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1 Introduction

An argument often heard is that correlations between international equity returns are higher during bear
markets than during bull markets, and bear market moves are greater than bull markets. This would
suggest that the benefits of international diversification are less impressive than conventional wisdom
predicts.! This argument is potentially very important since it may help explain the “home bias puzzle”,
arguably one of the most important puzzles in international finance. If the diversification benefits from
international investing are not forthcoming at the time that investors need them the most (when their
home market experiences a downturn), international investing may not be worth the trouble.

The existing literature typically documents empirical facts about correlations but has not formalized
the link with diversification benefits. Absent such a link, the argument is incomplete, vague and poten-
tially incorrect. The gap in the literature is not so surprising. The standard benchmark when thinking
about the benefits of international diversification is a static one-period mean-variance framework (French
and Poterba (1991) and Tesar and Wemer (1995)).% In this article, we analyze the impact of time-varying
correlations on asset allocation in a dynamic portfolio allocation problem.

We use regime switching (RS) models to model international equity returns. Since Hamilton (1989)’s
seminal work on RS models, a large literature has developed applying RS models to many financial time
s=ries where there is evidence of changing behavior of the series across business cycles or where there
is other periodic change. Recent estimates of RS models for stock returns appear in Ramchand and
Susmel (1998a and b) and Hamilton and Lin (1996). RS models are able to capture changing conditional
means, changing conditional covariances, and the higher moments of equity returns by using only one
state variable, the regime, which can take on two values. This makes the portfolio allocation solution
surprisingly simple and intuitive. The effect of stochastic volatility, albeit of different forms, on asset
allocation has only been considered in a few papers so far (Das and Uppal (1998), and Liu (1998)). We
also consider a case where the data generating process (DGP) involves a stochastic interest rate and a
case where there is a state variable (earnings yields) predicting equity returns.

Our ambition is not to explain the home bias puzzle per se but to provide a formal evaluation of the
claim made in the first paragraph in a relatively simple portfolio choice setting. More specifically, our
contribution consists of four parts. First, we numerically solve and develop intuition on the dynamic
asset allocation problem in the presence of regime switches for investors with Constant Relative Risk
Aversion (CRRA) preferences. Here our contribution extends beyond international finance. There has
recently been a resurgence of interest in dynamic portfolio problems where investment opportunity sets

change over time.> In most of these papers, the investment opportunity set is indexed by a set of state

' Among the many authors documenting this include Longin and Soinik (1998, 1995), Das and Uppal (1996), De Santis and
Gerard (1997), King, Sentana and Wadhwani (1994), and Erb, Harvey and Viskanta (1994).

2Recent papers such as Das and Uppal (1998) have considered dynamic settings for international portfolio choice.

*See Balduzzi and Lynch (1999), Liu (1998), Barberis (1996), Campbell and Viceira (19982 and b), and Brennan, Schwantz
and Lagnado (1997).



variables linearly affecting expected returns. Compared to these papers, in some of our examples below,
expected returns vary only with the regime, rather than with state variables.

Second, we specify several RS models for international equity returns that naturally allow formal
tests for different correlations, volatilities and means across different regimes. Although very different
from the majority of the papers in this literature, our work here is closely related to recent work by
Ramchand and Susmel (1998a). Ramchand and Susmel model covariances using a switching ARCH
process. Interestingly, we find evidence of a regime which exhibits higher volatility but find weaker
evidence of higher correlations and lower conditional means in that regime with monthly data. We find
no evidence of RS ARCH effects on covariances of the US and UK.

Third, we estimate the portfolio choice of the investor for a number of different RS DGP’s, horizons,
and preference parameters. To characterize the uncertainty in the portfolio allocations resulting from
the uncertainty in the parameters of the DGP, Barberis (1996) and Kandel and Stambaugh (1996) use a
Bayesian setting, and Brandt (1998) estimates portfolio weights using an Euler equation approach and
instruments. Instead, we characterize the uncertainty in the portfolio choices from a classical econometric
perspective, using the delta-method, as do Campbell and Viceira (1998a). Our approach allows us to
formally test for the presence of intertemporal hedging demands (the difference between the investor’s
one period ahead and long-horizon portfolio choice) and for the presence of regime-dependent asset
allocation for investors with different horizons. It is quite conceivable that long-horizon investors need
not worry about an occasional episode of high correlation, either because the effect on utility is minor or
because they can temporarily re-balance away from international stocks, if these states of the world are
somewhat predictable. In the latter case their safe haven may be US stocks or it may be cash.

Finally, we investigate the economic significance of our results and the claim in the initial paragraph.
We attempt to quantify the utility cost (using the certainty equivalent notion) of: (a) not being internation-
ally diversified and (b) ignoring the occurrences of periods of higher volatility with higher correlations
across all countries. A by-product of one of the set-ups we consider is that we can put an economic value
on the ability to hedge foreign exchange rate risk. In most models, we preclude this ability.

Our work is closely related to Das and Uppal (1998) who consider portfolio selection when per-
fectly correlated jumps across countries affect international equity returns. Our RS processes produce
a “normal” regime with low correlations, low volatilities and a “down-turn” regime with higher corre-
lations, higher volatilities and lower conditional means. However, both regimes are persistent and such
persistence cannot be captured by transitory jumps independent of equity returns. In fact, Das and Uppal
(1996) empirically document that the higher correlations associated with large equity shocks are persis-
tent.* Furthermore we consider the effect of regime changes on portfolio choice when short rates and
yields predict returns, and we examine currency hedging demands.

Our work, and some of our results, is also closely related to Brandt (1998). Brandt uses a non-

*Das and Uppal also conduct a static asset allocation exercise, contrasting the optimal portfolios of an investor who recog-

nizes the dependence of the disturbance on the size of the shock with those of an investor who does not.
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parametric approach to estimate portfolio weights in a domestic asset allocation problem. Even though
they are more general, non-parametric approaches may have large small sample biases and our parametric
models may fare better in small samples and lead to more powerful statistical tests. We also face the
problem, shared with most papers in the literature, that the noisiness in expected returns may lead to
noisy and unrealistic asset allocations (Best and Grauer (1991)). To partially mitigate this, we consider
a restricted version of each model designed to limit sampling error in the means by restricting the means
across regimes to be equal. These models cannot be statistically rejected by the data and in most cases
offer better regime classification. Constraining the conditional means across regimes to be equal also
allows a sharper focus on the effect of time-varying correlations.

To make the analysis tractable, we leave out many aspects of international asset allocation that may
be equally or more important but may blur the focus of the paper. Examples include transaction costs (see
Balduzzi and Lynch (1999) in a domestic and Cooper and Kaplanis (1994) in an international context);
inflation risk (Glassman and Riddick (1996)); cross-country informational differences (Brennan and Cao
(1997)); and human capital and labor (Viceira (1998)).

The outline of the paper is as follows. We start by formulating the general asset allocation problem
in Section 2, and show how to numerically solve the problem with regime switching. In Section 3,
we present the RS models which we use as our DGP’s. In Section 4 we describe the data, test for the
presence of regimes, and present the estimation results of the RS processes. We present the main results
of asset allocation under regime switching-in Section 5 and examine the robustness of these results in

Section 6. Section 7 concludes.

2 Asset Allocation with Changes in Regimes

2.1 The General Problem

Consider the following asset allocation problem. A US investor facing a 7" month horizon who rebalances
her portfolio over N assets every month maximizes her expected end of period utility. The problem can
be stated more formally as:

max EO[U(I/VT)] (1)

QO OT =1

subject to the constraint that the portfolio weights must sumto 1, o;_;1 = 1, where Wr is end of period
wealth and ag, . .., ar_ are the portfolio weights at time O (with T" periods left), ..., to time 7" — 1
(with 1 period left). There are no costs for short-selling or rebalancing. Wealth IV, at time ¢ is given by
W, = Ri(ai—1)Wi-; where R is given by:

n
Ry = Zem(yi)ai,c-l = exp(ye) -1, (2)

i=1



where y! is the return on asset ¢ in USD at time ¢. We use CRRA, or iso-elastic, utility:

1y
WT

U(Wr) = T

3

where v is the investor’s coefficient of risk aversion.

We concentrate on the investment problem of the investor and ignore intermediate consumption (or
the investor is assumed to consume end of period wealth Wr). In effect, we take the savings decision
to be exogenously specified. We choose the CRRA family of utility as it is a standard benchmark and
enables comparison to earlier literature. In common with most empirical dynamic asset allocation papers
in the literature, this approach does not address market equilibrium, so the investor is not necessarily the
representative agent in the US economy. We also do not consider the asset allocation problem faced by
foreign agents.

Using dynamic programming we can obtain the portfolio weights at each horizon ¢ by maximizing

the (scaled) indirect utility:
o] = argmax Ee(Qee1rWiiy) 4)

where

Qt+1.7 = Et+1 [(RT(O‘;‘-Q X Rt+2(0‘;+1))1—7] ) ©)

and Q7—1 1 = 1. The first order conditions (FOC) of the investor’s problem are:

-

(exp(ypy1) — exp(yiiy)

- (exp(y?,1) — exp(yit1) _
E: | Qir1,7 R () . . i = Eu(Que1, 7R (@) Aes1] =0 (6)

(exp(yfii") — exp(yity))

where ¢4 are returns of assets 1 to N — 1 in excess of asset V. The optimal portfolio weights oy solve
equation (6). Note that o, has effectively N — 1 degrees of freedom, as the weight in the N-th asset will

make the portfolio weights sum to 1.

2.2 Introducing Simple Regime Switching

Up to this point, no specific DGP has been assumed for the asset returns y¢ and the set-up of the problem
is entirely general. In the special case of y; IID across time, Samuelson (1969) shows that for CRRA
utility the portfolio weights are constant (a; = o), and the T" horizon problem becomes equivalent to
solving the myopic 1 period problem in equation (1). When returns are not IID then the portfolio weights
can be broken down into a myopic and a hedging component (Merton (1971)). The myopic component
is the solution from solving the 1 period problem. ’fhe hedging component results from the investor’s

desire to hedge against unfavorable changes in the investment opportunity set.
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Suppose we now introduce regimes sz = 1,..., K into the DGP. At each time ¢, y; will be drawn
from a different distribution, depending on which regime s; is prevailing at time t. Following Hamilton
(1989), the regimes s; follow a Markov chain where the transition probabilities of going from state 7 to
state 7 at time t are denoted by pij¢ = p(Se+1 = Jlst = i,T;,-1). Let F(:,s;) denote the cumulative
density function of y; conditional on regime s;. In our simple RS models, we let F(-, s¢) be amultivariate
normal distribution, with constant transition probabilities p;j; = pi;. Conditional on the regime at time
¢, the distribution of v is a mixture of normals. This allows the distribution to capture fat tails, persistent
volatility and other properties of equity returns.

We assume that the regimes are known by the agent at time ¢35 With K regime states the random
variable Q; 1 = Q7 (s¢) may take on one of K values, one for each regime state s; = 1,..., K, ateach
time ¢. Even without instrument predictability of y., the asset allocation implications of regime switching
are potentially important. The optimal portfolio weights now become functions of the state, o = o (s¢)-
Moreover, the investor will want to hedge herself against regime switches. The intertemporal hedging
demands will cause o (s¢) to differ from o (s¢).

Except for special discrete distributions for F(-, s¢), the FOC’s in equation (6) do not have a closed
form solution. To our knowledge, the current state of analytical tools in continuous time also does not
permit a solution for both state-dependent conditional means and covariances, and discretely sampled
observations.® Following Tauchen and Hussey (1991), a numerical solution to equation (6) may be
obtained by quadrature. An M -point quadrature rule for the function g(u), u € R™, over the cumulative
density F(u) is a set of points {ug}, k = 1... M and corresponding weights {w} such that

M

/ g(wdF(w) = S glugyw @

k=1
For example, for the asset returns y, at time t in regime s; = 7, we use a M; quadrature rule with
points {yik.}, k = 1...M; and corresponding weights {wi¢}. Now consider the one-period problem

at T — 1. For s; = i the FOC can be approximated by:

K
Er_1[R77(@)Arlsr—1 =] = Y pijr-1ERT (@)XrlsT = 7]
j=1

K M; :
=5 | pisr-1 ) (exp(ysrr) @) Apr wikr | =0 (8)
i=1 k=1

51f this assumption is weakened the problem becomes considerably more difficutt. All possible sample paths must be
considered, so the state space increases exponentially, as agents must update their probabilities of being in a particular state
at each time in a Bayesian fashion. For a one period horizon, if investors have uncertainty about the regimes, the regime-
dependent solutions deviate less from the 11D solution without regimes, weakening the regime-dependent effects. In this sense,

the assumption of observable regimes is a worst-case scenario.
The case of switching conditional means in continuous time with complete observation of the Brownian motion paths has
been solved in closed-form by Honda (1997).



where

y}k,T eXP(y}k,T) - eXp(yﬁc_T)
2 2 N
YjkT exp(yix,r) — exP(Yjk. )
Yjk,T = J‘ and AjeT = J ‘ J
N-1
y;‘\ljc,T eXP(yjk,T) - eXP(yﬁc,T)

The optimal portfolio weights af r_; = ap_,(s7-1 = i) are the solution to equation (8) which can be
obtained by a non-linear root solver.

We define Q;r-1,7 = QT—l,T(ST-—l =1)as:

Qir-11 = Er-1[Ry (e _y)lsT—1 = 1]
K M
=Y | piyr-1
j=1

i
(exp(yjer) 0ir-1)""" Wik,T )
k=1

Then the T — 2 problem for each state s7—2 = 1 may be obtained by finding the root of:

Er—2[Qr-1. 7R (&) Ar—1lsT-2 = i]

K M;
=S pyr-a | Y Qjr-17(exp(yjkT-1)'®) " Ajk r-1 Wik -1 | =0 (10)
j=l k=1

We may continue this process fort =T — 3 onto ¢ = 0.

For the case of Gaussian distributed returns y; IID across time, Gaussian-Hermite weights can be
used and the approximations are very accurate for small choices of M; (Press et al. (1992)). This
makes the asset allocation solution surprisingly simple for switching multivariate normal retuns with
constant transition probabilities. In effect, for K regimes, we have only K state variables which must
be tracked at each horizon. When the return distributions depend on instruments z;, the distribution
of the returns y; will be conditional on both the regime and the realization of the instrument at time t,
so F = F(-,s:,2). In this case we construct a discrete Markov chain in each regime to approximate
F(., s¢, ), the distribution of 2;, and then combine them to approximate the unconditional distribution.
In this setting the portfolio weights now become a function both of the regime s; and the instruments z,

s0 a} = aj(st, z;). Further details are provided in the Appendix.

2.3 How Important is Regime Switching?

Introducing regimes into the asset allocation problem has the potential to cause investors to wildly alter
their portfolio allocations across regimes, and to induce intertemporal hedging demands making the in-
vestor facing a T-period horizon hold substantially different portfolio weights from the myopic investor
conditional on regime s;. We wish to test statistically and economically whether these effects are large
under RS when realistic RS DGP’s have been fitted to real data. These tests are more than interesting

empirical exercises: if the asset allocations are similar across regimes, then in practice investors may not



go to the trouble of rebalancing, especially if transactions costs are high. If intertemporal hedging de-
mands are small, then investors may lose very little in solving a simple one-period problem at all horizons
rather than solving the rather more complex dynamic problem. If there is a bad regime where interna-
tional equity returns provide fewer diversification benefits, investing overseas may not be of benefit for

investors.

