
NBER WORKING PAPER SERIES

INTERNATIONAL ASSET ALLOCATION
WITH TIME-VARYING CORRELATIONS

Andrew Ang
Geert Bekaert

Working Paper 7056
http://www.nber.org/papers/w7056

NATIONAL BUREAU OF ECONOMIC RESEARCH
1050 Massachusetts Avenue

Cambridge, MA 02138
March 1999

The authors thank Darrell Duffie, Steve Grenadier, Jun Liu, Ken Singleton, and seminar participants at
Stanford University, Barclays Global Investors, University of North Carolina Chapel Hill, Columbia
University, Cornell University, University of Iowa, University of Rochester, Dartmouth College, London
Business School, and State Street Global Advisors. We thank Mike Urias from Morgan Stanley for
providing some of our data. Geert Bekaert thanks the NSF for financial support. The views expressed in
this paper are those of the authors and do not reflect those of the National Bureau of Economic Research.

© 1999 by Andrew Ang and Geert Bekaert. All rights reserved. Short sections of text, not to exceed two
paragraphs, may be quoted without explicit permission provided that full credit, including © notice, is given
to the source.



International Asset Allocation with
Time-Varying Correlations
Andrew Ang and Geert Bekaert
NBER Working Paper No. 7056
March 1999
JEL No. C12, C13, C32, E32, F30, Gil

ABSTRACT

It is widely believed that correlations between international equity markets tend to increase

in highly volatile bear markets. This has led some to doubt the benefits of international

diversification. This article solves the dynamic portfolio choice problem of a US investor faced with

a time-varying investment opportunity set which may be characterized by correlations and

volatilities that increase in bad times. We model the state dependance of US, UK, and German

equity returns using a regime-switching model and find evidence for the existence of a high volatility

regime, in which returns are more highly correlated and have lower means. Solving the dynamic

asset allocation problem for a CCRA investor, we show international diversification is still valuable

with regime changes. Currency hedging imparts further benefit. The costs of ignoring the regimes

are small for moderate levels of risk aversion, and the intertemporal hedging demands induced by

time-varying correlations are negligible.
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1 Introduction

An argument often heard is that correlations between international equity returns are higher during bear

markets than during bull markets, and bear market moves are greater than bull markets. This would

suggest that the benefits of international diversification are less impressive than conventional wisdom

predicts.' This argument is potentially very important since it may help explain the "home bias puzzle",

arguably one of the most important puzzles in international finance. If the diversification benefits from

international investing are not forthcoming at the time that investors need them the most (when their

home market experiences a downturn), international investing may not be worth the trouble.

The existing literature typically documents empirical facts about correlations but has not formalized

the link with diversification benefits. Absent such a link, the argument is incomplete, vague and poten-

tially incorrect. The gap in the literature is not so surprising. The standard benchmark when thinking

about the benefits of international diversification is a static one-period mean-variance framework (French

and Poterba (1991) and Tesar and Werner (1995)).2 In this article, we analyze the impact of time-varying

correlations on asset allocation in a dynamic portfolio allocation problem.

We use regime switching (RS) models to model international equity returns. Since Hamilton (1989)'s

seminal work on RS models, a large literature has developed applying RS models to many financial time

s.eries where there is evidence of changing behavior of the series across business cycles or where there

is other periodic change. Recent estimates of RS models for stock returns appear in Ramchand and

Susmel (1998a and b) and Hamilton and Lin (1996). RS models are able to capture changing conditional

means, changing conditional covariances, and the higher moments of equity returns by using only one

slate variable, the regime, which can take on two values. This makes the portfolio allocation solution

surprisingly simple and intuitive. The effect of stochastic volatility, albeit of different forms, on asset

allocation has only been considered in a few papers so far (Das and Uppal (1998), and Liu (1998)). We

also consider a case where the data generating process (DGP) involves a stochastic interest rate and a

case where there is a state variable (earnings yields) predicting equity returns.

Our ambition is not to explain the home bias puzzle per se but to provide a formal evaluation of the

claim made in the first paragraph in a relatively simple portfolio choice setting. More specifically, our

contribution consists of four parts. First, we numerically solve and develop intuition on the dynamic

asset allocation problem in the presence of regime switches for investors with Constant Relative Risk

Aversion (CRRA) preferences. Here our contribution extends beyond international finance. There has

recently been a resurgence of interest in dynamic portfolio problems where investment opportunity sets

change over time.3 In most of these papers, the investment opportunity set is indexed by a set of state

'Among the many authors documenting this include Longin and Solnik (1998, 1995), Das and Uppal (1996), De Santis and

Gerard (1997), King, Sentana and Wadhwani (1994), and Erb. Harvey and Viskanta (1994).

Recent papers such as Das and Uppal (1998) have considered dynamic settings for international portfolio choice.

3See Balduzzi and Lynch 1999), Liu (1998), Barberis (1996), Campbell and Viceira (1998a and b), and Brennan, Schwartz

and Lagnado (1997).



variables linearly affecting expected returns. Compared to these papers, in some of our examples below,

expected returns vary only with the regime, rather than with state variables.

Second, we specify several RS models for international equity returns that naturally allow formal

tests for different correlations, volatilities and means across different regimes. Although very different

from the majority of the papers in this literature, our work here is closely related to recent work by

Ramchand and Susmel (1998a). Ramchand and Susmel model covariances using a switching ARCH

process. Interestingly, we find evidence of a regime which exhibits higher volatilitybut find weaker

evidence of higher correlations and lower conditional means in that regime with monthly data. We find

no evidence of RS ARCH effects on covariances of the US and UK.

Third, we estimate the portfolio choice of the investor for a number of different RS DGP's, horizons,

and preference parameters. To characterize the uncertainty in the portfolio allocations resulting from

the uncertainty in the parameters of the DGP, Barberis (1996) and Kandel and Stambaugh (1996) use a

Bayesian setting, and Brandt (1998) estimates portfolio weights using an Euler equation approach and

instruments. Instead, we characterize the uncertainty in the portfolio choices from a classical econometric

perspective, using the delta-method, as do Campbell and Viceira (l998a). Our approach allows us to

formally test for the presence of intertemporal hedging demands (the difference between the investor's

one period ahead and long-horizon portfolio choice) and for the presence of regime-dependent asset

allocation for investors with different horizons. It is quite conceivable that long-horizon investors need

not worry about an occasional episode of high correlation, either because the effect on utility is minor or

because they can temporarily re-balance away from international stocks, if these states of the world are

somewhat predictable. In the latter case their safe haven may be US stocks or it may be cash.

Finally, we investigate the economic significance of our results and the claim in the initial paragraph.

We attempt to quantify the utility cost (using the certainty equivalent notion) of: (a) not being internation-

ally diversified and (b) ignoring the occurrences of periods of higher volatility with higher correlations

across all countries. A by-product of one of the set-ups we consider is that we can put an economic value

on the ability to hedge foreign exchange rate risk. In most models, we preclude this ability.

Our work is closely related to Das and Uppal (1998) who consider portfolio selection when per-

fectly correlated jumps across countries affect international equity returns. Our RS processes produce

a "normal" regime with low correlations, low volatilities and a "down-turn" regime with higher corre-

lations, higher volatilities and lower conditional means. However, both regimes are persistent and such

persistence cannot be captured by transitory jumps independent of equity returns. In fact, Das and Uppal

(1996) empirically document that the higher correlations associated with large equity shocks are persis-

tent.4 Furthermore we consider the effect of regime changes on portfolio choice when short rates and

yields predict returns, and we examine currency hedging demands.

Our work, and some of our results, is also closely related to Brandt (1998). Brandt uses a non-

4Das and UppaL aEso conduct a static asset allocation exercise, contrasting the optimal portfolios of an investor who recog-

nizes the dependcnce of the disturbance on the size of the shock with those of an investor who does not.
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parametric approach to estimate portfolio weights in a domestic asset allocation problem. Even though

they are more general, non-parametric approaches may have large small sample biases and our parametric

models may fare better in small samples and lead to more powerful statistical tests. We also face the

problem, shared with most papers in the literature, that the noisiness in expected returns may lead to

noisy and unrealistic asset allocations (Best and Grauer (1991)). To partially mitigate this, we consider

a restricted version of each model designed to limit sampling error in the means by restricting the means

across regimes to be equal. These models cannot be statistically rejected by the data and in most cases

offer better regime classification. Constraining the conditional means across regimes to be equal also

allows a sharper focus on the effect of time-varying correlations.

To make the analysis tractable, we leave out many aspects of international asset allocation that may

be equally or more important but may blur the focus of the paper. Examples include transaction costs (see

Balduzzi and Lynch (1999) in a domestic and Cooper and Kaplanis (1994) in an international context);

inflation risk (Glassman and Riddick (1996)); cross-country informational differences (Brennan and Cao

(1997)); and human capital and labor (Viceira (1998)).

The outline of the paper is as follows. We start by formulating the general asset allocation problem

in Section 2, and show how to numerically solve the problem with regime switching. In Section 3,

we present the RS models which we use as our DGP's. In Section 4 we describe the data, test for the

presence of regimes, and present the estimation results of the RS processes. We presentthe main results

of asset allocation under regime switching in Section 5 and examine the robustness of these results in

Section 6. Section 7 concludes.

2 Asset Allocation with Changes in Regimes

2.1 The General Problem

Consider the following asset allocation problem. A US investor facing a T month horizon who rebalances

her portfolio over N assets every month maximizes her expected end of period utility. The problem can

be stated more formally as:

max EO[U(WT)] (1)
co

subject to the constraint that the portfolio weights must sum to 1, a_11 = 1, where Wy is end of period

wealth and c,... oy.i are the portfolio weights at time 0 (with T periods left) to time T — 1

(with 1 period left). There are no costs for short-selling or rebalancing. Wealth lV at time t is given by

= Rc(at_i)Wti where R is given by:

R = exp(yi,t_1 exp(yt)'at_l, (2)

3



where y is the return on asset i in USD at time t. We use CRRA, or iso-elastic, utility:

U(WT) = T (3)
1—.-Y

where 'y is the investor's coefficient of risk aversion.

We concentrate on the investment problem of the investor and ignore intermediate consumption (or

the investor is assumed to consume end of period wealth WT). In effect, we take the savings decision

to be exogenously specified. We choose the CRRA family of utility as it is a standard benchmark and

enables comparison to earlier literature. In common with most empirical dynamic asset allocation papers

in the literature, this approach does not address market equilibrium, so the investor is not necessarily the

representative agent in the US economy. We also do not consider the asset allocation problemfaced by

foreign agents.
Using dynamic programming we can obtain the portfolio weights at each horizon t by maximizing

the (scaled) indirect utility:

= argrnaxEt[Qt+1,TW'fl (4)

where

Qt+i,y = E+1 [(RT(_l) . . . Rt+2(a+i))'], (5)

and QT1,T = 1. The first order conditions (FOC) of the investor's problem are:

(exp(y1) — exp(y1)
( (2 \ (N\expyt+l) — expyt+i) —

Et[QL+1TR+l(at)At+1] = 0 (6)

(exp(yj') —exp(y1))

where are returns of assets 1 to N — 1 in excess of asset N. The optimal portfolio weights c solve

equation (6). Note that c has effectively N — I degrees of freedom, as the weight in the N-th asset will

make the portfolio weights sum to 1.

2.2 Introducing Simple Regime Switching

Up to this point, no specific DGP has been assumed for the asset returns y and the set-up of the problem

is entirely general. In the special case of Vt lID across time, Samuelson (1969) shows that for CRRA

utility the portfolio weights are constant ( = ct'), and the T horizon problem becomes equivalent to

solving the myopic I period problem in equation (1). When returns are not lID then the portfolio weights

can be broken down into a myopic and a hedging component (Merton (1971)). The myopic component

is the solution from solving the 1 period problem. The hedging component results from the investor's

desire to hedge against unfavorable changes in the investment opportunity set.
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Suppose we now introduce regimes s 1, .. . , K into the DGP. At each time t, lit will be drawn

from a different distribution, depending on which regime s is prevailing at time t. FollowingHamilton

(1989), the regimes st follow a Markov chain where the transition probabilitiesof going from state i to

state j at time tare denoted by Pij,t = p(st÷i = jist = Let F(',st) denote the cumulative

density function of y conditional on regime St. In our simple RS models, we let F(, St) be a multivariate

normal distribution, with constant transition probabilities Pij,t = PiJ. Conditional on the regime at time

t, the distribution of lit is a mixture of normals. This allows the distribution to capture fat tails, persistent

volatility and other properties of equity returns.

We assume that the regimes are known by the agent at time t.5 With K regime states the random

variable Qt,T = Qt,T(st) may take on one of K values, one for each regime state St= 1,.. . , K, at each

time t. Even without instrument predictability of Yt the asset allocation implications of regime switching

are potentially important. The optimal portfolio weights now become functions ofthe state, c4 = a(st).
Moreover, the investor will want to hedge herself against regime switches. The intertemporal hedging

demands will cause a'(St) to differ from a(St).

Except for special discrete distributions for F(., St), the FOC's in equation (6) do not have a closed

form solution. To our knowledge, the current state of analytical tools in continuous time also does not

permit a solution for both state-dependent conditional means and covariances, and discretely sampled

observations.6 Following Tauchen and Hussey (1991), a numerical solution to equation (6) may be

obtained by quadrature. An VI-point quadrature rule for the function g(u), u E 1RT, over the cumulative

density F(u) is a set of points {uk}, k = 1 . . . M and corresponding weights {wk} such that

fg(u)dF(t) g(uk)wk (7)

For example, for the asset returns lit at time t in regime st = a, we use a PvI quadrature rule with

points {yjk,t}' k = 1 . . . M and corresponding weights {wk,t}. Now consider the one-period problem

at T — 1. For st = i the FOC can be approximated by:

ET_1[(a)TlsT_1 = = i]

(pj,T_l(exp(yjk,T)'ayxikTwik.T = 0 (8)

k=l J
51f this assumption is weakened the problem becomes considerably more difficult. All possible sample paths must be

considered, so the state space increases exponentially, as agents must update their probabilities of being in a particular state

at each time in a Bayesian fashion. For a one period horizon, if investors have uncertainty about the regimes, the regime-

dependent solutions deviate less from the lID solution without regimes, weakening the regime-dependent effects. In this sense,

the assumption of observable regimes is a worst-case scenario.
6The case of switching conditional means in continuous time with complete observation of the Brownian motion paths has

been solved in closed-form by Honda (1997).

5



where

Yk,T exp(ykT) — exp(yJ,T)

Yk,T exp(ykT) — exp(y,T)
Yjk,T =

:
and jk,T

exp(y) — exp(y)
The optimal portfolio weights T—1 i(sT_1 = i) are the solution to equation (8) which can be

obtained by a non-linear root solver.

We define Q,T—1,T QT_1,T(sT_1 = i) as:

Q,T-1,T = = i]

M

II ( Pij,T-1 (exp(yjk,T)'cx,T_1)1 Wjk,T) (9)

k1 J

Then the T — 2 problem for each state 3T—2 = i may be obtained by finding the root of:

ET_2[QT_1,TRl(a))T_1sT_2
K fMj
Pij,T-2 (Q,T_l,T(exp(yjk,T_1)'aYAjk,T_1 Wjk,T_1 = 0 (10)

j=1 \k=1 J

We may continue this process for t =T — 3 onto t = 0.

For the case of Gaussian distributed returns Yt lID across time, Gaussian-Hermite weights can be

used and the approximations are very accurate for small choices of M (Press et al. (1992)). This

makes the asset allocation solution surprisingly simple for switching muttivariate normal returns with

constant transition probabilities. In effect, for K regimes, we have only K state variables which must

be tracked at each horizon. When the return distributions depend on instruments zt, the distribution

of the returns Yt will be conditional on both the regime and the realization of the instrument attime t,

so F = F(•, st, Zt). In this case we construct a discrete Markov chain in each regime to approximate

F(., St, .), the distribution of zt, and then combine them to approximate the unconditional distribution.

In this setting the portfolio weights now become a function both of the regime s, and the instruments zt,

so ct = L(St, Zt). Further details are provided in the Appendix.

