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ABSTRACT

We evaluate the performance of different models for the covariance structure of stock returns,

focusing on their use for optimal portfolio selection. Comparisons are based on forecasts of future

covariances as well as the out-of-sample volatility of optimized portfolios from each model. A few

factors capture the general covariance structure but adding more factors does not improve forecast

power. Portfolio optimization helps for risk control, but the different covariance models yield

similar results. Using a tracking error volatility criterion, larger differences appear, with particularly

favorable results for a heuristic approach based on matching the benchmark’s attributes.
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The roots of modern investment theory can be traced back to the seminal work of Markowitz
(1952,1959). The central notion is that investors should hold mean-variance efficient portfolios.
In the past, however, mean-variance portfolio optimization was not widely implemented in prac-
tice. Instead, the focus of most investment managers has been on uncovering securities with high
expected returns. At the same time, theoretical research on investments has concentrated on mod-
elling expected returns. Similarly, empirical research focused on testing such equilibrium models,
or documenting patterns in stock returns that appear to be inconsistent with these models.

Several trends suggest that professional investors are rediscovering the importance of portfolio
risk management. There is mounting evidence that superior returns to investment performance
are elusive. One study after another indicates that on average professional investment managers
do not out-perform passive benchmarks. In turn, the popularity of indexation (see, for example,
Chan and Lakonishok (1993)) has focused practical attention on methods of optimally tracking a
benchmark, especially when full replication of the benchmark is not desired or not practical. The
recent interest in asset allocation methods, including international diversification, has also spurred
interest in portfolio optimization. Another factor is the increased use of sophisticated quantitative
methods in the investment industry, together with increased computing power. In short, there is
an increased emphasis on risk control in the investment management industry.

As it turns out, portfolio optimization can yield substantial benefits in terms of risk reduction.
The following simple experiment provides some feel for the potential benefits of mean-variance
optimization. In order to abstract from the problems of predicting expected returns, suppose
the task is to find the global minimum variance portfolio. Similarly, to sidestep for now the
thorny issues of predicting return variances and covariances, the investor is assumed to have perfect
foresight about the future values of these statistics. There are non-negativity constraints on the
weights since short-selling is expensive for individual investors and not generally permissible for
most institutional investors. Further, to ensure that the portfolio is diversified, the weight of a
stock cannot exceed 2 percent. Every year this hypothetical investor selects the global minimum
variance portfolio from a set of 250 stocks that are randomly selected from domestic NYSE and
Amex issues. The investor follows a buy-and-hold strategy for this portfolio over the next year.
The experiment is repeated each year from 1973 to 1997 to give a time series of realized returns on

the portfolio. The strategy yields a portfolio with a standard deviation of 6.85 percent per year. In



comparison, a portfolio made up of all the 250 stocks (with equal amounts invested in each stock)
yields a standard deviation that is more than twice as large (16.62 percent per year). Everything
else equal, the optimized portfolio’s lower volatility implies that it should have a Sharpe ratio (the
ratio of excess return to standard deviation) that is more than double that of its equally-weighted
counterpart. To give an idea of how this might translate into returns, suppose that the return,
premium of equity portfolios over the riskfree rate is expected to be five percent per year. Then
levering up the optimized portfolio can result in a portfolio with the same volatility as the equally-
weighted portfolio, but with an expected return that is higher by seven percent. Accordingly, there
are large potential payofls to portfolio risk optimization.

An additional boost to interest in optimization techniques stems from how performance is
evaluated in the investment industry. While the theory of optimal portfolio choice suggests that
investors should be concerned with the variance of the portfolio’s return, in practice investment
decisions are delegated to professional money managers. The objectives of the different parties
involved are not perfectly aligned (Lakonishok, Shleifer and Vishny (1992) discuss this problem).
In particular, since managers are evaluated relative to some benchmark, it has become standard
practice for them to optimize with respect to tracking error volatility (the standard deviation of
the difference between the portfolio’s return and the benchmark return). Roll (1992) provides the
analytics for this approach.

Given the increasing emphasis on risk management and its potential payoffs, there is a prolif-
eration of portfolio optimization techniques. Yet there has been a shortage of scientific evidence
evaluating the performance of different methods for risk optimization. In particular, the benefits
promised by portfolio optimization (either with respect to volatility or tracking error volatility)
depend on the accuracy with which the moments of the distribution of returns can be predicted.
This paper tackles one aspect of this issue, namely, how to forecast the future second moments
of returns. We begin by looking at the case where the hypothetical investor is concerned with
the volatility of the portfolio. We compare the performance of different methods of forecasting
variances and covariances, with an eye to judging which models improve our ability to optimize
portfolio risk. To this end, we assess the forecasting performance of different risk models on a
statistical basis (mean absolute forecast errors and the correlations between forecast and realized

values), and also on a more practical, economic basis (the realized volatility of optimized portfolios



based on a particular forecast of the covariance matrix).

We focus on forecasting the second moments, rather than expected returns, for two reasons.
First, several studies examine the importance of the forecasts of mean returns for mean-variance op-
timization (Michaud (1989), Best and Grauer (1991), Chopra and Ziemba (1993), Winston (1993)).
There is a general consensus among academics and practitioners that expected returns are noto-
riously difficult to predict, and that the mean-variance optimization process is very sensitive to
differences in expected returns. At the same time, there is a common impression that return vari-
ances and covariances are much easier to estimate from historical data (Merton (1980), Nelson
(1992)). Possibly, then, the second moments pose fewer problems in the context of portfolio op-
timization. While future covariances are more easily predictable than future average returns, our
results suggest that the difficulties should not be understated. To illustrate this point we replicate
the previous exercise on portfolio optimization but drop the assumption of perfect foresight. In-
stead, we use the past historical covariances and variances (known as of the portfolio formation
date) as estimates of the future moments. In this more realistic setting the optimized portfolio’s
standard deviation is 12.94 percent per year. While optimization leads to a reduction in volatil-
ity (relative to an equally-weighted portfolio, where the standard deviation was 16.62 percent per
year), the problem of forecasting covariances poses a challenge.

Second, we bring to bear on the issue of forecasting covariances the considerable literature that
has developed on the sources of return covariation. One interpretation of these sources is that
they represent common risk factors, and expected returns provide compensation for bearing such
risks. In this light, our results help to validate different models of the sources of systematic risk.
In other words, if a factor does not help to predict return covariation, then it is less plausible that
such a factor represents a source of risk that is priced. In this regard, our work is in the same
spirit as Daniel and Titman (1997), who tackle the issue from the standpoint of expected returns.
Specifically, they ask whether the average return premiums on portfolios sorted by some attribute
can be attributed to the common covariation of the portfolio returns.

Very early evidence on the efficacy of different models of return covariances is presented by
Cohen and Pogue (1967), Elton and Gruber (1973), Elton, Gruber and Urich (1978), and Alexander
(1978). Given the state of optimization techniques and computational technology at that time, these

papers examined only a very small set of stocks over short time periods. More importantly, they



generally predate the large body of work on multifactor pricing models, so they examine only a
limited set of risk models. There is also a related literature on the prediction of stock market
volatility (see, for example, Pagan and Schwert (1990) and Schwert and Seguin (1990)). This
line of research has not generally investigated its implications for the important issue of portfolio
risk optimization. In recent work, Ledoit (1997) provides a detailed investigation of a shrinkage.
estimator of covariances and applies it to portfolio optimization.

Our tests are predictive in nature: we estimate sample covariances over one period and then
generate out-of-sample forecasts. The results can be summarized as follows. The future return
covariance between two stocks is predictable from current attributes such as the firms' market cap-
italizations, market betas and book-to-market ratios. Such models generate a slight improvement
in our ability to predict future covariances compared to forecasts based on historical covariances.
Introducing additional factors, however, does little to improve forecasting performance. A par-
ticularly sobering result is that in all our models the correlation between predicted and future
covariances is not large. For instance the correlation between past and future sample covariances is
34 percent at the thirty-six month horizon and much less (18 percent) at the twelve-month horizon.

Since the models’ covariance forecasts move in the same direction as the realized covariances,
they nonetheless help for portfolio risk optimization (as long as we impose constraints to limit
the impact of estimation errors). The optimization exercises confirm that some form of portfolio
optimization lowers portfolio volatility relative to passive diversification. However they also con-
firm that more complicated factor models do not outperform (in terms of reductions in portfolio
volatility) simpler covariance models.

Extending our analysis to the case where the investor is concerned with tracking error volatility,
sharper distinctions arise between the different covariance forecasting models. Intuitively, the focus
shifts to identifying those combinations of stocks which align most closely with the benchmark’s risk
exposures or attributes. As long as these exposures are attainable given the sample of stocks, the
problem is substantially simplified relative to the task of identifying the global minimum variance
portfolio. In this respect, the tracking error criterion is less susceptible to errors that arise from
forecasting the future volatilities and covariances of the factors. Accordingly, the tracking error
volatility problem (which is the most commonly encountered in practice) highlights much more

dramatically the issue of how best to optimize. In general, we find that adding information from



more factors helps to reduce tracking error volatility. Moreover, an approach which works well is
one that circumvents the measurement errors in estimating factor loadings, and instead directly
matches the benchmark portfolio along a number of attributes.

The remainder of this paper proceeds as follows. Section 1 provides some background to our
study by emphasizing the severe problems that we shall face in predicting return covariances..
Section 2 outlines some of the different models we examine, and section 3 provides evidence on
their forecast performance. The results of our optimization exercises with respect to total variance
are reported in section 4. Extensions to the problem of minimizing tracking error volatility relative

to several benchmarks are provided in section 5. Section 6 concludes the paper.

1. The behavior of stock return variances and covariances

To set the stage for our analysis, we first provide some evidence on the structure of return variances
and covariances. Table 1 reports the distribution of sample variances, covariances and correlations
of monthly returns on three sets of stocks. Each set is drawn in April of every year from 1968
to 1998. Sample moments of returns on each set of stocks are calculated over the preceding sixty
months. The distribution is based on the estimated statistics pooled across all years.