2.3.1 Economic Significance

We wish to calculate the utility loss, or monetary compensation required for an investor to use non-
optimal weights {a"} instead of the optimal weights {a*} for our RS DGP. For example, an investor
may have to use non-optimal weights as she may not be allowed by external constraints to use forward
derivatives to hedge currency risk, or even invest internationally. Another example is if the investor
chooses to ignore RS and uses portfolio weights thinking the returns are [ID when in fact the true DGP
is RS. We would like to see the economic loss that results from holding these non-optimal portfolios
instead of using the optimal one.

We can find the amount of wealth @ required to compensate an investor for using {a*} in place of

{a*} for a T-period horizon. Formally, this is given by the value of @ which solves:
Eo[U(Wi|Wo = 1)] = Eo[U(Wf|Wo = @)]. (1)

Since CRRA utility is homogeneous in initial wealth and since U(W}IWO =1) = Q&T/(l — ~y) for
T = %, +, it follows that:

1

. \ T3
m:100x<Q°’T> . (12)

+
QO.T

We express the compensation required in cents per dollar of wealth w = 100(w - 1). Equivalently, w

is the percentage increase in the certainty equivalent from moving from strategy {a™} to the the optimal
strategy {ca*}. In the context of asset allocation analysis, changes in certainty equivalents have been
considered by many recent authors, see for example Campbell and Viceira (1998a and b) and Kandel and
Stambaugh (1996).

2.3.2 Statistical Tests

To formulate statistical tests we need to derive standard errors on the portfolio weights. Suppose that
the parameters of the RS process are given by 6 and have an asymptotic distribution N (8. 2) where 8o
is the vector of the true population parameters. The portfolio weights o;(s;) are implicitly defined by
the FOC’s in equation (6). We will suppress the dependence on s¢ = 1... K. Denote these FOC’s for

horizon t as G(8, &) where G; : § x o — RV =17 We consider oy to be an N — 1 vector.

"In the case of regime switching and predictability then a; = a;(st,2:) and the FOC’s become an implicit function
dependent on z., thatis, G = G, (8, a).



The FOC’s implicitly define o as the solution to Gc(é, a;) = 0. Let ayp satisfy G¢(8o, a0) = 0, so

ayp are the portfolio weights at the population parameters. Assume the determinant

oG
A = det <’a_t ) £0. (13)
& 1(80,0)
The Implicit Function Theorem now guarantees the existence of a function g such that G¢(6o, g(60)) = 0
where
99
D=2 (14)
08 |5—g,

is well defined. Now the standard delta-method can be used to obtain the asymptotic distribution of ¢

as:
ap & N(g(6o), DQD"). (15)

In practice, numerical gradients are calculated. Hence the delta-method allows us to obtain standard
errors for o (See also the working paper version of Campbell and Viceira (1998a)). For a given ¢, we
test if the portfolio weights for s; = ¢ and s; = j are statistically different. To test hedging demands for
horizon T, we may define an implicit function G = (G Gf)" which stacks the FOC’s for the myopic
problem and the horizon T problem. This allows a test of a1 (s:) = ar(s¢). Joint tests may be similarly

performed. ;

3 Regime Switching Models

3.1 General Model
The most general regime switching model we consider can be written as:

Yo — Ere—1 = g(St, Ye—1, Ze—1) + Uyt
ze = c(se) + A(st)ze—1 + Uz
Uy = (uyc uzt)/
uelse ~ N(0,Q(se, ye-1, 2t-1)), (16)
where y; (V x 1) are the equity returns, z; (M x 1) are the predictive instruments, and 7;_; is the monthly
US short rate. To consider the case of nominal returns we set £ = 0 and in excess return models £ = 1.
We refer to excess equity returns with a tilde, so §; = y: — r¢—1. The distribution of equity returns
depends on the regime s at time ¢ and the previous realization of the instruments z;_;. The instruments

z¢ themselves follow an autoregressive process, of which the coefficients can vary with the regime.

The regimes s, follow a two-state Markov chain with transition matrix:

(P 1-—P>
1-Q @



which can vary through time. The transition probabilities are given by:

P =p(s¢ = 1st-1 = 1;Te-1) = fi(z-1)
Q = p(st = 2|st-1 = 2;Lt-1) = fa(zt-1)- a7

There are two sources of predictability for returns. First, the conditional mean within each regime
of the equity return may be predictable which is captured by g(st,yt—1, 2t—1). Second, the transition
probabilities may be non-linear functions of the instruments, captured through fi(ze-1), ¢ = 1,2. Such
a model! can potentially capture long-horizon predictability of returns by instruments.

We concentrate on the set of equity returns y; = (y2* yoe" yukeh geruh  9emhy here uh denotes
unhedged USD returns and A denotes currency-hedged returns. The set of instruments we consider is
z = (ey¥® rs yP — r%,)’, where ey; denotes the log eamings yield, r; the short rate and y;° — T
is the excess return on the world portfolio. We do not consider past equity returns as instruments as we
will see in Section 4 that the autocorrelations of the equity returns are insignificant.® Heteroskedasticity
can be included by appropriate parameterizations of §2(s, y¢—1, 2e—1). We will test for the presence of
RS ARCH for the case of the US-UK.

We restrict the number of regimes to two. This number of states may be restrictive, but including
more regimes poses extreme computational problems. Two states should capture the main effects of
higher order moments in equity returns. The regimes of each country are also assumed to be perfectly
correlated. Weakening this assumption by increasing the state space along the lines of Ang and Bekaernt
(1998) and Ramchand and Susmel (1998a) makes the number of parameters infeasible for estimation.
Nevertheless, we will consider one formulation which allows for non-perfectly correlated regime states
for the US-UK. We specify the transition probabilities as logistic functions of the instruments:
exp(a; + bizi—1)

filze-1) = 1+ exp(a; + b;Zc—l)'

(18)

If b; = 0 then the transition probabilities are constant.

Given the large number of parameters in the full system, we restrict attention to subsets of the full
mode!. Estimation of the RS models proceeds by using the Bayesian algorithm of Gray (1996). When
we estimate restricted models, assumptions must be made about the RS DGP’s to ensure consistent
estimation. We list sufficient conditions as we present each restricted model.

We first focus on Simple RS Models with US-UK nominal returns and extend to include German
nominal returns. These models have no instrument predictability. In a previous version of this paper
we carefully considered the evidence of linear predictability using standard instruments such as short
rates, dividend yields and earnings yields, and found it to be quite weak. In this model, we exclude such
predictability and changes in the investment opportunity set are solely driven by regime changes. To

build models of currency hedging we use US equity excess returns and currency hedged and unhedged

®See Table (1). Past equity returns can theoretically enter the regime probabilities P and Q. We estimated such models but

none of the probability coefficients of the lagged equity returns were significant and the models seemed over-parameterized.



returns on UK and German equity. Here we model the world excess return as a predictor and the mean
conditional on a regime of an asset will depend on the conditional covariance of that asset with the world
excess return.

To allow comparison with the literature on dynamic asset allocation and because of the evidence of
time-varying risk premiums, we consider a number of models accommodating instrument predictability.
The first such model uses the US short rate (z; = r.) as a predictor. In our empirical analysis, it was
the most powerful univariate predictor at short horizons. The inclusion of the short rate is also important
since the set-up then allows investors t0 hold cash in addition to equities and changes in the cash/equity
proportions may be important for intertemporal hedging (Balduzzi and Lynch (1999)). To include the
US short rate as a predictor we use excess returns with a RS square root process for the short rate.

Since both the predictability literature and a number of asset allocation studies have focused on
yield variables to track time-variation in expected returns, we also estimate a yield model. The evidence
for linear predictability using both dividend and earnings yields is stronger at longer horizons, but is
generally weak. We focus on the earnings yield (z; = ey:) as a (noisy) indicator of future expected
returns. Earnings also vary with the business cycle and RS models can potentially capture this cyclicality.
Our last model uses the US earnings yield as a predictor modeled as a RS AR(1) process. We now discuss

these models in turn and present the empirical results in Section 4.

3.2 Simple RS Models

The Simple RS Model can be written as

t2f

ye = p{sy) + & (s¢)e€t- (19)

We let v, = (y&S y™™") and y, = (i yukouh 3¢ "Y' The transition probabilities are constant, SO

filze-1) = ks

To obtain the Simple RS Model from equation (16) weset £ = 0and parameterize g(st, Yt—1, Zt-1) =
w(s¢). To ensure consistent estimation we must impose restrictions so that the instruments 2, do not affect
the ex-ante probabilities p(s; = i|Z;-1). Sufficient conditions in this setting are c(s¢) = ¢, A(st) = A,

and the covariance 2 can be partitioned as:
Q(St) = (20)

where &, corresponds to the covariance matrix of zt.g
The Simple RS Model, as well as the General Model, assumes that the regimes in each country
are perfectly correlated. To investigate if the UK undergoes regime switches different from the US we

introduce an extension, Model II, with two regime variables sy® and s‘t‘k. Model II has the feature that

YMore specifically, we require that f(ze|ye, s¢) = f(zelye). [t the covariances of y¢ and z, are non-zero then the conditional

distribution of z; conditional on y, will depend on s¢. See Ang and Bekaert (1998).
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the regimes in the US and UK do not have to be perfectly correlated. Generally, there would be 22 =4
states for the bivariate system for two states of each country implying a 4x4 probability transition matrix.
To preserve parsimony we assume that conditional on the US state, the UK process is a simple mixture

of normals. That is, we let:

p(st® =12y =
p(sy® =2[si2) =
p(st = 1ls}* =

p(stt =2ls° =2) =

1)=P
2)=0Q
)=A4
B

1)

This parameterization implies that the US transition probabilities P and Q are still the driving variables
of the system and allows the US and UK states to be dissimilar with only two extra parameters. Further,
the correlation of the US and UK depends only on the state of the US. The estimation of this model 1s
outlined in the Appendix.

Finally we test for the presence of RS ARCH effects for the US-UK. This specifies the covariance
(se) as:

Z(St) = C(Sg)’C(Sc) + B(Sc)’uc_lu’t_lB(St)

up =y — Ee-1(yt)

/ 2

Eii1(y) = p(st = F T )u(se = 7)- (22)

—
j=1

This model can be estimated following a special case in Gray (1996). Related models have been esti-

mated by Ramchand and Susmel (1998a and b) and Hamilton and Susmel (1994).

3.3 Currency Hedging Beta Models

The Simple RS Model does not provide any explicit link between the conditional means and variances.
The number of parameters rapidly increases with the introduction of more than 3 assets, as covariance
matrices must be estimated. To facilitate the inclusion of more assets our currency hedging Beta Model
imposes restrictions linking the conditional means and volatilities. We use this model to primarily focus
on the additional benefits of currency hedging to international diversification for a US investor.

We derive this model from equation (16) by setting § = 1 and use the world excess return as the
predictor g’ = Z; = y¥ —rid, with conditional mean c(st). The conditional mean of the excess equity
returns J; is given by g(st, Ye-1, Zt-1) = C(s¢)c(se) where ((s¢) is a N x 1 vector for NV equity returns.
We consider US-UK models where y: = (y¢° y;‘k'”h y“*")" and a model for the US-UK-Germany
where y, = (y;° y;‘k'u’l YUkt yfer‘”h yfer‘h)’. The transition probabilities are constant, filze-1) = ki-

To examine sufficient conditions for consistent estimation under this setting, partition the instruments

2z, = (% 2;) where z{ are the instruments which are omitted from estimation and Z, = §; the included
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instrument. We assume that z; does not affect the ex-ante probabilities and does not vary across regimes.

We assume that the companion matrix A(s;) of the conditional mean of z; can be partitioned as:

Aﬂa)=(A§” ;{) (23)

with A(s;) (A,-) corresponding to Z; (7). In the Beta Model, we set A(s;) = 0. The covariance matrix

Q) for assets and instruments is given by:

Q(s;) = (Q(g‘) QO‘> (24)

where Q(s;) (N + 1 x N + 1) is modeled to reflect the presence of the world factor and takes the form:

C¥(se)ol(s:) + oi(se)
Ci(se)Ca(se)od(se)  CR(se)o2(se) + o5(se)

Ci(se)Cn(se)al(se) e ¢k (se)ol(s:) + ok (se)

Cilse)od(se) e (N (se)al (se) o2 (se)

We may interpret this model as a CAPM-inspired DGP conditional on the regime s;. Introducing the
notation, 3; for the factor loading of asset i on the conditional mean of the excess world portfolio, and

denoting excess returns by §} = yi — r*, for asset 1, we may rewrite the model as:

Ui = plse) + ou(s)er

Gi = Bi(s)ulse) + Bilse)ou(se)el’ + oilse)e; (26)
where
cov(y:, 4 ls

mm=—%ﬁ§i @7)
Here we have abused the notation so that u(s;) is the conditional mean of %’ rather than the conditional
means of equity y; as in the Simple RS Models. Later when we refer to u in the context of the RS Beta
Model we will mean the conditional mean of g}, since the conditional means of g+ are functions of (s;).
Alternatively, we may consider this to be a one-factor model, where the factor is the excess world
return, and the conditional means of each asset are given by factor loadings (8;(s:)) on the conditional
mean of the factor. The factor loadings compensate for the risk of the asset being linked with the factor:
higher covariances demand higher risk premiums. In addition to being subject to the world portfolio
shocks €, each asset is subject to idiosyncratic risk €. In this model the covariance of asset 7 and asset
j depends on the extent to which each asset is linked, through the 3's, to the world portfolio. The model
is parsimonious: the introduction of an extra asset means only 4 additional parameters to estimate, fewer

if some of the parameters are imposed to be equal across regimes.
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3.4 Short Rate Model

To introduce the short rate we let z; = r#**. For convenience we drop the country superscript on ¢,
understanding this refers to the US short rate. We use a regime-switching discretized square root process
of the Cox, Ingersoll and Ross (1985) form:'®

re = ¢(st) + p(st)re-1 + v(s¢)v/Te-1Uzt (28)

In this model we work with excess returns so £ is set equal to 1 and we let §, = (F¥* §¢)'.
The introduction of the square root term makes £2(s;) heteroskedastic. It still has the form of equa-

tion (24) except §)(s;) is given by:

U%(St) Az(st)o1(se)oa(se) A1(se)oi(se)v(se)/Te-1
se) = A3(st)o1(se)oa(se) U%(St) /\Z(St)UZ(St)U(St) Tt—1 (29
A(se)oi(se)v(se)/Tim1  A2(st)oa(ss)v(se) /-1 v2(s¢)Te-1
where A1 (s;) (Ma(s¢)) is the correlation between the short rate and US (UK) equity, and A3(s;) is the
correlation between US and UK equity.

The conditional mean of the equity returns may embed predictability from the short rate:

Ut = (S, Y1—1, 2e=1) + Uyt = p(5e) + B(se)Te—1 + Uye- (30

We will refer to the specification of 3(s;) # 0 in equation (30) as the Full Short Rate Model, and the
case of 3(s;) = 0 as the Basic Short Rate Model.
To complete the model we specify the transition probabilities for s; = 1, 2 as state-dependent:

exp(a; + bire—1)

p(st = iiSt_l = i;It—l) = 1 -i—exD(a' -+ b‘T‘r 1)
T t UM

€29

For consistent estimation, we assume that like the Beta Model, the omitted instruments z; do not
affect the ex-ante probabilities and the companion matrix A(s) of z; = (r; 2{)" takes the form of
equation (23).