2.3 How Important is Regime Switching?

Introducing regimes into the asset allocation problem has the potential to cause investors to wildly alter

their portfolio allocations across regimes, and to induce intertemporal hedging demands making the in-

vestor facing a T-period horizon hold substantially different portfolio weights fromthe myopic investor

conditional on regime st. We wish to test statistically and economically whether these effects are large

under RS when realistic RS DGP's have been fitted to real data. These tests are more than interesting

empirical exercises: if the asset allocations are similar across regimes, then in practice investors may not

6



go to the trouble of rebalancing, especially if transactions costs are high. If intertemporal hedging de-

mands are small, then investors may lose very little in solving a simple one-period problem at all horizons

rather than solving the rather more complex dynamic problem. If there is a bad regime where interna-

tional equity returns provide fewer diversification benefits, investing overseas may not be of benefit for

investors.

2.3.1 Economic Significance

We wish to calculate the utility loss, or monetary compensation required for an investor to use non-

optimal weights {a+ } instead of the optimal weights {c } for our RS DGP. For example, an investor

may have to use non-optimal weights as she may not be allowed by external constraints to use forward

derivatives to hedge currency risk, or even invest internationally. Another example is if the investor

chooses to ignore RS and uses portfolio weights thinking the returns are 11D when in fact the true DGP

is RS. We would like to see the economic loss that results from holding these non-optimal portfolios

instead of using the optimal one.

We can find the amount of wealth D required to compensate an investor for using {ci }in place of

{tf} for a T-period horizon. Formally, this is given by the value of ?D which solves:

E0[U(WjWo = 1)1 = Eo[U(WlWo = tD)1. (11)

Since CRRA utility is homogeneous in initial wealth and since U(WjWo = 1) = QT/(1 —
-y) for

t = *, +, it follows that:

D=1OOx (12)

We express the compensation required in cents per dollar of wealth w = 1OO(D — 1). Equivalently, w

is the percentage increase in the certainty equivalent from moving from strategy {a } to the the optimal

strategy }. In the context of asset allocation analysis, changes in certainty equivalents have been

considered by many recent authors, see for example Campbell and Viceira (1998 a and b) and Kandel and

Stambaugh (1996).

2.3.2 Statistical Tests

To formulate statistical tests we need to derive standard errors on the portfolio weights. Suppose that

the parameters of the RS process are given by 9 and have an asymptotic distribution N(90. l) where 9o

is the vector of the true population parameters. The portfolio weights a(St) are implicitly defined by

the FOC's in equation (6). We will suppress the dependence on s = 1 .. . K. Denote these FOC's for

horizon t as G(8, a) where G : 9 x a —p RN_i.7 We consider at to be an N — 1 vector.

71n the case of regime switching and predictability then c = ) and the FOC's become an implicit function

dependent on z, that is, C = CzL (9, a).
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The FOC's implicitly define c4 as the solution to C(O, a) = 0. Let ato satisfy G(8o, to) = 0, so

ctto are the portfolio weights at the population parameters. Assume the determinant

= det (- 0. (13)
(8o,o)J

The Implicit Function Theorem now guarantees the existence of a function g such that G(6o, g(6o)) = 0

where

(14)
(.117

is well defined. Now the standard delta-method can be used to obtain the asymptotic distribution of a

as:

c ' N(g(Oo),D1D'). (15)

In practice, numerical gradients are calculated. Hence the delta-method allows us to obtain standard

errors for c4 (See also the working paper version of Campbell and Viceira (1998a)). For a given t, we

test if the portfolio weights for st = i and St = j are statistically different. To test hedging demands for

horizon T, we may define an implicit function G = (C'1 G)' which stacks the FOC's for the myopic

problem and the horizon T problem. This allows a test of ai(st) = cT(St). Joint tests may be similarly

performed.

3 Regime Switching Models

3.1 General Model

The most general regime switching model we consider can be written as:

Vt — ert_i = g(s,y_1,zt_1) +ut
Zt = c(st) + A(st)zt._i + Uzt

Ut = (u u)'
UtSt N(0, Yt-i, Zt_1)), (16)

where Vt (N x 1) are the equity returns, Zt (iVI x 1) are the predictive instruments, and rt_1 is the monthly

US short rate. To consider the case of nominal returns we set = 0 and in excess return models = 1.

We refer to excess equity returns with a tilde, so Vt — rt_1. The distribution of equity returns

depends on the regime s at time t and the previous realization of the instruments Zt_ 1• The instruments

zt themselves follow an autoregressive process, of which the coefficients can vary with the regime.

The regimes s follow a two-state Markov chain with transition matrix:(
\\1-Q Q
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which can vary through time. The transition probabilities are given by:

P = p(st = list_i = l;It_i) = fi(zt_i)

Q = p(s = 2ist_i 2;It_i) = f2(Zt_i). (17)

There are two sources of predictability for returns. First, the conditional mean within each regime

of the equity return may be predictable which is captured by g(st, yt—1, zt_1). Second, the transition

probabilities may be non-linear functions of the instruments, captured through f(zt_i), i = 1, 2. Such

a model can potentially capture long-horizon predictability of returns by instruments.
tk uh uk h ger uh ger,h

We concentrate on the set of equity returns y = (Yt Yt y Yt ) where uh denotes

unhedged USD returns and h denotes currency-hedged returns. The set of instruments we consider is

Zt (eyr r3 y° — Ti)', where eyt denotes the log earnings yield, Tt the short rate and y° —

is the excess return on the world portfolio. We do not consider past equity returns as instruments as we

will see in Section 4 that the autocorrelations of the equity returns are insignificant.8 Heteroskedasticity

can be included by appropriate parameterizations of l(St, Yt—i Zt_1). We will test for the presence of

RS ARCH for the case of the US-UK.

We restrict the number of regimes to two. This number of states may be restrictive, but including

more regimes poses extreme computational problems. Two states should capture the main effects of

higher order moments in equity returns. The regimes of each country are also assumed to be perfectly

correlated. Weakening this assumption by increasing the state space along the lines of Ang and Bekaert

(1998) and Ramchand and Susmel (1998a) makes the number of parameters infeasible for estimation.

Nevertheless, we will consider one formulation which allows for non-perfectly correlated regime states

for the US-UK. We specify the transition probabilities as logistic functions of the instruments:

exp(aj + bzt_i)= . (18)
1 + exp(a + bzt_i)

If b = 0 then the transition probabilities are constant.

Given the large number of parameters in the full system, we restrict attention to subsets of the full

model. Estimation of the RS models proceeds by using the Bayesian algorithm of Gray (1996). When

we estimate restricted models, assumptions must be made about the RS DGP's to ensure consistent

estimation. We list sufficient conditions as we present each restricted model.

We first focus on Simple RS Models with US-UK nominal returns and extend to include German

nominal returns. These models have no instrument predictability. In a previous version of this paper

we carefully considered the evidence of linear predictability using standard instruments such as short

rates, dividend yields and earnings yields, and found it to be quite weak. In this model, we exclude such

predictability and changes in the investment opportunity set are solely driven by regime changes. To

build models of currency hedging we use US equity excess returns and currency hedged and unhedged

SSee Table (1). Past equity returns can theoretically enter the regime probabibties P and Q. We estimated such models but

none of the probability coefficients of the lagged equity returns were significant and the models seemed over-parameterized.

9



returns on UK and German equity. Here wemodel the world excess return as a predictor and the mean

conditional on a regime of an asset will depend on the conditional covariance of that asset with the world

excess return.
To allow comparison with the literature on dynamic asset allocation and because of the evidenceof

time-varying risk premiums, we consider a number of models accommodating instrument predictability.

The first such model uses the US short rate (Zt = rt) as a predictor. In our empirical analysis, it was

the most powerful univariate predictor at short
horizons. The inclusion of the short rate is also important

since the set-up then allows investors to hold cash in addition to equities and changes in the cash/equity

proportions may be important for intertemporal hedging (Balduzzi and Lynch (1999)). To include the

US short rate as a predictor we use excess returns with a RS square root process for the short rate.

Since both the predictability literature and a number of asset allocation studies have focused on

yield variables to track time-variation in expectedreturns, we also estimate a yield model. The evidence

for linear predictability using both dividend and earnings yields is stronger at longer horizons, but is

generally weak. We focus on the earnings yield (Zt = eyt) as a (noisy) indicator of future expected

returns. Earnings also vary with the business cycleand RS models can potentially capture this cyclicality.

Our last model uses the US earnings yield as a predictormodeled as aRS AR(l) process. We now discuss

these models in turn and present the empirical results in Section 4.

3.2 Simple RS Models

The Simple RS Model can be written as

yt = +E(st. (19)

We let Yt = (y y21't)1 and Yt = (y kuh eruh)/. The transition probabilities are constant, so

= k.
To obtain the Simple RS Model from equation (16) we set = 0 and parameterize g(st, yt—1, z_1) =

jt(St). To ensure consistent estimation we must impose restrictions so that the instruments zt do not affect

the ex-ante probabilities p(st = Sufficient conditions in this setting are c(st) c, A(s) = A,

and the covariance S2 can be partitioned as:

=
(E(0st)

0 (20)

where corresponds to the covariance matrix ofZt.9

The Simple RS Model, as well as the General Model, assumes that the regimes in each country

are perfectly correlated. To investigate if the UK undergoes regime switches different from the US we

introduce an extension, Model II, with two regime
variables s and s. Model II has the feature that

'More specifically we require that f(ztyt, St) = f(z(y). If the covariances ofy and zt are non-zero then the condiuonal

distribution of ze conditional on y will depend on St. See Ang and Bekaert (l998.
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the regimes in the US and UK do not have to be perfectly correlated. Generally,
there would be 22 = 4

states for the bivariate system for two states of each country implying a4x4 probability transition matrix.

To preserve parsimonY we assume
that conditional on the US state, the UK process is a simple mixture

of normals. That is, we let:

p(sff 1Isi = 1) = P

p(s = 1s3 1) A
p(s = 2s3 = 2) = B (21)

This parameteriZatiOn implies that the US transition probabilities P and Q are still the driving variables

of the system and allows the US andUK states to be dissimilar with only two extra parameters. Further,

the correlation of the US and UK depends only on the state of the US. The estimation of this model is

outlined in the Appendix.

Finally we test for the presence of RS ARCH effects for the US-UK. This specifies the covariance

as:

(st) = C(s)'C(st) + B(st)'u_lU_lB(st)

Ut = Vt —

= = jiIt_i)(3t = j). (22)

This model can be estimated following a special case in Gray (1996). Related models have been esti-

mated by Ramchand and Susmel (1998a and b) and Hamilton and Susmel (1994).

3.3 Currency Hedging Beta Models

The Simple RS Model does not provide any explicit link between the conditional means and variances.

The number of parameters rapidly increases
with the introduction of more than 3 assets, as covariance

matrices must be estimated. To facilitate the inclusion of more assets our currency hedging Beta Model

imposes restrictions linking the conditional means and volatilities. We usethis model to primarily focus

on the additional benefits of currency hedging to international diversification for a US investor.

We derive this model from equation (16) by setting = 1 and use the world excess return as the

predictor ' = — with conditional mean C(St). The conditional mean of the excess equity

returns t is given by g(st, Vt— zt_1) = (3t)C(3t)
where c(st) is a N x I vector for N equity returns.

We consider US-UK models where Vt = (yS ukWi ukh)I and a model for the USUK-GermaflY

where Vt = (V yukuh r r)' The transition probabilities are constant, fi(zti) k.

To examine sufficient conditions for
consistent estimation under this setting, partition the instruments

= (2t zfl' where z are the instruments which are omitted from estimation and Z = ijt the included
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instrument. We assume that z does not affect the ex-ante probabilities and does not vary across regimes.

We assume that the companion matrix A(st) of the conditional mean of Zt can be partitioned as:

A(st) =
(A(St) 0)

(23)

with A(s) (A) corresponding to (zr). In the Beta Model, we set A(st) = 0. The covariance matrix

1 for assets and instruments is given by:

=
((5t) °) (24)

where (St) (N + 1 x N + 1) is modeled to reflect the presence of the world factor and takes the form:

C?(St)°(5t) + c?(st)
(1(St)(2(St)O,(St) ((St)O(St) + o(st)

(1(St)(N(St)J(St) .i(St)o(St) + O.,,(St)

ci(st)o(st) (N(St)0(St) oAst)
(25)

We may interpret this model as a CAPM-inspired DGP conditional on the regime St. Introducing the

notation. for the factor loading of asset i on the conditional mean of the excess world portfolio, and

denoting excess returns by — r1 for asset i, we may rewrite the model as:

= b(st) + a(st)
= f3(st)ps) + i3(st)o(st)€° + o(st)4 (26)

where

cov(,Ist)
(27)

o (st)
Here we have abused the notation so that p(St) is the conditional mean of ' rather than the conditional

means of equity Yt as in the Simple RS Models. Later when we refer to j in the context of the RS Beta

Model we will mean the conditional mean of ,since the conditional means of are functions of (st).

Alternatively, we may consider this to be a one-factor model, where the factor is the excess world

return, and the conditional means of each asset are given by factor loadings (/3 (St)) on the conditional

mean of the factor. The factor loadings compensate for the risk of the asset being linked with the factor:

higher covariances demand higher risk premiums. In addition to being subject to the world portfolio

shocks e', each asset is subject to idiosyncratic risk . In this model the covariance of asset i and asset

j depends on the extent to which each asset is linked, through the 3's, to the world portfolio. The model

is parsimonious: the introduction of an extra asset means only 4 additional parameters to estimate, fewer

if some of the parameters are imposed to be equal across regimes.
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3.4 Short Rate Model

To introduce the short rate we let Zt = r3. For convenience we drop the country superscript on Tt,

understanding this refers to the US short rate. We use a regime-switching discretized square root process

of the Cox, Ingersoll and Ross (1985) form:'0

rt = C(St) + p(st)rt_i + v(st)/FTuzt (28)

In this model we work with excess returns so is set equal to I and we let yt = (3 ytLk)/.
The introduction of the square root term makes I(St) heteroskedastic. It still has the form of equa-

tiOn (24) except (St) is given by:

O?(St) A3(St)01 (St)02(St) A1 (St)01 (St)V(St)/:T
= A3(St)01(St)02(St) Q(St) (29)

A1(s)oi (st)v(st)/f7 v2(St)Tt_J.

where Ai(st) (A2(st)) is the correlation between the short rate and US (UK) equity, and A3(st) is the

correlation between US and UK equity.

The conditional mean of the equity returns may embed predictability from the short rate:

= Yt—i, zt_1) + u,,t = p.(St) + /3(st)rt_1 + ut. (30)

We will refer to the specification of (St) 0 in equation (30) as the Full Short Rate Model, and the

case of i3(s) 0 as the Basic Short Rate Model.

To complete the model we specify the transition probabilities for st = 1, 2 as state-dependent:

exp(aj + brt_i)p(st = = = (31)1 exp(a br_i)
For consistent estimation, we assume that like the Beta Model, the omitted instruments z do not

affect the ex-ante probabilities and the companion matrix A(st) of Zt = (Tt zfl' takes the form of

equation (23).

3.5 Earnings Yield Model

This model is very similar to the Short Rate Model, except we take the US earnings yield as a predictor

= ey3 ey and work with nominal returns, so = 0. We use a RS AR(1) for eyt:

ey = c(st) + p(st) eyt_i + v(st)ut (32)

and also employ logistic specifications for the transition probabilities as in equation (31) except with

eyt replacing rt. Similarly, the conditional mean for equity returns is given by equation (30) with eyt

Note that this process allows short rates to be negative which is inconsistent with the square root of the short rate appearing

in the conditional volatility. In continuous time parameter restrictions mle Out negative interest rates (Cox, Ingersoll and Ross

(1985).) However, in all our simulations (upwards of 100,000 observations) we did not encounter any negative interest rates.
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replacing Tt. The conditional covariance is given by the homoskedastic version of equations (24) and

(29) and the parameter assumptions on omitted instruments are the same as in the Short Rate Model.

One advantage of the yield model is the rich dynamics it can generate in bear markets. One potential

reason for a downturn in the market is a period of high volatility in news which increases discount rates.

Such news may cause a shift to a higher volatility regime with higher expected returns. This mechanism

can be accomplished in the Yield Model by the dynamics of the earnings yield. As prices decrease, the

earnings yield increases as it is driven in the short-term by price in the denominator.

4 Data and Estimation Results

Section 4.1 describes the equity returns and the short rate and yield instruments for predicting future

returns. Section 4.2 formally tests for the presence of regime switches in international equity returns.

Section 4.3 discusses the estimation results for our various RS models.