The first sample (panel A) comprises 500 stocks selected from the population of domestic
common stock issues on the NYSE and Amex. Closed-end funds, Real Estate Investment Trusts,
trusts, American Depository Receipts and foreign stocks are excluded from the analysis. To mitigate
the problems associated with low-priced stocks, the sample includes only stocks with prices above
$5. The average monthly stock return variance is 0.0098, corresponding to an annualized standard
deviation of about 34.29 percent. The average pairwise correlation is 0.28, indicating that there
are potentially large payoffs to portfolio diversification.

Panels B and C check whether the second moments of stock returns are related to firm size.
In panel B, the sample comprises all NYSE and Amex firms with equity market capitalization in
excess of the eightieth-percentile of the size distribution of NYSE firms. Similarly, panel C examines
all NYSE and Amex firms with equity market capitalization below the twentieth percentile of
the NYSE size distribution. On average, small stocks display return variances that are almost

three times those of large stocks. The average variance for small firms is 0.0181 (equivalent to an
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annualized standard deviation of 46.60 percent) compared to 0.0067 for large firms (or an annualized
standard deviation of 28.35 percent). Small stocks also tend to exhibit higher average pairwise
covariances compared to large stocks (0.0042 and 0.0021, respectively). However, the average
correlation between small stocks is only 24 percent, whereas the average correlation between large
stocks is 33 percent.

Further, the distributions of the estimated statistics show substantially larger dispersion within
the group of small firms. Sample variances for small firms, for instance, range from 0.0011 to 0.1241.
In the category of large firms the range is from 0.0014 to 0.0336. Similarly, the covariances within
small firms run from -0.0128 to 0.0463 while the covariances within large firms extend from -0.0031
to 0.0144. The inter-quartile spreads of these statistics confirm the differences between small and
large firms.

Conventional wisdom suggests that two stocks in the same industry tend to be more highly
correlated than two stocks in different industries, since they are likely to be affected by common
events. Table 2 checks up on this intuition. Each year we classify stocks into one of 48 industries
on the basis of the industry definitions from Fama and French (1997). Correlations are averaged
across all pairs of stocks from the same industry and also across all pairs of stocks from different
industries. To reduce clutter, we present results only for the largest industries in terms of market
capitalization and with the largest number of firms.

Panel A of Table 2 indicates that the correlation between two stocks is on average larger when
they are from the same industry than when they belong to different industries. The difference is
particularly striking for stocks in the utility, petroleum, banking, and insurance industries. This
may be taken as evidence that these particular industries tend to be more homogeneous groupings
than the others.

In the remaining panels of Table 2 we partition firms within an industry into two sets. Large
stocks (panel B) have market capitalization exceeding the median size of NYSE firms in the industry.
We calculate the average pairwise correlations between a large stock and: large stocks in the same
industry; large stocks in all other industries; small stocks in the same industry.

The differences between the within-industry and across-industry correlations stand out even
more strongly for large firms. In the case of large utility stocks, for example, the average within-

industry correlation is 0.4570 while the average correlation with large stocks in all other industries is



0.2417, yielding a difference of 0.2153. As further evidence of the strong tendency for large stocks
to move together, note that in many cases the correlation between large stocks across different
industries is as high as the within-industry correlation between large and small stocks.

Panel C repeats the exercise for small stocks (with market capitalization below the NYSE
median in an industry). Here the results reinforce the conclusions from Table 1 about the variation
across small stocks. Compared to large stocks, the correlations between small firms are lower, even
when they share the same industry affiliation. The difference between the within-industry and
across-industry average correlation is also less sharp. Perhaps most tellingly, on average a small
stock shows less correlation with another small stock in the same industry than with a large stock in
the same industry. For example, the average correlation between two small utility stocks is 0.3394,
while the average correlation between a small utility stock and a large utility stock is 0.3697.

The upshot of this section is that there is good news and bad news. The good news is that stock
return variances and covariances display some structure. There is encouraging evidence that certain
characteristics, such as firm size and industry affiliation, tell us something about the variances and
covariances of returns. The bad news is that this information may be useful only in a minority of
cases. As standard textbook discussions suggest, the number of covariance terms far outweighs the
number of variance terms. There are also far more pairwise combinations of stocks that differ with
respect to industry affiliation than there are pairs of stocks from the same industry. As a result,
the patterns documented in this section may not help us very much in terms of predicting most

elements of the variance-covariance matrix.

2. Predicting stock return covariances

Given our focus on portfolio risk optimization, we concentrate on directly predicting return co-
variances (forecasts of variances are discussed in a subsequent section). We employ a number of
different forecasting models for this purpose. Each forecasting model is applied to the returns on a
sample of stocks drawn from the universe of domestic common equity issues listed on the NYSE and
Amex. Given our earlier evidence on the noisiness with which covariances are estimated for small
stocks, we exclude stocks that fall in the bottom twenty percent of market capitalization based

on NYSE breakpoints. Stocks trading at prices below $5 are also excluded. Out of the remaining



stocks we randomly select 250 in April of each year from 1968 to 1997. Forecasts are generated

based on the past sixty months of prior data (the estimation period).

2.1. Full covariance matrix forecasts

The starting point for forecasting return covariances is given by the sample covariances based on.

the estimation period. For example, the sample covariance between stocks 7 and j is given by:

1 -
covy; = 50 Z(T‘it—k — ) (rje—k = T5) (1)

where r;; is the return in excess of the monthly Treasury bill return for stock ¢ in month ¢ and 7;
is the sample mean excess return.! The sample covariances, however, are very sensitive to outlier

observations (see Huber (1977)).

2.2. Covariance forecasts from factor models

Forecasts from the full covariance matrix model may reflect firm-specific events that happen to
affect several stocks at the same time, but which are not expected to persist in the future. An
alternative approach would be to strip out the idiosyncratic components of the covariance by
introducing pervasive factors that drive returns in common. One such formulation is given by the
strict factor model of security returns:
K
rie = Bio+ > Bijfit + €. (2)
i=1
Here f;; is the j—th common factor at time ¢, and ¢; is a residual term. The coefficients 3;; give
the loadings, or sensitivities, of stock ¢ on each of the K factors. Assuming that these factors are
uncorrelated with the residual return and that the residual returns are mutually uncorrelated, the

covariance matrix V of the returns on a set of IV stocks is given by
V =BQB +D (3)

where B is the matrix of factor loadings of the stocks, Q is the covariance matrix of the factors and

D is a diagonal matrix containing the residual return variances.

'Bawa and Brown (1979) suggest a Bayesian estimator for covariances under a diffuse prior. This estimator differs

from equation (1) only by a factor of w, where T is the length of the estimation period and n is the number
q T(T—n—2) &

of stocks.



We use a variety of factor models. In each case we use the sixty months of data over the
estimation period to obtain the factor loadings of a stock. The factors are measured as the returns
on mimicking portfolios, as in Chan, Karceski and Lakonishok (1998). The mimicking portfolio
returns over the prior sixty months also provide an estimate of the covariance matrix of the factors,
Q. The estimated loadings and residual variances, together with the factor covariance matrix, serve
as the inputs to equation (3).

Results are reported for the following factor models. Full details on the measurement of the
factors are contained in Appendix A. A one-factor model uses the excess return on the value-
weighted market index as the single factor. This model corresponds to the standard CAPM or
single-index model. The three-factor model augments the value-weighted market index with size
and book-to-market factors. This model has been proposed by Fama and French (1993). The
remaining models introduce additional factors that have been found to work well in capturing
stock return covariation (see Chan, Karceski and Lakonishok (1998)). Specifically, a four-factor
model includes, along with the three Fama-French factors, a momentum factor. This latter factor
captures the tendency for stocks with similar values of past six-month return (measured over the
period from seven months to one month ago) to behave similarly over the future with respect to their
returns. Along the same lines, an eight-factor model captures the idea that the covariance between
two stocks’ returns depends on their sensitivities to the market factor as well as factors associated
with firm size, book-to-market, momentum, dividend yield, cash flow yield, the term premium and
the default premium. The ten-factor model comprises these factors along with mimicking portfolios
for the beta factor (the return spread between a portfolio of high-beta stocks and a portfolio of
low-beta stocks) and a long-term technical factor (based on stocks’ cumulative returns measured

over the period from sixty months to twelve months ago).
2.3. Forecasts from a constant covariance model
This forecasting model assumes that all pairwise covariances between stocks are identical:
cov;; = cov. (4)

We estimate the constant covariance, ¢ov, as the simple mean across all pairwise stock return

covariances from the estimation period. Equation (4) can be thought of as a version of a James-



Stein estimator which shrinks each pairwise covariance to the global mean covariance (while giving
no weight otherwise to the specific pair of stocks under consideration). As one motivation for this
approach, the noise in stock returns and the resulting estimation error suggest that it may be
unwise to make distinctions between stocks on the basis of their sample covariances. Instead, it

may be more fruitful to assume that all stocks are identical in terms of their covariation.?

3. Empirical results

3.1. Covariance forecasts

At the end of April in every year of the sample period the forecasts from each model are compared
to the sample covariance estimates realized over a subsequent period. We report the results from
two forecasting experiments. In the first experiment, we measure realized covariances over the
subsequent twelve months (the test period), while in the second experiment the realized covariances
are based on a thirty-six month test period. The lengths of the test periods are chosen to correspond
to realistic investment horizons. Note that since the forecasts are generated using a period disjoint
from the test periods, the tests are predictive in nature.