3.5 Earnings Yield Model

This model is very similar to the Short Rate Model, except we take the US eamnings yield as a predictor

z¢ = eyP® = ey, and work with nominal returns, so £ = 0. We use a RS AR(1) for ey;:

ey: = c(s:) + p(se) eye—1 + v(s¢)uzt (32)

and also employ logistic specifications for the transition probabilities as in equation (31) except with

ey; replacing ;. Similarly, the conditional mean for equity returns is given by equation (30) with ey;

"“"Note that this process allows short rates to be negative which is inconsistent with the square root of the short rate appearing
in the conditional volatility. In continuous time parameter restrictions rule out negative interest rates (Cox, Ingersoll and Ross

(1985).) However, in all our simulations {upwards of 100,000 observations) we did not encounter any negative interest rates.
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replacing r;. The conditional covariance is given by the homoskedastic version of equations (24) and
(29) and the parameter assumptions on omitted instruments are the same as in the Short Rate Model.
One advantage of the yield model is the rich dynamics it can generate in bear markets. One potential
reason for a downturn in the market is a period of high volatility in news which increases discount rates.
Such news may cause a shift to a higher volatility regime with higher expected returns. This mechanism
can be accomplished in the Yield Model by the dynamics of the earnings yield. As prices decrease, the

earnings yield increases as it is driven in the short-term by price in the denominator.

4 Data and Estimation Results

Section 4.1 describes the equity returns and the short rate and yield instruments for predicting future
returns. Section 4.2 formally tests for the presence of regime switches in international equity returns.

Section 4.3 discusses the estimation results for our various RS models.

4.1 Data Description

Our core data set consists of equity total return (price plus dividend) indices from Morgan Stanley Capital
International (MSCI) for the US, UK and Germany. The instruments we consider for predicting future
returns are short term interest rates and earnings yields for the US. The short rate is the US 1 month
LIBOR rate and earnings yields are from MSCL!! Qur sample period is from January 1970 to December
1997 for a total of 335 monthly return observations.!> The focus on the US, UK and Germany arises from
our desire to select the major equity markets that can be considered to be reasonably integrated during
our sample period. This is definitely the case for the US and UK markets which currently (as of 31 July
1998) represent 49.4% and 10.5% of total market capitalization respectively in the world MSCI index.
Since Japan underwent a gradual liberalization process in the 1980’s we exclude it from our analysis.
Adding Germany brings the total market capitalization represented to 65.5%.

Table (1) produces sample moments .for the equity returns (all expressed in US dollars). These are
monthly returns expressed as a continuously compoundéd rate. Whereas the means appear insignificantly
different from one another, foreign equity returns are distinctly more variable. One culprit is currency
risk, as we can decompose the foreign market return ye4q into Y41 = y£G + ees1 where y£G is the
return in local currency and e, ; is the log difference of the exchange rate. The returns show insignificant
autocorrelations. Of particular interest is the correlation matrix produced in Panel C. Unconditionally,
correlations are positive and range from 36% for the US and Germany to 51% for the US and UK.

The RS Beta Models of currency hedging use excess returns over the 1 month US EURO rate from

January 1975 to July 1997. We define excess unhedged foreign equity returns as gg*f;l = yﬂle —1%; where

“The earnings yields use earnings summed over the last 12 months. For further details see the EAFE and World Perspective
publication from MSCI.
"[n the Short Rate Models our sample period is from January 1972 to December 1997.
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yYSP are returns in US dollars, and i, is the US short rate. The excess hedged foreign equity return is

defined as !7?4—1 = yt[fl — 4y where i} is the foreign short rate (the 1 month foreign EURO rate).'? In
Table (2) we present sample moments of excess returns for the MSCI world portfolio, US, UK hedged
and unhedged, and German hedged and unhedged equity returns. Note that unhedged retumns for the UK
(Germany) are on average larger (smaller) than the hedged returns indicating the existence of a currency
risk premium.

As we saw in Section 3 dimensionality issues make it hard to include all instruments as state variables
in our asset allocation analysis. A report on an extensive analysis of linear predictability regressions using
short rates, dividend yields and earnings yields is available from the authors upon request. Since there is
some evidence that US instruments predict UK returns, but UK instruments have very weak predictive
power for US returns we only use US instruments. Sample moments for the US instruments are presented
in Table (3).

4.2 Are there Regimes in International Equity Returns?

The asymmetric correlation pattern in equity returns described in the Introduction can potentially be
captured by a RS model. While previous evidence suggests that there are regimes in the data generating
process for equity returns, formal tests have rarely been conducted in past literature. What follows here
is a formal test of the presence of regime switching for US, UK and German equity retumns.

We wish to test the following model of one regime:
yt=u+§]%et (33)

where y; = (y° y¥* y7°") are the nominal monthly equity returns, and ¢; ~ IID N(0,I) against the

following regime-switching model:

(S

ye = ulse) + L2 (s¢)e (34

with s; = 1,2 and Markov transition probabilities P = p(s; = 1|s;~1 = 1) and Q = p(s¢ = 2|s¢~1 =
2). This is the simple RS US-UK-GER Model being tested against its one regime counterpart.

BWe derive the excess hedged foreign equity return as follows. Consider $1 converted into foreign currency at rate E at
time ¢, where E is the exchange rate expressed in dollars per foreign currency. This earns exp(yL& )/ E. in foreign currency
attime ¢ + 1. Suppose a forward contract can be written on this amount at time ¢, where £;/E. = exp(it — i;). Then the
hedged gross return on foreign equity will be exp(y5S) Fi/ E: = exp(yé + ie — i; ). The continuously compounded excess
hedged return is g, = y&& — ¢;. In discrete time the hedged return can be approximated by the unhedged return plus the
proceeds of selling $1 forward:

L4yl = (1+ yEQ) (1 + eerr) — leesr + 65 — id]

where e¢+1 = log(E.4+1/E.). If we ignore the second-order cross-term, then YR = yE& + 4. — i and the excess hedged
return becomes §iy 1 = yE& — i;. This method for hedged returns is used by Tesar and Werner (1995) and a similar method

without continuous compounding by Black and Litterman (1991).
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In testing regime-switching models the usual x? asymptotic tests do not apply because of the presence
of nuisance parameters under the null. In our situation, if P = 1 and the process starts in the first regime,
then the parameters v = (Q, u{s; = 2)',vech(E(s; = 2))’)’ are unidentified under the null. The
likelihood function will be flat with respect to -y, and these parameters also enter the Hessian making
the standard likelihood ratio test, Wald test and Score test have non-standard distributions. While certain
testing techniques have been developed for these conditions, these are asymptotic tests which are difficult
to implement empirically. 4

Here we focus on the empirical likelihood ratio test. The likelihood ratio statistic of the regime-
switching model against the null is 103.738, but to test if this value rejects the null of one regime we use
Monte Carlo simulation to find its small sample distribution. Using the one-regime model (equation (33))
we simulate a sample of 335 returns (the same length as the sample on which the model was estimated),
and estimate the regime-switching model (equation (34)). The likelihood ratio for the simulated sample
is then recorded and the process is repeated 500 times. Estimation of the regime-switching model for
every simulated sample makes this computationally intensive.!> The results are listed in Table (4) which
shows that the largest likelihood ratio statistic generated under the null is 49 while the sample likelihood
ratio statistic is 104. The data overwhelmingly reject the null of one regime.

That the null is rejected in favor of a RS model is not surprising given the significant higher order
moments (Table (1)) which can be captured by the RS model. Other stochastic volatility models able to
produce fat tails may also reject the null. However, we later test for the presence of ARCH effects for
the US-UK beyond the RS model in equation (34) and find no evidence of RS ARCH.

4.3 Regime Switching Estimation Results

We present general results in Section 4.3.1 and discuss specific estimation results for individual models
in Sections 4.3.2 to 4.3.5.1¢

4.3.1 General Patterns

Across our RS models we find the following pattern in international equity returns. In one regime the
equity returns have a lower conditional mean, much higher volatility and are more highly correlated. We
shall refer to this regime as “regime 1”. In the second regime, equity returns have higher conditional
means, lower volatility and are less correlated. Our regimes definitely correspond to periods of low
and high volatility, but the evidence for significantly different conditional means and correlations acfoss
regimes is not as strong.

Table (5) presents p-values of Wald Tests for parameter equality across regimes for the various RS

"1n particular see Hansen (1996) and the discussion in Ang and Bekaert (1998).
'5We ignored 3 samples where no convergence was attained.
'®The parameter estimates for all models are contained in a supporting Table Appendix available from the authors.
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Models.!” In models where the means are constant conditional on the regime, there is some evidence that
the means differ across the regimes for the US in the case of the Simple US-UK Model and for the Short
Rate Model. However, joint tests fail to reject the null of constant conditional means for both countries.
The Wald test for the Earnings Model rejects that the parameters of the conditional mean (u(s¢), 3(st))
are jointly equal across regimes.

The equality of volatilities across regimes is rejected at any significance level for the Simple RS
Models, the Short Rate Model and the Eamings Yield Model. Evidence is also extremely strong for
different regime-dependent volatilities for the Beta Models. The evidence of different correlations across
the regimes is not particularly strong. The US-UK correlations are borderline significantly different in
the Simple US-UK-GER model and the Short Rate Model. We cannot reject that correlations for the
UK and Germany are constant across regimes. Similarly, for the Beta Models, where covariances are
implied by the 3’s of the individual assets, and for the Eamings Model, we cannot reject equality of the
correlation across regimes.

To concentrate on the effect of changing covariances we estimate models where y; and po are im-
posed to be equal across states (but different across assets). Table (6) shows that these models cannot
be rejected when comparing them against their unconstrained specification. Moreover, regime classifica-
tion, as measured by the Ang-Bekaert (1998) Regime Classification Measure (RCM), generally improves
slightly when this restriction is imposed.'3 In Section 5 we will concentrate our analysis on models with

w1 imposed equal to uo.

4.3.2 Simple US-UK Model

The US and UK have been the largest most integrated markets over our sample. Being the simplest and
most parsimonious RS model, we will discuss the estimation results for the Simple RS US-UK Model.
For intuition we specifically discuss this mode! in Section 5. The results for the US-UK-GER Model are
qualitatively similar‘.

Figure (1) shows the ex-ante probabilities p(s; = 1|Z;—;), implicitly given by construction of the
likelihood function, associated with the log equity index levels for the US and unhedged UK equity.
The turbulent equity returns of the OPEC oil shocks in the mid-70’s are picked up, as is the 1987 crash.
From the mid-90’s onwards, the implied ex-ante probabilities place the economy almost definitely in the
second regime. The expected duration of the first regime is 6.9 months, while the expected duration of
the second regime is 4.25 years. The stable probabilities implied by the transition matrix are 0.1194 and
0.8806 for regimes 1 and 2 respectively.

Figure (2} shows the implied conditional means, volatilities and correlation of the US and UK equity

"The Basic Short Rate Model refers to the case where 3(s:) = 0 in equation (30)). In a test of the Basic Model versus the
Full Model we cannot reject the Basic Model.

"The RCM is given by RCM = 400 % %ZLI p:e(1 — pe), where p¢ is the ex-ante regime probability p(s. = 1{Z.-1).
Lower RCM values indicate better regime classification.
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returns. The implied conditional mean is given by:

fe = pepr + (1 — pe)pa (35)

where p; = p(s¢+1 = 1|Z¢) is the ex-ante probability of being in the first regime. The implied covanance

matrix at time ¢ is given by:

Se = pe(S1 + papl) + (1 = pe)(Sa + poph) — fefiy. (36)

Dashed lines in the plots represent 95% confidence intervals calculated by the delta-method. We see in
the top panel of Figure (2) that as p; increases, the conditional mean of the US and UK become negative,
but the standard error of the estimates also increases markedly. This reflects the increased uncertainty
about the parameter estimates in the first regime. The conditional volatilities in the middle panel likewise
increase substantially when p; increases. The plots also show that the conditional means and variances of
the US and UK move in tandem, as is true in any one-factor model. In our Simple RS Models this factor
is the ex-ante regime probability. The bottom panel shows the conditional US-UK correlation. The plots
clearly show that the higher volatility regime is also associated with higher correlations.

Table (7) shows likelihood ratio tests of the Basic Model versus Model II (the model allowing non-
contemporaneous regimes of the US and UK) and the RS ARCH model. In both cases we fail to reject
the Simple Model. Moreover, the parameters A and B in equation (21) are estimated to be 1. This lends
support to the simple, but parsimonious DGP of the Simple RS Model: the US and UK face the same
regime shifts and the stochastic volatility generated by the simple RS Model suffices to capture the time

variation in monthly equity return volatilities.

4.3.3 Beta Model

We now describe the qualitative results of the RS Beta Models. The higher volatility in the first regime
is driven by three parameters in this model. First, world volatility is higher in the first regime. Second,
the B’s are invariably higher in the first regime. Third, the idiosyncratic volatilities are higher in the first
regime. It is never possible to reject that the 3’s are significantly different from 1 in the first regime, but
they are often significantly below 1 in the second regime, which is more influenced by the idiosyncratic
shocks. The @3’s of the unhedged returns are larger than the 3’s of the hedged retumns, reflecting a
positive currency return 3. The difference between the unhedged and hedged excess equity retumns in
the RS Beta Models is the currency return cry41, which is the excess return from investing in the foreign
money market and is given by crey = e;41 +1f — %t

The expected value of the currency return, the currency premium cp; = Eq(cri41) is the topic of a
large empirical and theoretical literature. Our model implies that, conditional on the regime, the currency
premium is constant. In Table (8) we report the state-dependent and unconditional currency premiums
and the volatilities of the currency returns. The unconditional premium is approximately 1.5% to 2% per

annum for both the pound and the deutschemark. The magnitude is similar to the recent estimates of De
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Santis and Gerard (1998), but the sign is different. De Santis and Gerard use a CAPM-based model with
GARCH volatility and find large time variation in currency premiums. In our model, the actual premium
varies over time with the regime probability and can potentially change signs. However, we estimate the
premiums to be positive in both regimes, implying that US investors are always compensated for taking
foreign exchange risk. For regime [, the currency premium is very small and insignificant. The smaller

currency premium, combined with the larger volatility may contribute to home bias in this regime.

4.3.4 Short Rate Model

The short rate behavior in the two regimes is characterized by high conditional means with lower autocor-
relation (higher mean reversion) and higher conditional volatility in the first regime, and low conditional
means with higher autocorrelation and low volatility in the second regime. Economically, the second
regime corresponds to “normal” periods where interest rates are low and equity excess returns are posi-
tive. Interest rates behave like a random walk, perhaps because of the monetary policy smoothing efforts
of the US Fed. The first regime corresponds to “turbulent” periods of high monetary uncertainty with
very volatile negative equity returns.!®

In Table (7) we see that a restricted model (the Basic Model) with no within-regime predictability of
the equity return by the short rate cannot be rejected from the unconstrained Full Model. The parameter
estimates of J(s;) themselves in equation (30) have very large standard errors in both regimes. The
standard errors on other parameters are also much larger than in the Basic Model. The probability
coefficients in equation (31) are significant, and a constant probability version is rejected by the Basic
Model. In particular, b, is negative and highly significant, so in normal periods, as the short rate increases
a transition to the first regime becomes increasingly likely.

Comparing the ex-ante probabilities of the Basic Model in Figure (3) to the Simple US-UK Model,
we see that the Short Rate Basic Model classifies the éarly 1§80’S as regime 1, which is driven by the
highly turbulent short rates during the monetary targeting period. There are only a few spikes during
this period for the US-UK model (Figure (1)). The implied conditional correlations for the Basic Short
Rate Model are presented in the bottom panel of Figure (3). Interestingly, short rates and equity returns
are more negatively correlated in regime 1 than regime 2. In addition to the low conditional means of
equity, this implies that holding equity is even more unattractive in the first regime. As short rates are
high during this period risk-averse investors will want to hold mostly cash. In this model, although mean
excess returns are mostly positive (top panel), the conditional mean in the first regime remains hard to

pin down, motivating a focus on the 11; = p9 model.