4.1 Data Description

Our core data set consists of equity total return (price plus dividend) indices from Morgan Stanley Capital

International (MSCI) for the US, UK and Germany. The instruments we consider for predicting future

returns are short term interest rates and earnings yields for the US. The short rate is the US 1 month

LIBOR rate and earnings yields are from MSCI. Our sample period ks from January 1970 to December

1997 for a total of 335 monthly return observations.'2 The focus on the US, UK and Germany arises from

our desire to select the major equity markets that can be considered to be reasonably integrated during

our sample period. This is definitely the case for the US and UK markets which currently (as of 31 July

1998) represent 49.4% and 10.5% of total market capitalization respectively in the world MSCI index.

Since Japan underwent a gradual liberalization process in the 1980's we exclude it from our analysis.

Adding Germany brings the total market capitalization represented to 65.5%.

Table (1) produces sample moments for the equity returns (all expressed in US dollars). These are

monthly returns expressed as a continuously compounded rate. Whereas the means appear insignificantly

different from one another, foreign equity returns are distinctly more variable. One culprit is currency

risk, as we can decompose the foreign market return Yt+1 into Yt÷1 =yj + et+1 where y[j is the
return in local currency and e÷ is the log difference of the exchange rate. The returns show insignificant

autocorrelations. Of particular interest is the correlation matrix produced in Panel C. Unconditionally,

correlations are positive and range from 36% for the US and Germany to 51% for the US and UK.

The RS Beta Models of currency hedging use excess returns over the 1 month US EURO rate from

January 1975 to July 1997. We define excess unhedged foreign equity returns as YJ+SiD —t where

liThe earnings yields use earnings summed over the last 12 months. For further details see the EAFE and World Perspective

publication from MSCI.
'21n the Short Rate Models our sample period is from January 1972 to December 1997.

14



US1D are returns in US dollars, and t is the US short rate. The excess hedged foreign equity return is

defined as = y[ — i where i is the foreign short rate (the 1 month foreign EURO rate).'3 In

Table (2) we present sample moments of excess returns for the MSCI world portfolio, US, UK hedged

and unhedged, and German hedged and unhedged equity returns. Note that unhedged returns for the UK

(Germany) are on average larger (smaller) than the hedged returns indicating the existence of a currency

risk premium.

As we saw in Section 3 dimensionality issues make it hard to include all instruments as state variables

in our asset allocation analysis. A report on an extensive analysis of linear predictability regressions using

short rates, dividend yields and earnings yields is available from the authors upon request. Since there is

some evidence that US instruments predict UK returns, but UK instruments have very weak predictive

power for US returns we only use US instruments. Sample moments for the US instruments are presented

in Table (3).

4.2 Are there Regimes in International Equity Returns?

The asymmetric correlation pattern in equity returns described in the Introduction can potentially be

captured by a RS model. While previous evidence suggests that there are regimes in the data generating

process for equity returns, formal tests have rarely been conducted in past literature. What follows here

is a formal test of the presence of regime switching for US, UK and German equity returns.

We wish to test the following model of oe regime:

(33)

where Yt = (y y er)I are the nominal monthly equity returns, and -.- lID N(O,I) against the

following regime-switching model:

= 4St) (s) (34)

with s = 1,2 and Markov transition probabilities P = p(s = list_i = 1) and Q = p(st = 21st_i

2). This is the simple RS US-UK-GER Model being tested against its one regime counterpart.

L3We derive the excess hedged foreign equity return as follows. Consider $1 converted into foreign currency at rate E at

time t, where E is the exchange rate expressed in doltars per foreign currency. This earns exp(y)/Et in foreign currency

at time t + 1. Suppose a forward contract can be written on this amount at time t, where F/E = exp(it — ifl. Then the

hedged gross return on foreign equity will be exp(y)Ft/Et = exp(y + i — i). The continuously compounded excess

hedged return is = — i. In discrete time the hedged return can be approximated by the unhedged return plus the

proceeds of selling l forward:

I + y÷ (1 + y[1)(1 + e1i) — [et+i + i — it]

where e+j = log(E1+i/E). If we ignore the second-order cross-te, then y÷ y+ z —i and the excess hedged

return becomes = — i. This method for hedged returns is used by Tesar and Werner (1995) and a similar method

without continuous compounding by Black and Litterman (1991).
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In testing regime-switching models the usual x2 asymptotic tests do not apply because of the presence

of nuisance parameters under the null. In our situation, if P = 1 and the process starts in the first regime,

then the parameters 'y = (Q, 1a(st 2)',vech(E(st = 2))')' are unidentified under the null. The

likelihood function will be fiat with respect to -y, and these parameters also enter the Hessian making

the standard likelihood ratio test, Wald test and Score test have non-standard distributions. While certain

testing techniques have been developed for these conditions, these are asymptotic tests which are difficult

to implement empirically)4

Here we focus on the empirical likelihood ratio test. The likelihood ratio statistic of the regime-

switching model against the null is 103.738, but to test if this value rejects the null of one regime we use

Monte Carlo simulation to find its small sample distribution. Using the one-regime model (equation (33))

we simulate a sample of 335 returns (the same length as the sample on which the model was estimated),

and estimate the regime-switching model (equation (34)). The likelihood ratio for the simulated sample

is then recorded and the process is repeated 500 times. Estimation of the regime-switching model for

every simulated sample makes this computationally intensive. 15 The results are listed in Table (4) which

shows that the largest likelihood ratio statistic generated under the null is 49 while the sample likelihood

ratio statistic is 104. The data overwhelmingly reject the null of one regime.

That the null is rejected in favor of a RS model is not surprising given the significant higher order

moments (Table (1)) which can be captured by the RS model. Other stochastic volatility models able to

produce fat tails may also reject the null. However, we later test for the presence of ARCH effects for

the US-UK beyond the RS model in equation (34) and find no evidence of RS ARCH.

4.3 Regime Switching Estimation Results

We present general results in Section 4.3.1 and discuss specific estimation results for individual models

in Sections 4.3.2 to 435)6

4.3.1 General Patterns

Across our RS models we find the following pattern in international equity returns. In one regime the

equity returns have a lower conditional mean, much higher volatility and are more highly correlated. We

shall refer to this regime as "regime 1". In the second regime, equity returns have higher conditional

means, lower volatility and are less correlated. Our regimes definitely correspond to periods of low

and high volatility, but the evidence for significantly different conditional means and correlations across

regimes is not as strong.

Table (5) presents p-values of Wald Tests for parameter equality across regimes for the various RS

141n particular see Hansen (1996) and the discussion in Ang and Bekaert (1998).

5We ignored 3 samples where no convergence was attained.
'6The parameter estimates for all models are contained in a supporting Table Appendix available from the authors.

16



Models.'7 In models where the means are constant conditional on the regime, there is some evidence that

the means differ across the regimes for the US in the case of the Simple US-UK Model and for the Short

Rate Model. However, joint tests fail to reject the null of constant conditional means for both countries.

The Wald test for the Earnings Model rejects that the parameters of the conditional mean (,a(st), 3(st))

are jointly equal across regimes.

The equality of volatilities across regimes is rejected at any significance level for the Simple RS

Models, the Short Rate Model and the Earnings Yield Model. Evidence is also extremely strong for

different regime-dependent volatilities for the Beta Models. The evidence of different correlations across

the regimes is not particularly strong. The US-UK correlations are borderline significantly different in

the Simple US-UK-GER model and the Short Rate Model. We cannot reject that correlations for the

UK and Germany are constant across regimes. Similarly, for the Beta Models, where covariances are

implied by the 3's of the individual assets, and for the Earnings Model, we cannot reject equality of the

correlation across regimes.

To concentrate on the effect of changing covariances we estimate models where u1 and i2 are im-

posed to be equal across states (but different across assets). Table (6) shows that these models cannot

be rejected when comparing them against their unconstrained specification. Moreover, regime classifica-

tion, as measured by the Ang-Bekaert (1998) Regime Classification Measure (RCM), generally improves

slightly when this restriction is imposed.'8 In Section 5 we will concentrate our analysis on models with

Ii imposed equal to J2.

4.3.2 Simple US-UK Model

The US and UK have been the largest most integrated markets over our sample. Being the simplest and

most parsimonious RS model, we will discuss the estimation results for the Simple RS US-UK Model.

For intuition we specifically discuss this model in Section 5. The results for the US-UK-GER Model are

qualitatively similar.

Figure (1) shows the ex-ante probabilities p(st = llI-..i) implicitly given by construction of the

likelihood function, associated with the log equity index levels for the US and unhedged UK equity.

The turbulent equity returns of the OPEC oil shocks in the mid-70's are picked up, as is the 1987 crash.

From the mid-90's onwards, the implied ex-ante probabilities place the economy almost definitely in the

second regime. The expected duration of the first regime is 6.9 months, while the expected duration of

the second regime is 4.25 years. The stable probabilities implied by the transition matrix are 0.1194 and

0.8806 for regimes I and 2 respectively.

Figure (2) shows the implied conditional means, volatilities and correlation of the US and UK equity

'7The Basic Short Rate Model refers to the case where (St) = 0 in equation (30)). In a test of the Basic Model versus the

Full Model we cannot reject the Basic Model.

'8The RCM is given by RCItJ = 400 * ÷ ip(1 — pt). where p is the ex-ante regime probability p(s =flIt_i).
Lower RCM values indicate better regime classification.
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returns. The implied conditional mean is given by:

It =PtI..tl+ (1 —Pt)2 (35)

where pt = p(st+i = 1!I) is the ex-ante probability of being in the first regime. The implied covariance

matrix at time t is given by:

t =t(i +(1—pt)(E2+2) —. (36)

Dashed lines in the plots represent 95% confidence intervals calculated by the delta-method. We see in

the top panel of Figure (2) that as Pt increases, the conditional mean of the US and UK become negative,

but the standard error of the estimates also increases markedly. This reflects the increased uncertainty

about the parameter estimates in the first regime. The conditional volatilities in the middle panel likewise

increase substantially when p increases. The plots also show that the conditional means and variances of

the US and UK move in tandem, as is true in any one-factor model. In our Simple RS Models this factor

is the ex-ante regime probability. The bottom panel shows the conditional US-UK correlation. The plots

clearly show that the higher volatility regime is also associated with higher correlations.

Table (7) shows likelihood ratio tests of the Basic Model versus Model II (the model allowing non-

contemporaneous regimes of the US and UK) and the RS ARCH model. In both cases we fail to reject

the Simple Model. Moreover, the parameters A and .8 in equation (21) are estimated to be 1. This lends

support to the simple, but parsimonious DGP of the Simple RS Model: the US and UK face the same

regime shifts and the stochastic volatility generated by the simple RS Model suffices to capture the time

variation in monthly equity return volatilities.

4.3.3 Beta Model

We now describe the qualitative results of the RS Beta Models. The higher volatility in the first regime

is driven by three parameters in this model. First, world volatility is higher in the first regime. Second,

the 3's are invariably higher in the first regime. Third, the idiosyncratic volatilities are higher in the first

regime. It is never possible to reject that the 3's are significantly different from 1 in the first regime, but

they are often significantly below 1 in the second regime, which is more influenced by the idiosyncratic

shocks. The 3's of the unhedged returns are larger than the 3's of the hedged returns, reflecting a

positive currency return !3. The difference between the unhedged and hedged excess equity returns in

the RS Beta Models is the currency return crt+1, which is the excess return from investing in the foreign

money market and is given by CTt+l = et+1 + i —

The expected value of the currency return, the currency premium cp = Et(crt+i) is the topic of a

large empirical and theoretical literature. Our model implies that, conditional on the regime, the currency

premium is constant. In Table (8) we report the state-dependent and unconditional currency premiums

and the volatilities of the currency returns. The unconditional premium is approximately 1.5% to 2% per

annum for both the pound and the deutschemark. The magnitude is similar to the recent estimates of Dc
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Santis and Gerard (1998), but the sign is different. Dc Santis and Gerard use a CAPM-based model with

GARCH volatility and find large time variation in currency premiums. In our model, the actual premium

varies over time with the regime probability and can potentially change signs. However, we estimate the

premiums to be positive in both regimes, implying that US investors are always compensated for taking

foreign exchange risk. For regime 1, the currency premium is very small and insignificant. The smaller

currency premium, combined with the larger volatility may contribute to home bias in this regime.

4.3.4 Short Rate Model

The short rate behavior in the two regimes is characterized by high conditional means with lower autocor-

relation (higher mean reversion) and higher conditional volatility in the first regime, and low conditional

means with higher autocorrelation and low volatility in the second regime. Economically, the second

regime corresponds to "normal" periods where interest rates are low and equity excess returns are posi-

tive. Interest rates behave like a random walk, perhaps because of the monetary policy smoothing efforts

of the US Fed. The first regime corresponds to "turbulent" periods of high monetary uncertainty with

very volatile negative equity returns.t9

In Table (7) we see that a restricted model (the Basic Model) with no within-regime predictability of

the equity return by the short rate cannot be rejected from the unconstrained Full Model. The parameter

estimates of 3(St) themselves in equation (30) have very large standard errors in both regimes. The

standard errors on other parameters are also much larger than in the Basic Model. The probability

coefficients in equation (31) are significant, and a constant probability version is rejected by the Basic

Model. In particular, b2 is negative and highly significant, so in normal periods, as the short rate increases

a transition to the first regime becomes increasingly likely.

Comparing the ex-ante probabilities of the Basic Model in Figure (3)to the Simple US-UK Model,

we see that the Short Rate Basic Model classifies the early 1980's as regime 1, which is driven by the

highly turbulent short rates during the monetary targeting period. There are only a few spikes during

this period for the US-UK model (Figure (1)). The implied conditional correlations for the Basic Short

Rate Model are presented in the bottom panel of Figure (3). Interestingly, short rates and equity returns

are more negatively correlated in regime 1 than regime 2. In addition to the low conditional means of

equity, this implies that holding equity is even more unattractive in the first regime. As short rates are

high during this period risk-averse investors will want to hold mostly cash. In this model, although mean

excess returns are mostly positive (top panel), the conditional mean in the first regime remains hard to

pin down, motivating a focus on the j = /L2 model.

9Similar patterns for RS models applied to interest rates have been documented by Ang and Bekaert (1998), Bekaert,

Hodrick and Marshall (1998), and Gray (1996).
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4.3.5 Earnings Yield Model

In the Earnings Yield Model, US earnings yields predict US and UK equity returns both through the

transition probabilities and through the conditional means. In particular, in the second regime, b2 in

equation (31) is significant and negative, so as the earnings yield increases a transition to the first regime

becomes more likely. The predictability coefficients 13 in the conditional mean of equity returns are

significant in both regimes for the US, with a strong effect in regime 1, and significant for the UK in the

first regime. In Table (7), a likelihood ratio test for this model versus the null of no predictability gives a

p-value of 0.0 149. There is borderline significance for each case of predictability through the conditional

means and through the transition probabilities.

In the first regime, earnings yields have higher conditional means, are more mean-reverting and have

higher conditional volatility. The average earnings yield conditional on regime 1 (2) is 10.44% (6.56%).

Lower earnings yields on average are associated with normal periods as higher prices relative to earnings

push down the earnings yield. The Earnings Yield Model, like the other RS models, has average equity

returns conditional on the regime being lower and more volatile in the first regime. For the US the

average equity returns in regime 1 (2) are -0.6093 (1.6159) with respective standard deviations 5.7484

(3.3645). Similarly for the UK, the average equity returns in regime 1 (2) are -0.0631 (1.5058) with

respective standard deviations 9.9298 (4.9110).

5 Asset Allocation Empirical Results

Under the RS DGPs estimated in Section 4.3, we will attempt to answer the following questions raised

in the Introduction: (a) are there still benefits in international diversification in regimes of global financial

turbulence? (b) how do these regimes affect asset allocations? (c) does currency hedging help? (d) how

costly is ignoring regime switching? and (e) how large are the intertemporal hedging demands induced

by regime switching? We will first discuss general results across all the models and tabulate results for

risk aversion levels of '' 5 and 10. Unless otherwise mentioned we present results for models with

= ,u2 imposed. We will examine in detail the US-UK Simple RS Model for intuition and also discuss

the Short Rate and Earnings Yield Model. The portfolio weights, with statistical tests, are presented

in Tables (9) to (12). Tables (13) to (17) present the economic compensation required under various

sub-optimal strategies.