Panel A of Table 3 provides summary statistics on the forecasted covariances from each model.
Forecasts from the historical full covariance model display the largest standard deviation (0.18
percent) of all the different models, suggesting that straightforward extrapolation from the past may
be overly accommodative of the data. In comparison, the different factor models tend to smooth
out the covariances, yielding less extreme forecasts. The standard deviation of forecasts from a
one-factor model is 0.14 percent, while the multifactor models share similar standard deviations of
about 0.16 percent. Since the historical full covariance model is a limiting case where there are as
many factors as there are stocks, the general impression is that the high-dimensional factor models
are prone to making overly bold predictions. As the dimensionality of the factor model grows, there
is an increasing chance that the model snoops the data, resulting in overfitting.

The remaining panels of Table 3 compare each model’s forecasts with realized sample covariances

*Frost and Savarino (1986), Jobson and Korkie (1981) provide evidence that using the common sample mean
return as the expected return for each stock improves the out-of-sample performance of optimized portfolios, relative

to assuming that historical average returns will persist.
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estimated over the subsequent twelve months (panel B) or over the subsequent thirty-six months
(panel C). Forecast performance is first evaluated in terms of the distribution of the absolute
difference between the realized and forecast values. The single-factor model turns in the lowest
mean and median absolute error. Since it is the most conservative of the factor models in terms of
the dispersion of its forecasts, the one-factor model is apparently not penalized as heavily as the.
other models. By the same token, while the average covariance model has a large mean absolute
error, it nonetheless does not do disastrously. Its performance is on par with the full covariance
model, which has the highest mean absolute forecast error (the median absolute error gives roughly
the same ordering). The differences in the performances of the models are slight, but the striking
message is that more factors do not necessarily give rise to smaller forecast errors.

The last two columns of panel B provide additional measures of the models’ forecast perfor-
mance. Specifically, we regress the realized values on the predicted values and recover the slope
coefficient and the correlation coefficient from this regression. Note that while the mean absolute
error criterion penalizes a model for making overly bold predictions, the correlation coefficient fo-
cuses more on whether the predictions tend to be in the same direction as the realizations.? As
the high-dimensional models are more likely to overfit the data, the slope coefficients on their
forecasts are more attenuated relative to the simpler models. For example, the slope coeflicient
on the forecasts from the one-factor model is 0.5435, compared to 0.3589 for the full covariance
model and 0.4488 for the ten-factor model. In terms of the correlations between forecasts and
subsequent realizations, there is little to distinguish between a three-factor and a ten-factor model.
The correlations for the full covariance and one-factor models stand apart from the others, but
for different reasons. In the case of the one-factor model the correlation is only 0.1643, suggesting
that exposures to market risk do not fully capture variation in realized covariances. For the full
covariance model, the large dispersion of its forecasts pull down the correlation to 0.1792.

When the forecasts are compared to covariances realized over the subsequent thirty-six month
test period (panel C), the average absolute forecast errors are reduced. For instance the mean
absolute error for the full covariance model is 0.0040 for the twelve-month test period, compared to

0.0019 for the thirty-six month test period. The drop in forecast errors suggests that there is a lot of

3We also replicated the analysis using Spearman rank correlations between forecasts and realizations. The main

findings are generally unaltered.
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noise in covariances measured over a period as short as twelve months. As additional confirmation,
the correlations between forecasts and realizations are higher over the thirty-six month test period
than over the twelve-month test period. Nonetheless, the same general impressions emerge as for
panel B. In particular, extending the number of factors beyond a relatively small set does not lead

to superior forecasting performance.*

3.2. Additional results

In additional work we extend our results in two directions: forecasting correlations, and modifying
the factor models. When we repeat the forecasting exercises for correlations, we find that the
relative performance of the different models is quite similar to their performance in forecasting
covariances. The various factor models differ only slightly in terms of their mean absolute errors.
In particular, the constant correlation model actually generates the lowest mean absolute errors
in forecasting correlations. In general the results suggest that it is harder to predict correlations
than covariances. For the thirty-six month test period, for example, the correlation between past
and future correlations averages 24 percent across the different models, compared to an average
correlation of about 35 percent between past and future covariances.®

The overall verdict from Table 3 is that the various models for forecasting covariances generally
perform quite similarly. The factor models yield somewhat smaller absolute errors than the full
covariance model, but the forecast errors provide little discrimination between a three-factor model
and a ten-factor model. Indeed, assuming that all pairwise covariances are constant would not lead
to much worse performance. Yet, as the correlations in Table 3 suggest, the factors are able to
capture the direction in which realized covariances vary with beta, size and other risk exposures.

Why then isn’t there a more appreciable improvement from models with multiple factors? Factor

*To help in assessing the magnitude of the forecast errors in panel C, we also generate forecasts from a randomized
model. That is, the forecast of the future thirty-six month covariance between two stocks is given by the historical

covariance between a randomly selected pair of stocks. This randomized model yields a mean absolute error of 0.0030.

Using additional factors based on size or market beta may help less for forecasting correlations than for forecasting
covariances on the following account. Specifically, the poor showing of the factor models may be due to offsetting
effects in forecasting covariances and variances. In Table 1, for example, return covariances are generally decreasing
with firm size, while return variances also decrease with firm size. As a result, what might otherwise be a strong
relation between firm size (or other factors) and covariances is dampened when the covariances are scaled by standard

deviations.
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(or index) models are so widely used in financial research and investment practice that we feel
compelled to dig deeper and examine what implementation aspects may be hurting the models’
performance. In Appendix B we explore two such aspects: the timeliness of stocks’ estimated
exposures, and the functional form implied by the factor model in equation (3). In general, we find

that modifications to address these potential problems do not alter our conclusions.

3.3. Variance forecasts

We also apply several different models to forecast return variances. The setup and results for our
variance forecasting procedures is described in Appendix C.

The results for forecasting variances (Table C1), when placed alongside the results for covari-
ances, suggest that variances are relatively more stable, and hence easier to predict, than covari-
ances. Past and future return covariances (measured over the subsequent thirty-six months) have
a correlation of 33.94 percent (Panel C, Table 3), while the same correlation for variances is 52.55
percent. As in our earlier results, however, higher-dimensional models do not necessarily raise
forecasting power.

In terms of forecasting return covariances and variances, our bottom line is as follows. There
is some stable underlying structure in return covariances. Factor models help to improve forecast
power, but there is little to distinguish between the performance of a three-factor model and a
ten-factor model. Modifications of the factor model structure, such as relaxing the model’s linear
structure or having more timely information on loadings and attributes, do not salvage the models.
The situation is somewhat improved when it comes to forecasting variances. Future variances are
relatively more predictable from past variances, and hence the models’ forecast performance is

relatively stronger.

4. Applying the forecasts: portfolio optimization

4.1. The global minimum variance portfolio

An important reason for forecasting the variances and covariances of returns is to provide inputs
into the portfolio mean-variance optimization problem. The perils of forecasting expected returns

are well-known. In terms of forecasting the second moments, our results from the previous sections
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suggest that there are relatively minor differences between the various models’ performance. In this
sense the choice of a particular model for the second moments may matter less from the standpoint
of optimization. The weights for an optimized portfolio (with additional constraints on the weights)
are complicated functions of the forecasts, however. It is thus not straightforward to assess the
economic impact of errors in forecasting the second moments. In this section we report the results
of several portfolio optimization exercises. These let us judge how the forecasting performance
of the different models translates into the realized variance of the optimized portfolio’s returns.
Since we place constraints on the portfolio weights the optimization exercises also let us tame
the occasional bold forecasts from some of the covariance forecasting models. In this respect a
more meaningful comparison across the models can emerge. From both the technical and practical
standpoint, therefore, the optimization experiments provide perhaps the most important metric for
evaluating the models.

The setup of our portfolio optimization experiments is as follows. To highlight the role of the
second moments, our goal is to form the global minimum variance portfolio (any other point on
the efficient frontier would put some emphasis on forecasts of expected returns). In April of each
year from 1973 to 1997, we randomly select 250 stocks listed on the NYSE and on Amex.® We
use our different models to generate forecasts of future variances and covariances for these stocks.
These estimates are the inputs to a quadratic programming routine. In the interest of making
the experiments correspond as closely as possible to actual practice, several other constraints are
imposed. Portfolio weights are required to be non-negative, since short-selling is not generally a
common practice for most investors. In order to mitigate the effects of forecast errors, we also
impose an upper bound of two percent on the portfolio weights.” Given the optimized weights,
we calculate buy-and-hold returns on the portfolio for the subsequent twelve months, at the end
of which the forecasting and optimization procedures are repeated. The resulting time series of
monthly returns lets us characterize the performance and other properties of optimized portfolios
based on each of our forecasting models.

Table 4 summarizes the optimization results from several different models. For the sake of

As in the earlier sections, we consider only domestic common equity issues. Stocks that fall in the bottom twenty

percent of market capitalization based on NYSE breakpoints are excluded, as are stocks trading at prices below $5.
"Since our forecasts are based on the past sixty months of returns, and there are 250 stocks, the covariance matrix

is singular. Imposing the constraints guarantees a solution to the variance minimization problem.
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brevity, we report the results for different covariance models, but all are based on one model for
forecasting variances, namely, a model using regression-adjusted historical variances. Panel A of
the table evaluates each portfolio’s performance in terms of its average monthly return, standard
deviation, Sharpe ratio and its tracking error volatility (the volatility of the monthly difference
between the portfolio’s return and the return on the S&P 500 index). These are all expressed on,
an annualized basis. Also reported is the correlation between the portfolio’s return and the return
on the S&P 500 index, as well as the average number of stocks in each portfolio with weights above
0.5 percent.