¥Similar patterns for RS models applied to interest rates have been documented by Ang and Bekaert (1998), Bekaert,
Hodrick and Marshall (1998), and Gray (1996).
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4.3.5 Earnings Yield Model

In the Eamnings Yield Model, US earnings yields predict US and UK equity returns both through the
transition probabilities and through the conditional means. In particular, in the second regime, b, in
equation (31) is significant and negative, so as the earnings yield increases a transition to the first regime
becomes more likely. The predictability coefficients (3 in the conditional mean of equity returns are
significant in both regimes for the US, with a strong effect in regime 1, and significant for the UK in the
first regime. In Table (7), a likelihood ratio test for this model versus the null of no predictability gives a
p-value of 0.0149. There is borderline significance for each case of predictability through the conditional
means and through the transition probabilities.

In the first regime, earnings yields have higher conditional means, are more mean-reverting and have
higher conditional volatility. The average earnings yield conditional on regime 1 (2) is 10.44% (6.56%).
Lower earnings yields on average are associated with normal periods as higher prices relative to earnings
push down the earnings yield. The Eamings Yield Model, like the other RS models, has average equity
returns conditional on the regime being lower and more volatile in the first regime. For the US the
average equity returns in regime 1 (2) are -0.6093 (1.6159) with respective standard deviations 5.7484
(3.3645). Similarly for the UK, the average equity returns in regime 1 (2) are -0.0631 (1.5058) with
respective standard deviations 9.9298 (4.9110).

5 Asset Allocation Empirical Results

Under the RS DGP’s estimated in Section 4.3, we will attempt to answer the following questions raised
in the Introduction: (a) are there still benefits in international diversification in regimes of global financial
turbulence? (b) how do these regimes affect asset allocations? (c) does currency hedging help? (d) how
costly is ignoring regime switching? and (e) how large are the intertemporal hedging demands induced
by regime switching? We will first discuss general results across all the models and tabulate results for
risk aversion levels of v = 5 and 10. Unless otherwise mentioned we present results for models with
11 = po imposed. We will examine in detail the US-UK Simple RS Model for intuition and also discuss
the Short Rate and Earnings Yield Model. The portfolio weights, with statistical tests, are presented
in Tables (9) to (12). Tables (13) to (17) present the economic compensation required under various

sub-optimal strategies.

5.1 International Diversification under Regime Changes

Portfolio weights, along with standard errors, for the all-equity portfolios are listed in Tables (9) to

(11).2% Across these models, the proportion held in the US rises in the first regime, but the standard
prop

*Eor the Beta Models, a risk-free rate of 6% is specified, as the model is formulated in terms of excess returns. The portfolio

weights are highly insensitive to the choice of the risk-free rate except for very large (>100%) rates. This is because the
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errors associated with the portfolio weights are large. The US, because of its lower volatility in the first
regime compared to overseas equity, becomes a “safer” asset. Risk averse investors choose to hold more
of the US at the expense of international equity during the downtum state. Portfolio weights as a function
of «y are shown in Figure (4). The more risk-averse the investor, the greater the proportion of the US held
in both states.

Table (13) presents the “cents per dollar” compensation required for an investor with an all-equity
portfolio to hold only the US instead of investing optimally with overseas holdings. Table (13) shows
that at a | month horizon, the costs of holding only US equity are small and, as expected, grow with the
horizon. At one year we need a compensation of 1.19 cents (0.97 cents) in state 1 (2) with v = 5 to hold
no UK or German equity under the Simple RS Model. The addition of Germany brings considerable
economic benefit for international diversification, especially at longer horizons where costs can exceed
10 cents for v = 10 with a 5 year horizon. This is because of the particular covariance structure in regime
1. Although US holdings increase, Table (10) shows that German holdings also increase at the expense
of UK equity.

We might expect that as correlations are higher in state 1, the costs of no international diversification
in that state will be less than in state 2. This is generally not true. For v = 5 and 10 for the US-UK
this is true, but this is not the case for the US-UK-GER system. In the three country model the optimal
holdings of both US and Germany rise, making diversification more valuable in this regime. Figure (5)
shows that even for the US-UK, the benefits of diversification for state 1 may be greater than for state 2
for small +. The bottom panel of Figure (5) shows that because of the benefits of holding Germany in
state 1, the costs of no international diversification are uniformly higher in state 1 than in state 2.

In the bottom panel of Table (13), costs for various levels of the earnings yield for not holding
overseas equity are presented. In regime 1, where the average eaming yield conditional on the regime is
around 10%, an investor with v = 5 with a one year horizon needs 1.25 cents of compensation. In the
second regime, the cost of not diversifying is on average smaller, being only 0.30 cents at a conditional
average earnings yield level of 6%. As the eamings yield increases the cost of not diversifying increases

in both regimes.

5.2 Benefits of Currency Hedging

Confirming previous evidence in Glen and Jorion (1993), being able to hedge currency risk imparts fur-
ther benefit to international diversification. In Table (14) the economic compensation for not diversifying
internationally under the RS Beta Models is higher than under the pure unhedged Simple RS Models in
Table (13). In this model no international diversification refers to holding neither hedged nor unhedged
foreign equity. To obtain a measure of the benefits of currency hedging, we need to obtain the optimal

portfolios under the restriction that only investment in unhedged equity can be made.

nominal returns approximately cancel each other out (to a first-order Taylor approximation) in the FOC’s in equation (6).
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The economic compensation required for holding such portfolios is listed in the second panel of
Table (14). This shows that the costs of not using currency hedging, like the costs of not internationally
diversifying, are relatively large. For a one year horizon with v = 5, around 70 basis points are required
to not engage in currency hedging. We can compare the two panels in Table (14). Currency hedging
contributes about half of the total benefit of no international diversification under the RS Beta Models.

Table (11) shows the asset allocation weights for the RS Beta Models. Like the Simple RS Models,
the proportion of US equity increases in the first regime. We also list the proportion of the portfolio
covered by a forward contract position, which is unrestricted. In the RS Beta Models, short positions
in the forward contracts hedge the currency risk of the foreign equity position. These positions are
statistically significant. The Tables also list hedge ratios, which are the value of the short forward position
as a proportion of the foreign equity holdings. Our models produce hedge ratios of about 50%, and are

fairly similar across regimes.

5.3 Costs of Ignoring Regime Switching

In the absence of predictability, there are two implications of regime switching for portfolio weights:
(a) portfolio weights become regime-dependent, and (b) since regime switching generates intertemporal
hedging demands, portfolio weights become horizon-dependent. We will look at the effects of regime-
dependent weights first.

The weights reported in Tables (9) to (11) sometimes differ substantially across regimes. For ex-
ample, the US weight is anywhere between 7 and 29% higher in regime 1 compared to regime 2 for
the Simple RS Models and the US-UK Beta Model. The differences in weights across regimes for the
US-UK-GER Model are not large for the US but more substantial for the UK and Germany (7 to 9%).
Nevertheless, the standard errors are often large and we cannot reject the nuil that the portfolio weights
are constant across regimes for many cases. Table (12) summarizes Wald tests with v = 5 which are
joint for horizons T = 1,12, 36, 60 months. The only rejection occurs on the RS Beta Models for the
US weights. In the Simple RS Models in Tables (9) and (10) we cannot reject that portfolio weights do
not differ across regimes for'} = 5, but for v = 10, we can reject at the 5% level for the US-UK equity
portfolios.

The economic costs of ignoring RS range from fairly small to substantial at high levels of risk aver-
sion. Table (15) shows that for a one year horizon, investors with y = 5 in the Simple RS US-UK-GER
Model lose only 14 (5) basis points for ignoring regime switching in state 1 (2). When investors ignore
regime switching they are assumed to hold myopic weights implied by fitting an IID multivariate normal
distribution to the equity returns. These weights are an approximate average of the regime-dependent
weights. (For the US-UK and US-UK-GER portfolios, they are listed in Tables (9) and (10).) The IID
weights give a reasonable approximation to the optimal weights in each regime, especially in regime 2
which has the longest duration. Treating the [ID weights as a constant, we cannot reject that the optimal

regime-dependent weights are different from the [ID weights at the 95% level. The costs are substantially
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higher when ~ is increased to 10, in which case regime 1 requires effectively holding all US equity in the
US-UK portfolio.

Finaily note that the cost of ignoring RS is higher in state 1 than state 2. This is in accordance with
intuition, since in the normal regime, conditional means and variances will be closer to their uncondi-
tional counterparts, than they are in state 1. The markedly different behavior in state 1, which can persist
for several periods, makes the costs of ignoring RS higher in this regime. Figure (5) plots the costs of
ignoring regime switching for the Simple RS Models as a function of «y. The plots confirm that the cost
of ignoring RS is higher in regime 1 for all levels of risk aversion and is robust across the Simple US-UK
and US-UK-GER Models. Whereas for the US-UK, only at low levels of risk aversion do the costs of
failing to diversify internationally dominate the costs of ignoring RS, this holds for all +y in the US-UK-
GER model. This is because for the US-UK the optimal portfoliio for regime 1 becomes the domestic US
equity portfolio when = is high, whereas in the US-UK-GER system positive German equity holdings

remain optimal in the first regime.

5.4 Intertemporal Hedging Demands

Tables (9) to (10) present Wald Tests for intertemporal hedging demands. Hedging demands are never
significant, and the p-values are generally very large. Brandt (1998) also cannot reject myopia in his
non-parametric estimate of domestic asset allocation weights.

The Tables also show that the convergence of the portfolio weights is extremely fast. After 3 years,
the portfolio weights are constant. The convergence is even faster than in Brandt (1998), who finds
convergence after 15 years. His setting however, incorporates instrument predictability and rebalancing
at intervals greater than 1 month. With only regime changes and monthly rebalancing horizon effects
become even smaller.

The economic costs of myopia are effectively zero. Table (16) lists the compensation required for
an investor to hold myopic portfolio weights instead of the optimal T" horizon weights. The numbers are
astoundingly small for all models. This evidence suggests that investors lose almost nothing by solving a
myopic problem at each horizon, rather than solving the more complex dynamic programming problem

for longer horizons.

5.5 Simple RS US-UK Model

In this Section we will develop more intuition about the asset allocation behavior under the simple RS
US-UK Model which carries over to more general cases.
Let us examine the portfolio weights in Table (9). In regime 1, the point estimates show that investors

hold more US equity. The US acts as a “safer” asset in this regime. Under this model when p1; = p9, the



equity returns y; = (yi** y¥*) are distributed as N (u, T;), i = 1,2, where p = (1.1613 1.2488)" and

7.50642 0.6181 x7.5064 x 14.0748
o= (0.9515) (0.1032) % (0.9515) x (1.8432) (37)
1= 1 06181 x7.5064 x14.0748 14.07482
(0.1032) x{0.9515) x (1.8432) (1.8432)

with standard errors in parentheses, and

3.79172 0.4480 x3.7917 x5.2470
= (0.1654) (0.0491) x (0.1654) x (0.2409) (38)
2 0.4480 x3.7917 x5.2470 5.24702 :
(0.0491) x {0.1654) x {0.2409) (0.2409)

The lower volatility of the US in the first regime makes the US relatively more attractive to risk-averse
investors at the expense of international holdings.?! This pattern is repeated across all the models, in-
cluding the RS Beta Models which allow currency hedging. The large standard errors, though, mean that
statistically there is weak evidence that the true portfolio weights change across regimes.

Looking at Table (9), notice that as the horizon is increased the point estimates of the holdings of US
equity increase with horizon. That is, with increasing horizon, investors want to hold more of the less
risky asset.?? It is the persistence of the regimes which lies behind this result, as can be seen by applying
the intuition from Samuelson (1991).

Samuelson works with two assets, cash and and a risky asset. The risky asset follows a Markov chain
where the returns can be “low” or “high”. He defines a “rebound” process, or mean-reverting process,
as having a transition matrix which has a higher probability of transitioning to the alternative state than

staying in the current state. An example of a symmetric rebound transition matrix is

(39

Wity Wih—

Samuelson’s theorem is that with a rebound process, risk-averse investors increase their exposure to the
risky asset as the horizon increases. That is, under rebound, long horizon investors are more tolerant of
risky assets than short horizon investors.

Our setting is the opposite of a rebound process. Our transition matrix is:

0.8546 0.1454
(0.0698)

0.0182 0.9818 [’
(0.0100)

(40)

with standard errors in parentheses. Samuelson calls such a process a “momentum” process: it is more

likely to continue in the same state, rather than transition to the other state. Under a momentum process,

2 A full list of parameter estimates is shown in Table (A-1) as part of the supporting Table Appendix. The Basic Model,
where 1 # 2 produces covariance estimates which are approximately the same, but u1 = (-1.2881 -0.6921)" and p2 =
(1.2829 1.3040)’. Even with the much more negative conditional mean for the US in state 1, the asset allocation results for the

full equity portfolio are similar, because they are driven mainly by the lower volatility of the US in that state.
2This same effect is shared across all the RS models (Table (9) to (11)). In the case of the Short Rate Model (Figure (6)) the

“less risky” asset is cash. Note that in the Earnings Yield Model, the change in US equity holdings depends on the prevailing

earnings yield.



risk-averse investors will want to decrease their exposure to risky assets as horizon increases. Intuitively,
the long-run volatility is smaller under a rebound process than under a momentum process (with the
same short-run volatility). In our setting, the risky asset is overseas equity, and the safer asset is US
equity. The persistence of our regime probabilities means that investors with longer horizons hold less
foreign equity, so long-horizon investors are less tolerant of holding more risky overseas equity than
short-horizon investors. However, Section 5.4 shows that this effect is economically and statistically

insignificant.

5.6 Basic Short Rate Model

Introducing a predictor instrument makes the portfolio weights a function of the instrument as well as
the regime. Here we focus on the asset allocation resuits given by the Basic Short Rate Model (equa-
tions (28)-(31), where we impose B(s;) = 0 in equation (30)). The excess conditional mean for equity
returns is imposed equal across regimes (u; = po). From Section 4.3.4, the predictability in the condi-
tional mean is overwhelmingly statistically insignificant but the short rate does enter significantly in the
probability coefficients (b; in equation (31)).

Portfolio weights as a function of the short rate and regime are presented in Figure (6). The top two
plots show the asset allocation weight for US and UK equity in regime 1 and 2 (and the remainder of
the portfolio is held in cash). The Figure shows that the hedging demand is small, and is only visible
for the first regime. In regime 2, as the short rate increases investors hold less equity, but in regime 1
there is almost no effect of the short rate on the portfolio allocations. This is driven by the non-linear
predictability in the probability coefficients. The portfolio holdings in state 1 are flat because the excess
returns are constant and no significant short rate predictability (b is insignificant) drives the transitions
from this regime. In the second regime b, is highly significant and negative. As the short rate increases, a
transition to regime 1 becomes increasingly likely. As the first regime has much higher equity volatility,
investors seek to hold less equity to mitigate the higher risk.

The effect of predictability seems much weaker in our model than in the predictability models ana-
lyzed by Brennan, Schwartz and Lagnado (1997), Kandel and Stambaugh (1996), and Barberis (1996).
These models have linear predictability (3 # 0) in the conditional mean rather than the non-linear pre-
dictability in the probability coefficients and much longer rebalancing intervals than 1 month.

Table (17) presents the economic compensation required for an investor not to hold the UK. To obtain
the first panel in the Table a constrained optimization problem must be solved where investors are only
permitted to hold cash and US equity. In this setting, the cost of not holding the UK is only very modest,
and higher in regime 2 where US-UK correlations are lower. This is consistent with the pure US-UK
equity portfolios examined in Section 5.1. The main effect of introducing the short rate as a predictor is
the benefit of holding cash. The bottom panel of Table (17) shows that the costs of holding only equity

and ignoring regime switching is substantial.