5.1 International Diversification under Regime Changes

Portfolio weights, along with standard errors, for the all-equity portfolios are listed in Tables (9) to

(1 1)20 Across these models, the proportion held in the US rises in the first regime, but the standard

°For the Beta Models, a risk-free rate of 6% is specified, as the model is formulated in terms of excess returns. The portfolio

weights are highly insensitive to the choice of the risk-free rate except for very large (>100%) rates. This is because the
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errors associated with the portfolio weights are large. The US, because of its lower volatility in the first

regime compared to overseas equity, becomes a "safer" asset. Risk averse investors choose to hold more

of the US at the expense of international equity during the downturn state. Portfolio weights as a function

of y are shown in Figure (4). The more risk-averse the investor, the greater the proportion of the US held

in both states.

Table (13) presents the "cents per dollar" compensation required for an investor with an all-equity

portfolio to hold only the US instead of investing optimally with overseas holdings. Table (13) shows

that at a 1 month horizon, the costs of holding only US equity are small and, as expected, grow with the

horizon. At one year we need a compensation of 1.19 cents (0.97 cents) in state 1(2) with y =5 to hold

no UK or German equity under the Simple RS Model. The addition of Germany brings considerable

economic benefit for international diversification, especially at longer horizons where costs can exceed

10 cents for -y = 10 with a 5 year horizon. This is because of the particular covariance structure in regime

1. Although US holdings increase, Table (10) shows that German holdings also increase at the expense

of UK equity.

We might expect that as correlations are higher in state 1, the costs of no international diversification

in that state will be less than in state 2. This is generally not true. For -y = 5 and 10 for the US-UK

this is true, but this is not the case for the US-UK-GER system. In the three country model the optimal

holdings of both US and Germany rise, making diversification more valuable in this regime. Figure (5)

shows that even for the US-UK, the benefits of diversification for state 1 may be greater than for state 2

for small -'. The bottom panel of Figure (5) shows that because of the benefits of holding Germany in

state 1, the costs of no international diversification are uniformly higher in state 1 than in state 2.

In the bottom panel of Table (13), costs for various levels of the earnings yield for not holding

overseas equity are presented. In regime 1, where the average earning yield conditional on the regime is

around 10%, an investor with -y = 5 with a one year horizon needs 1.25 cents of compensation. In the

second regime, the cost of not diversifying is on average smaller, being only 0.30 cents at a conditional

average earnings yield level of 6%. As the earnings yield increases the cost of not diversifying increases

in both regimes.

5.2 Benefits of Currency Hedging

Confirming previous evidence in Glen and Jorion (1993), being able to hedge currency risk imparts fur-

ther benefit to international diversification. In Table (14) the economic compensation for not diversifying

internationally under the RS Beta Models is higher than under the pure unhedged Simple RS Models in

Table (13). In this model no international diversification refers to holding neither hedged nor unhedged

foreign equity. To obtain a measure of the benefits of currency hedging, we need to obtain the optimal

portfolios under the restriction that only investment in unhedged equity can be made.

nominal returns approximately cancel each other Out (to a first-order Taylor approximation) in the FOC's in equation (6).
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The economic compensation required for holding such portfolios is listed in the second panel of

Table (14). This shows that the costs of not using currency hedging, like the costs of not internationally

diversifying, are relatively large. For a one year horizon with y =5, around 70 basis points are required

to not engage in currency hedging. We can compare the two panels in Table (14). Currency hedging

contributes about half of the total benefit of no international diversification under the RS Beta Models.

Table (11) shows the asset allocation weights for the RS Beta Models. Like the Simple RS Models,

the proportion of US equity increases in the first regime. We also list the proportion of the portfolio

covered by a forward contract position, which is unrestricted. In the RS Beta Models, short positions

in the forward contracts hedge the currency risk of the foreign equity position. These positions are

statistically significant. The Tables also list hedge ratios, which are the value of the short forward position

as a proportion of the foreign equity holdings. Our models produce hedge ratios of about 50%, and are

fairly similar across regimes.

5.3 Costs of Ignoring Regime Switching

In the absence of predictability, there are two implications of regime switching for portfolio weights:

(a) portfolio weights become regime-dependent, and (b) since regime switching generates intertemporal

hedging demands, portfolio weights become horizon-dependent. We will look at the effects of regime-

dependent weights first.
The weights reported in Tables (9) to (1.1) sometimes differ substantially across regimes. For ex-

ample, the US weight is anywhere between 7 and 29% higher in regime 1 compared to regime 2 for

the Simple RS Models and the US-UK Beta Model. The differences in weights across regimes for the

US-UK-GER Model are not large for the US but more substantial for the UK and Germany (7 to 9%).

Nevertheless, the standard errors are often large and we cannot reject the null that the portfolio weights

are constant across regimes for many cases. Table (12) summarizes Wald tests with -y = 5 which are

joint for horizons T 1, 12, 36, 60 months. The only rejection occurs on the RS Beta Models for the

US weights. In the Simple RS Models in Tables (9) and (10) we cannot reject that portfolio weights do

not differ across regimes for -y 5, but for -y = 10, we can reject at the 5% level for the US-UK equity

portfolios.
The economic costs of ignoring RS range from fairly small to substantial at high levels of risk aver-

sion. Table (15) shows that for a one year horizon, investors with 'y = 5 in the Simple RS US-UK-GER

Model lose only 14 (5) basis points for ignoring regime switching in state 1 (2). When investors ignore

regime switching they are assumed to hold myopic weights implied by fitting an lID multivariate normal

distribution to the equity returns. These weights are an approximate average of the regime-dependent

weights. (For the US-UK and US-UK-GER portfolios, they are listed in Tables (9) and (10).) The lID

weights give a reasonable approximation to the optimal weights in each regime, especially in regime 2

which has the longest duration. Treating the lID weights as a constant, we cannot reject that the optimal

regime-dependent weights are different from the lID weights at the 95% level. The costs are substantially



higher when y is increased to 10, in which case regime I requires effectively holding all US equity in the

US-UK portfolio.

Finally note that the cost of ignoring RS is higher in state 1 than state 2. This is in accordance with

intuition, since in the normal regime, conditional means and variances will be closer to their uncondi-

tional counterparts, than they are in state 1. The markedly different behavior in state 1, which can persist

for several periods, makes the costs of ignoring RS higher in this regime. Figure (5) plots the costs of

ignoring regime switching for the Simple RS Models as a function of -y. The plots confirm that the cost

of ignoring RS is higher in regime I for all levels of risk aversion and is robust across the Simple US-UK

and US-UK-GER Models. Whereas for the US-UK, only at low levels of risk aversion do the costs of

failing to diversify internationally dominate the costs of ignoring RS, this holds for all -y in the US-UK-

GER model. This is because for the US-UK the optimal portfoliio for regime 1 becomes the domestic US

equity portfolio when -y is high, whereas in the US-UK-GER system positive German equity holdings

remain optimal in the first regime.

5.4 Intertemporal Hedging Demands

Tables (9) to (10) present Wald Tests for intertemporal hedging demands. Hedging demands are never

significant, and the p-values are generally very large. Brandt (1998) also cannot reject myopia in his

non-parametric estimate of domestic asset allocation weights.

The Tables also show that the convergence of the portfolio weights is extremely fast. After 3 years,

the portfolio weights are constant. The convergence is even faster than in Brandt (1998), who finds

convergence after 15 years. His setting however, incorporates instrument predictability and rebalancing

at intervals greater than I month. With only regime changes and monthly rebalancing horizon effects

become even smaller.

The economic costs of myopia are effectively zero. Table (16) lists the compensation required for

an investor to hold myopic portfolio weights instead of the optimal T horizon weights. The numbers are

astoundingly small for all models. This evidence suggests that investors lose almost nothing by solving a

myopic problem at each horizon, rather than solving the more complex dynamic programming problem

for longer horizons.

5.5 Simple RS US-UK Model

In this Section we will develop more intuition about the asset allocation behavior under the simple RS

US-UK Model which carries over to more general cases.

Let us examine the portfolio weights in Table (9). In regime 1, the point estimates show that investors

hold more US equity. The US acts as a "safer" asset in this regime. Under this model when = I2' the

23



equity returns yt = (yLS yLk) are distributed as N(, E'), i = 1,2, where = (1.1613 1.2488)' and

/ 7.50642 0.6181 x7.5064 x14.0748

E — (0.9515) (0.1032)x(0.9515)x(1.8432)1 —
0.6181 x7.5064 x 14.0748 14.07482

\ (0.1032) x (0.9515) x (1.8432) (1.8432)

with standard errors in parentheses, and

/ 3.79172 O.4480x3.7917x5.2470
E — ( (0.1654) (0.0491)x(0.1654)x(0.2409)

2— 0.4480x3.7917x5.2470 5.24702
\ (0.0491)x(0.1654)x(0.2409) (0.2409)

The lower volatility of the US in the first regime makes the US relatively more attractive to risk-averse

investors at the expense of international holdings.2' This pattern is repeated across all the models, in-

cluding the RS Beta Models which allow currency hedging. The large standard errors, though, mean that

statistically there is weak evidence that the true portfolio weights change across regimes.

Looking at Table (9), notice that as the horizon is increased the point estimates of the holdings of US

equity increase with horizon. That is, with increasing horizon, investors want to hold more of the less

risky asset.22 It is the persistence of the regimes which lies behind this result, as can be seen by applying

the intuition from Samuelson (1991).

Samuelson works with two assets, cash and and a risky asset. The risky asset follows a Markov chain

where the returns can be "low" or "high". He defines a "rebound" process, or mean-reverting process,

as having a transition matrix which has a higher probability of transitioning to the alternative state than

staying in the current state. An example of a symmetric rebound transition matrix is

(1 )• (39)

Samuelson's theorem is that with a rebound process, risk-averse investors increase their exposure to the

risky asset as the horizon increases. That is, under rebound, long horizon investors are more tolerant of

risky assets than short horizon investors.

Our setting is the opposite of a rebound process. Our transition matrix is:

/ 0.8546 0.1454
( (0.0698)

0.0182 0.9818
(0.0100)

with standard errors in parentheses. Samuelson calls such a process a "momentum" process: it is more

likely to continue in the same state, rather than transition to the other state. Under a momentum process,

21A full list of parameter estimates is shown in Table (A-I) as part of the supporting Table Appendix. The Basic Model,

where p1 $ p produces covariance estimates which are approximately the same, but ILL = (-1.2881 -06921)' and pa =

(1.2829 1.3040)'. Even with the much more negative conditional mean for the US in state 1. the asset allocation results for the

full equity portfolio are similar, because they are driven mainly by the lower volatility of the US in that state.
22This same effect is shared across all the RS models (Table (9) to (Ii)). In the case of the Short Rate Model (Figure (6)) the

"less risky" asset is cash. Note that in the Earnings Yield Model, the change in US equity holdings depends on the prevailing

earnings yield.
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risk-averse investors will want to decrease their exposure to risky assets as horizon increases. Intuitively,

the long-run volatility is smaller under a rebound process than under a momentum process (with the

same short-mn volatility). In our setting, the risky asset is overseas equity, and the safer asset is US

equity. The persistence of our regime probabilities means that investors with longer horizons hold less

foreign equity, so long-horizon investors are less tolerant of holding more risky overseas equity than

short-horizon investors. However, Section 5.4 shows that this effect is economically and statistically

insignificant.

5.6 Basic Short Rate Model

Introducing a predictor instrument makes the portfolio weights a function of the instrument as well as

the regime. Here we focus on the asset allocation results given by the Basic Short Rate Model (equa-

tions (28)-(31), where we impose 13(St) = 0 in equation (30)). The excess conditional mean for equity

returns is imposed equal across regimes (/.ti = /2). From Section 4.3.4, the predictability in the condi-

tional mean is overwhelmingly statistically insignificant but the short rate does enter significantly in the

probability coefficients (b in equation (31)).

Portfolio weights as a function of the short rate and regime are presented in Figure (6). The top two

plots show the asset allocation weight for US and UK equity in regime 1 and 2 (and the remainder of

the portfolio is held in cash). The Figure shows that the hedging demand is small, and is only visible

for the first regime. In regime 2, as the short rate increases investors hold less equity, but in regime I

there is almost no effect of the short rate on the portfolio allocations. This is driven by the non-linear

predictability in the probability coefficients. The portfolio holdings in state 1 are flat because the excess

returns are constant and no significant short rate predictability (b1 is insignificant) drives the transitions

from this regime. In the second regime b2 is highly significant and negative. As the short rate increases, a

transition to regime 1 becomes increasingly likely. As the first regime has much higher equity volatility,

investors seek to hold less equity to mitigate the higher risk.

The effect of predictability seems much weaker in our model than in the predictability models ana-

lyzed by Brennan, Schwartz and Lagnado (1997), Kandel and Stambaugh (1996), and Barberis (1996).

These models have linear predictability ( 0) in the conditional mean rather than the non-linear pre-

dictability in the probability coefficients and much longer rebalancing intervals than 1 month.

Table (17) presents the economic compensation required for an investor not to hold the UK. To obtain

the first panel in the Table a constrained optimization problem must be solved where investors are only

permitted to hold cash and US equity. In this setting, the cost of not holding the UK is only very modest,

and higher in regime 2 where US-UK correlations are lower. This is consistent with the pure US-UK

equity portfolios examined in Section 5.1. The main effect of introducing the short rate as a predictor is

the benefit of holding cash. The bottom panel of Table (17) shows that the costs of holding only equity

and ignoring regime switching is substantial.
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5.7 Earnings Yield Model

Figure (7) shows the US portfolio weights for an all-equity US-UK portfolio from the Earnings Yield

Model in each regime. In the top panel portfolio weights for different horizons are presented, which

shows that the intertemporal demands from this model are very small. In regime 1, as the earnings yield

increases, US investors seek to hold more risky UK equity. In regime 2, this same effect is repeated at

higher earnings yields, but a small hump is seen at lower earnings yields. The Samuelson (1991) effect

of a small increasing exposure to the safer US asset with increasing horizon can also be seen.

The second panel of Figure (7) shows the 95% standard error bands of myopic portfolio weights.

These are large, but are smallest at the average value of the earnings yield conditional on each regime. In

regime 1 (2), the confidence bands are smallest at 10.4% (6.6%) and then increase like a funnel in both

directions for higher and lower earnings yield levels. Myopic weights and the null of constant portfolio

weights across regimes can definitely not be rejected.

Table (18) presents some economic cost computations under the Earnings Yield Model for an in-

vestor with risk aversion y = 5. The first panel lists the costs of ignoring RS and predictability where

an investor holds Samuelson (1969) lID portfolio weights. The middle columns for each regime list the

costs associated with the average earnings yield conditional on the regime. The other numbers are rep-

resentative "high" and "low" earnings yields conditional on the regime. In regime 1 (2), with an average

earnings yield of 10% (6%), the costs are only 0.06 cents (0.04 cents) with a 1 year horizon. The lID

weights provide a good approximation to the optimal weights at most earnings yield levels making the

costs to ignoring both RS and predictability small.

The bottom panel of Table (18) lists the costs of ignoring predictability but taking into account

regime-switching. In this case, the constrained portfolio weights are those implied by the Simple RS

US-UK Model (with j jt), and are quite dissimilar from the RS Earnings Yield weights in the

first regime at conditional average yield levels. Generally, this produces higher costs in the first regime

relative to the lID case, which ignores both predictability and changing regimes. For example, for a 1

year horizon in regime 1, the costs are 0.33 Cents compared to the lID weight cost of 0.06 cents. The

reason for this is because at average values of the earnings yield conditional on each regime, the lID

portfolio weights are better approximations to the optimal weights while the portfolio weights implied

by the Simple RS Model tend to over (under) state in the optimal weights in regime 1 (2). The optimal

myopic US weights at the conditional average earnings yield in regime 1 (2) are 0.7262 (0.8422), while

the weights from the Simple US-UK Model are 0.8614 (0.7356). The lID portfolio weights 0.7642

deviate less from the optimal earnings yield weights in each regime. In fact, it is striking that at the

average earnings yields the home bias in the first regime disappears. Looking at the estimated moments

conditional on the regime it is clear why this happens. Compared to the Simple RS Model, in the Earnings

Yield Model UK equity is relatively more attractive since the correlation with US equity is lower (0.5551

versus 0.6097 for the Simple RS Model), and its volatility ratio relative to the US is less extreme (1.7274
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versus 1.9492). In the second regime the opposite effect is true but it is brought about by differences in

the conditional means and volatility, whereas the correlation is estimated to be about 0.44 in both models.

6 Robustness Experiments

In this Section we conduct several experiments to determine the robustness of our results. In Section

6.1 we check the sensitivity of our results to the specification of the conditional means. In Section 6.2

we gain further intuition on optimal asset allocation under regime changes by examining how optimal

portfolio weights change as a function of one changing parameter in the RS Simple US-UK Model. In

Section 6.3 we investigate whether our conclusions about the costs of ignoring RS and the benefits of

international diversification remain robust to alternative parameter values. Finally, in Section 6.4 we

consider an out of sample experiment.