To provide some background, we present results for two simple diversification strategies that
involve no optimization, namely the value-weighted and equally-weighted portfolios made up of the
same stocks available to the optimizer. An investor who diversifies by investing equal amounts in
each of the 250 available stocks would experience an annualized standard deviation of 16.62 percent.
On the other hand a value-weighted portfolio takes larger positions in some stocks than in others,
but the tendency for larger stocks to have low volatilities pulls down the overall standard deviation
to 15.54 percent. In comparison, it is clear that some form of optimization helps. The annualized
standard deviation of the optimized portfolio based on the full covariance model is 12.94 percent.
Looked at from another standpoint, the same optimized portfolio has a Sharpe ratio of 0.6405 while
the Sharpe ratio for the equally-weighted portfolio is 0.6027.

As in our earlier forecasting exercises, the different covariance models generally provide simi-
lar results. To single out two cases, for example, the full covariance model yields an annualized
standard deviation of 12.94 percent while the corresponding statistic for the three-factor model
is 12.66 percent. As a further illustration of the general point that more complicated models do
not necessarily do better, the prize for the single model generating the lowest prospective stan-
dard deviation goes to model 5, which assumes that covariances are proportional to the product of
the stocks’ return volatilities. This model essentially sets all pairwise correlations between stocks
to a constant and takes advantage of the relative stability of return variances. When covariance
forecasts are generated by a composite model (model 7 in Table 4), the standard deviation of the

optimized portfolio drops to 12.59 percent.®

8The composite model is an equally-weighted average of the forecasts from four other models. The component

models are: the full covariance model, the 3-factor model, the 9-factor model and an industry-size model.

15



Panel B of Table 4 provides further clues as to why the different models perform so similarly. We
report four characteristics of each portfolio: its beta relative to the value-weighted CRSP market
index, the average size (in logarithms), average book-to-market ratio and the average dividend
vield of the stocks in the portfolio. To ease comparison, each characteristic is also expressed as a
decile ranking (with one being the lowest and ten being the highest). In addition we also report
the percentage of the portfolio invested in two industries, namely firms with the first two digits of
the SIC code of 35 or 36 (Industrial, Commercial Machinery, Computer Equipment and Electrical
Equipment excluding Computers) and firms with 2-digit SIC code of 49 (Electric, Gas and Sanitary
Services). These two industries display considerable differences in terms of features such as return
volatilities and market betas. Each of the reported characteristics is measured as of the portfolio
formation date, and are averaged over all portfolio formation years.

A striking feature of the optimized portfolios is that they all select stocks with low betas. While
the equally-weighted portfolio of all the candidate stocks has an average beta of 1.07 (placing it
roughly in the fifth decile), the betas of the optimized portfolios fall between 0.5 and 0.7 (the
average decile ranking is below 2). This emphasis on stocks with low betas may help to explain
why the portfolios tend to tilt somewhat toward larger stocks, and toward value stocks. For the
same reason, the portfolios all select a preponderance of utility stocks, which tend to have low betas
and low return volatilities as well. At least forty percent of each optimized portfolio is invested in
the utility industry (SIC code 49). This is to be compared with a weight of 8.66 percent for utilities
in the value-weighted portfolio and 15.31 percent in the equally-weighted portfolio. In other words,
the optimizer selects basically every utility it is presented. At the same time the weight given to
stocks in SIC codes 35-36 is relatively puny (never more than 4 percent for the optimized portfolios).
As Fama and French (1997) document, industries 35-36 tend to have higher than average market

betas.

4.2. Interpretation

The results of the variance-minimization exercises suggest the following interpretation. One key

conclusion is that there is a major factor which is more important than the other influences on

16



returns.? This dominant influence, the market, tends to overpower the remaining factors, so that
their incremental informativeness becomes very difficult to detect. This accounts for why the
different factor models generate similar forecast results.

Put another way, portfolio p’s variance v, from the factor model (2) is

K
Vp = Z ZJU.)] + 6;,. (.

i=1

(3]
~

Here w; is the variance of the j-th factor, &, is the variance of the idiosyncratic return, and (solely
for expository convenience) it is assumed that the factors are mutually uncorrelated. If the largest
part of the variance is due to the variance of the market factor, then what the optimizer tends to do
in each case generally is not very surprising. Namely, the optimizer seeks stocks with low market
betas, such as utility stocks. Further, as an empirical matter stocks with low market betas generally
tend to have low residual variances and low total return volatilities as well. Any covariance model
that exploits these patterns will tend to yield generally similar results (and tend to do better than
the passively-diversified equally-weighted or value-weighted portfolios). As a result, the differences
between the performance of the optimized portfolios are not particularly dramatic. Since the role
of the remaining factors is obscured by the major factor, there appears to be little benefit from
obtaining finer breakdowns of the systematic component of the volatility.

As one way to calibrate the relative importance of the different factors, we use the asymptotic
principal components method of Connor and Korajzyck (1988). Five factors are extracted from
the monthly returns of all NYSE-Amex issues over the five-year period ending on April 1998. To
capture the average-case situation, we partition the sample variance of the equally-weighted CRSP
index into the proportions attributable to each principal component. The first factor accounts
for 75 percent of the variability of the index. The proportions captured by the remaining four
principal components pale in comparison (they amount to 6.9 percent, 3.6 percent, 8.8 percent and
5.6 percent respectively). In short, after accounting for the dominant influence of the first factor,
further refinements do not offer a great deal of improvement.

This line of thinking also suggests a way to structure our experiment to yield sharper differences

®A similar interpretation is offered by Green and Hollifield (1992), who provide conditions under which well-
diversified portfolios are mean-variance efficient. The empirical evidence in Connor and Korajczyk (1993) also suggests

that after the first factor the marginal explanatory power of additional factors is relatively low.
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between the different covariance models. In particular if we can remove the impact of the dominant
market factor the importance of the remaining factors may emerge more clearly. As it turns out,
this problem is a specific case of tracking a benchmark portfolio, which occurs much more commonly

in practice than the variance-minimization problem.

5. Minimizing tracking error volatility

5.1. The minimum tracking error volatility portfolio

In practice, mean-variance optimization is much more commonly applied in a different context.
Since professional investment managers are paid to outperform a benchmark, they are in general
not concerned with the absolute variance of their portfolios, but are concerned with how their
portfolio deviates from the benchmark. Underperforming the benchmark for several years typically
results in the termination of a manager’s appointment. The objective in this case is to minimize the
portfolio’s tracking error volatility, or the volatility of the difference between a portfolio’s return
and the return on the benchmark. In the context of the factor model, the generating process for

the return difference is

K
rot — 81 = Bpo — BBo+ Y _(Bpi — BBj) fit + (€pt — €Bt), (6)

1=1
where r,; and rp; are the returns on the portfolio and on the benchmark, respectively, at time t,
and their factor loadings are given by 8,; and fp; for j = 0,1,..., K. Accordingly, a portfolio whose
loadings come close to matching the benchmark’s would do a good job in minimizing the volatility

of excess returns, 7,:
K
Z (Boj — BB5)"wi + Uy (7)

where for ease of exposition it is assumed that the factors are mutually uncorrelated.

The benchmark’s loadings can be estimated and used as anchors for the desired portfolio’s
exposures. Then the problem of minimizing tracking error volatility is, at least potentially, much
simpler than the problem of minimizing the global portfolio variance. Whether this turns out to
be the case depends on the benchmark having exposures that can be matched by some feasible

portfolio of the sample of candidate stocks. The variance-minimization criterion discussed in the
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previous section sets the benchmark to be the riskless asset with zero exposures on all the factors.
In this instance, as long as we insist on non-negative weights, and as long as most stocks have
exposures to the important factors that are of the same sign, all the different models will have an
equally hard time. Similarly, there will not be notable differences across the models if the problem
were to use, for example, utility stocks to track a single issue like Netscape.

Given that the market factor is the most important, suppose instead our benchmark is a portfolio
whose market exposure is not too unrepresentative of the market betas of the underlying set of
stocks. It is then a less challenging problem to minimize the role of this dominant source of return
variability, since the difference between the market betas of the portfolio and the benchmark can
be set close to zero. As a result, the incremental importance of any remaining factors in the
decomposition (7) becomes easier to detect, so there may be richer opportunities to discriminate
between the different covariance models.

We implement the tracking error optimization problem as follows. We choose the S&P 500 index
as the benchmark. The minimum tracking error volatility portfolio can be found by expressing every
stock’s return in excess of the return on this benchmark, and solving for the portfolio which has
the lowest variance of excess returns. In every other respect, we maintain the same constraints
as in the previous set of optimization exercises (non-negative weights and an upper bound of two
percent}.

Panel A of Table 5 summarizes the performance of the minimum tracking error volatility port-
folios. The results are based on several different models for forecasting the covariance of excess
returns. In every case, the forecasted variance is set to be the regression-adjusted variance of the
most recent past sixty monthly excess returns (over the S&P 500).

As we had hoped, simplifying the problem generates more discrimination between the different
covariance models. The annualized tracking error volatility of the equally-weighted portfolio is
6.16 percent, while a three-factor model reduces the tracking error volatility down to 4.53 percent.
Adding more factors gives rise to lower volatility relative to the benchmark. For example, a nine-
factor model results in a tracking error volatility of 4.01 percent.

The link between this finding and our earlier forecasting results is actually quite natural. In
the earlier case of minimizing portfolio variance, return covariances between stocks are generally

positive and the portfolio weights are non-negative by design. Hence the dominant component of
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the portfolio’s variance comes from the covariance terms. As our forecasting exercises suggest, the
various models all perform with roughly the same degree of success at predicting future covariances.
Accordingly, the models do not differ much when it comes to minimizing portfolio variance. In the
case of tracking error volatility, on the other hand, the covariances of returns in excess of the market
return can be positive as well as negative. There is therefore more scope, even with non-negative .
weights, for the optimizer to cancel out the covariance component of the portfolio’s tracking error
volatility.!® Furthermore, the different models display more dispersion in terms of the association
between the forecasted and realized excess return covariances. At the thirty-six month horizon,
for instance, the correlation between forecasts and realized excess return covariances is 0.13 for
the full covariance model. For the one-factor model the correlation is 0.14, and it is 0.20 for the
three-factor model. As a result, there is more room to differentiate between the different models
when the objective is to minimize tracking error volatility.

