 0.780 0.669 
σ 0.137 0.107 0.195 0.120 4.00

p-value for   β =1 0.093 0.022 0.268 0.010 0.010 0.782 

Washington β 0.758 0.843 0.759 1.535 
σ 0.137 0.094 0.165 0.193 4.47

p-value for   β =1 0.086 0.103 0.155 0.009 0.005 0.725 

Notes:  These results come from estimating equation (8) using "stacked" ordinary least squares, with standard errors adjusted
for heteroskedasticity and correlation in the errors across factors within an industry.  For each state-factor case, the null of
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relative FPE is that β=1. For each state, the joint null of relative FPE is that β=1 for all four factors together. “HSDO" means
high-school dropouts; "HSG" means high-school graduates; "SC" means some college; and "CG" means college graduates.
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Table 8:  IV Regressions Testing For Relative FPE
State Quantity HSDO HSG SC CG Joint Test

New York β 0.925 0.820 0.968 0.916 
σ 0.112 0.060 0.072 0.131 2.52

p-value for   β =1 0.511 0.005 0.656 0.523 0.059 

New Jersey β 0.643 0.771 1.024 1.030 
σ 0.323 0.253 0.350 0.156 0.82

p-value for   β =1 0.277 0.373 0.946 0.849 0.520 

Illinois β 0.844 0.966 0.909 1.010 
σ 0.060 0.069 0.156 0.114 1.84

p-value for   β =1 0.013 0.625 0.534 0.936 0.143 

Florida β 0.839 0.936 1.126 0.924 
σ 0.161 0.097 0.155 0.199 0.79

p-value for   β =1 0.324 0.512 0.423 0.703 0.541 

Texas β 1.056 1.018 0.792 1.003 
σ 0.161 0.215 0.228 0.236 0.69

p-value for   β =1 0.729 0.934 0.370 0.990 0.603 

California β 0.921 1.096 0.844 0.803 
σ 0.105 0.164 0.153 0.178 2.09

p-value for   β =1 0.456 0.564 0.315 0.277 0.104 

Massachusetts β 0.942 0.940 0.797 0.684 
  σ 0.148 0.120 0.197 0.238 0.61
  p-value for   β =1 0.703 0.622 0.312 0.194 0.660 

Ohio β 0.900 0.818 0.846 1.058 
  σ 0.115 0.126 0.181 0.210 0.63
  p-value for   β =1 0.389 0.159 0.400 0.786 0.647 

Michigan β 0.857 1.011 1.162 0.837 
σ 0.133 0.111 0.139 0.192 0.50

p-value for   β =1 0.290 0.925 0.252 0.402 0.736 

North Carolina β 1.026 1.230 1.316 0.901 
σ 0.160 0.103 0.218 0.223 1.83

p-value for   β =1 0.871 0.029 0.156 0.659 0.146 

Georgia β 0.758 0.820 0.720 0.711 
σ 0.104 0.119 0.272 0.146 3.21

p-value for   β =1 0.027 0.139 0.311 0.056 0.024 

Washington β 0.623 0.845 0.662 1.358 
σ 0.170 0.103 0.243 0.270 2.34

p-value for   β =1 0.033 0.141 0.173 0.194 0.075 

Notes:  These results come from estimating equation (8) using "stacked" instrumental variables, with standard errors adjusted
for heteroskedasticity and correlation in the errors across factors within an industry.  The instruments are the current and

lagged ranks of the regressor in levels.  See notes to Table 7 for additional details.
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Table 9:  EIV Regressions Testing For Relative FPE
State Quantity HSDO HSG SC CG

New York β 0.921 0.854 0.965 0.878 
σ 0.082 0.067 0.074 0.143 

p-value for   β =1 0.340 0.036 0.640 0.401 
Reliability 0.977 0.953 0.990 0.960 

New Jersey β 0.968 0.854 1.033 0.994 
σ 0.227 0.205 0.280 0.260 

p-value for   β =1 0.890 0.483 0.908 0.983 
Reliability 1.000 1.000 1.000 0.997 

Illinois β 0.773 0.979 0.979 1.047 
σ 0.079 0.069 0.106 0.098 

p-value for   β =1 0.007 0.766 0.843 0.637 
Reliability 0.967 0.997 1.000 1.000 

Florida β 0.901 0.917 0.957 1.043 
σ 0.148 0.173 0.195 0.226 

p-value for   β =1 0.510 0.635 0.825 0.851 
Reliability 0.997 0.989 0.994 0.991 

Texas β 0.969 0.979 0.946 1.018 
σ 0.123 0.151 0.147 0.147 

p-value for   β =1 0.806 0.889 0.715 0.901 
Reliability 1.000 1.000 1.000 1.000 

California β 0.857 1.038 0.935 0.928 
σ 0.101 0.134 0.128 0.141 

p-value for   β =1 0.168 0.776 0.615 0.614 
Reliability 0.975 1.000 0.964 0.927 

Massachusetts β 1.129 0.889 0.874 0.774 
  σ 0.149 0.145 0.148 0.176 
  p-value for   β =1 0.391 0.449 0.402 0.209 

Reliability 1.000 0.999 0.978 0.978 

Ohio β 0.912 0.891 0.826 0.866 
  σ 0.091 0.094 0.117 0.193 
  p-value for   β =1 0.338 0.252 0.145 0.492 

Reliability 0.987 0.970 0.961 0.991 

Michigan β 0.960 1.039 1.141 0.953 
σ 0.161 0.090 0.097 0.203 

p-value for   β =1 0.806 0.667 0.156 0.818 
Reliability 1.000 0.989 1.000 1.000 

North Carolina β 0.853 1.278 1.211 0.953 
σ 0.174 0.157 0.174 0.206 

p-value for   β =1 0.405 0.085 0.234 0.823 
Reliability 1.000 1.000 1.000 1.000 

Georgia β 0.774 0.754 0.786 0.682 
σ 0.111 0.111 0.156 0.168 

p-value for   β =1 0.049 0.034 0.178 0.066 
Reliability 0.986 0.985 0.993 0.981 

Washington β 0.759 0.848 0.766 1.535 
σ 0.168 0.149 0.171 0.199 

p-value for   β =1 0.160 0.301 0.181 0.011 
Reliability 1.000 0.994 0.990 1.000 

Notes:  These results come from estimating equation (8) on each factor-state using errors-in-variables techniques.  "Reliability"
is the estimated ratio of the variances for the true and observed values of the regressor.  See notes to Table 7 for other details.
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 Figure 1
Relative FPE for California:

Changes in Unit Labor Requirements 1980-1990, Control Group vs. California
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Notes:  Each graph plots the OLS regression of equation (8) for one of the four factors for California, where the
control group is 14 large states other than California.  Changes in log unit labor requirements for the control group
are on the horizontal axis; changes in log unit labor requirements for California are on the vertical axis.  The line
in each graph is the 45-degree line passing through the origin.