6.1 Regime-Dependent Conditional Means

One disappointing aspect of our RS model estimation is that we fail to find strong evidence that highly

volatile periods coincide with bear markets. Although the point statistics suggest this relationship, the

standard errors on the conditional means in regime 1 are large. This in turn may dampen the potential

asset allocation effects of the high volatility regime. In order to examine this further, we re-estimate

the Simple RS models constraining the conditional means to be equal across countries, but different

across regimes. These models cannot be rejected in favor of the alternative of unconstrained means

(p-value 0.8415 (0.4884) for the US-UK (US-UK-GER) model). In these models, the means in each

regime (equal across countries) are also not significantly different (p-value = 0.1422 (0.1927) for the

US-UK (US-UK-GER) model). The quality of the regime classification measured by the Ang-Bekaert

RCM statistic is largely unchanged for the US-UK-GER model, but is much worse for the US-UK. The

resulting portfolio weights are largely unchanged, with almost the same economic costs and significance

levels for the statistical tests. Consequently, our focus on time-varying covariances seems justified.

6.2 Changing Parameters in the Simple US-UK Model

Figure (8) shows the effect on the portfolio weights of changing various parameter values. The base-line

case is the unconstrained i case, We alter one parameter while holding all the others constant and hold

the horizon fixed at T = 12 months. From the top plot going downwards in Figure (8) we show the effect

of altering the transition probability P = p(st = list_i = 1) of staying in the first regime conditional

on being in the first regime, the correlation P1 of the US-UK in regime 1, the conditional mean ,uu of

the US in regime I, and the volatility o of the US in regime 1.

The plots are very intuitive. As P increases, holdings of the safer US asset increase in both states as

the expected duration of regime 1 increases. The largest difference between the state-dependent weights
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is at values around P = 0.5 (the sample estimate is P = 0.8552), but this has only a minor effect on

the regime dependence. As P1 increases the diversification benefits of holding UK equity decrease, so

holdings of the US increase. Note that it is only for P1 greater than 0.8 that the weights in each regime

become substantially different. Our estimated ôi = 0.6181 is far less than this. As /.u increases the US

becomes even more attractive relative to the UK so holdings of the US increase. (The sample estimate

is ju = —1.2881). Finally, as o increases the US becomes less "safe" and the proportion allocated

to the UK increases. There is some larger regime-dependent effect for values smaller than the sample

estimate of &u = 7.0376, but for values of o greater than 9 the portfolio weights in each state are

almost identical. Overall, since the correlations are similar across regimes there is little difference in the

regime-dependent portfolio weights and the main effect is to alter the amount of the US held in each

regime. Figure (8) suggests that of the parameters affecting the conditional distribution of returns in

regime 1, the biggest effects on the regime-dependent weights come from conditional correlations and

the relative difference in means.

6.3 Asymptotic Distributions of Economic Costs

The previous Section conveys intuition on which parameters have the largest effect on regime-dependent

optimal asset allocation but does not tell us whether our main conclusions are affected by these different

parameters. Here we focus on the RS Simple US-UK and US-UK-GER Models and re-compute the eco-

nomic costs of no international diversification, the economic costs of ignoring RS and the economic costs

of myopic strategies for 1,000 alternative parameter values drawn from the asymptotic normal parameter

distributions implied by the estimation. We take the sample estimates to be "population values" and use

the estimations where the conditional means are constrained to be equal across regimes. We then look at

the 5% and 95% tail estimates of the various costs.23

The results of this exercise are presented in Table (19) for a risk aversion of 'y = 5 and for horizons

T = 1, 12, 36 and 60 months. The distributions of the economic costs have means which are larger than

their population values in Tables (13) and (15). The median values of the economic costs are much closer

to the population values. The economic cost computations can be viewed as non-linear transformations

of the parameters. The transformations result in economic costs which are skewed to the right, especially

for the costs of not diversifying internationally which are far more right skewed than the costs of holding

lID weights. This means that if we draw a particular set of realistic parameter values, we may likely

find costs for not diversifying internationally that are substantially larger than the population values. For

example for T = 60 for the US-UK-GER Model the cost of no international diversification is 26 cents at

the 95th percentile.

For the Simple US-UK Model, for T = 1 and 12 months, the costs of ignoring RS are slightly

higher than the costs of no international diversification, but for the longer horizons, failing to diversify

23For the costs of ignoring RS, the LID weights are calculated using a multivariate normal with the unconditional mean and

covariance matrix implied by the simulated parameters.
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internationally is much more costly than ignoring RS. In the case of the Simple US-UK-GER Model,

failing to hold overseas equity is always more costly than using lID weights. For T = 12 months the

95% tail estimate of the cost of no diversification is 4.47 cents (4.86 cents) in regime 1 (2), while the cost

of ignoring RS is 1.01 cents (0.45 cents) in regime 1 (2). Finally, Table (19) shows the costs of using

myopic weights are effectively zero when drawing from the asymptotic parameter distribution.

6.4 Out of Sample Experiment

To examine the relative effectiveness of the RS strategies to ignoring RS, we run an out of sample

experiment. We take the Out of sample period to be from January 1986 to December 1996 (11 years),

which includes the 1987 crash. We consider the performance of all equity portfolios for the simple RS

models for US-UK arid US-UK-GER relative to the portfolios an investor would hold for 11D weights

ignoring RS. We use a fixed horizon of December 1996 (time T) and for each month t in the out of

sample period we record the accumulated wealth from each strategy. At a given time t, we estimate the

model up to time t. Using smoothed probabilities p(st = lilt) (which use all information up to time t)

implied by the RS model, we then infer the regime at time t. To find the appropriate portfolio weights we

solve the dynamic programming problem for a horizon ofT — t. We also find the portfolio weights for an

investor using lID portfolio weights and using RS myopic weights. In the former case, these weights are

estimated using the multivariate normal distribution with means and covariances estimated from data up

to time t. At time t + 1 we calculate the actual accumulated wealth from holding these portfolio weights.

Table (20) lists the accumulated amounts at December 1997 of $1 invested at January 1986 in all

equity portfolios. The Table confirms that over this period there is very little difference from using RS

weights and ignoring RS. In Table (20) we see that the myopic RS strategies are almost identical (since

the intertemporal hedging demands implied by the Simple RS Models are very weak) to the optimal

RS strategy. As we increase -y, our returns become larger because more risk averse investors hold more

of the "safer" US asset. The US produced the best returns over this period, which also explains the

higher performance of holding only the US and UK relative to holding all three countries. Of course, this

sample includes the bull market of the 1990's and, apart from the few months following the 1987 crash.

the regime classification infers we are always in the normal second regime. As the lID weights are much

closer to the RS weights for regime 2, this may represent a very biased draw.

7 Conclusions

In this article, we introduce regime-switching into a dynamic international asset allocation setting. We

look at a US investor with Constant Relative Risk Aversion (CRRA) utility who dynamically rebalances

and maximizes end of period wealth. Regime-switching can potentially have a large impact in this setting

by producing state-dependent portfolio weights and intertemporal hedging demands.

Consistent with much of the empirical evidence on integrated equity markets, we find evidence of
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the presence of a high volatility-high correlation regime which tends to coincide with a bear market.

However, the evidence on higher volatility is much stronger than the evidence on higher correlation.

The regime-dependence of the means also has weak statistical significance, although the point estimates

suggest that the high-volatility regime is associated with lower, and possibly negative, conditional means

than the "normal" regime.

We consider a number of different settings from simple regime-switching multivariate normals to a

model where short rates predict equities through their effect on the regime transition probabilities, but

our main conclusions are robust across these models. First, the existence of this high volatility regime

does not negate the benefits of international diversification. When currency hedging is allowed these

benefits are even greater.

Second, the costs of ignoring regime switching are small for moderate levels of risk aversion. The

optimal behavior of a US investor is to switch towards US equity (or cash, if available), at the expense

of overseas equity when the high volatility regime is reached. It is the much higher volatility of overseas

equity compared to the "safer" US equity which drives this result. However, it is not very costly not

to switch, if an investor were to use lID portfolio weights even if the true data generating process were

regime-switching. Although the portfolio weights may be significantly different across regimes, the lID

weights act as an "average" portfolio weight which diversifies risk well in both regimes. This result

continues to hold when currency hedging is allowed.

Third, in common with the non-parametric results obtained by domestic dynamic allocation studies

such as Brandt (1998), the intertemporal hedging demands under regime switches are economically

negligible and statistically insignificant. Investors have little to lose by acting myopically instead of

solving a more complex dynamic programming problem for horizons greater than one period.

Our results are remarkably robust. When we draw random parameters from the estimated parame-

ter distribution, the conclusions remain: for all equity portfolios, failing to diversify internationally is

typically much more costly than ignoring the regimes, which, in turn, is more costly than ignoring the in-

tertemporal hedging demands. However, our results remain premised on our assumptions, which include

CRRA preferences, the absence of transactions costs and full knowledge on the part of the investors of

the data generating process. With transactions costs, or learning about the regime, it is even less likely to

be worthwhile for investors to change their allocations when the regime changes. However, using differ-

ent utility functions, for example First Order Risk Aversion (Epstein and Zin (1991)) could potentially

cause regime switching to have much bigger effects than in the traditional CRRA utility case, and such

preferences can be treated in the same dynamic programming framework considered in this paper.
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Appendix A: Markov Discretization Under Regimes and Predictability

Under the case of regime switching and predictability we follow Tauchen and Hussey (1991) by

calibrating an approximating Markov chain to the RS DGP. We will discuss the calibration of the Short

Rate Model, as the Yield Model is similar. We first fit a discrete Markov chain to the predictor instrument

zt. For the Short Rate Model, Zt = Tt which follows the process:

= c(st) + p(st)rt_1 + v(st)/Tut, (A-i)

with Un N(0, 1). The transition probabilities are state-dependent:

exp(aj + brt_i)P(St = ijSt_i = i;It_.i) = . (A-2)1 + exp(aj + brt_i)

We first fit a Markov chain to short rates for regime 1, then to regime 2, and then combine the chain. From

hereon, we use the word "state" to refer to the discrete states of the Markov chain which approximate the

continuous distribution in each "regime state", or "regime". The equity return shocks are correlated with

the short rate, but the short rate states are the only driving variables in the system. We will show how to

easily incorporate equity without expanding the number of states beyond those needed to approximate

the distribution of rt.

The idea behind Markov discretization is to choose points {r} and a transition matrix H which ap-

proximates the distribution of Tt. Tauchen and Hussey recommend choosing {r} from the unconditional

distribution of Tt. We can then find the transition probabilities Pij from r1 to r by evaluating the con-

ditional density of r (which is Normal from equation (A-I)) and then normalizing the densities so that

they sum to unity, that is

Pij = 1. (A-3)

For any highly persistent process such as short rates, discretization is difficult because Pu are com-

puted from a conditional distribution, and there is a different conditional distribution at each r and

these may differ substantially from the unconditional distribution of Tt. The high persistence requires a

lot of states for reasonable accuracy. When a square root process is introduced, the asymmetry of the

distribution and the requirement that the states be non-negative introduce further difficulties.

To aid us in picking an appropriate grid for Tt in each regime we first simulate out a sample of

length 200,000 from equations (A-I) and (A-2), with an initial pre-sample of length 10,000 to remove

the effects of starting values. During the simulation we record the associated regime with each interest

rate. We record the minimum and maximum simulated points in each regime. For regime 1, which is the

less persistent higher conditional mean regime, we take a grid over points 2.5% higher (lower) than the

simulated maximum (minimum). For regime 2, the "normal regime" with very low mean reversion, the

persistence leads us to take a grid starting close to zero, to 2.5% higher than the simulated maximum. We

use 50 points for regime 1, and 100 points for regime 2 to take into account the stronger persistence in
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this regime. We also employ a strategy of "over-sampling" from the over-lapping range of the regimes.

This is to aid in picking points where the discretized Markov chain is more likely to have non-zero

probabilities in switching from one regime to another. We place 95% (90%) of the points in regime 1 (2)

in the overlap.

Let {r } denote the states in regime k. We create the following partial transition matrices by the

method outlined above: from {r} to frt} from {r} to {r}, from {r} to {r} and from {r} to {r}.
Denote these by H_.k for j,k = 1, 2. The rows of each flj....k will sum to 1. The total states for the

Markov chain consist of {{Tj'}{T}}.

Denote Pjk(r) = p(st = klst_i = j, r_ = r), which is given by equation (A-2). To mix the 11j—.k

matrices to obtain H for each r we calculate Pjk(r) and then weight the appropriate row of each

to combine into LI. For example, for a state in the first regime, r, we calculate P11(r) and P12(r'),

Then the appropriate row in LI corresponding to r will consist of Pu (rfl times the appropriate row

corresponding to fl1....1, and P12(r) times the appropriate row corresponding to f11..2.

This Markov chain is an accurate approximation of the RS process in equations (A-i) and (A-2). In

particular, following Bekaert, Hodrick and Marshall (1998), when a sample of 100,000 is simulated from

the Markov chain and the RS process re-estimated, all the parameters are well within 1 standard error of

the original parameters. Also, the first two moments of the chain match the population moments of the

RS process to 2-3 significant digits.

The Markov chain for Tt now consists of the states {r} with transition matrix H which is 150 x 150.

To introduce equity into the chain we introduce the triplets {(r2, y y)} where y are the equity points

for country in. We choose the points {r} approximating country in by Gauss-Hermite weights for the

conditional normal distribution for each regime. In our setup the equity returns for country m are given

by:

ym = f.im(St) + 0(St)Umt (A-4)

where cross-correlations between Umt, m = 1, 2 and Urt are state-dependent. In a given regime, a

Cholesky decomposition can be used to make a transformation from the uncorrelated normal errors

(u1 U2 113) into the correlated errors (ei e2e3), with Pij denoting the correlation between e and e3.

Note that in this formulation only the short rate is the driving process, and is the only variable we

need to track at each time t. To accomodate the equity states we can expand IT column-wise. We choose

3 states per equity, making an effective transition matrix of 150x 1350 where the rows sum to 1. (Note, a

full 1350x 1350 transition matrix could also be constructed, but the 9 rows corresponding to a particular

r would be exactly the same.) Each short rate state is associated with 9 possible equity states. The

only modification we need in. the method outlined above is to construct new partial transition matrices

so ITI...1 becomes 50x450, H1...2 becomes 50x900, H2.1 becomes 150x450, and LI2....2 becomes

lOOx 900. These partial transition matrices can be mixed in the same manner as outlined before.

We find that there is a systematic downward bias when the implied moments conditional on the
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regime, and the unconditional moments are calculated from the Markov chain. This results from the

regime-dependent distributions not being exactly unconditionally normally distributed in each regime

from the presence of the square root term in the volatility of Tt, so Gaussian-Hermite weights wifl not be

optimal in this setting. We make a further adjustment of scaling the volatility of the US (UK) by 4% (5%)

upwards. Our final Markov chain matches means, variances and correlations to 2-3 significant figures.

When we solve the FOC's in equation (6) we find that strong persistence in i- causes some insta-

bility at very low (<1.5%) and very high (>28%) interest rates. In these ranges the portfolio weights

are not as smooth as the plots that appear in Figure (6). At very high interest rates the portfolio weights

also start rapidly increasing for regime 2. These do not affect any solutions in the middle range. The

inaccuracies arise because at the end of the chains, the Markov chain must effectively truncate the con-

ditional distributions on the left (right) at low (high) interest rates. With experimentation we found that

the inaccuracies at the end of the chain decrease as the persistence decreases.