To ensure that our findings are not sample-specific, we also replicate the experiment in Table 5
two hundred times for each of our different models. In each replication we draw a different set of
stocks to carry out the minimization with respect to tracking error volatility. The results confirm
the general pattern of differences across the models in Table 5. For example, the tracking error
volatility averaged over all 200 replications is 3.99 percent for the full covariance model, compared
to 5.11 percent for the one-factor model and 4.34 percent for the three-factor model. The average
differences in tracking error volatilities across the factor models are large and statistically significant.
Comparing the one- and three-factor models, for example, the mean difference in tracking error
volatility is 0.37 percent (with a standard error of the mean of 0.01 percent).

In panel B, we assess how closely each model matches up with the benchmark along several
attributes, and whether the degree of alignment is associated with the realized tracking error
volatility. In this way we can pinpoint potentially relevant determinants of a portfolio’s risk profile.
We take the characteristics of the value-weighted index of the thousand stocks with highest market

capitalization to be our proxy for the benchmark portfolio’s characteristics.!! Given these features

'0This may also help explain the tendency to have a relatively large portion of the optimized portfolios invested in
utility stocks (SIC code 49). The bulk of negative excess return covariances is clustered in the utility industry, where

47 percent of the pairwise covariances between utility stocks and other stocks is negative.

' Difficulties in identifying which firms belong to the S&P 500, especially in the early years of the sample period,

force us to work with a proxy for the index.
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of the target, for each model we also report in the column denoted MAD the mean absolute
difference (across portfolio formation years) between the characteristics of the optimized portfolio
and the benchmark.

Comparing the results of the full covariance model and the one-factor model brings out clearly
the importance of non-market sources of return covariation. The one-factor model concentrates on
coming close to the benchmark’s market exposure (the average absolute difference is 0.0277). It does
so at the expense of deviating considerably from the benchmark in terms of size, book-to-market
and dividend yield (the average absolute differences are the largest of all the optimized models in
Table 5). The focus on beta is evidently not enough, for the resulting tracking error volatility is
relatively large (5.12 percent). In comparison, the full covariance model delivers small deviations
from the benchmark on all four dimensions and comes up with a lower tracking error volatility
(4.03 percent). More generally, the results suggest that a higher-dimensional model should provide
more opportunities to narrow any potential divergence from the benchmark’s risk exposures. For
example, the tracking error volatility under the nine-factor model (4.01 percent) is lower than under
the one-factor model. Given, however, the possibility of data-snooping, requiring the optimized
portfolio to be aligned with the benchmark on a host of dimensions may ultimately become counter-
productive. This may explain why the tracking error volatilities for the full covariance model and
for the nine-factor model are roughly comparable.

The results for the value-weighted portfolio of all the 250 stocks provide further testimony to
the strong covariation among large stocks. This portfolio comes closest to the benchmark on all the
reported attributes, except for beta, in terms of mean absolute differences. The resulting tracking
error volatility is 3.04 percent, the lowest of all the models in panel A. Since the benchmark in this
case comprises large stocks, however, the performance of the value-weighted portfolio may not hold
for other choices of benchmark.!?

Roll (1992) shows that a portfolio that is optimized with respect to tracking error volatility
will in general not be mean-variance efficient. A comparison of Tables 4 and 5 lets us quantify the

difference between the two criteria. Optimizing with respect to tracking error volatility (Table 5)

YFor example, when the benchmark is an equally-weighted portfolio of 500 randomly selected stocks, the value-
weighted portfolio has a tracking error volatility of 5.59 percent, compared to a tracking error volatility of 2.02 percent

under the full covariance model.
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yields portfolios that have larger standard deviations than the portfolios that are optimized with
respect to return volatility (Table 4). The average difference is quite large and is on the order of
two percent. Insofar as the emphasis in practice on tracking error volatility reflects a mismatch
between the objectives of the portfolio manager and those of the ultimate investor, then the two

percent difference is an estimate of the cost of this mismatch.

5.2. Tracking error volatility minimization by matching on attributes

The models of the previous subsection attempt to minimize tracking error volatility by forming
portfolios whose factor loadings come close to the benchmark portfolio’s loadings. Since the loadings
must be estimated, this approach may be handicapped by estimation errors. For example, there is
nothing to prevent the optimizer from choosing small stocks to track the S&P 500 index if these
small stocks happen to have past estimated loadings which coincide with the benchmark’s. An
approach which is less prone to measurement errors may give better results. In this regard, it
is intriguing to note that the value-weighted portfolio of the 250 sample stocks yields the lowest
tracking error volatility in Table 5. As one way to formalize this observation, suppose that the
cross-section of returns is given by the following model:'?
K
r,i—rf:ZZijfj%—u,- (8)
1=1
where Z;; is stock 1's risk descriptor (or exposure) with respect to the j-th common factor f;. The

difference between portfolio p’s return and the benchmark return is thus
K
Tp—TB= Z(ij_ZBj)fj+(uP_uB)- (9)
=1
From this perspective, matching the benchmark with respect to the observable attributes Zg;, such
as size or dividend yield, is another way to reduce tracking error volatility.!

Table 6 reports the results from this alternative approach to minimizing tracking error volatility.

Again, Appendix D contains details on the different models. In general, matching the benchmark

!¥33¢e, for example, BARRA (1990). Jagannathan and Wang (1992) also provide evidence on the potential usefulness

of firm characteristics such as size to estimate betas.
1n practice this approach is commonly used among hedge funds and for long-short investment strategies, where

short positions are feasible. The underlying idea is that the long and short positions should be closely aligned in

terms of attributes such as market risk, size, dividend yield, and industry composition.
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by attributes gives rise to lower tracking error volatilities, compared to the results in Table 5. For
example, the approach using loadings from a nine-factor model (model 4 in Table 5) generates a
tracking error volatility of 4.01 percent, while a portfolio that matches the benchmark along the
corresponding nine attributes (model 5 in Table 6) generates a tracking error volatility of 3.01
percent. As one way of putting this in perspective, it is quite common for investment managers.
to be evaluated in terms of their information ratios (the portfolio alpha divided by tracking error
volatility). In the above example, the nine-attribute matching procedure raises the information
ratio by as much as a third.

While the factor loading approach offers the benefit of being directly based on the behavior of
past returns, its advantage is more than offset by the measurement errors in the loadings. As a
result, the current attributes of a portfolio provide more reliable indicators of its future tracking
error. Indeed, in some cases the attribute matching procedure compares favorably with the ideal
case of perfect foresight. In particular, the tracking error volatility under the full covariance model
assuming perfect foresight about the future covariance matrix of excess returns is 1.57 percent
(compared to roughly 3.25 and 3.01 percent for models 4 and 5 in Table 6). We also repeated the
exercise in Table 6 two hundred times, drawing different sets of stocks in each trial. The overall
conclusions are very similar. Notably, in every repetition the nine-attribute matching procedure
gives rise to lower tracking error volatility than the corresponding nine-factor covariance model.
The average reduction across the replications is 0.95 percent (the standard error of the mean is
0.01 percent).

One widely used approach to replicating an index is to match the benchmark’s industry com-
position. Model 1 in Table 6 does this and yields an annualized tracking error volatility of 5.79
percent. Compared to the other models in Table 6, this clearly does not do well. Requiring that
the portfolio match the benchmark’s size composition as well as its industry composition reduces
the tracking error volatility down to 4.60 percent (model 2). Indeed, of all the different attributes,
size turns out to be the critical dimension on which to match. The size-matched minimum residual
variance portfolio {model 3) has a tracking error volatility of 3.53 percent, which is close to the
performance (3.01 percent) of the nine attribute model {model 5).

It would be premature, however, to conclude from this exercise that size is the only important

attribute on which to match. In particular, this finding may be specific to the nature of the index
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we used, namely large stocks making up the S&P 500. To check up on this, Table 7 provides results
for minimizing tracking error volatility relative to two other benchmarks. In Part [ of the table, the
benchmark is the value-weighted portfolio of the 250 stocks that are ranked highest by the ratio of
book-to-market value of equity, while in Part II the value-weighted portfolio of the 250 stocks that
are ranked lowest by the book-to-market ratio is the benchmark. These two reference portfolios,
(the value stock benchmark and the growth stock benchmark, respectively) correspond in spirit to
indexes that are widely used in practice to evaluate the performance of value- and growth-oriented
investment managers.

In general, using the value or growth benchmarks leads to larger tracking error volatilities
compared to the case of the S&P 500 benchmark. For example, under the full covariance model,
the tracking error volatility is 4.72 percent with respect to the value benchmark (part I, panel A)
and 5.00 percent with respect to the growth benchmark (part II, panel A) as opposed to 4.03 percent
with respect to the S&P 500 index (Table 5). Matching by size only (model 4 in Table 7) would not
be the most successful procedure. Under this approach, large differences from the benchmark arise
with respect to other attributes. In particular, the average absolute difference between the book-
to-market ratio of the size-matched portfolio and the value stock benchmark is 0.3881 while the
average absolute difference with respect to dividend yield is 0.0156. The corresponding differences
for the growth stock benchmark are 0.2286 and 0.0120 respectively. Consequently, the tracking error
volatility under the size-matching procedure is 4.61 percent relative to the value benchmark and 4.78
percent relative to the growth benchmark. Instead, matching on nine attributes yields the lowest
tracking error volatilities (3.79 percent and 3.97 percent for the value and growth benchmarks,

respectively).!?