5.7 Earnings Yield Model

Figure (7) shows the US portfolio weights for an all-equity US-UK portfolio from the Eamnings Yield
Model in each regime. In the top panel portfolio weights for different horizons are presented, which
shows that the intertemporal demands from this model are very small. In regime 1, as the earnings yield
increases, US investors seek to hold more risky UK equity. In regime 2, this same effect is repeated at
higher eamnings yields, but a small hump is seen at lower earnings yields. The Samuelson (1991) effect
of a small increasing exposure to the safer US asset with increasing horizon can also be seen.

The second panel of Figure (7) shows the 95% standard error bands of myopic portfolio weights.
These are large, but are smallest at the average value of the earnings yield conditional on each regime. In
regime 1 (2), the confidence bands are smallest at 10.4% (6.6%) and then increase like a funnel in both
directions for higher and lower earnings yield levels. Myopic weights and the null of constant portfolio
weights across regimes can definitely not be rejected.

Table (18) presents some economic cost computations under the Earnings Yield Model for an in-
vestor with risk aversion ¥ = 5. The first panel lists the costs of ignoring RS and predictability where
an investor holds Samuelson (1969) IID portfolio weights. The middle columns for each regime list the
costs associated with the average eamnings yield conditional on the regime. The other numbers are rep-
resentative “high” and “low” earnings yields conditional on the regime. In regime 1 (2), with an average
earnings yield of 10% (6%), the costs are only 0.06 cents (0.04 cents) with a 1 year horizon. The IID
weights provide a good approximation to the optimal weights at most earnings yield levels making the
costs to ignoring both RS and predictability small.

The bottom panel of Table (18) lists the costs of ignoring predictability but taking into account
regime-switching. In this case, the constrained portfolio weights are those implied by the Simple RS
US-UK Model (with 1 # p3), and are quite dissimilar from the RS Earnings Yield weights in the
first regime at conditional average yield levels. Generally, this produces higher costs in the first regime
relative to the IID case, which ignores both predictability and changing regimes. For example, for a 1
year horizon in regime 1, the costs are 0.33 cents compared to the IID weight cost of 0.06 cents. The
reason for this is because at average values of the earnings yield conditional on each regime, the 11D
portfolio weights are better approximations to the optimal weights while the portfolio weights implied
by the Simple RS Model tend to over (under) state in the optimal weights in regime 1 (2). The optimal
myopic US weights at the conditional average earnings yield in regime 1 (2) are 0.7262 (0.8422), while
the weights from the Simple US-UK Model are 0.8614 (0.7356). The IID portfolio weights 0.7642
deviate less from the optimal earnings yield weights in each regime. In fact, it is striking that at the
average earnings yields the home bias in the first regime disappears. Looking at the estimated moments
conditional on the regime it is clear why this happens. Compared to the Simple RS Model, in the Earnings
Yield Model UK equity is relatively more attractive since the correlation with US equity is lower (0.5551

versus 0.6097 for the Simple RS Model), and its volatility ratio relative to the US is less extreme (1.7274



versus 1.9492). In the second regime the opposite effect is true but it is brought about by differences in

the conditional means and volatility, whereas the correlation is estimated to be about 0.44 in both models.

6 Robustness Experiments

In this Section we conduct several experiments to determine the robustness of our results. In Section
6.1 we check the sensitivity of our results to the specification of the conditional means. In Section 6.2
we gain further intuition on optimal asset allocation under regime changes by examining how optimal
portfolio weights change as a function of one changing parameter in the RS Simple US-UK Model. In
Section 6.3 we investigate whether our conclusions about the costs of ignoring RS and the benefits of
international diversification remain robust to alternative parameter values. Finally, in Section 6.4 we

consider an out of sample experiment.

6.1 Regime-Dependent Conditional Means

One disappointing aspect of our RS model estimation is that we fail to find strong evidence that highly
volatile periods coincide with bear markets. Although the point statistics suggest this relationship, the
standard errors on the conditional means in regime 1 are large. This in turn may dampen the potential
asset allocation effects of the high volatility regime. In order to examine this further, we re-estimate
the Simple RS models constraining the conditional means to be equal across countries, but different
across regirr;es. These models cannot be rejected in favor of the alternative of unconstrained means
(p-value = 0.8415 (0.4884) for the US-UK (US-UK-GER) model). In these models, the means in each
regime (equal across countries) are also not significantly different (p-value = 0.1422 (0.1927) for the
US-UK (US-UK-GER) model). The quality of the regime classification measured by the Ang-Bekaert
RCM statistic is largely unchanged for the US-UK-GER model, but is much worse for the US-UK. The
resulting portfolio weights are largely unchanged, with almost the same economic costs and significance

levels for the statistical tests. Consequently, our focus on time-varying covariances seems justified.

6.2 Changing Parameters in the Simple US-UK Model

Figure (8) shows the effect on the portfolio weights of changing various parameter values. The base-line
case is the unconstrained . case. We alter one parameter while holding all the others constant and hold
the horizon fixed at T = 12 months. From the top plot going downwards in Figure (8) we show the effect
of altering the transition probability P = p(s; = 1|s¢—1 = 1) of staying in the first regime conditional
on being in the first regime, the correlation p; of the US-UK in regime 1, the conditional mean p;; of
the US in regime 1, and the volatility oy; of the US in regime 1.

The plots are very intuitive. As P increases, holdings of the safer US asset increase in both states as

the expected duration of regime 1 increases. The largest difference between the state-dependent weights
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is at values around P = 0.5 (the sample estimate is P = 0.8552), but this has only a minor effect on
the regime dependence. As p; increases the diversification benefits of holding UK equity decrease, so
holdings of the US increase. Note that it is only for p; greater than 0.8 that the weights in each regime
become substantially different. Our estimated g, = 0.6181 is far less than this. As x; increases the US
becomes even more attractive relative to the UK so holdings of the US increase. (The sample estimate
is 117 = —1.2881). Finally, as oy increases the US becomes less “safe” and the proportion allocated
to the UK increases. There is some larger regime-dependent effect for values smaller than the sample
estimate of d1; = 7.0376, but for values of o; greater than 9 the portfolio weights in each state are
almost identical. Overall, since the correlations are similar across regimes there is little difference in the
regime-dependent portfolio weights and the main effect is to alter the amount of the US held in each
regime. Figure (8) suggests that of the parameters affecting the conditional distribution of returns in
regime 1, the biggest effects on the regime-dependent weights come from conditional correlations and

the relative difference in means.

6.3 Asymptotic Distributions of Economic Costs

The previous Section conveys intuition on which parameters have the largest effect on regime-dependent
optimal asset allocation but does not tell us whether our main conclusions are affected by these different
parameters. Here we focus on the RS Simple US-UK and US-UK-GER Models and re-compute the eco-
nomic costs of no international diversification, the economic costs of ignoring RS and the economic costs
of myopic strategies for 1,000 alternative parameter values drawn from the asymptotic normal parameter
distributions implied by the estimation. We take the sample estimates to be “population values” and use
the estimations where the conditional means are constrained to be equal across regimes. We then look at
the 5% and 95% tail estimates of the various costs.?

The results of this exercise are presented in Table (19) for a risk aversion of v = 5 and for horizons
T =1, 12, 36 and 60 months. The distributions of the economic costs have means which are larger than
their population values in Tables (13) and (15). The median values of the economic costs are much closer
to the population values. The economic cost computations can be viewed as non-linear transformations
of the parameters. The transformations result in economic costs which are skewed to the right, especially
for the costs of not diversifying internationally which are far more right skewed than the costs of holding
IID weights. This means that if we draw a particular set of realistic parameter values, we may likely
find costs for not diversifying internationally that are substantially larger than the population values. For
example for T = 60 for the US-UK-GER Model the cost of no international diversification is 26 cents at
the 95th percentile.

For the Simple US-UK Model, for T = 1 and 12 months, the costs of ignoring RS are slightly

higher than the costs of no international diversification, but for the longer horizons, failing to diversify

B For the costs of ignoring RS, the [[D weights are calculated using a multivariate normal with the unconditional mean and

covariance matrix implied by the simulated parameters.
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internationally is much more costly than ignoring RS. In the case of the Simple US-UK-GER Model,
failing to hold overseas equity is always more costly than using IID weights. For T = 12 months the
95% tail estimate of the cost of no diversification is 4.47 cents (4.86 cents) in regime 1 (2), while the cost
of ignoring RS is 1.01 cents (0.45 cents) in regime 1 (2). Finally, Table (19) shows the costs of using

myopic weights are effectively zero when drawing from the asymptotic parameter distribution.

6.4 Out of Sample Experiment

To examine the relative effectiveness of the RS strategies to ignoring RS, we run an out of sample
experiment. We take the out of sample period to be from January 1986 to December 1996 (11 years),
which includes the 1987 crash. We consider the performance of all equity portfolios for the simple RS
models for US-UK and US-UK-GER relative to the portfolios an investor would hold for ID weights
ignoring RS. We use a fixed horizon of December 1996 (time T') and for each month ¢ in the out of
sample period we record the accumulated wealth from each strategy. At a given time ¢, we estimate the
model up to time ¢. Using smoothed probabilities p(s; = 1|Z¢) (which use all information up to time ¢)
implied by the RS model, we then infer the regime at time ¢. To find the appropriate portfolio weights we
solve the dynamic programming problem for a horizon of T'— t. We also find the portfolio weights for an
investor using IID portfolio weights and using RS myopic weights. In the former case, these weights are
estimated using the multivariate normal distribution with means and covariances estimated from data up
to time ¢. Attime ¢t + 1 we calculate the actual accumulated wealth from holding these portfolio weights.

Table (20) lists the accumulated amounts at December 1997 of $1 invested at January 1986 in all
equity portfolios. The Table confirms that over this period there is very little difference from using RS
weights and ignoring RS. In Table (20) we see that the myopic RS strategies are almost identical (since
the intertemporal hedging demands implied by the Simple RS Models are very weak) to the optimal
RS strategy. As we increase v, our returns become larger because more risk averse investors hold more
of the “safer” US asset. The US produced the best returns over this period, which also explains the
higher performance of holding only the US and UK relative to holding all three countries. Of course, this
sample includes the bull market of the 1990’s and, apart from the few months foliowing the 1987 crash.
the regime classification infers we are always in the normal second regime. As the IID weights are much

closer to the RS weights for regime 2, this may represent a very biased draw.

7 Conclusions

In this article, we introduce regime-switching into a dynamic international asset allocation setting. We
look at a US investor with Constant Relative Risk Aversion (CRRA) utility who dynamically rebalances
and maximizes end of period wealth. Regime-switching can potentially have a large impact in this setting
by producing state-dependent portfolio weights and intertemporal hedging demands.

Consistent with much of the empirical evidence on integrated equity markets, we find evidence of
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the presence of a high volatility-high correlation regime which tends to coincide with a bear market.
However, the evidence on higher volatility is much stronger than the evidence on higher correlation.
The regime-dependence of the means also has weak statistical significance, although the point estimates
suggest that the high-volatility regime is associated with lower, and possibly negative, conditional means
than the “normal” regime.

We consider a number of different settings from simple regime-switching multivariate normals to a
model where short rates predict equities through their effect on the regime transition probabilities, but
our main conclusions are robust across these models. First, the existence of this high volatility regime
does not negate the benefits of international diversification. When currency hedging is allowed these
benefits are even greater.

Second, the costs of ignoring regime switching are small for moderate levels of risk aversion. The
optimal behavior of a US investor is to switch towards US equity (or cash, if available), at the expense
of overseas equity when the high volatility regime is reached. It is the much higher volatility of overseas
equity compared to the “safer” US equity which drives this result. However, it is not very costly not
to switch, if an investor were to use IID portfolio weights even if the true data generating process were
regime-switching. Although the portfolio weights may be significantly different across regimes, the IID
weights act as an “average” portfolio weight which diversifies risk well in both regimes. This result
continues to hold when currency hedging is allowed.

Third, in common with the non-parametric results obtained by domestic dynamic allocation studies
such as Brandt (1998), the inéertemporal hedging demands under regime switches are economically
negligible and statistically insignificant. Investors have little to lose by acting myopically instead of
solving a more complex dynamic programming problem for horizons greater than one period.

Our results are remarkably robust. When we draw random parameters from the estimated parame-
ter distribution, the conclusions remain: for all equity portfolios, failing to diversify internationally is
typically much more costly than ignoring the regimes, which, in turn, is more costly than ignoring the in-
tertemporal hedging demands. However, our results remain premised on our assumptions, which include
CRRA preferences, the absence of transactions costs and full knowledge on the part of the investors of
the data generating process. With transactions costs, or learning about the regime, it is even less likely to
be worthwhile for investors to change their allocations when the regime changes. However, using differ-
ent utility functions, for example First Order Risk Aversion (Epstein and Zin (1991)) could potentially
cause regime switching to have much bigger effects than in the traditional CRRA utility case, and such

preferences can be treated in the same dynamic programming framework considered in this paper.
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Appendix A: Markov Discretization Under Regimes and Predictability

Under the case of regime switching and predictability we follow Tauchen and Hussey (1991) by
calibrating an approximating Markov chain to the RS DGP. We will discuss the calibration of the Short
Rate Model, as the Yield Model is similar. We first fit a discrete Markov chain to the predictor instrument

z¢. For the Short Rate Model, z; = r{** = r, which follows the process:

Tt = C(Sn) + ,D(Sn)Tt-l + U(Sn)\/T‘n-—lurn, (A-1)
with u,; ~ N(0, 1). The transition probabilities are state-dependent:

) ) exp(a; + by
p(st = let—l = Z;It—l) = 1 +e}fp(a d*_lbt_rt)l)' (A'z)
1 (3 -

We first fit a Markov chain to short rates for regime 1, then to regime 2, and then combine the chain. From
hereon, we use the word “state” to refer to the discrete states of the Markov chain which approximate the
continuous distribution in each “regime state”, or “regime”. The equity return shocks are correlated with
the short rate, but the short rate states are the only driving variables in the system. We will show how to
easily incorporate equity without expanding the number of states beyond those needed to approximate
the distribution of 7.

The idea behind Markov discretization is to choose points {r;} and a transition matrix II which ap-
proximates the distribution of r;. Tauchen and Hussey recommend choosing {r;} from the unconditional
disttibution of ;. We can then find the transition probabilities p;; from 7; to r; by evaluating the con-
ditional density of ; (which is Normal from equation (A-1)) and then normalizing the densities so that

they sum to unity, that is

> opi=1. (A-3)
;

For any highly persistent process such as short rates, discretization is difficult because p;; are com-
puted from a conditional distribution, and there is a different conditional distribution at each r; and
these may differ substantially from the unconditional distribution of r,. The high persistence requires a
lot of states for reasonable accuracy. When a square root process is introduced, the asymmetry of the
distribution and the requirement that the states be non-negative introduce further difficulties.

To aid us in picking an appropriate grid for r, in each regime we first simulate out a sample of
length 200,000 from equations (A-1) and (A-2), with an initial pre-sample of length 10,000 to remove
the effects of starting values. During the simulation we record the associated regime with each interest
rate. We record the minimum and maximum simulated points in each regime. For regime I, which is the
less persistent higher conditional mean regime, we take a grid over points 2.5% higher (lower) than the
simulated maximum (minimum). For regime 2, the “normal regime” with very low mean reversion, the
persistence leads us to take a grid starting close to zero, to 2.5% higher than the simulated maximum. We

use 50 points for regime 1, and 100 points for regime 2 to take into account the stronger persistence in
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this regime. We also employ a strategy of “over-sampling” from the over-lapping range of the regimes.
This is to aid in picking points where the discretized Markov chain is more likely to have non-zero
probabilities in switching from one regime to another. We place 95% (90%) of the points in regime 1 (2)
in the overlap.