Appendix B: Estimation of Model II

Let Yt = (y ye)' and YT = (yy . . . y)'. To construct the sample likelihood f(yT) we first

expand the state space to St = 1, .. . , 4 where the states correspond to all possible combinations of sr

ands:
s US UK
1 1 1

2 2 1

3 1 2
4 2 2

The distribution of yt conditional on st is N(/2(st), (St)). The conditional means for each St are:

/ us\ / us\ / s\ ( us
1/21 1 1/22 1 1/21 I 1/22

/21 /22

k/2uk) /2uk)
(B-i)

where subscripts indicate the appropriate corresponding regime. The conditional covariances are given

by:

( (.uS)2 p.us.uk\ ( (.us)2 P200=
plLsuk (Uk)2 )

E2 =
usuk (uk)2

( (S)2 ( (s)2 P2\
E3= i J (B-2)

\.pa3o (.Lk)2 ,/ (.Lk)2 /

The correlations between the US and UK depend only on the state of the US.
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We can write the likelihood over the sample YT = (y'i . . as:

f(yT)

= fl (tisr = j,I_)p(s3 = iIIt_i)) (B3)
t=i j=i

We condition on f(ytisr = j,I1) to write:

f(ytjs = 1,I_) =p(s = 1is3 = 1)f(ytIs = 1,s = 1,I_)
= 2is3 = 1))f(ytjs = 15uk = 2,I...i)

f(ytis = 2Iti) =p(s = lIsr = 2)f(ytisr = 23Lk 1,I_)
= 2Is = 2))f(Ytis = 2,s = 2,I_i) (B-4)

Equation (B-4) can be simplified to:

f(ytis3 = = Af (ytist = 1I_) + (1 — A)f(ytlst = 3,It—1)

f(ytis3 = 2,It—i) = (1 — B)f(ytlst = 2,I) + Bf(ytist = 4,Z—i) (B-5)

from equation (21).

Conditioning on = ijI_1) gives:

p(s = jilt_i) = = iisi = j,It_i)p(s1 = jilt_i) (B-6)

where the transition probabilities P p(s = = 1,l_) and Q = p(s = 2isi = 2,I_i)
are constant. The ex-ante probability p(s = jilt_i) can be computed recursively using the technique

of Gray (1996) and Hamilton (1994):

us — -r
i Yt—i, St_i — J L_

P(t—i = jilt—i) =
f(yt_llIt_2)

— f(yt_iisi = j,It_2)p(sl = jIIt_2)
-

—

f(yt_ijs = rn,It2)p(s1 = milt_2)

Note that we could also construct the likelihood by using a 4x4 restricted transition matrix and con-

ditioning on s rather than s in equation (B-3). However, the approach given here is computationally

more tractable.
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Table 1: Sample Moments of Nominal Equity Returns

Panel A: Central Moments
US UK GER

Mean 0.9813
(0.2382)

1.0670

(0.3784)

0.9668
(0.3 158)

Stddev 4.3695
(0.3 107)

6.8338

(0.6110)

5.8613

(0.3257)
Skewness -0,5545

(0.4576)

0.4803

(0.6909)

-0.3693
(0.1936)

Kurtosis 6.2009 8.3336 4.1674

Panel B: Autocorrelations
US UK ____

0.0107 0.0585

(0.0699) (0.0669)
2 -0.0174 -0.0867)

(0.0534) (0.0705)
3 -0.0007 0.0577

(0.0654) (0.0651)

GER
-0.0278
(0.0634)
-0.0129
(0.0594)
0.0607

(0.0586)

Panel C: US, UK and GER Equity Correlations

US UK
UK 0.5100

(0.0498)
GER 0.3628 0.4372

(0.0701) (0.0521)

US, UK, GER refer to equity returns. The sample period is from January 1970 to November 1997 (335 return obser-
vations). Returns are expressed as monthly continuously compounded rates. Standard errors are in parentheses and are
estimated using Generalized Method of Moments with 3 Newey-West (1987) lags. The standard errors are calculated
setting up moment conditions for each country separately for each of the central moments in Panel A and the autocorrela-
tions in Panel B. In Panel C, all the moment conditions for the US, UK and Germany are used simultaneously to calculate
the standard errors.

Table 2: Sample Moments of Excess Equity Returns

world US UKuh UKh GERuh GERh
Mean 0.4723 0.5443 0.7083 0.6218 0.3893 0.4386

(0.2369) (0.2452) (0.3494) (0.2994) (0.3508) (0.3287)
Stddev 3.9512 4.1912 6.2737 5.4212 5.8899 5.2371

(0.2586) (0.3350) (0.4084) (0.4750) (0.3801) (0.4495)
Skewness -0.6496 -0.8139 -0.1843 -0.6651 -0.4213 -0.7996

(0.3486) (0.5862) (0.2814) (0.6140) (0.2158) (0.4170)
Kurtosis 5.3019 7.2077 4.6908 7.5485 4.3490 6.4398

(1.3725) (2.7195) (0.6220) (2.3031) (0.3607) (1.2801)

Monthly excess returns over the US Euro 1 month short rate. Sample period 75:01 to 97:07. World is the MSCI world
index in USD, uh refers to unhedged returns in USD, hedged refers to hedged returns in USD, defined as + Zt —

where LC denotes local currency returns, i the US short rate, and i the foreign short rate (EURO 1 month short rate)
Standard errors are in parentheses and are estimated using Generalized Method of Moments with 3 Newey-West (1987)
lags. The standard errors are calculated setting up moment conditions for each country separately.

Lag



Table 3: Sample Moments of Instruments

Panel A: Central Moments

ey ln(ey) r"
Mean 7.9208 2.0122 7.8366

(0.2937) (0.0365) (0.365 1)

Stddev 2.7222 0.3381 3.3034

(0.1643) (0.0174) (0.3091)
Skewness 0.6033 0.1398 1.1187

(0.1643) (0.1489) (0.1931)
Kurtosis 2.2792 1.9529 4.2628

(0.3080) (0.153 1) (0.6953)

Panel B: Autocorrelations

Lag ey ln(ey) r'
0.9873 0.9896 0.9688

(0.0109) (0.0089) (0.0239)
2 0.9714 0.9740 0.9247

(0.0200) (0.0163) (0.0443)
3 0.9562 0.9586 0.8874

(0.0273) (0.0228) (0.0611)

ey and ln(e,) denote the MSCI earnings yield and log earnings yield respectivelyof the US. r1 denotes
the short rate, which is the US 1 month LIBOR rate, expressed as a continuously compounded annual rate.
The sample period is from January 1970 to November 1997 for the earnings yield, and from January 1972
to November 1997 for the short rate. Standard errors are in parentheses and are estimated using Generalized

Method of Moments with 3 Newey-West (1987) lags. The standard errors are calculated setting up moment
conditions for each instrument separately for each of the central moments in Panel A and the autocorrelations

in Panel B.

Table 4: Test for Regime-Switching

Sample LR statistic = 103.73 8

Small Sample Distribution
quantiles

mean 18.253 5% 0.0089

stdev 9.434 10% 4.66 13

max 49.449 50% 17.9527

mm 0.000 90% 30.0468
95% 42.0977

Test of the presence of regime-switching. Under the null of no-regime switching y = j. +
with y = (yyyr')' are the nominal monthly equity returns, and Ct lID N(0,I) against a

regime-switching alternative Yt = j(st) -i- E(st)Ct with s = 1,2 and P = p(st = 1Is_i = 1)

and Q = p(st = 21st_i = 2). Samples of length 355 from the estimated no-regime switching
model are generated. the regime-switching model is estimated on the simulated data and the sample
likelihood ratio statistic is recorded. The procedure is repeated 500 times.



Table 5: Wald Tests for Parameter Equality Across Regimes

Simple
US-UK

Simple
US-UK-GER

Beta
US-UK US-UK-GER (Basic Model) Model

Means /51 = /52
0.0351 0.0000US 00351 0.0747 0.0843 0.2635

UK 0.3858 0.8180 0.1140 0.2924 0.0803 0.0191

GER 0.5559 0.3559
0.0001Joint 0.0975 0.2285 0.1856 0.3770

Volatilities Oi = 02
0.0861

0.0000US 0.0002 0.0000 0.0146 0.0001 0.0000

UK 0.0000 0.0000 0.0000 0.0000 0.0000

GER 0.0000 0.0000

Joint 0.0000 0.0000 0.0002 0.0000

Correlations P1 = p2
0.0000

0.4316US-UK 0.1556 0.0586 0.5676 0.5745

US-GER 0.1709 0.5355

UK-GER 0.8246 0.9138

Joint 0.2340 0.6825

The Table lists p_values of Wald Tests of parameter equality across regimes st = 1,2. The Simple RS models

refer to equation (19), and the Basic Model for the Short Rate refers to equations (28)-(31), where we impose

fl(st) = 0 in equation (30). For the Beta Models UK and GER refer to unhedged asset returns. The Joint Tests
refer to a Wald test of parameter equality across regimes for all countries listed in the entries for that model.

For the Earnings Yield Model, the = /52 test refers to a test of equality for the conditional mean parameters

p.(s) and i3(s) in equation (30) with ey replacing r1.

Table 6: Likelihood Ratio Tests for Constraining =

P-value unconstrained constrained

Test /51 = /52 RCM RCM

Basic Model US-UK 0.1165 24.7 23.6

US-UK-GER 0.2289 52.9 48.4

Beta Model US-UK 0.0644 56.0 40.0

US-UK-GER 0.2435 64.0 64.4

Short Rate Basic Model 0.0973 29.9 29.9

The likelihood ratio test refers to a test for constraining the conditional mean s across regimes.
For the Basic Model, this is the conditional mean for each country (constrained separately) in
equation (19). For the Beta Model, this is the conditional mean for the excess world return
in equation (26). The Short Rate Basic Model refers to equations (28)-(3l), where we impose

= 0 in equation (30). RCM refers to the Ang-Bekaert (1998) regime classification mea-
sure RC?vI = 400 * ÷ p(i —pt), where Pt iS the ex-ante regime probability p(st = 1II_i).
Lower RCM values denote better regime classification.



Table 7: Likelihood Ratio Tests of Restricted Models

US-UK Simple RS Model
Basic Model vs Model II 0.9950

Basic Model vs RS ARCH 0.9853

Short Rate Model
Basic vs Full Model 0.9 145

Constant Probabilities vs Basic 0.0065

Earnings Yield Model
No Predictability vs Full Model 0.0 149

No Conditional Mean Predictability vs Full Model 0.0697
Constant Probabilities vs Full Model 0.0542

P-values are listed. The nested model is always listed first. The Basic Model for the US-UK Simple
RS Model refers to equation (19), and Model II to the extension in equation (21). The RS ARCH
model is presented in equation (22). The Full Model for the Short Rate Model refers to equation (28)-
(31) and the Basic Model where we impose j3(s) = 0 in equation (30). The Constant Probabilities

Model refers to setting f3(s) = 0 in equation (30) and b1 = 0 in equation (31), 50 it is the Basic

Short Rate Model with P and Q constant. For the Earnings Yield Model, no predictability refers
to a test of 3(se) = 0 and b, = 0, no conditional mean predictability to 0, and constant

probabilities to b = 0.

Table 8: Implied Currency Premiums from the RS Beta Models

US-UK Beta Model

US-UK Exchange Rate
state 1 state 2 Stable Probs

cp vol cp vol cp vol

0.0294 11.0317 0.1572 4.8514 0.1362 6.2980

(0.1927) (1.2170) (0.0845) (0.2677) (0.0791) (0.4978)

US-UK-GER Beta Model

US-UK Exchange Rate
state 1 state 2 Stable Probs

cp vol cp vol cp vol

0.0801 9.5450 0.1980 4.5925 0.1647 6.3912

(0.1270) (0.6583) (0.0964) (0.2715) (0.0840) (0.3788)

US-GER Exchange Rate
state 1 state 2 Stable Probs

cp vol cp vol cp vol

0.0610 9.7088 0.1643 5.1022 0.1351 6.7299

(0.1280) (0.6864) (0.0892) (0.2436) (0.0773) (0.3652)

The currency return is the is the excess return in investing in the foreign money market: cr÷i = e.i i —

where et÷ is the log difference of the exchange rate, i is the foreign country's short rate, and t is the domestic short

rate. In the RS Beta Models this is the difference between unhedged and hedged returns. The currency premium cp
is the expected value of the currency return cpt = E(crt+1). "Vol" refers to the volatility of the currency return. We

report regime-dependent and unconditional currency premiums and volatilities of currency returns. We impose the same

conditional means for the world excess return across states (t =



Table 9: Simple US-UK Model: Weight of the US in All-Equity Portfolios

Risk Aversion y = 5 Risk Aversion y = 10

Basic Model Restricted = Basic Model Restricted j =
Horizon State 1 State 2 State 1 State 2 State I State 2 State F State 2

US Weight
0.8587 0.7171 0.9348 0.6726 0.9652 0.7666 0.9999 0.7405

(0.3662) (0.2238) (0.0977) (0.2230) (0.1739) (0.1139) (0.1072) (0.1169)

12 0.8609 0.7297 0.9362 0.6769 0.9697 0.8585 1.0048 0.7769

(0.1919) (0.2067) (0.0997) (0.2203) (0.1773) (0.1229) (0.1010) (0.1063)

36 0.8614 0.7352 0.9365 0.6779 0.9699 0.8744 1.0057 0.7954

(0.3645) (0.2022) (0.0989) (0.2198) (0.1754) (0.1242) (0.1013) (0.1050)

60 0.8614 0.7356 0.9365 0.6779 0.9699 0.8744 1.0057 0.7965

(0.2495) (0.2224) (0.1006) (0.2192) (0.1767) (0.1240) (0.1012) (0.1049)

lID weights 0.7642 0.7642 0.8275 0.8275

Intertemporal Hedging Demand Tests
12 0.9932 0.9736 0.9260 0.9804 0.2971 0.3877 0.9605 0.6707

36 0.8701 0.9609 0.2091 0.2334 0.2091 0.2334 0.9533 0.5377

60 0.9848 0.9547 0.9619 0.9757 0.2358 0.2333 0.9529 0.5294

Tests for Equality with lID Weights
0.7964 0.8334 0.0808 0.6813 0.4287 0.5926 0.1076 0.4569

12 0.6142 0.8677 0.0845 0.6921 0.4224 0.8009 0.0793 0.6344

36 0.7897 0.8862 0.0815 0.6948 0.4168 0.7055 0.0786 0.7597

60 0.6968 0.8978 0.0867 0.6941 0.4202 0.7050 0.0782 0.7677

Tests for Regime Equality
1 0.7465 0.1448 0.2977 0.0028

12 0.6087 0.1630 0.3141 0.0446

36 0.7337 0.1691 0.3085 0.0493

60 0.6181 0.1952 0.3116 0.0496

Joint 0.9844 0.2237 0.8047 0.0102

Asset allocation weights for the US from the Simple RS US-UK model. The coefficient of risk aversion y is fixed at 5

and 10. Standard errors in parentheses calculated using the delta-method with 5 quadrature points for each country. Table

shows weights for an all equity portfolio (so UK weight is 1 - US weight). The Intertemporal Hedging Demand Test is

a Wald Test to test if the horizon T portfolio weights are different from the myopic portfolio weights within each regime

state, expressed as a p-value. The Regime Equality is a Wald Test for equality of the US portfolio weights across regimes

expressed as a p-value.



Table 10: Simple US-UK-GER Model: Weight of the US and UK in All-Equity Portfolio

US UK
0.5889 0.1449

Intertemporal Hedging Demands
12 0.9774 0.9733
36 0.9948 0.9793
60

,.
0.9862 0.9500

Tests for Equality with lID Weights
0.5416 0.2632

12 0.5353 0.2553
36 0.5355 0.2613
60 0.5489 0.2508

Tests for Regime Equality
Joint

US UK US,UK
0.6681 0.5127 0.8064
0.6643 0.5057 0.8009
0.6974 0.5225 0.8151
0.6695 0.5220 0.8 141

0.9925 0.9649

Risk Aversion = 10

State 1 State 2

UK US UK US UK

0.7332 -0.0162 0.6355 0.1234

(0.1312) (0.1136) (0.1320) (0.1311)
0.7352 -0.0186 0.6432 0.1104

(0.1771) (0.1458) (0.1428) (0.1227)
0.7354 -0.0188 0.6442 0.1088

(0.1371) (0.0929) (0.1376) (0.1295)
0.7354 -0.0188 0.6442 0.1088

(0.1457) (0.1148) (0.1258) (0.1231)

0.8291 0.44090.9783
0.7740 0.76020.9735

0.5216 0.3974 0.9185
0.9673

0.7405
0.80380.6265 0.4994

0.9717 0.82370.5288 0.2879
0.9691 0.8 1480.5534

US UK
Joint

USUK
0.53090.4083 0.3
0.69800.5782 0.4158
0.69800.5782 0.4158

0.1926 0.40220.5541

Asset allocation weights for the US and UK from the Simple US-UK-GER model with j.i = a imposed. The coefficient

of risk aversion is fixed at 5 and 10. Standard errors in parentheses calculated using the delta-method with 5 quadrature
points for each country. The Table shows weights for an all equity portfolio (so GER weight is I - US - UK weight). The

tntertemporal Hedging Demand Test is a Wald Test to test if the horizon T portfolio weights are different from the myopic
portfolio weights within each regime state, expressed as a p-value. The Regime Equality is a Wald Test for equality of

the portfolio weights across regimes expressed as a p-value.