6. Summary and Conclusion

Although the concept of portfolio mean-variance optimization forms the backbone of modern port-
folio theory, it has come into widespread use only fairly recently. Given the recent emphasis on

risk management there is a proliferation of portfolio optimization techniques. Yet there is very

13The attribute-matching procedure also works well when we use an equally-weighted index of 500 randomly selected
stocks as the benchmark. In this case matching on nine attributes generates a tracking error volatility of 1.66 percent,

compared to 2.02 percent using the full covariance model.
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little scientific evidence evaluating the performmance of alternative risk optimization procedures.
This paper provides evidence with respect to forecasting the return covariances and variances that
are key inputs to the optimizer. We compare the forecasting performance of different models of
covariances. We also assess the out-of-sample performance of optimized portfolios that are based
on each forecasting model.

Factor models of security returns were originally proposed as parsimonious ways to predict
return covariances and simplify portfolio optimization. They remain at the center stage of port-
folio analysis, and have also been extensively used in modelling the behavior of expected returns.
Accordingly, the bulk of our analysis focuses on applying such models.

We find that a few factors such as the market, size and book-to-market value of equity capture
the general structure of pairwise return covariances. For example, a model based on these three
factors generates a correlation of 0.1994 between covariance forecasts and subsequent covariances
(measured over a twelve month horizon). Expanding the number of factors does not necessarily
improve our ability to predict covariances. Instead, the higher-dimensional models tend to overfit
the data. For example, the full covariance model (which essentially assumes that there are as many
factors as stocks) generates a correlation of 0.1792 between forecasted and realized covariances.
However there is substantial imprecision in the forecasts, so that the factor models yield mean
absolute forecast errors that are not notably different from a simple model which assumes that all
stocks share the same average pairwise covariance. Relaxing the linearity assumption underlying
the factor models and using more updated estimates of stocks’ factor loadings does not improve
forecast power.

The true test of the models’ ability to predict covariances is in the context of optimized port-
folios. We conduct two types of experiments. First, in the spirit of the work of Markowitz we
generate the global minimum variance portfolio corresponding to each model. In practice, however,
investment managers who implement portfolio optimization techniques are evaluated relative to
benchmarks. Accordingly, in the second set of experiments we evaluate the different forecasting
models in terms of minimizing tracking error volatility relative to several different benchmarks (the
standard deviation of the difference between the returns on the portfolio and the benchmark). We
highlight the global minimum variance or global minimum tracking error volatility portfolios, as any

other point on the efficient frontier dilutes the importance of the second moments and concentrates
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more on expected returns.

The good news is some forin of portfolio optimization helps for risk control. The various global
minimum variance portfolios have future annualized standard deviations in the range of 12.59 to
12.94 percent. This is to be contrasted to a passively diversified portfolio which invests equal
amounts in each stock. Such a procedure would give rise to a much higher standard deviation
(16.62 percent per year). As the results on forecasting covariances suggest, however, there is very
little discrimination between the models under a minimum variance criterion. A one factor model
is as good as a nine factor model. All the models exploit the idea that the biggest benefits arise
from reducing exposure to the market. The historical betas of the portfolios average about 0.6,
compared to 1.1 if stocks were equally-weighted. The objective of keeping the beta low explains
why utility stocks are so heavily favored in the global minimum variance portfolios. In essence, the
optimizer grabs every single utility.

From the standpoint of distinguishing between the different risk models, the tracking error
volatility criterion provides an important test case. In particular, the tracking error (return in
excess of the benchmark) tends to diminish the influence of the market factor. Since the market
is by far the most important source of return variability, we improve our chances of being able
to sort out the relative importance of any remaining factors. Indeed, the different models stand
apart more when it comes to minimizing the tracking error volatility (as long as the benchmark’s
risk exposures are not too unrepresentative of the exposures of the underlying set of stocks). As
an example of a naive approach, an equally-weighted portfolio has a tracking error volatility of
6.16 percent per year. A one-factor model for forecasting tracking error covariances generates a
tracking error volatility of 5.12 percent per year, while a nine-factor model pushes this down to 4.01
percent per vear. The sizable reduction in tracking error volatility from the naive equal-weighting
approach (6.16 percent) to a nine-factor model (4.01 percent) sharply illustrates the importance of
optimization for investment management practice.

When the objective is to minimize tracking error volatility, we find that a simple heuristic proce-
dure does better than the standard optimization approach. The standard approach is handicapped
by the noisiness in forecasting covariances as well as the complex structure of the optimization. In-
stead, the alternative procedure chooses a portfolio which matches the benchmark along attributes

such as size or book-to-market ratio. In general, the choice of benchmark and the set of available
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stocks determine the number of attributes necessary for matching. When we use the S&P 500 index
as the benchmark, for example, the results suggest that two attributes, size and book-to-market,
suffice (the tracking error volatility drops to 3.25 percent). In cases where a value or growth stock
index is the benchmark, a larger number of attributes is needed to produce superior results.

In a realistic setting, such operational issues (the choice of forecasting model for covariances, the.
use of attributes or loadings) matter more in practice when the objective is to minimize portfolio
tracking error volatility, rather than minimizing portfolio variance. Nonetheless, the imprecision
with which return covariances are forecast does not detract from the main message that portfolio
optimization helps substantially in risk reduction. At the same time, the low correlation between
past and future covariances suggests that a dose of humility may not be the least important part

of any risk optimization procedure.
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Appendix A

Measuring the factors

In the factor models pairwise return covariances depend on the stocks’ loadings on risk factors.
Such loadings are estimated from regressions of individual stocks’ returns on the returns to proxies
for the factors. The market factor is measured as the return on the CRSP value-weighted market
index. For the other factors, the proxies are measured as portfolios that mimic the behavior of
the factors. This appendix provides further details on the measurement of the mimicking portfolio
returns.

The portfolios are formed from all domestic companies listed on the New York and American
stock exchanges (excluding closed-end funds, investment trusts and units). We construct portfolios
whose returns mimic the factorsin the following predictive fashion, inspired by the work of Fama and
French (1993). At each portfolio formation date, we sort all eligible stocks by a particular attribute,
and assign each stock to a portfolio on the basis of its rank.!® The attribute may be an accounting
characteristic (such as the ratio of book value to market value of equity), market capitalization,
past return or the estimated loading on a macroeconomic variate (such as the maturity premiumj).

For the accounting-based attributes, we form portfolios at the end of April each year, and assume
that there is a four month delay between the end of a firm’s fiscal year and the public release of
accounting information. We form five portfolios, so the stocks with the lowest and highest values of
the attribute are assigned to portfolios 1 and 3, respectively. The quintile breakpoints are always
obtained from the distribution of attributes for NYSE issues only. In each of the subsequent twelve
months, we compute the return on each quintile portfolio, where stocks are equally weighted in
a portfolio. The mimicking portfolio return for the factor is then calculated each month as the
difference between the return on the highest-ranked and the lowest-ranked portfolio.

The accounting-based attributes used for sorting stocks to portfolios include the ratio of book
value of common equity (COMPUSTAT Annual data item number 60) to market value of com-
mon equity {price per share times number of outstanding shares); the ratio of common dividends

(COMPUSTAT Annual data item number 21) to market value of common equity; the ratio of cash

18 An alternative procedure would be to form portfolios on the basis of multi-way sorts using several different
attributes at the same time. Given the number of attributes and their correlations, however, the resulting portfolios

would not contain many stocks and hence their returns would contain a large idiosyncratic component.
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flow (income before extraordinary items and adjusted for common stock equivalents, COMPUSTAT
Annual data item number 20, plus depreciation and amortization, COMPUSTAT Annual data
item number 14) to market value of common equity. Market value of common equity (size) is also
another sorting variable.

Factors based on past return include a momentum factor and a long-term technical factor..
For the momentum factor, stocks are sorted by their past rates of return beginning seven months
before and ending one month before the portfolio formation date. Since the predictive power of
past returns varies with the forecast horizon, we reform the portfolios every six months beginning
in April of each year. For the long-term technical factor, the sorting variable is a stock’s rate of
return beginning five years before and ending one year before the portfolio formation date.

To mimic macroeconomic factors we also estimate each stock’s loading on the term premium
(the difference between the monthly return on long-term government bonds and the one-month
Treasury bill return), or on the default premium (the difference between the monthly return on a
high-yield bond index and the return on long-term government bonds). The loadings are estimated
from univariate regressions using the past sixty months of returns. Stocks are then ranked on this
estimated loading and quintile portfolios formed on the basis of this ranking.

As a companion measure to the market factor, we also construct a mimicking portfolio for the
beta factor. Stocks are ranked on their estimated betas with respect to the equally-weighted CRSP
index (using the most recent past sixty months of returns) and quintile portfolios formed form
this ranking. Further details on all the mimicking portfolios are contained in Chan, Karceski and

Lakonishok (1998).
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Appendix B

Further analysis of factor models

This appendix investigates two potential drawbacks to using factor models to forecast covariances:
the timeliness with which loadings are estimated, and the functional form implied by the linear

factor model.

B.1. A portfolio approach to estimating risk exposures

One possibility is that our estimates of a stock’s exposures to the factors are not sufficiently timely.
Since the exposures are obtained from regressions over the prior sixty months of data, they may
not be very informative of a stock’s current risk. Take, for example, a firm that was originally large
but which performed poorly and currently has a low market capitalization. This stock’s loading on
the mimicking portfolio for the size factor, estimated over the past sixty months of returns, may
not give an accurate measure of its current risk exposure. In order to circumvent this problem, we
assign loadings to an individual stock based on its currently observable attributes, so as to get the
most up-to-date estimates of its risk exposures.

To illustrate this idea we use the three-factor model (the market, size and book-to-market),
since it is widely used in the empirical research literature. At the end of April every year, every
domestic common issue listed on the NYSE and Amex is assigned to a portfolio using a within-
group three-way sorting procedure. Specifically, stocks are ranked by estimated market beta (based
on a regression using the prior sixty monthly returns) and grouped into three portfolios. Within
each of these beta-ranked portfolios, we rank and group stocks into three portfolios by market value
of equity. Finally we subdivide each beta-size portfolio into three more groups on the basis of the
book-to-market equity ratio, yielding a total of twenty-seven portfolios. The breakpoints for each
sort are taken from NYSE issues only. In each sort, the first portfolio comprises stocks ranked in
the top three deciles, the second portfolio comprises stocks ranked in the intermediate four deciles
and the third portfolio contains stocks falling in the bottom three deciles. Equally-weighted returns
on each portfolio are calculated over each of the next twelve months, at the end of which time the
portfolios are reformed. In this way we build up a time series of returns on each portfolio.