Let {rlk} denote the states in regime k. We create the following partial transition matrices by the
method outlined above: from {r!} to {r!}, from {r}} to {r2}, from {r2} to {r}} and from {r?} to {r2}.
Denote these by II;_.x for j,k = 1,2. The rows of each II;_,x will sum to 1. The total states for the
Markov chain consist of {{r!}{r?}}.

Denote Pji(r) = p(s; = k|s¢—1 = j,r¢—1 = ), which is given by equation (A-2). To mix the IT,;_.x

matrices to obtain II for each rf we calculate ij(rf) and then weight the appropriate row of each IT;_.x
1

to combine into IT. For example, for a state in the first regime, r}, we calculate Py (r}) and Pio(r}).
Then the appropriate row in II corresponding to r; will consist of Py1(r}) times the appropriate row
corresponding to II; _.;, and Plg(Til) times the appropriate row corresponding to II; _.o.

This Markov chain is an accurate approximation of the RS process in equations (A-1) and (A-2). In
particular, following Bekaert, Hodrick and Marshall (1998), when a sample of 100,000 is simulated from
the Markov chain and the RS process re-estimated, all the parameters are well within 1 standard error of
the original parameters. Also, the first two moments of the chain match the population moments of the
RS process to 2-3 significant digits.

The Markov chain for r, now consists of the states {r;} with transition matrix IT which is 150 x 150.
To introduce equity into the chain we introduce the triplets {(r;, y} yf)} where yI" are the equity points
for country m. We choose the points {y["} approximating country m by Gauss-Hermite weights for the
conditional normal distribution for each regime. In our setup the equity returns for country m are given

by:
ym = /J,m(St) -+ O'(St)’umt (A-4)

where cross-correlations between um:, m = 1,2 and u,; are state-dependent. In a given regime, a
Cholesky decomposition can be used to make a transformation from the uncorrelated normal errors
(u1 ug u3)’ into the correlated errors (e; ez e3)’, with p;; denoting the correlation between e; and e;.
Note that in this formulation only the short rate is the driving process, and is the only variable we
need to track at each time ¢. To accomodate the equity states we can expand II column-wise. We choose
3 states per equity, making an effective transition matrix of 150x 1350 where the rows sum to 1. (Note, a
full 1350 x 1350 transition matrix could also be constructed, but the 9 rows corresponding to a particular
r; would be exactly the same.) Each short rate state is associated with 9 possible equity states. The
only modification we need in the method outlined above is to construct new partial transition matrices
so II;_.; becomes 50x450, II,_, becomes 50x900, I1o_.; becomes 150x4350, and II;_.5 becomes
100x900. These partial transition matrices can be mixed in the same manner as outlined before.

We find that there is a systematic downward bias when the implied moments conditional on the
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regime, and the unconditional moments are calculated from the Markov chain. This results from the
regime-dependent distributions not being exactly unconditionally normally distributed in each regime
from the presence of the square root term in the volatility of ¢, so Gaussian-Hermite weights will not be
optimal in this setting. We make a further adjustment of scaling the volatility of the US (UK) by 4% (5%)
upwards. Our final Markov chain matches means, variances and correlations to 2-3 significant figures.
When we solve the FOC’s in equation (6) we find that strong persistence in r; causes some insta-
bility at very low (<1.5%) and very high (>28%) interest rates. In these ranges the portfolio weights
are not as smooth as the plots that appear in Figure (6). At very high interest rates the portfolio weights
also start rapidly increasing for regime 2. These do not affect any solutions in the middle range. The
inaccuracies arise because at the end of the chains, the Markov chain must effectively truncate the con-
ditional distributions on the left (right) at low (high) interest rates. With experimentation we found that

the inaccuracies at the end of the chain decrease as the persistence decreases.

Appendix B: Estimation of Model 11

Let ye = (y*°y¥*) and g7 = (vhy) ...y%) . To construct the sample likelihood f(yr), we first
expand the state space to s; = 1,...,4 where the states correspond to all possible combinations of s;**
and s¥*:

The distribution of y; conditional on s, is N(u(s;), £(s:)). The conditional means for each s are:

us us us us
p1 = <Mik) po = (uik p3 = (uik> pa = (#ik> (B-
IS H1 Ha Ha

where subscripts indicate the appropriate corresponding regime. The conditional covariances are given
by:

5, :< (o1) plai‘sai"“> 22:( (o4°)? pgaa‘sai‘k>

protiots (o) profott (o)
5 (01°)  protool* 5 (0%°)*  paofiol® B2)
3= 4= -2
potors (o) profiost (o}

The correlations between the US and UK depend only on the state of the US.
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We can write the likelihood over the sample §7 = (y] -..y7) as:

T
) = [ [ fwlTemr)

t=1
T 2

=11 Zf (yelst® = 5, Te—1)p(s* = j|Te-1) (B-3)
t=1

We condition on f(y:|si® = j,Z;—1) to write:

flulst® = 1,Ti1) = p(st* = 1[sf* = 1) f(welsi® = 1, s¢* = 1,T1)
) f (yt|3t =1,s¢ -2 Ti-1)
Flyelst® = 2,Temy) = p(s* = 1fsi® = 2 f(velst® = 2,5t = 1, To-1)
+p(sP* = 2Is}® = 2)) f(yelsi® = 2, 5% = 2,T-1) (B-4)

+ P(S?k = 2|s?

Equation (B-4) can be simplified to:

Flydst® = 1,Ti1) = Af(yelse = 1,Ze—1) + (1= A)f(yelse = 3,Ze-1)
Fluelst® = 2,Ti-1) = (1 — B) f(yelse = 2, Ze-1) + Bf (yelse = 4, Te-1) (B-5)
from equation (21).
Conditioning on p(s}® = i|Z;_;) gives:

2
p(s¥® = i|Tpmr) = D p(sp® = ilsi®y = 4, Te-1)p(sty = j|Te-1) (B-6)
i=1
where the transition probabilities P = p(s¥* = 1|s¥$; = 1,Z,—1) and Q = p(s}* = 2|s¥%) = 2,T;1)
are constant. The ex-ante probability p(s¥* = j|Z;—1) can be computed recursively using the technique
of Gray (1996) and Hamilton (1994):

flye-1, 5851 = j|Te-2)
f(yt—llfc—z)
B flye-1ls¥s) = 5, Te-2)p(st2 = jlTe-2)
Zm—1 flye-1lsts, = m,Ti_o)p(sys = m|Zi-2)

Note that we could also construct the likelihood by using a 4x4 restricted transition matrix and con-

p(si2y = jlZe-1) =
(B-7)

ditioning on s; rather than s} in equation (B-3). However, the approach given here is computationally

more tractable.
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Table 1: Sample Moments of Nominal Equity Returns

Panel A: Central Moments
us UK GER

Mean 0.9813 1.0670 0.9668
(0.2382) (0.3784) (0.3158)

Std dev 4.3695 6.8338 5.8613
(0.3107) (0.6110) (0.3257)

Skewness  -0.5545 0.4803 -0.3693
(0.4576)  (0.6909) (0.1936)

Kurtosis 6.2009 8.3336 4.1674
(1.9056) (2.8572) (0.3269)

Panel B: Autocorrelations

Lag us UK GER
1 0.0107 0.0585 -0.0278
(0.0699) (0.0669)  (0.0634)
2 -0.0174  -0.0867) -0.0129
(0.0534) (0.0705)  (0.0594)
3 -0.0007 0.0577 0.0607

(0.0654) (0.0651)  (0.0586)
Panel C: US, UK and GER Equity Correlations

us UK
UK 0.5100
{0.0498)
GER 0.3628 0.4372
(0.0701)  (0.0521)

US, UK, GER refer to equity returns. The sample period is from January 1970 to November 1997 (335 return obser-
vations). Returns are expressed as monthly continuously compounded rates. Standard errors are in parentheses and are
estimated using Generalized Method of Moments with 3 Newey-West (1987) lags. The standard errors are calculated
setting up moment conditions for each country separately for each of the central moments in Panel A and the autocorrela-
tions in Panel B. In Panel C, all the moment conditions for the US, UK and Germany are used simultaneously to calculate
the standard errors.

Table 2: Sample Moments of Excess Equity Returns

world us UK uh UK h GER uh GER h

Mean 04723 0.5443 0.7083 0.6218 0.3893 0.4386
(0.2369)  (0.2452) (0.3494) (0.2994) (0.3508)  (0.3287)

Std dev 39512 4.1912 6.2737 54212 5.8899 5.2371
(0.2586)  (0.3350) (0.4084) (0.4750) (0.3801)  (0.4495)

Skewness  -0.6496 -0.8139 -0.1843 -0.6651 -0.4213 -0.7996
(0.3486) (0.5862) (0.2814) (0.6140) (0.2158) (0.4170)

Kurtosis 5.3019 7.2077 4.6908 7.5485 4.3490 6.4398
(1.3725) (2.7195) (0.6220) (2.3031) (0.3607) (1.2801)

Monthly excess returns over the US Euro | month short rate. Sample period 75:01 to 97:07. World is the MSCl world
index in USD, uh refers to unhedged returns in USD, hedged refers to hedged returns in USD, defined as yEC i —4;
where LC denotes local currency returns, 7, the US short rate, and ¢; the foreign short rate (EURO 1 month short rate)
Standard errors are in parentheses and are estimated using Generalized Method of Moments with 3 Newey-West (1987)
lags. The standard errors are calculated setting up moment conditions for each country separately.



Table 3: Sample Moments of Instruments

Panel A: Central Moments

ey In(ey) rf
Mean 7.9208 2.0122 7.8366
(0.2937) (0.0365) (0.3651)
Std dev 2.7222 0.3381 3.3034
(0.1643) (0.0174) (0.3091)
Skewness 0.6033 0.1398 1.1187
(0.1643)  (0.1489) (0.1931)
Kurtosis 2.2792 1.9529 4.2628
(0.3080) (0.1531) (0.6953)

Panel B: Autocorrelations

Lag ey In(ey) rf
1 0.9873 0.9896 0.9688
(0.0109)  (0.0089) (0.0239)
2 0.9714 0.9740 0.9247
(0.0200) (0.0163) (0.0443)
3 0.9562 0.9586 0.8874

(0.0273) (0.0228) (0.0611)

ey and In{ey) denote the MSCI eamings yield and log earnings yield respectively of the US. rf denotes
the short rate, which is the US 1 month LIBOR rate, expressed as a continuously compounded annual rate.
The sample period is from January 1970 to November 1997 for the earnings yield, and from January 1972
to November 1997 for the short rate. Standard errors are in parentheses and are estimated using Generalized
Method of Moments with 3 Newey-West (1987) lags. The standard errors are calculated setting up moment
conditions for each instrument separately for each of the central moments in Panel A and the autocorrelations
in Panel B.

Table 4: Test for Regime-Switching
Sample LR statistic = 103.738

Small Sample Distribution
quantiles
mean 18253 5%  0.0089
stdev 9434 10%  4.6613
max 49.449 50% 179527
min 0000 90% 30.0468
95% 42.0977

Test of the presence of regime-switching. Under the null of no-regime switching y: = pu + Tie
with v = (i y**y?°")’ are the nominal monthly equity returns, and e¢ ~ IID N(0,I) against a
regime-switching alternative y; = pu(se) + E(st)%et withs; = 1,2and P = p(se = 1]s¢e—1 = 1)
and Q = p(s: = 2|se—1 = 2). Samples of length 355 from the estimated no-regime switching
model are generated, the regime-switching model is estimated on the simulated data and the sample

likelihood ratio statistic is recorded. The procedure is repeated 500 times.



Table 5: Wald Tests for Parameter Equality Across Regimes

Simple Simple Beta Beta Short Rate Earnings Yield
US-UK US-UK-GER US-UK US-UK-GER (Basic Model) Model
Means p1 = p2
us 0.0351 0.0747 0.0843 0.2635 0.0351 0.0000
UK 0.3858 0.8180 0.1140 0.2924 0.0803 0.0191
GER 0.5559 0.3559
Joint 0.0975 0.2285 0.1856 0.3770 0.0861 0.0001
Volatilities 01 = o2
us 0.0002 0.0000 0.0146 0.0001 0.0000 0.0000
UK 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GER 0.0000 0.0000
Joint 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000
Correlations p1 = p2
US-UK 0.1556 0.0586 0.5676 0.5745 0.0627 0.4316
US-GER 0.1709 0.5355
UK-GER 0.8246 0.9138
Joint 0.2340 0.6825

The Table lists p-values of Wald Tests of parameter equality across regimes se = 1, 2. The Simple RS models
refer to equation (19), and the Basic Model for the Short Rate refers to equations (28)-(31), where we impose
B(s¢) = 0 in equation (30). For the Beta Models UK and GER refer to unhedged asset returns. The Joint Tests
refer to a Wald test of parameter equality across regimes for all countries listed in the entries for that model.
For the Earnings Yield Model, the u; = po test refers to a test of equality for the conditional mean parameters
u(s:) and B(s:) in equation (30) with ey, replacing 7.

Table 6: Likelihood Ratio Tests for Constraining (1 = u2

P-value unconstrained  constrained
Test u1 = pa RCM RCM
Basic Model US-UK 0.1165 24.7 23.6
US-UK-GER 0.2289 52.9 48.4
Beta Model US-UK 0.0644 56.0 40.0
US-UK-GER 0.2435 64.0 644
Short Rate Basic Model 0.0973 299 29.9

The likelihood ratio test refers to a test for constraining the conditional mean p across regimes.
For the Basic Model, this is the conditional mean for each country (constrained separately) in
equation (19). For the Beta Model, this is the conditional mean for the excess world return
in equation (26). The Short Rate Basic Model refers to equations (28)-(31), where we impose
B(s¢) = 0 in equation (30). RCM refers to the Ang-Bekaert (1998) regime classification mea-
sure RCM = 400 % ZL pe(1 —p.), where p; is the ex-ante regime probability p(s: = 1|Te-1).
Lower RCM values denote better regime classification.



Table 7: Likelihood Ratio Tests of Restricted Models

US-UK Simple RS Model

Basic Model vs Model 11 0.9950
Basic Model vs RS ARCH 0.9853
Short Rate Model
Basic vs Full Model 0.9145
Constant Probabilities vs Basic 0.0065

Earnings Yield Model

No Predictability vs Full Model 0.0149
No Conditional Mean Predictability vs Full Model ~ 0.0697
Constant Probabilities vs Full Model 0.0542

P-values are listed. The nested model is always listed first. The Basic Model for the US-UK Simple
RS Model refers to equation (19), and Model II to the extension in equation (21). The RS ARCH
model is presented in equation (22). The Full Model for the Short Rate Model refers to equation (28)-
(31) and the Basic Model where we impose 8(s¢) = 0 in equation (30). The Constant Probabilities
Model refers to setting B(s;) = O in equation (30) and b; = 0 in equation (31), so it is the Basic
Short Rate Model with P and Q constant. For the Earnings Yield Model, no predictability refers
to a test of B(s¢) = 0and b; = 0, no conditional mean predictability to B(s¢) = 0, and constant
probabilities to b; = 0.