Horizon

Risk Aversion y = 5

State 1 State 2
US UK US

Restricted J.L = j.L2 Model

Portfolio Weights
1 0.6836 0.0341 0.6144 0.1590

(0.1551) (0.0990) (0.2703) (0.2591)
12 0.6839 0.0337 0.6153 0.1572

(0.1532) (0.0978) (0.2716) (0.2601)
36 0.6839 0.0336 0.6154 0.1570

(0.1533) (0.0990) (0.2701) (0.2579)
60 0.6839 0.0336 0.6154 0.1570

(0.1585) (0.0969) (0.2697) (0.1585)

lID Weights US
0.6491

UK
0.0800

0.9040
0.6989
0.3622

0.9249
0.9226
0.92 19
0.92 18

0.87 17
0.6102
0.8075

0.9565
0.9623
0.9625
0.9626

12

36
60

Joint across T
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Table 12: Joint Wald Tests for Equality of Portfolio Weights Across Regimes

All equity portfolios

Model

Simple US-UK
Simple US-UK-GER
US-UK Beta
US-UK-GER Beta

0.2237
0.9925 0.9649
0.0000
0.6778 0.0826

0.2790
0.9997 0.7763

Joint Wald Tests to test for significantly different portfolio weights across regimes for horizons T = 1, 12, 36, 60 months.

The Table lists p-values. The risk aversion 'y = 5. For the RS Beta Models, "for" denotes the forward currency position.

In all models =

Table 13: Economic Cost of No International Diversification: All Equity Nominal Portfolios

ey = 5.5
0.03
0.52
1.91
3.46

0.22
1.19 0.97 2.35
3.31 3.06 6.84

5.45 5.20 11.51

Earnings Yield Model with -y = 5

ey = 10.4 ey = 15.2 ey = 2.7 ey = 6.0

0.11 0.25 0.02 0.01

1.25 2.53 0.21 0.30

3.47 5.70 0.85 1.40

5.41 7.95 1.86 2.80

ey = 11.0
0.05
1.07
3.27
5.21

US UK UK for GER for

US-UK Model

T
7=5

Simple RS Models
US-UK-GER Model

12 0.44 0.78 0.26 0.80

36 1.83 2.24 0.90 1.51

60 3.29 3.70 1.47 2.07

0.14
1.90
6.32
10.96

s=l st=2
T

12
36
60

The Table presents the cost in "cents per dollar" compensation required for an investor to only hold
US equity (so the portfolio weight is I on US equity and zero on all other assets) instead of the
optimal weights. The Simple RS Models have jAi = IL2 imposed.



Table 14: Economic Costs of the Currency Hedging Beta Models

Table 15: Economic Cost of Ignoring Regime Switching

-y=5
T St=l st=2

1 0.08 0.01
12 0.58 0.13
36 1.09 0.54
60 1.53 0.97

Simple RS Models
US-UK US-UK-GER

St = 1 se = 2 St = 1 st = 2

0.16 0.01 0.02 0.00
1.65 0.44 0.14 0.05
4.84 3.16 0.29 0.20
8.20 6.46 0.44 0.35

-1 = 10

s=1 st=2
0.03 0.00
0.26 0.11
0.66 0.48
1.05 0.87

The Table presents the cost in "cents per dollar" compensation required for an investor to ignore
regime-switching and use Samuelson's (1969) myopic portfolio weights in an LID multivariate normal
setting with CRRA utility instead of the optimal portfolio weights. The models have ,u =
imposed.

Cost of Not Diversifying Internationally
US-UK Model US-UK-GER Model

-1=10 y=5 -1=10
T st=l st=2 St1 St2 St=' .St=2 s=1 st=2

1 0.04 0.09 0.01 0.14 0.17 0.10 0.25 0.19

12 0.74 0.97 0.71 1.36 1.53 1.37 2.65 2.50

36 2.58 2.83 2.84 3.55 4.43 4.26 7.97 7.81

60 4.46 4.72 5.04 5.76 7.42 7.24 13.56 13.40

Cost of Not Currency Hedging

T s=1
y=.5

s=2
-1=10

St=l St=2
-1=

t=1 St=2 St=l St=2
I 0.02 0.03 0.00 0.08 0.06 0.06 0.11 0.10

12 0.26 0.32 0.38 0.47 0.72 0.74 1.27 1.23

36 0.88 0.95 1.50 1.87 2.22 2.23 3.82 3.77

60 1.50 1.57 2.64 3.02 3.73 3.74 6.42 6.38

The first panel presents the cost in "cents per dollar" compensation required for an investor to hold
only the US. The second panel presents the costs required for an investor to only hold US and un-
hedged foreign equity instead of the optimal weights. In this case we solve an optimal asset allocation
problem with restricting holdings only to US and unhedged foreign equity and find the compensation
required to hold these weights instead of the optimal weights, which allow currency hedging. All
models have pi = 1h2 imposed.



Table 16: Economic Cost of Using Myopic Strategies

The Table presents the cost in "cents per dollar" of compensation required for an investor to use the

myopic 1-month horizon weights for all horizons instead of the optimal weights. The Basic Short
Rate Model refers to equations (28)-(31), where we impose f3(s) = 0 in equation (30). The Simple
RS, and Basic RS Short Rate Model have p = z imposed.

Table 17: Economic Costs under the Basic Short Rate Model

Cost of Not Holding UK Equity
St = 1 St = 2

T r=5.l r=9.9 r=14.8 r=5.1 r=10J r=15.l
1 0.01 0.01 0.01 0.05 0.03 0.01

12 0.37 0.29 0.22 0.57 0.36 0.20
36 1.35 1.07 0.89 1.64 1.09 0.84
60 2.33 1.94 1.71 2.64 1.92 1.65

Cost of Ignoring RS and Holding Purely Equity
st = 1

r = 9.9 r = 14.8 r = 5.1
0.39 0.40 0.01
2.71 3.41 0.32
5.63 7.39 1.36

7.96 10.13 2.68

s = 2
r

The Table presents the cost in "cents per dollar" compensation required for the Basic Short Rate
Model, which refers to equations (28)-(31), where we impose 0 in equation (30). We also

impose ji = ji for excess requity returns and set -y = 5. The first panel refers to the compensation
required to hold only US equity and cash. For this we need to solve a restricted optimization with zero
weight on the UK. The bottom panel refers to the compensation required for an investor to ignore
regime-switching and predictability and hold an all-equity portfolio without any cash balances in her
portfolio. The equity portfolio weights are Samuelson's (1969) myopic portfolio weights in an lID
setting with CRRA utility.

US-UK
Simple RS Models

US-UK-GER

T
y=5

.st=l
-y=lO y=5

st=2 s=l s=2 s=1 s=2 s=ly=10
st=2

12 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00
36 0.00 0.00 0.03 0.06 0.00 0.00 0.00 0.00
60 0.00 0.00 0.07 0.11 0.00 0.00 0.01 0.01

Basic RS Short Rate Model with y = 5

s1=1 s=2
T r = 5.1 i- = 9.9 r = 14.8 r = 5.1 r = 10.1 r = 15.1

12 0.00 0.00 0.00 0.00 0.00 0.00
36 0.01 0.01 0.01 0.01 0.01 0.01

60 0.02 0.02 0.02 0.02 0.02 0.02

Earnings Yield Model with y = 5
st = 1

T
12

36
60

ey = 5.5
0.00
0.00
0.00

ey = 10.4
0.00
0.00
0.01

= 15.2
0.00
0.00
0.01

Cli = 2.7
0.00
0.00
0.00

St = 2
ey = 6.0

0.00
0.00
0.00

ey = 11.0
0.00
0.00
0.00

T r=5.1
1 0.38

12 2.28
36 3.83
60 5.33

r = 10.1
0.01
1.09
4.22
6.78

= 15.1
0.11
3.10
7.38
10.22



Table 18: Economic Costs under the Earnings Yield Model

The Table presents the cost in "cents per dollar" compensation required for the Earnings Yield Model.
We set y = 5. The first panel refers to the compensation required to hold lID portfolio weights
(Samuelson (1969)) which ignore regimes and predictability. The second panel refers to the com-
pensation required to ignore predictability, but take into account regimes. In this case, the restricted
portfolio weights are those implied by the Simple RS US-UK Model with i not constrained to be
equal to which ignores earnings yield predictability.

Cost of Ignoring RS and Predictability

T ey = 5.5
s=1

ey = 10.4 ey = 15.2 ey = 2.7
St=2

ey = 6.0 ey = 11.0

1 0.01 0.00 0.04 0.00 0.00 0.00
12 0.03 0.06 0.39 0.03 0.04 0.05
36 0.11 0.21 0.71 0.11 0.11 0.19
60 0.21 0.34 0.88 0.18 0.20 0.31

Cost of Ignoring Predictability
1

T

12
36
60

ey = 5.5
0.00
0.06
0.35
0.60

St =
= 10.4
0.03
0.33
0.95
1.30

ey = 15.2

0.10
1.02
2.07
2.51

ey = 2.7
0.00
0.01
0.08
0.22

= 2
ey = 6.0

0.00
0.02
0.22
0.44

ey = 11.0
0.01
0.27
0.88
1.22
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Table 20: Out of Sample Experiment

US-UK
LID RS optimal RS myopic

= 5 6.4424 6.5929 6.5827

(15.41%) (15.61%) (15.60%)
- = 10 6.5005 6.6450 6.6557

(15.49%) (15.68%) (15.70%)

US-UK-GER
LID RS optimal RS myopic

= 5 5.3772 5.1462 5.1399

(13.81%) (13.43%) (13.42%)
-y = 10 5.6128 5.5639 5.5047

(14.19%) (14.11%) (14.02%)

In the top row we list accumulated amounts of $1 in January 1986 at December 1997 where the portfolio weights are
calculated from models estimated with data up to time t, and finding the actual accumulated wealth at time t + 1.
Portfolios are all-equity. Numbers in parentheses are the annual percentage return over the entire period (11 years).
LID refers to the Samuelson (1969) myopic strategy using lID multivariate normal distributions. The RS strategies use
dynamic programming solutions from the Simple RS US-UK and US-UK-GER Models. RS optimal refers to the strategy
using optimal portfolio weights assuming the horizon remains fixed at December 1997 through the whole sample. RS
myopic refers to using myopic 1-period weights of the Simple RS Model.
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The top panel gives the log of the equity index levels for the US and UK. The bottom panel lists the
ex-ante probability p(st = lilt_i).

Figure 1: Simple RS Model of US-UK Equity Returns
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The top panel gives the implied conditional means of US and UK equity. The middle panel shows the
implied conditional volatilities and the bottom panel shows the implied conditional correlation. The
dashed lines are 95% confidence intervals.

Figure 2: Implied conditional moments from the Simple RS US-UK Model
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The top panel gives plots of the short rate and the cumulated excess equity returns for the US and UK.
The middle panel lists the ex-ante probability p(st = lilt_i).The bottom panel shows the implied
correlations between US, UK equity and the short rate.

Figure 3: Short Rate-US-UK Equity Model
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US—UK Equity Portfolios

Changing for Restricted = Model, Horizon = 12
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We fix the horizon at 12 months and plot out the portfolio weights as the nsk aversion y changes. The

top panel gives the weights of the US in state I and state 2 for the Restricted i = /.L Simple US-UK
RS Model. The bottom panel shows the Restricted i = p model for the Simple US-UK-GER RS
Model.

Figure 4: Portfolio Weights when changing 'y in All Equity Portfolio Models
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We fix the horizon at 12 months and plot out the "cents per dollar" compensation required for ignoring
regime switching (holding Samuelson (1969) lID portfolio weights) and no international diversifica-
tion (holding only the US) as the risk aversion 'y changes. The top panel shows the Simple US-UK
Model, and the bottom panel the Simple US-UK-GER Model. We restrict j.ii = iz.

Figure 5: "Cents per dollar" compensation required as a function of -y
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We fix -y = 5 and plot weights of the US and UK versus the short rate for various horizons in the top two plots ott the first line. The

bottom two plots show the 95% confidence intervals of the 1 period weights. From the top clockwise, we have: (1) the weights of
the US and UK equity in state 1, (2) the weights of the US and UK equity in state 2, (3) UK portfolio weights for I month horizon
with 95% standard error bounds, (4) US portfolio weights for 1 month horizon with 95% standard error bounds. Parameter estimates
are from the Restricted = /.L Basic Short Rate Model, which refers to equations (28)-(31), where we impose (St) = 0 in

equation (30).

Figure 6: Portfolio Weights Using the Basic Short Rate Model with i1 =



US portfolio weights, Earnings Yield Model, ' = 5
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The Figures show portfolio weights of the US of an all-equity US-UK portfolio for the Earnings Yield
Model. The top panel gives the weights of the US in regime 1 and 2 for various horizons in months.
The bottom panel gives 95% confidence bounds (dashed lines) for myopic weights (solid lines).

Figure 7: US Portfolio Weight in the Earnings Yield Model
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Figure 8: Weight of US when changing parameters in the Simple US-UK Model
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Table Appendix

These Tables constitute the supporting Table Appendix mentioned in the main text.

RCM 24.7041
log Ilk -1992.31

Table A-i: US-UK Equity Models

US, UK refer to monthly equity returns with the subscripts indicating which regime. P = p(st = ls—i = 1), Q = p(st =
21st_i = 2). RCM refers to the Ang-Bekaert (1998) regime classification measure RCJ'vI = 400 * ÷ p(1 — pt), where

p is the ex-ante regime probability p(st = 1Z_j). Lower RCM values denote better regime classification. Log Ilk denotes the
log likelihood value. The Basic Model is a simple bivariate RS model. The Restricted = ji model sets the conditional mean

constant across regimes. Model 11 uses transition probabilities specified in equation (21). The RS ARCH model parametenzes the
conditional volatility as in equation (22). The A[i,jl notation refers to the element in row z, column j of matrix A.

estimate
P 0.8552

Q 0.9804

Basic Model Restricted Ii = !.i2 Model II RS ARCH

std error estimate std error estimate std error estimate
0.0691 0.8546 0.0698 0.8556 0.0690 P 0.8555
0.0108 0.9818 0.0100 0.9804 0.0107 Q 0.9808

std error
0.0702
0 .0 108

-1.2881 1.1874
1.2829 0.2287

US o 7.0376 0.8629

a2 3.7689 0.1677

1.1613 0.2198
=

7.5064 0.9515
3.7917 0.1654

-1.2880 1.1902
1.2828 0.8629
7.0374 0.8629
3.7691 0.1677

p -0.6439 1.5659

,t" 1.3668 0.2353
-1.3287 2.5763

11uk 1.3341 0.3191

a
i3

'-0.6921 2.2627
UK 1.3040 0.3141

01 13.7177 1.7558

2 5.2194 0.2376

1.2488 0.3090

=J.Li
14.0748 1.8432
5.2470 0.2409

1.0000 0.0023
1.0000 0.0005

-0.7253 2.2696
1.3043 0.3141

13.7184 1.7560
5.2197 0.2375

C1[1, 13 4.3372 1.5229

C1[1, 2] 1.5160 2.9402

C1[2,2] 11.3426 4.4303

C2[1,1] 3.6269 0.1712

C2[1,2] 0.9876 0.1532

Ca[2,21 5.0538 0.2560

Pt
P2

0.6097
0.4455

0.1022 0.6181 0.1032 0.6096 0.1022 Bi[1,1J -1.2763 0.7584

0.0496 0.4480 0.0491 0.4455 0.0496 Bj[1, 2]
Bt[2, 1]
Bj[2,2]
B2[1, 13
B2[1, 21
B2[2,1]
B2[2, 2]

-1.5202
0.3915
0.7403
0.0839
0.2426
0.0591

-0.0658

1.9194
0.2907
0.7284
0.1773
0.2565
0.1601
0.1775

23.5889
-1994.46

24.6741
-1992.30

25.7015
-1990.46



Table A-2: US-UK-GER Equity Models

The Basic Model is a RS simple trivariate model of US, UK, GER monthly equity returns with the subscripts
indicating which regime. P = p(st = list_i = 1), Q = p(st = 21st_i = 2). RCM refers to the Ang-

Bekaert (1998) regime classification measure RCI'vI = 400 * + — ps), where pt is the ex-ante

regime probability p(st = lilt_i). Lower RCM values denote better regime classification. Log ilk denotes
the log likelihood value. The Restricted = model imposes the same conditional means across regimes.