Since each portfolio’s composition is updated annually using the most timely data, the risk
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profile for a portfolio should be relatively more stationary than is the case for an individual stock.
Accordingly. we estimate the loadings every year for each portfolio from a nultiple regression using
the most recent past sixty months of returns. Then we assign the portfolio’s factor loadings to
every component stock currently in that portfolio as estimates of the stock’s exposures.

This amendment to the three-factor model does not materially affect forecast performance. The
portfolio approach to estimating three-factor model sensitivities gives an average absolute error of
0.0023, relative to covariances measured over the subsequent thirty-six months. The correlation
between forecasts and realizations is 37.50 percent. Recall from Table 3 that the standard approach
generates 0.0023 and 41.76 percent for the average absolute error and correlation, respectively.
Getting more up-to-date measurements of a stock’s attributes does not give sharper estimates of
its exposures, possibly because the signal-to-noise ratio for the factor model at the level of individual

stocks is low to begin with.!”

B.2. The relation between factors and covariances

Under the standard linear factor model, the return covariance between two stocks is the sum of
terms that are proportional to the products of the stocks’ factor loadings. In one respect, however,
this formulation does not fully correspond to the following basic intuition about the structure of
return covariances. It is natural to expect that stocks that are similar with respect to attributes
such as firm size and book-to-market value should also exhibit strong return covariation. Pairs
of dissimilar stocks (a large stock and a small stock, for example, or stocks belonging to different
industries) should covary to a lesser extent. These statements do not depend on the magnitude of
the stocks’ factor loadings, so there is nothing in the standard implementation of the linear factor
model that captures these simple observations. Accordingly, in what follows we relax the factor
models discussed in the text so that while covariances can still depend on the loadings, they are

not restricted to vary with the products of the loadings. We check whether this modification helps

"The full set of results is available upon request. It is also possible that the noise in estimating the variance-
covariance matrix of the factors (Q in equation 3 of the text) hampers the performance of the factor models. We
investigated this possibility by using estimates of the factor variances and covariances that are based on the entire
sample period and replicating our forecasting exercises in Table 3 with these estimates. In general our conclusions

remain unaffected.
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to improve the forecast power of the factor models.

We adapt the factor models in several different ways. In each modification, the sequence is
the same. Attributes of a stock are measured over one period and these are related to return
covariances measured over a disjoint subsequent period (to maintain the predictive flavor of our
tests). The estimated model is then used to generate forecasts, using the most recently observed
attributes of the stock. Consider, for instance, the first set of forecasts made at the end of April of
1968 (time t). The forecasting model is formulated using the most recent past eight years of data
(in this example extending back to April 1960). For each pair of stocks i and j, firm attributes,
denoted X;;;—|, are measured over the earliest five years (in the example these are measured over
the period 1960 to 1965). These are related to covariances ¢;;; measured over the three years (e.g.,

from 1965 to 1968) immediately prior to the forecast date using the model
Cijt = Xij,t—1¢ + €5t (10)

We then step forward to the forecast date and update the firm attributes, X;;; using the most
recent past five years (e.g. from 1963 to 1968). Forecasts are generated as Xijymﬁ' where ¢ is the
least squares estimate from equation (10).!8

Details regarding the choice of attributes X;; are as follows. Briefly, the models fall into four
general categories. One category (model 2 in Table Bl) relates realized covariances to measures
of the similarity between stocks. The second category of models (models 3 through 5) relaxes
the assumption, imposed by the factor model, that covariances are proportional to the product
of loadings. The third category (model 1 and models 6 to 8) directly relate covariances to firm
characteristics, including past covariance, past return volatility and industry affiliation. Finally, we
explore combinations of forecasts from different models.

In the first model, Model 1, the attribute set X;; comprises only the historical covariance be-

tween the returns of stocks ¢ and j. This model thus corrects for the tendency for future covariances

%In the previous tables, we estimate covariances based on the most recent sixty months of returns. To get
corresponding results, we calibrate the forecasting models in Table B1 by adding an adjustment factor so that
the mean of the forecast distribution matches the mean of the actual covariances measured over the sixty months
immediately prior to the forecast date. Note that the model estimation and calibration makes no use of information

about realizations in the period subsequent to the forecast date.
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to revert to the mean.!® In the second model, Model 2, we follow up on the intuition that the return
covariance between a pair of stocks should be related to measures of the similarity between the
two. The three measures of similarity we use are: the absolute difference between the stocks’ decile
rankings (scaled to lie between zero and one) with respect to market beta (relative to the CRSP
value-weighted index), market capitalization, and book-to-market value of equity. Model 3 allows
the return covariance to vary with the levels of firms’ attributes and also on whether the two stocks
have roughly the same levels of attributes. Note that we do not require the covariances to be pro-
portional to the product of loadings. In particular, in this model a stock is ranked by either beta,
size or book-to-market and assigned to one of three categories for each variable: the highest twenty
percent (high), the intermediate sixty percent (medium) and the lowest twenty percent (low). This
yields for each attribute six distinct possible combinations of categories for any pair of stocks. As
a measure of similarity, we define a dummy variable for each of the six combinations of categories,
such that the dummy variable takes the value of one if both stocks fall into the particular category
and zero otherwise. Model 4 uses the same three attributes (beta, firm size and book-to-market
ratio) but expands the number of classifications for each attribute to quintiles (so that there are fif-
teen distinct combinations of categories). Model 5 expands on the preceding model by introducing
additional attributes. In addition to beta, firm size and book-to-market equity, model 5 also uses a
stock’s rate of return beginning seven months and ending one month ago; its return beginning sixty
months and ending twelve months ago; dividend yield; loading on the second principal component;
loading on the default premium factor; and loading on the term premium factor.?®

In model 6, the attribute set X;; includes the product of the historical standard deviations of the
returns on the two stocks. Since a covariance is proportional to the product of standard deviations
(where the factor of proportionality is the correlation coefficient), this model is motivated by the idea
that setting all pairwise correlations to a constant (¢ in equation (10)) is not a bad approximation.
Some support for this view can be found in Table 4, where the average correlation model has the
lowest mean absolute error. In addition, to the extent that return volatilities are relatively more

stable, this model may give better forecasts of covariances. The remaining two models exploit the

19Recall from Table 3 that when covariances measured over the subsequent twelve months {thirty-six months) are

regressed on past historical estimates from the full covariance model, the slope coefficient is 0.4564 (0.4248).
2°Tn models 2 to 5, the breakpoints for classifying each stock by an attribute are updated annually, using only

NYSE stocks.
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information given by industry affiliation (as in Table 2) to forecast covariances. In model 7 each
stock is assigned to an industry (the industry classification is given in Fama and French (1997)).
Equally-weighted portfolio returns are constructed for each industry, and all pairwise covariances
between returns of the industry portfolios are calculated.?! The forecasted covariance between a
pair of stocks is the covariance between their respective industries. Model 8 replicates the exercise, .
but breaks down each industry into large and small firms (relative to the median NYSE firm).
In so doing the model allows, say, a large financial stock to have a different covariance with a
pharmaceutical stock compared to a small financial stock and the same pharmaceutical stock.

Finally, model 9 aggregates the forecasts from four of the previous models (model 1, model 4,
model 5 and model 8). It does this by taking a simple average of the forecasted covariances from
each of the four models.??

Table B1 presents the results. When we evaluate the models’ forecast performance, we report
results relative to covariances measured over the subsequent thirty-six months only, for the sake
of brevity. In general, the models in Table B1 do not yield lower mean absolute errors, compared
to the factor models in Table 3. Not surprisingly, one exception is the historical covariance model
after incorporating mean-reversion (model 1).

Indeed, Table B1 echoes our earlier findings in that the simple models do as well as the models
using numerous attributes and multiple classifications. Most strikingly, the best-performing indi-
vidual model is model (6), which is based on the product of standard deviations. This model yields
a mean absolute error of 0.0022. Possibly, the more complicated models snoop the data too much,
so that on an out-of-sample basis they do a poor job in forecasting.