Table 8: Implied Currency Premiums from the RS Beta Models
US-UK Beta Model

US-UK Exchange Rate
state 1 state 2 Stable Probs
cp vol cp vol cp vol
0.0294 11.0317 0.1572 48514 0.1362 6.2980
(0.1927) (1.2170) (0.0845) (0.2677) (0.0791) (0.4978)

US-UK-GER Beta Model

US-UK Exchange Rate
state | state 2 Stable Probs
cp vol cp vol cp vol
0.0801 9.5450 0.1980 4.5925 0.1647 6.3912
(0.1270)  (0.6583) (0.0964) (0.2715) (0.0840) (0.3788)

US-GER Exchange Rate
state 1 state 2 Stable Probs
cp vol cp vol cp vol
0.0610 9.7088 0.1643 5.1022 0.1351 6.7299
(0.1280) (0.6864) (0.0892) (0.2436) (0.0773) (0.3652)

The currency return cry+; is the is the excess return in investing in the foreign money market: creq1 = €e+1 + i — Lt
where e+ is the log difference of the exchange rate, i; is the foreign country’s short rate, and 1, is the domestic short
rate. In the RS Beta Models this is the difference between unhedged and hedged returns. The currency premium cp:
is the expected value of the currency return cp; = E¢(cris1). “Vol” refers to the volatility of the currency return. We
report regime-dependent and unconditional currency premiums and volatilities of currency returns. We impose the same
conditional means for the world excess return across states (u1 = p2).



Table 9: Simple US-UK Model: Weight of the US in All-Equity Portfolios

Risk Aversiony =5

Risk Aversion v = 10

Basic Model Restricted u1 = p2 Basic Model Restricted py = p2
Horizon State 1 State 2 State 1 State 2 State | State 2 State t State 2
US Weight
1 0.8587 0.7171 0.9348 0.6726 0.9652 0.7666 0.9999 0.7405
(0.3662)  (0.2238) | (0.0977) (0.2230) | (0.1739) (0.1139) | (0. 1072) (0.1169)
12 0.8609 0.7297 0.9362 0.6769 0.9697 0.8585 1.0048 0.7769
(0.1919)  (0.2067) | (0.0997) (0.2203) | (0.1773)  (0.1229) (0.1010)  (0.1063)
36 0.8614 0.7352 0.9365 0.6779 0.9699 0.8744 1.0057 0.7954
(0.3645)  (0.2022) | (0.0989) (0.2198) | (0.1754) (0.1242) (0.1013)  (0.1050)
60 0.8614 0.7356 0.9365 0.6779 0.9699 0.8744 1.0057 0.7965
(0.2495)  (0.2224) | (0.1006) (0.2192) | (0.1767)  (0.1240) | (0. 1012)  (0.1049)
11D weights 0.7642 0.7642 0.8275 0.8275
Intertemporal Hedging Demand Tests
12 0.9932 0.9736 0.9260 0.9804 0.2971 0.3877 0.9605 0.6707
36 0.8701 0.9609 0.2091 0.2334 0.2091 0.2334 0.9533 0.5377
60 0.9843 0.9547 0.9619 09757 02358 0.2333 0.9529 0.5294
Tests for Equality with IID Weights
1 0.7964 0.8334 0.0808 0.6813 0.4287 0.5926 0.1076 0.4569
12 0.6142 0.8677 0.0845 0.6921 0.4224 0.8009 0.0793 0.6344
36 0.7897 0.8862 0.0815 0.6948 0.4168 0.7055 0.0786 0.7597
60 0.6968 0.8978 0.0867 0.6941 0.4202 0.7050 0.0782 0.7677
Tests for Regime Equality
1 0.7465 0.1448 0.2977 0.0028
12 0.6087 0.1630 0.3141 0.0446
36 0.7337 0.1691 0.3085 0.0493
60 0.6181 0.1952 0.3116 0.0496
Joint 0.9844 0.2237 0.8047 0.0102

Asset allocation weights for the US from the Simple RS US-UK model. The coefficient of risk aversion + is fixed at 5
and 10. Standard errors in parentheses calculated using the delta-method with 5 quadrature points for each country. Table
shows weights for an all equity portfolio (so UK weightis 1 - US weight). The Intertemporal Hedging Demand Test is
a Wald Test to test if the horizon T portfolio weights are different from the myopic portfolio weights within each regime
state, expressed as 2 p-value. The Regime Equality is a Wald Test for equality of the US portfolio weights across regimes
expressed as a p-value.



Table 10: Simple US-UK-GER Model: Weight of the US and UK in All-Equity Portfolio

Restricted 1 = p2 Model

Risk Aversion vy = 5 Risk Aversion v = 10
State 1 State 2 State 1 State 2
Horizon uUs UK uUs UK uUs UK us UK
Portfolio Weights
1 0.6836 0.0341 0.6144 0.1590 0.7332 -0.0162 0.6355 0.1234
(0.1551)  (0.0990) (0.2703) (0.2591) : (0.13 12) (0.1136) (0.1320) (0.1311)
12 0.6839 0.0337 0.6153 0.1572 0.7352 -0.0186 0.6432 0.1104
(0.1532)  (0.0978) (0.2716) (0.2601) | (0.1771) (0.1458)  (0.1428) (0.1227)
36 0.6839 0.0336 0.6154 0.1570 0.7354 -0.0188 0.6442 0.1088
(0.1533)  (0.0990) (0.2701) (0.2579) | (0.1371) (0.0929) (0.1376)  (0.1295)
60 0.6839 0.0336 0.6154 0.1570 0.7354 -0.0188 0.6442 0.1088

(0.1585)  (0.0969) (0.2697) (0.1585) | (0.1457) (0.1148) (0.1258) (0.1231)

[ID Weights Us UK Us UK
0.5889 0.1449 0.6491 0.0800

Intertemporal Hedging Demands

12 0.9774 0.9733 0.9040 0.8717 0.9907 0.9793 0.8385 0.7453
36 0.9948 0.9793 0.6989 0.6102 0.9783 0.9711 0.8291 0.4409
60 0.9862 0.9500 0.3622 0.8075 0.9735 0.9850 0.7740 0.7602

Tests for Equality with IID Weights

1 0.5416 0.2632 0.9249 0.9565 0.5216 0.3974 09185 0.7405
12 0.5353 0.2553 0.9226 0.9623 0.6265 0.4994 0.9673 0.8038
36 0.5355 0.2613 0.9219 0.9625 0.5288 0.2879 09717 0.8237
60 0.5489 0.2508 0.9218 0.9626 0.5534 0.3900 0.9691 0.8148

Tests for Regime Equality

Joint Joint
uUs UK US, UK us UK US UK
1 0.6681 0.5127 0.8064 0.4083 0.3144 0.5309
12 0.6643 0.5057 0.8009 0.5782 0.4158 0.6980
36 0.6974 0.5225 0.8151 0.5782 0.4158 0.6980
60 0.6695 0.5220 0.8141 0.5541 0.1926 0.4022
Joint across T 0.9925 0.9649 0.9440 0.7673

Asset allocation weights for the US and UK from the Simple US-UK-GER mode! with g, = po imposed. The coefficient
of risk aversion ~ is fixed at 5 and 10. Standard errors in parentheses calculated using the delta-method with 5 quadrature
points for each country. The Table shows weights for an all equity portfolio (so GER weightis 1 - US - UK weight). The
Intertemporal Hedging Demand Test is a Wald Test to test if the horizon T portfolio weights are different from the myopic
portfolio weights within each regime state, expressed as a p-value. The Regime Equality is a Wald Test for equality of
the portfolio weights across regimes expressed as a p-value.
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Table 12: Joint Wald Tests for Equality of Portfolio Weights Across Regimes

All equity portfolios

Model us UK UK for GER for
Simple US-UK 0.2237
Simple US-UK-GER  0.9925  0.9649
US-UK Beta 0.0000 0.2790

US-UK-GER Beta 0.6778 0.0826 09997  0.7763
Joint Wald Tests to test for significantly different portfolio weights across regimes for horizons T = 1, 12, 36, 60 months.

The Table lists p-values. The risk aversion v = 5. For the RS Beta Models, “for” denotes the forward currency position.
In all models g1 = pa.

Table 13: Economic Cost of No International Diversification: All Equity Nominal Portfolios

Simple RS Models

US-UK Model US-UK-GER Model
v=3 v =10 y=25 ~+=10
T se=1 s:=2 s.=1 st='213¢=1 se=2 se=1 s,.=2
1 0.01 0.07 0.00 0.09 0.12 0.07 0.22 0.14

12 0.44 0.78 0.26 0.80 1.19 0.97 2.35 1.90
36 1.83 2.24 0.90 1.51 3.31 3.06 6.84 6.32
60 3.29 3.70 1.47 2.07 5.45 5.20 11.51 10.96

Earnings Yield Model withy = 5

sg=1 st =2
T ey=55 ey=104 ey=152 ey=27 ey= 6.0 ey=11.0
1 0.03 0.11 0.25 0.02 0.01 0.05
12 0.52 1.25 2.53 0.21 0.30 1.07
36 1.91 3.47 5.70 0.85 1.40 3.27
60 3.46 5.41 7.95 1.86 2.80 5.21

The Table presents the cost in “cents per dollar” compensation required for an investor to only hold
US equity (so the portfolio weight is 1 on US equity and zero on all other assets) instead of the
optimal weights. The Simple RS Models have py = p2 imposed.



Table 14: Economic Costs of the Currency Hedging Beta Models

Cost of Not Diversifying [nternationally
US-UK Model US-UK-GER Model
¥=35 =10 ¥=35 ¥=10

T si=1 =2 s5,=1 s=2]se=1 =2 se=1 s:=2

1 0.04 0.09 0.01 0.14 0.17 0.10 0.25 0.19
12 0.74 0.97 0.71 1.36 1.53 1.37 2.65 2.50
36 2.58 2.83 2.84 3.55 4.43 4.26 7.97 7.81
60 4.46 4.72 5.04 5.76 7.42 724 13.56 13.40

Cost of Not Currency Hedging
US-UK US-UK-GER
¥y=5 v=10 ¥y=25 ¥=10

T s:=1 =2 s=1 8:=2|Sg=1 s6=2 s=1 s =2

1 0.02 0.03 0.00 0.08 0.06 0.06 0.11 0.10
12 0.26 0.32 0.38 0.47 0.72 0.74 1.27 1.23
36 0.88 0.95 1.50 1.87 2.22 2.23 3.82 3.77
60 1.50 1.57 2.64 3.02 3.73 3.74 6.42 6.38

The first panel presents the cost in “cents per dollar” compensation required for an investor to hold
only the US. The second panel presents the costs required for an investor to only hold US and un-
hedged foreign equity instead of the optimal weights. In this case we solve an optimal asset allocation
problem with restricting holdings only to US and unhedged foreign equity and find the compensation
required to hold these weights instead of the optimal weights, which allow currency hedging. All
models have u1 = p2 imposed.

Table 15: Economic Cost of Ignoring Regime Switching

Simple RS Models

US-UK US-UK-GER
¥y=5 v =10 v=5 v =10
T si=1 s§=2 s=1 s:=2|s:=1 se=2 s;=1 s =2
1 0.08 0.01 0.16 0.01 0.02 0.00 0.03 0.00
12 0.58 0.13 1.65 0.44 0.14 0.05 0.26 0.11
36 1.09 0.54 4.84 3.16 0.29 0.20 0.66 0.48
60 1.53 0.97 8.20 6.46 0.44 0.35 1.05 0.87

The Table presents the cost in “cents per dollar” compensation required for an investor to ignore
regime-switching and use Samuelson’s (1969) myopic portfolio weights in an 11D multivariate normal
setting with CRRA utility instead of the optimal portfolio weights. The models have p1 = a2
imposed.



Table 16: Economic Cost of Using Myopic Strategies

Simple RS Models
US-UK US-UK-GER
¥y=35 v=10 y=35 v=10
st=1 =2 s=1 s,=2|sc=1 se=2 s=1 s =2
12 0.00 0.00 0.00 0.0t 0.00 0.00 0.00 0.00
0.00 0.00 0.03 0.06 0.00 0.00 0.00 0.00
60 0.00 0.00 0.07 0.11 0.00 0.00 0.0t 0.01

ﬂ

W)
[=))

Basic RS Short Rate Model withy = 5

se =1 st =2
T r=51 r=99 r=14.8 r=35.1 r = 10.1 = 15.1
12 0.00 0.00 0.00 0.00 0.00 0.00
36 0.01 0.01 0.01 0.01 0.01 0.01
60 0.02 0.02 0.02 0.02 0.02 0.02

Earnings Yield Model withy =5

St = 1 St = 2
T ey=55 ey=104 ey=152 ey=27 ey=60 ey=11.0
12 0.00 0.00 0.00 0.00 0.00 0.00
36 0.00 0.00 0.00 0.00 0.00 0.00
60 0.00 0.01 0.01 0.00 0.00 0.00

The Table presents the cost in “cents per dollar” of compensation required for an investor to use the
myopic 1-month horizon weights for all horizons instead of the optimal weights. The Basic Short
Rate Model refers to equations (28)-(31), where we impose 3{s:) = 0 in equation (30). The Simple
RS, and Basic RS Short Rate Model have pq = pz imposed.

Table 17: Economic Costs under the Basic Short Rate Model

Cost of Not Holding UK Equity

S = 1 St = 2
T r=51 r=99 r=148 r=51 r=101 r=151
l 0.01 0.01 0.0l 0.05 0.03 0.0l
12 0.37 0.29 0.22 0.57 0.36 0.20
36 1.35 1.07 0.89 1.64 1.09 0.84
60 2.33 1.94 1.71 2.64 1.92 1.65
Cost of Ignoring RS and Holding Purely Equity
St = 1 St = 2
T r=51 r=99 r=148 r=51 r=101 r=151
1 0.38 0.39 0.40 0.01 0.0t 0.11
12 2.28 271 3.41 0.32 1.09 3.10
36 3.83 5.63 7.39 1.36 422 7.38
60 5.33 7.96 10.13 2.68 6.78 10.22

The Table presents the cost in “cents per dollar” compensation required for the Basic Short Rate
Model, which refers to equations (28)-(31), where we impose 3(s;) = 0 in equation (30). We also
impose w1 = w2 for excess requity returns and set v = 5. The first panel refers to the compensation
required to hold only US equity and cash. For this we need to solve a restricted optimization with zero
weight on the UK. The bottom panel refers to the compensation required for an investor to ignore
regime-switching and predictability and hold an all-equity portfolio without any cash balances in her
portfolio. The equity portfolio weights are Samuelson’s (1969) myopic portfolio weights in an [ID
setting with CRRA utility.



Table 18: Economic Costs under the Eamnings Yield Model

Cost of Ignoring RS and Predictability

se=1 se =2
T ey=55 ey=104 ey=152 ey=27 ey=6.0 ey=110
1 0.01 0.00 0.04 0.00 0.00 0.00
12 0.03 0.06 0.39 0.03 0.04 0.05
36 0.11 0.21 0.71 0.11 0.11 0.19
60 0.21 0.34 0.88 0.18 0.20 0.31
Cost of Ignoring Predictability
se=1 s¢e =2
T ey=55 ey=104 ey=152 ey=27 ey=6.0 ey=110
1 7 000 0.03 0.10 0.00 0.00 0.01
12 0.06 0.33 1.02 0.01 0.02 0.27
36 0.35 0.95 2.07 0.08 0.22 0.88
60 0.60 1.30 2.51 022 0.44 1.22

The Table presents the cost in “cents per dollar” compensation required for the Earnings Yield Mode!.
We set v = 5. The first panel refers to the compensation required to hold IID portfolio weights
(Samuelson (1969)) which ignore regimes and predictability. The second panel refers to the com-
pensation required to ignore predictability, but take into account regimes. In this case, the restricted
portfolio weights are those implied by the Simple RS US-UK Model with 41 not constrained to be
equal to u2, which ignores earnings yield predictability.
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Table 20: Out of Sample Experiment

US-UK
IID RS optimal RS myopic
7y=5 6.4424 6.5929 6.5827
(1541%)  (15.61%) (15.60%)
v=10  6.5005 6.6450 6.6557
(15.49%)  (15.68%) (15.70%)
US-UK-GER
IID RS optimal RS myopic
7y=5 5.3772 5.1462 5.139%
(13.81%)  (13.43%) (13.42%)
+=10 5.6128 5.563%9 5.5047

(14.19%)  (14.11%) (14.02%)

In the top row we list accumulated amounts of $1 in January 1986 at December 1997 where the portfolio weights are
calculated from models estimated with data up to time ¢, and finding the actual accumulated wealth at time ¢ + 1.
Portfolios are all-equity. Numbers in parentheses are the annual percentage return over the entire period (11 years).
IID refers to the Samuelson (1969) myopic strategy using IID multivariate normal distributions. The RS strategies use
dynamic programming solutions from the Simple RS US-UK and US-UK-GER Models. RS optimal refers to the strategy
using optimal portfolio weights assuming the horizon remains fixed at December 1997 through the whole sample. RS
myopic refers to using myopic 1-period weights of the Simple RS Model.
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The top panel gives the log of the equity index levels for the US and UK. The bottom panel lists the
ex-ante probability p(s: = 1|Z,-1).