P
Q

Basic Model jii = 122
estimate std error estimate std error

0.8305
0.9444

0.0760
0.0269

0.8375
0.9503

0.0714
0.0258

.0.1751 0.7966
1.3546 0.2399

US 6.2463 0.6185
3.4655 0.1879

1.1467 0.2177
=

6.4124 0.6490
3.5086 0.1909

121 0.8124 1.3480

/.L2 1.1492 0.3476
UK o. 10.9400 1.1577

4.7864 0.2736

1.1412 0.3143

=/2i
11.0689 1.1928
4.8285 0.2716

0.3473 1.2073

122 1.1667 0.3735
GER 8.3056 0.7395

4.7819 0.3206

1.0863 0.3040

=121
8.3744 0.7670
4.8250 0.3131

pj(us, uk) 0.5994 0.0751 0.5996 0.0778

P2(US, uk) 0.4056 0.0607 0.4024 0.2669

pj(us,ger) 0.4540 0.1009 0.4627 0.1050

P2 (us, ger) 0.2620 0.0742 0.2669 0.0726

pi(uk,ger) 0.4523 0.0917 0.4522 0.0940

p2(v.k,ger) 0.4261 0.0622 0.4285 0.0609

RCM 52.9089 48.3632

logIlk -3011.36 -3013.52



Table A-3: US-UK Beta Model

Basic Model j
estimate std error estimate std error

P 0.6672 0.1223 0.7243 0.1140

Q 0.9055 0.0530 0.9457 0.0275

-0.8055 0.8480

bL2 0.8144 0.2822
world o 5.1683 0.6991

3.4703 0.2180

0.5139 0.2381
=

4.8137 0.7146
3.7742 0.1838

13 0.8584 0.1008

132 0.8407 0.0499
US c 3.5021 0.4348

2.2210 0.1605

1.1016 0.0878
0.7791 0.0444
2.3988 0.3798
2.5054 0.1244

13j 1.2702 0.2034
132 0.9891 0.0756

UK uh 0j 7.5668 1.0552
3.3013 0.3096

1.5525 0.2870
0.9681 0.0636
8.2472 1.13 12

3.4319 0.2431

1.1436 0.2022

/32 0.6630 0.0664
UK h o 6.9136 0.9075

02 3.1240 0.2668

1.4952 0.2684
0.6622 0.0581
7.3216 0.9934
3.2288 0.1919

RCM 56.0276
log uk -2912.22

39.9952
-2910.51

The estimated model is y = /L''(St) o''(St)' where y° is the world MSCI excess return. All returns
are excess over the US I month EURO rate. Sample period 75:01 to 97:07. For asset j's excess return

= /F(st).i"(st) + + o(s) with the errors lID N(01). The

Restricted Model sets j4° = ji. P = p( = l.s_j = 1), Q = p(st = 2Ist_t = 2). US refers to returns on

US equity, UK unhedged (UK oh) returns are in USD, UK hedged returns (UK h) refer to UK returns in pounds
plus the US 1 month EURO rate less the UK 1 month EURO rate. RCM refers to the Ang-Bekaert (1998)
regime classification measure RCM = 400 * pt(1 — Pt), where Pt is the ex-ante regime probability

p(st = 1I_i). Lower RCM values denote better regime classification. Log ilk denotes the log likelihood
value.



Table A-4: US-UK-GER Beta Model

Basic Model Restricted =
estimate std error estimate std error

P 0.6722 0.0839 0.6758 0.0849

Q 0.8730 0.0381 0.8723 0.0389

Pt -0.1777 0.6762

P2 0.7078 0.2546
world Oj 5.2087 0.4892

02 3.3378 0.1833

0.5654 0.2271
=

5.2459 0.4982
3.3389 0.1893

0.8787 0.0828

132 0.8205 0.0497
US 3.4525 0.3264

2.1157 0.1352

0.8821 0.0829
0.8168 0.0510
3.4475 0.3243
2.1094 0.1433

1.1877 0.1674

132 1.0099 0.0796
UK uh oj 7.0768 0.6444

02 3.1873 0.2394

1.1833 0.1671

1.0116 0.0815

7.0599 0.6437

3.1756 0.2386

1.0454 0.1513

132 0.6623 0.0728
UK h o 6.4140 0.5828

3.0988 0.2065

1.0417 0.1508
0.66 14 0.0741

6.3807 0.5796
3.1048 0.2048

th 1.0079 0.1700

132 0.6954 0.0926
GERuh c 6.9992 0.6439

3.7240 0.2285

0.9873 0.1714
0.7100 0.0970
7.0009 0.6386
3.7163 0.2341

0.8907 0.1603

132 0.4150 0.0792
GER h o 6.7035 0.6325

O2 3.3704 0.1943

0.8795 0.1611

0.4194 0.0814
6.7029 0.6297
3.3586 0.1957

RCM 64.015 1

log uk -4486.74
64.3764

-4487.42

The estimated model is y' = pw(st) + c"(s1)er where y" is the world MSCI excess return. All returns
are excess over the US I month EURO rate. Sample period 75:01 to 97:07. For asset j's excess return y,

= /32(st)p'(st) + 132 (Si) (St)€ + o'(st)e with the errors e . . . lID N(0,I). The

Restricted Model sets p' = p°. P = p(st = lj$t...i = 1), Q = p(st = 21st_i = 2). US refers to
returns on US equity, UK unhedged (UK uh) returns are in USD, UK hedged returns (UK h) refer to UK
returns in pounds plus the US 1 month EURO rate less the UK 1 month EURO rate, GER unhedged (GER uh)
returns are in USD, and GER hedged (GER h) returns are German returns in DM plus the US 1 month EURO
less less the GER I month EURO rate. RCM refers to the Ang-Bekaert (1998) regime classification measure
RCA! = 400 * ÷ EI pt(1 — pi), where Pt is the ex-ante regime probability p(st = lIlt_i). Lower RCM

values denote better regime classification. Log Ilk denotes the log likelihood value.



T
ab

le
 A

-5
: 

Sh
or

t R
at

e 
an

d 
U

S,
 U

K
 E

qu
ity

 M
od

el
 

R
eg

im
e 

Pb
ob

 C
oe

ff
ic

ie
nt

s 

a 
1.

42
39

 
1.

65
68

 
6.

84
65

 

b 
0.

40
33

 
1.

84
80

 
-5

.0
76

6 

S
ho

rt
 R

at
e 

C
oe

ffi
ci

en
ts

 

c 
0.

07
43

 
0,

04
17

 
0.

00
47

 

p 
0.

91
58

 
0.

04
77

 
0.

99
39

 

o 
0.

12
94

 
0.

01
23

 
0.

03
62

 

(iS
 E

qu
ity

 C
oe

ffi
ci

en
ts

 
p 

-1
.0

58
3 

0.
80

50
 

0.
72

60
 

a 
6.

39
66

 
0,

60
38

 
3.

56
77

 

,\ 
-0

.3
40

9 
0.

10
91

 
-0

.1
89

7 

-y
 

0.
59

58
 

0.
08

13
 

0.
43

71
 

U
K

 E
qu

ity
 C

oe
ffi

ci
en

ts
 

p 
-1

.5
58

9 
1.

34
93

 
0.

90
10

 

a 
10

.7
17

9 
1.

00
82

 
5.

42
75

 

"2
 

-0
.2

75
6 

0.
11

46
 

-0
.0

28
2 

0.
06

60
 

R
C

M
 

lo
g 

lik
 

R
eg

im
e 

Pr
ob

 C
oe

ff
ic

ie
nt

s 
ci

 
1.

49
21

 
1.

60
75

 
6.

85
74

 

b 
0.

27
93

 
1.

77
92

 
-5

.0
52

1 

S
ho

rt
 R

at
e 

C
oe

ff
ic

ie
nt

s 
c 

0.
07

02
 

0.
04

28
 

0.
00

50
 

p 
0.

90
78

 
0.

04
92

 
0.

99
37

 
v 

0.
13

14
 

0.
01

26
 

0.
03

64
 

U
S

 E
qu

ity
 C

oe
ff

ic
ie

nt
s 

p 
0.

58
60

 
0.

22
28

 
=

 
a 

6.
65

97
 

0.
62

94
 

3.
57

53
 

0.
16

73
 

A
 

-0
.3

53
7 

0.
11

22
 

-0
.1

88
7 

-y
 

0.
61

89
 

0.
07

88
 

0.
43

7 
1 

U
K

 E
qu

ity
 C

oe
ffi

ci
en

ts
 

p 
0.

74
52

 
0.

34
10

 
=

 
a 

11
.0

74
9 

1.
04

41
 

5.
43

07
 

0.
26

50
 

A
2 

-0
.2

89
l 

0.
11

71
 

-0
.0

29
6 

0.
06

53
 

R
eg

im
e 

Pr
ob

 C
oe

ff
ic

ie
nt

s 
a 

1.
45

63
 

1.
72

45
 

6.
75

52
 

b 
0.

33
14

 
1.

93
05

 
-4

.9
88

6 

S
ho

rt
 R

at
e 

C
oe

ff
ic

ie
nt

s 
c 

0.
06

53
 

0.
04

47
 

0,
00

43
 

p 
0.

92
60

 
0.

05
12

 
0.

99
45

 

v 
0.

 1
29

4 
0.

01
25

 
0.

03
62

 

U
S

 E
qu

ity
 C

oe
ff

ic
ie

nt
s 

p 
-0

.0
86

8 
2.

67
99

 
0.

99
62

 

a 
6.

39
39

 
0.

60
78

 
3.

56
66

 

3 
-1

.0
48

3 
2.

74
69

 
-0

.4
69

5 

A
 

-0
.3

42
6 

0.
10

90
 

-0
.1

87
3 

-y
 

0.
59

39
 

0.
08

22
 

0.
43

94
 

U
K

 E
qu

ity
 C

oe
ffi

ci
en

ts
 

p 
1.

54
28

 
4.

46
77

 
0.

59
07

 

a 
10

.7
20

4 
1.

01
 1

3 
5.

40
65

 

/3
 

-3
.3

48
3 

4.
57

24
 

0.
51

25
 

A
 

-0
.2

79
0 

0.
11

43
 

-0
.0

28
0 

R
C

M
 

lo
g 

uk
 

1.
82

48
 

1.
94

63
 

0.
00

51
 

0.
00

95
 

0.
00

21
 

0.
73

63
 

0.
 1

68
8 

1.
23

 13
 

0.
06

46
 

0.
05

44
 

1.
 1

06
3 

0.
28

45
 

1.
82

43
 

0.
06

57
 

T
he

 s
ho

rt
 r

at
e 

pr
oc

es
s 

is
 g

iv
en

 b
y 

r1
 
=

 c
, 

+
 p

,r
1 

. 
+

 v
 /T

j'u
 w

he
re

 t
he

 s
ub

sc
ri

pt
 in

di
ca

te
s 
s 

=
 i

. 
T

he
 U

S 
an

d 
U

K
 e

xc
es

s 
eq

ui
ty

 r
et

ur
ns

 a
re

 g
iv

en
 b

y 
y 

=
 

JL
 -I

- 
1a

tt'
 tb

r j 
us

, u
k.

 T
he

 er
ro

rs
 t =

 (
u 
u 

u"
)' 

ar
e 

lI
D

 N
(0

,l)
. 

Fo
r 

th
e 

B
as

ic
 M

od
el

 /
3(

St
) 
=

 0
 s

o 
th

er
e 

is
 n

o 
co

nd
iti

on
al

 m
ea

n p
re

di
ct

ab
ili

ty
. T

he
 

R
es

tr
ic

te
d 

M
od

el
 s

et
s 

p 
to

 b
e 

co
ns

ta
nt

 a
cr

os
s 

re
gi

m
es

 f
or

 e
ac

h 
co

un
tr

y.
 T

he
 p

ar
am

et
er

 A
 re

fe
rs

 to
 t

he
 c

or
re

la
tio

n 
be

tw
ee

n 
th

e 
sh

or
t r

at
e 

an
d 

eq
ui

ty
 f

or
 c

ou
nt

ry
 j,

 a
nd

 -
y 

th
e 

co
rr

el
at

io
n 

be
tw

ee
n 

U
S 

an
d 

U
K

 s
to

ck
 r

et
ur

ns
. B

ot
h 

A
 a

nd
 -

y 
ar

e 
st

at
e-

de
pe

nd
en

t. 
T

he
 s

ta
te

 tr
an

si
tio

n 
pr

ob
ab

ili
tie

s 
fo

r 
s 

=
 1

,2
 a

rc
 g

iv
en

 b
y 

p(
st

 =
 ii

st
_j

 =
 i)

 

ex
p(

a 
+

 b
,r

_i
)/

(1
 +

 e
xp

(a
1 

+
 b

r_
1)

).
 R

C
M

 r
ef

er
s t

o 
th

e 
A

ng
-B

ek
ae

rt
 (1

99
8)

 r
eg

im
e 

cl
as

si
fi

ca
tio

n 
m

ea
su

re
 R

C
M

 
40

0 
* 

T
—

1 
pt

(1
 —

 p
t)

 w
he

re
 p

 is
 th

e 

ox
-a

nt
e r

eg
im

e 
pr

ob
ab

ili
ty

 p
(s

t =
 li

lt_
i).

 Lo
w

er
 R

C
M

 v
al

ue
s d

en
ot

e b
et

te
r r

eg
im

e c
la

ss
ifi

ca
tio

n,
 

B
as

ic
 M

od
el

 

s 
=

 1 
st

 =
 2 

P
ar

am
 

S
td

 E
rr

 
Pa

ra
m

 
St

d 
E

rr
 

R
es

tr
ic

te
d 

Pt
 =

 p
2 

M
od

el
 

s1
 

S
t=

2 
Pa

ra
m

 
St

d 
E

rr
 

Pa
ra

m
 

St
d 

E
rr

 

Fu
ll 

M
od

el
 

st
=

2 
Pa

ra
m

 
St

d 
E

rr
 

Pa
ra

m
 

St
d 

E
rr

 

1.
66

32
 

1.
79

62
 

0,
00

50
 

0.
00

93
 

0.
00

20
 

1.
73

30
 

1.
86

96
 

0.
00

5 
1 

0.
00

94
 

0.
00

21
 

0.
23

65
 

0.
 1

68
3 

0.
06

42
 

0.
05

39
 

0.
35

67
 

0.
26

67
 

0,
06

40
 

0,
05

35
 

29
.9

 1
94

 

-1
28

3.
38

 

R
C

M
 

lo
g 

uk
 

29
.8

64
7 

-1
28

5.
71

 

30
.6

 10
3 

-1
28

2.
90

 



Table A-6: Earnings Yield Model

estimate std error

al -0.1546 1.8474

Probability 0.1584 0.1908
Coefficients a2 5.9361 1.4186

62 -0.4522 0.1705

Cj 0.9982 0.3187
C2 0.1720 0.0830

Earnings P1 0.9 176 0.0298
Yield p2 0.9648 0.0127

0.6619 0.0531

v2 0.2892 0.0165
-10.4981 2.8295

.L2 0.2120 0.8452

US Equity 5.2634 0.4208
3.3338 0.1687
0.9579 0.2574

132 0.2140 0. 1245

JLj -11.2389 4.6477

/22 0.1276 1.2157

UK Equity 9.5265 0.7619
4.8899 0.2533
1.0763 0.4298

132 0.2096 0.1783

pj(ey,us) 0.0752 0. 1038

p2(ey,us) 0.1498 0.0744

pt(ey,uk) -0.0369 0.1016
Correlations p2(eJ,uk) 0.0063 0.0869

pi(us,uk) 0.5060 0.0775

p2(us,uk) 0.4273 0.0586

RCM 44.3850
log ilk -2146.83

The earnings yield process is given by eyt = Cj + pieyt—i + vu where the subscript indicates St = i. The

US and UK nominal equity returns are given by y = p + /32ey_1 + for j = us, uk. The errors
Ut = (u u' 4k)l are lID N(O,cl) where is the correlation matrix of Ut. The state transition probabilities
for s = 1, 2 are given by p(st = ijst_i = i) = exp(a + brt_i)/(1 + exp(a + brt_i)). RCM refers
to the Ang-Bekaert (1998) regime classification measure RCIvI = 400 * p(1 — Pt). where p is the

ex-ante regime probability p(st = 1I_). Lower RCM values denote better regime classification.