To the extent that the different models give readings of future covariances that are less than
perfectly correlated, combining them may give rise to better forecasting performance. The last row
in panel B confirms this idea. The combined model has an mean absolute error of 0.0022, and its
forecasts have a correlation of 45.08 percent with the realized values. Compared to the correlation

based only on the regression-adjusted historical covariance, the additional information from the

2! An industry may contain relatively few stocks, so the covariance may not be estimated very reliably in such cases.
To circumvent this problem, at each forecast date we trim the distribution of estimated industry covariances at the

fifth and ninety-fifth percentiles.
22We also experimented with alternative weighting schemes for the different models. The results are generally very

similar.
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other models raises the correlation by a fairly large margin (roughly seventeen percent on a relative

basis).
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Appendix C

Variance forecasting models

Model 1 forecasts future variances from past variances (after adjusting for realized variances’
tendency to regress to the mean). Model 2 predicts a stock’s variance from its loading on three
factors: the market, the size factor and the book-to-market factor. The loadings are estimated
for each stock from a multiple regression using the past sixty months of returns. Note that while
the model lets variances depend on the levels of the loadings, variances are not restricted to be
proportional to the squared loadings. Model 3 uses indicator variables based on the same set of
estimated loadings on the three factors. Corresponding to each loading we define two dummy
variables. If the loading is high (above the 80-th percentile of the distribution of loading estimates
of NYSE firms), the first dummny variable takes the value of one and the second dummy variable
takes the value of zero; if the loading is low (below the 20-th percentile of loading estimates of
NYSE firms), the first dummy variable equals zero and the second dummy variable is set to one. In
total, then, six dummy variables are defined. Model 4 uses the values of three stock characteristics:
market beta, size and dividend yield to predict future variances. Model 5 uses dummy variables
based on four attributes (market beta, size, book-to-market and dividend yield). The dummy
variables are defined as in Model 3, yielding eight variables. Both models 4 and 5 also include an
additional dummy variable to handle the case of zero dividend yield (the dummy variable equals
one if the dividend yield is zero, and is zero otherwise). Finally, model 6 is a composite forecasting
model which gives equal weights to the forecasts from models 1, 3 and 5.22

Table C1 reports the results for a subset of our variance forecasting models. The model based on
regression-adjusted historical variance {(model 1) is associated with the largest dispersion in forecast
values. The range of forecasts from this model is 0.0402, and the standard deviation of forecasts
is 0.50 percent. Nonetheless, its forecasting performance is as good as the other, more elaborate
models in the table. Of all the individual forecasting models, the regression-adjusted historical
variance model produces the lowest average absolute error {0.0062) as well as the highest correlation

between forecasts and realizations (52.25 percent). Again, the poor out-of-sample performance of

23 All models also include a constant term. As in the preceding section, to make the models comparable we calibrate
them so that the mean forecast matches the mean variance realized over the sixty months immediately prior to the

forecast date. There is nothing in our models that rule out negative forecast values.
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the higher-dimensional models may be attributable to data-snooping. Combining the information
in the loadings and attributes along with the information in historical variance to yield a composite
forecast (model 6) raises the correlation to 54.47 percent, representing only a four percent relative

improvement.
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Appendix D

Attribute-matching approach

An alternative procedure for minimizing tracking error volatility is to match the benchmark
portfolio along a number of attributes. Table 6 uses several ways to implement this procedure. In_
every case we use a sample of 250 stocks for portfolio optimization.

Two models, the industry model and the industry, size model are heuristics for matching the
industry composition and the industry-size composition of the benchmark. In the industry model,
there are nine industry sectors. Each sector’s percentage contribution to the total market capi-
talization of the benchmark is calculated. The fraction is then equally allocated across the stocks
belonging to that sector and that are available for portfolio formation, up to a maximum allocation
of two percent. The weight for a stock is then its allocation, scaled so that the weights sum to one
across all the candidate stocks. In the industry, size model each of the nine sectors is divided into
two sets containing stocks that are above (below) the median market capitalization of NYSE firms
in the sector. Within each sector-size classification the portfolio formation procedure is as for the
industry model.

For the other models in Table 6 the general procedure is as follows. In each case we choose the
portfolio weights z; for stock j = 1, ..., N to minimize the portfolio’s residual variance and the sum
of squared deviations between the portfolio’s attributes and the benchmark’s attributes:

N K N
d_mwi+ ) (3252 — Zis)’ (11)
j=1 =1 7=1 )

2

where w3

is the residual variance for stock j and Z;; is its i-th attribute and Z;p is the corresponding
attribute for the benchmark. The portfolio weights are constrained to be non-negative and not
larger than two percent. The attributes (measured as of the portfolio formation date) are ordered
and expressed as percentile ranks (between zero and one).24

In the size, residual variance model the attribute is firm size (equity market capitalization).

The size, book-to-market, residual variance model augments firm size with the ratio of book-to-

24 An elaboration of this approach would allow the penalties in equation (11) for deviations to be different, depending
on the attribute. The penalties may, for example, be related to the variances of the factors associated with each

attribute. Given the exploratory nature of our analysis, however, we do not consider these extensions.
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market value of equity. The nine attribute, residual variance model includes firm size, book-to-
market ratio, dividend yield, rate of return beginning seven months and ending one month before
portfolio formation, rate of return beginning sixty months and ending twelve months before portfolio
formation, and loadings on the default premium factor, on the term premium factor, on the equally-

weighted CRSP market index and on the second principal component.
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Table 1
Distributions of variances, covariances and correlations
of returns on sample stocks

At the end of April of each year from 1968 to 1998 three samples of stocks are selected from eligible domestic
common stock issues on the NYSE and Amex. For each set of stocks, sample variances, pairwise covariances_
and correlations are calculated based on monthly returns over the prior sixty months. Summary statistics
are based on the estimated values pooled over all years. In panel A, five hundred stocks are randomly
selected each year. In panel B, the sample of stocks includes NYSE and Amex domestic primary firms with
equity market capitalization above the 80th percentile of the size distribution of NYSE firms. In panel C,
the sample of stocks includes NYSE and Amex domestic primary firms with equity market capitalization
below the 20th percentile of the size distribution of NYSE firms.

J Variances Covariances Correlations
(A) 500 random stocks
Mean 0.0098 0.0026 0.2801
Standard deviation 0.0063 0.0019 0.1477
Minimum 0.0013 -0.0062 -0.3767
25-th percentile 0.0054 0.0013 0.1818
Median 0.0083 0.0023 0.2845
75-th percentile 0.0126 0.0036 0.3824
Maximum 0.0474 0.0214 0.9196
(B) Large stocks
Mean 0.0067 0.0021 0.3300
Standard deviation 0.0041 0.0013 0.1529
Minimum 0.0014 -0.0031 -0.3137
25-th percentile 0.0042 0.0012 0.2298
Median 0.0058 0.0019 0.3353
75-th percentile 0.0080 0.0028 0.4350
Maximum 0.0336 0.0144 0.8864
(C) Small stocks
Mean 0.0181 0.0042 0.2438
Standard deviation 0.0140 0.0032 0.1381
Minimum 0.0011 -0.0128 -0.3767
25-th percentile 0.0096 0.0021 0.1508
Median 0.0149 0.0037 0.2467
75-th percentile 0.0225 0.0057 0.3397
Maximum 0.1241 0.0463 0.9175
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Table 3

Performance of covariance forecasting models

At the end of April of each year from 1973 onwards a random sample of 250 firms is drawn from eligible
domestic common stock issues on NYSE and Amex. Forecasts of monthly return covariances are generated
from seven models, based on the prior sixty months of data for each stock. Summary statistics for the
distribution of forecasted values are reported in panel A. Forecasts are then compared against the realized
sample covariances estimated over the subsequent twelve months (panel B) and over the subsequent thirty-six
months (panel C). The last estimation period ends in 1997 in panel B, and ends in 1995 in panel C. Summary
statistics are provided for the distribution of the absolute difference between realized and forecasted values
of pairwise covariances. Also reported is the Pearson correlation between forecasts and realizations, and the
slope coeflicient in the regression of realizations on forecasts.

(A) Properties of forecasted covariances

Standard 5-th 95-th
Model Mean deviation Minimum percentile percentile Maximum
Full covariance 0.0027 0.0018 -0.0051 0.0003 0.0061 0.0211
1-factor 0.0025 0.0014 -0.0001 0.0007 0.0051 0.0130
3-factor 0.0026 0.0015 -0.0017 0.0006 0.0055 0.0150
4-factor 0.0026 0.0016 -0.0018 0.0006 0.0055 0.0151
8-factor 0.0026 0.0016 -0.0028 0.0006 0.0056 0.0159
10-factor 0.0026 0.0016 -0.0032 0.0005 0.0057 0.0162
Average covariance | 0.0027 0.0 0.0027 0.0027 0.0027 0.0027

(B) Forecast performance based on subsequent 12 months
Absolute forecast error

95-th

Model Mean Median percentile Maximum | Correlation  Slope
Full covariance 0.0040  0.0028 0.0115 0.1631 0.1792 0.3589
1-factor 0.0037 0.0026 0.0107 0.1409 0.1643 0.5435
3-factor 0.0038 0.0027 0.0110 0.1461 0.1994 0.4868
4-factor 0.0038 0.0027 0.0110 0.1462 0.1987 0.4808
8-factor 0.0038 0.0027 0.0111 0.1518 0.1963 0.4573
10-factor 0.0038  0.0027 0.0112 0.1535 0.1962 0.4488
Average covariance | 0.0039  0.0030 0.0105 0.1403 0.0000 0.0000

(C) Forecast performance based on subsequent 36 months
Absolute forecast error

95-th

Model Mean Median percentile Maximum | Correlation  Slope
Full covariance 0.0019 0.0016 0.0051 0.0224 0.3394 0.3658
1-factor 0.0018 0.0014 0.0046 0.0215 0.3416 0.4863
3-factor 0.0018 0.0015 0.0047 0.0214 0.3590 0.4599
4-factor 0.0018 0.0015 0.0047 0.0214 0.3583 0.4566
8-factor 0.0018 0.0015 0.0048 0.0211 0.3593 0.4405
10-factor 0.0019 0.0015 0.0048 0.0211 0.3599 0.4340
Average covariance | 0.0019  0.0017 0.0042 0.0217 0.0000 0.0000

The full covariance model uses the return covariance estimated over the most recent past sixty months
prior to portfolio formatton as the forecast. Covariance forecasts from the factor models are based on equation
3 in the text. The 1-factor model uses the excess return on the value-weighted CRSP index over the monthly



T-bill rate as the factor. The 3-factor model includes the excess return on the value-weighted index as well
as size and book-to-market factors. The 4-factor model includes these three as well as a momentum factor
(based on the rate of return beginning seven months and ending one month before portfolio formation). The
8-factor model uses as factors the market, size, book-to-market, momentum, dividend yield, cash flow yield.
the term premium and the default premium. The 10-factor model includes these as well as the mimicking
portfolio for the beta factor and a long-term technical factor (based on the rate of return beginning sixty.
months and ending twelve months before portfolio formation). In the average covariance model the forecast
1s the average across all pairwise covariances of stocks in the sample.
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