Figure 1: Simple RS Model of US-UK Equity Returns
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The top panel gives the implied conditional means of US and UK equity. The middle panel shows the

implied conditional volatilities and the bottom panel shows the implied conditional correlation. The
dashed lines are 95% confidence intervals.

Figure 2: Implied conditional moments from the Simple RS US-UK Model
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The top panel gives plots of the short rate and the cumulated excess equity returns for the US and UK.
The middle panel lists the ex-ante probability p(s: = 1|Z¢~1). The bottom panel shows the implied
correlations between US, UK equity and the short rate.

Figure 3: Short Rate-US-UK Equity Model
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We fix the horizon at {2 months and plot out the portfolio weights as the risk aversion v changes. The
top panel gives the weights of the US in state 1 and state 2 for the Restricted p1 = u2 Simple US-UK
RS Model. The bottom panel shows the Restricted p11 = u2 model for the Simple US-UK-GER RS

Model.

Figure 4: Portfolio Weights when changing «y in All Equity Portfolio Models
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We fix the horizon at 12 months and plot out the “cents per dollar” compensation required for ignoring
regime switching (holding Samuelson (1969) IID portfolio weights) and no international diversifica-
tion (holding only the US) as the risk aversion v changes. The top panel shows the Simple US-UK
Model, and the bottom panel the Simple US-UK-GER Model. We restrict i1 = pa.

Figure 5: “Cents per dollar”” compensation required as a function of ~
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We fix v = 5 and plot weights of the US and UK versus the short rate for various horizons in the top two plots on the first line. The
bottom two plots show the 95% confidence intervals of the 1 period weights. From the top clockwise, we have: (1) the weights of
the US and UK equity in state 1, (2) the weights of the US and UK equity in state 2, (3) UK portfolio weights for 1 month horizon
with 95% standard error bounds, (4) US portfolio weights for 1 month horizon with 95% standard error bounds. Parameter estimates
are from the Restricted g1 = ua Basic Short Rate Model, which refers to equations (28)-(31), where we impose 5(s¢} = 0 in

equation (30).

Figure 6: Portfolio Weights Using the Basic Short Rate Model with p; = po.
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The Figures show portfolio weights of the US of an all-equity US-UK portfolio for the Earnings Yield
Model. The top panel gives the weights of the US in regime | and 2 for various horizons in months.
The bottom panel gives 95% confidence bounds {dashed lines} for myopic weights {solid lines).

Figure 7: US Portfolio Weight in the Earnings Yield Model
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Changingp, :v=10. Horizon = 12
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We fix v = 10 and horizon at 12 months. The top panel gives the weights of the US in regime 1
and 2 for changing P = p(s¢ = 1|s;-1 = 1) and py, the correlation between the US and UK in
regime 1. In the bottom panel, the conditional mean and standard deviation of the US (u11 and o131
respectively) are altered. All other parameters are held fixed at the estimated values for the Simple
US-UK Model with unrestricted .

Figure 8: Weight of US when changing parameters in the Simple US-UK Model



Table Appendix

These Tables constitute the supporting Table Appendix mentioned in the main text.

Table A-1: US-UK Equity Models

Basic Model Restricted p1 = p2 Model Il RS ARCH

estimate  stderror | estimate stderror | estimate  std error estimate  std error

P 0.8552  0.0691 0.8546  0.0698 0.8556  0.0690 P 0.8555  0.0702

Q 0.9804 0.0108 0.9818 0.0100 0.9804 0.0107 Q 0.9808 0.0108

U1 -1.2881 1.1874 1.1613  0.2198 -1.2880 1.1902 ut’ -0.6439 1.5659

U2 1.2829  0.2287 =wm 1.2828  0.8629 uz’ 1.3668  0.2353

us o1 7.0376  0.8629 7.5064  0.9515 7.0374  0.8629 u‘l"‘ -1.3287  2.5763
o2 3.7689  0.1677 3.7917  0.1654 37691  0.1677 u;" 1.3341 0.3191

o 1.0000  0.0023 Ci[1, 1) 4.3372 1.5229

8 1.0000  0.0005 Ci[1, 2] 1.5160  2.9402

U1 10.6921 2.2627 1.2488  0.3090 -0.7253  2.2696 C1(2,2] 11.3426  4.4303

UK U2 1.3040 0.3141 = 1.3043  0.3141 C,[1,1] 3.6269  0.1712

o1 137177 17558 | 140748  1.8432 | 13.7184 17560 | C2[1,2] 0.9876  0.1532
o2 52194 02376 52470 0.2409 52197 02375 | C2[2,2] 5.0538  0.2560
o1 0.6097  0.1022 0.6181  0.1032 0.6096 0.1022 | Bi[1,1] -1.2763  0.7584
pz 04455 0.0496 0.4480  0.0491 0.4455 00496 | Bi[1,2] -1.5202 19194
Bi(2,1] 03915 0.2907
B1[2,2] 0.7403  0.7284
Ba(1, 1] 0.0839  0.1773
B»{1,2] 0.2426  0.2563
B2, 1] 0.0591  0.1601
B»[2,2]  -0.0658 0.1775

RCM 247041 23.5889 24.6741 25.7015
logtlk  -1992.31 -1994.46 -1992.30 -1990.46

US, UK refer to monthly equity returns with the subscripts indicating which regime. P = p(s: = 1 si-1 = 1}, Q = p(st =
2si-1 = 2). RCM refers to the Ang-Bekaert (1998) regime classification measure RCM = 400 * £ Zc_.l pe(1 = po), where
pe is the ex-ante regime probability p(se = 1]Z,—1). Lower RCM values denote better regime classification. Log 1k denotes the
log likelihood value. The Basic Model is a simple bivariate RS model. The Restricted py = u2 model sets the conditional mean
constant across regimes. Model I uses transition probabilities specified in equation (21). The RS ARCH model parameterizes the
conditional volatility as in equation (22). The A[i, 5] notation refers to the element in row 7, column j of matrix A.



Table A-2: US-UK-GER Equity Models

Basic Model Restricted g1 = p2
estimate  std error | estimate  std error
P 0.8305 0.0760 0.8375 0.0714
Q 0.9444  0.0269 0.9503  0.0258
13l -0.1751 0.7966 1.1467 0.2177
7% 1.3546  0.2399 = u1
us o1 6.2463  0.6185 6.4124  0.6490
o2 34655 0.1879 3.5086  0.1909
m 0.8124  1.3480 1.1412  0.3143
H2 1.1492  0.3476 =
UK o1 10.9400  1.1577 11.0689 1.1928
o2 47864 0.2736 48285 0.2716
K1 0.3473 1.2073 1.0863  0.3040
U2 1.1667  0.3735 =
GER o1 8.3056  0.7395 8.3744  0.7670
o2 47819  0.3206 4.8250 0.3131
p1(us, uk) 0.5994 0.0751 0.5996 0.0778
p2(us, uk) 0.4056 0.0607 0.4024 0.2669
p1(us, ger) 0.4540  0.1009 0.4627  0.1050
p2(us, ger) 0.2620 0.0742 0.2669 0.0726
p1(uk, ger) 0.4523  0.0917 0.4522  0.0940
p2(uk, ger) 0.4261  0.0622 0.4285  0.0609
RCM 52.9089 48.3632
log 1k -3011.36 -3013.52

The Basic Model is a RS simple trivariate model of US, UK, GER monthly equity returns with the subscripts
indicating which regime. P = p(s. = 1{se—1 = 1), Q = p(s: = 2|st-1 = 2). RCM refers to the Ang-
Bekaert (1998) regime classification measure RCM = 400 * % Z;r___lpg(l — p:), where p; is the ex-ante
regime probability p(s; = 1|Z¢—1). Lower RCM values denote better regime classification. Log lik denotes
the log likelihood value. The Restricted 1 = po model imposes the same conditional means across regimes.



Table A-3: US-UK Beta Model

Basic Model Restricted g1 = p2
estimate  std error | estimate  std error
P 0.6672 0.1223 0.7243  0.1140
Q 0.9055  0.0530 09457  0.0275
) -0.8055  0.8480 0.5139  0.2381
7% 0.8144 0.2822 =y
world o1 5.1683  0.6991 4.8137 0.7146
g2 3.4703  0.2180 3.7742  0.1838
B 0.8584 0.1008 1.1016  0.0878
B2 0.8407  0.0499 0.7791 0.0444
us o1 3.5021 0.4348 2.3988  0.3798
o2 22210  0.1605 2.5054 0.1244
B 1.2702  0.2034 1.5525 0.2870
B2 0.9891 0.0756 0.9681 0.0636
UK uh oy 7.5668 1.0552 8.2472 1.1312
o2 3.3013  0.3096 34319  0.2431
Je 1.1436  0.2022 1.4952  0.2684 ;
B2 0.6630 0.0664 0.6622  0.0581
UK h o1 69136 0.9075 7.3216  0.9934
g2 3.1240  0.2668 32288 0.1919
RCM 56.0276 39.9952
log lik  -2912.22 -2910.51

The estimated model is y¥ = p*(s:) + 0¥ (s.)el where y}” is the world MSCI excess return. All returns
are excess over the US ! month EURO rate. Sample period 75:01 to 97:07. For asset j's excess return y{.
yl = B (s (se) + B (se)o¥(se)e + o (s¢)e] with the errors e = (e el ...€3) ~ 1D N(OI). The
Restricted Model sets gl = u¥. P = p(s¢ = 1]se-1 = 1}, Q = p(st = 2|se-1 = 2). US refers to returns on
US equity, UK unhedged (UK uh) returns are in USD, UK hedged returns (UK h) refer to UK returns in pounds
plus the US 1 month EURO rate less the UK 1 month EURO rate. RCM refers to the Ang-Bekaert (1998)
regime classification measure RCM = 400 * % Z';l pe(1 — pe), where p; is the ex-ante regime probability
p(se = 1{Zi_1). Lower RCM values denote better regime classification. Log llk denotes the log likelihood
value.



Table A-4: US-UK-GER Beta Model

Basic Model Restricted u1 = p2
estimate  std error | estimate  std error
P 0.6722  0.0839 0.6758  0.0849
Q 0.8730  0.0381 0.8723  0.0389
U1 -0.1777  0.6762 0.5654  0.2271
U2 0.7078  0.2546 = p
world o1 52087  0.4892 52459  0.4982
a2 3.3378  0.1833 3.3389 0.1893
B1 0.8787  0.0828 0.8821  0.0829
B2 0.8205  0.0497 0.8168  0.0510
us o1 34525 0.3264 3.4475 0.3243
o2 2.1157  0.1352 2.1094  0.1433
01 1.1877 0.1674 1.1833 0.1671
B2 1.0099  0.0796 1.0116  0.0815
UK uh a1 7.0768 0.6444 7.0599  0.6437
a2 3.1873 0.23%4 3.1756  0.2386
B1 1.0454  0.1513 1.0417  0.1508
B2 0.6623  0.0728 0.6614  0.0741
UK h o1 6.4140  0.5828 6.3807 0.5796
o2 3.0988  0.2065 3.1048  0.2048
Je 1.0079  0.1700 09873 0.1714
B2 0.6954  0.0926 071007 0.0970
GER uh o1 6.9992  0.6439 7.0009 0.6386
o2 3.7240  0.2285 37163  0.2341
81 0.8907 0.1603 0.8795 0.1611
B2 0.4150 0.0792 04194 0.0814
GERh oL 6.7035 0.6325 6.7029  0.6297
o2 3.3704  0.1943 3.3586  0.1957
RCM 64.0151 64.3764
log lik -4486.74 -4487.42

The estimated model is y* = u™(s:) + 0“(s¢)ef where y¢’ is the world MSCI excess return. All returns
are excess over the US | month EURO rate. Samplc period 75:01 to 97:07. For asset j's excess returmn y;,

= B (s (se) + B (5:)0¥(se)e¥ + o7 (se)el with the errors e = (e € ...€f)’ ~ LD N(O.I). The
Restrictcd Model sets ul = u¥. P = p(sy = lse-1 = 1), Q@ = p(se = ‘2|s2_1 = 2). US refers to
returns on US equity, UK unhedged (UK uh) returns are in USD, UK hedged returns (UK h) refer to UK
returns in pounds plus the US 1 month EURO rate less the UK 1 month EURO rate, GER unhedged (GER uh)
returns are in USD, and GER hedged (GER h) returns are German returns in DM plus the US 1 month EURO
less less the GER 1 month EURO rate. RCM refers to the Ang-Bekaert (1998) regime classification measure
RCM = 400 = Zf;l pe(1 — p.), where p; is the ex-ante regime probability p(se = 1{Z¢—1). Lower RCM
values denote better regime classification. Log 11k denotes the log likelihood value.
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Table A-6: Earnings Yield Model

estimate  std error

a -0.1546 1.8474
Probability 3 0.1584  0.1908
Coefficients az 5.9361 1.4186
b2 -0.4522  0.1705
1 0.9982  0.3187
c2 0.1720  0.0830
Eamings p1 09176  0.0298
Yield P2 0.9648  0.0127
1 0.6619  0.0531
v 0.2892  0.0165
4“1 -10.4981 2.8295
U2 0.2120  0.8452
US Equity o1 5.2634  0.4208
o2 33338 0.1687
e 09579 0.2574
B2 02140  0.1245
#1 -11.2389  4.6477
7% 0.1276 1.2157
UK Equity o1 9.5265  0.7619
o2 48899  0.2533
B 1.0763  0.4298
B2 02096 0.1783

o1(ey, us) 0.0752  0.1038
p2{ey, us) 0.1498  0.0724
pr(ey,uk)  -0.0369  0.1016
Correlations  pa(ey, uk) 0.0063  0.0869
p1(us, uk) 0.5060  0.0775
pa(us, uk) 0.4273  0.0586

RCM 44.3850
logllk  -2146.83

The earnings yield process is given by ey, = ¢; + piey—1 + viui where the subscript indicates s = 1. The
US and UK nominal equity returns are given by y;’ = u{ + Bieye-1 + crfu{ for j = us,uk. The errors
up = (u uP’ ul*) are ID N(0,Q2) where §2 is the correlation matrix of u.. The state transition probabilities
for s; = 1,2 are given by p(s; = 4ls,—1 = t) = exp(a: + bire—1)/(1 + exp(a; + bire—1)). RCM refers
to the Ang-Bekaert (1998) regime classification measure RCM = 400 * 71,- ZLl pe(1 — pt), where p, is the
ex-ante regime probability p(s, = 1{Z,—1). Lower RCM values denote better regime classification.



