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1 Introduction

Full information econometric methods in empirical macroeconomics flourished in the early
1980s, stimulated in large part by the work of Hansen and Sargent (1980). Subsequently,
limited information methods became more popular. A prominent example of such methods
is the calibration methodology advocated by Kydland and Prescott (1982).! This shift in
interest reflected increased concern with the notion that, since models are abstractions,
any model is necessarily misspecified on some dimensions. A key perceived shortcoming of
full information methods is that these specification errors have unpredictable and hard to
diagnose implications for the parameter values and for model fit.2 More recently, it has been
emphasized that limited information methods have their own problems. For example, their
small sample properties may be poor compared with those of full information methods.?
Considerations such as these have helped to renew interest in full information methods in
empirical macroeconomics.*

Our objective is to draw attention to the potential value of the frequency domain for
diagnosing estimation and testing results based on full information, Gaussian maximum
likelihood methods.® In the process of illustrating these methods, we provide evidence in
favor of a particular class of business cycle models.

We propose a set of tools for evaluating the impact on parameter estimation and model
fit of different frequency components of the data. We exploit the well known fact that the
log, Gaussian density function has a linear decomposition in the frequency domain. This
decomposition has two implications. First, the likelihood ratio statistic for testing a model
can be represented as the sum of likelihood ratios in the frequency domain. As a result, if a

model is rejected because of a large likelihood ratio statistic, then it is possible to determine,

1Other, related methods include those based on Hansen and Singleton’s (1982) generalized method of
moments (GMM) framework. These include the exactly identified GMM methodology of Christiano and
Eichenbaum (1992), and the overidentified GMM known as simulated method of moments (Duffie and Sin-
gleton 1993). In addition, there are the diagnostic methods proposed by Watson (1993) and Diebold, Ohanian
and Berkowitz (1998).

2A recent example by Hansen and Sargent (1993) illustrates the principle. They show how misspecification
of the seasonal component of a model can, using maximum likelihood methods, lead to distortions in the
estimated values of all model parameters.

3The 1996 issue of the Journal of Business and Economic Statistics reports evidence on the small sam-
ple properties of limited information methods based on generalized method of moment estimators. TFor a
particular empirical application, Fuhrer, Moore, and Schuh (1995) made the case that the small sample
problems are so severe that maximum likelihood performs better than limited information methods, even in
the presence of plausible forms of specification error. Cogley (1998), however, displays an example in which
GMM performs better than maximum likelihood when the technology shock is misspecified.

1Recent examples include Altug (1989); Christiano (1988); Christiano, Eichenbaum, and Marshal (1991);
McGratten (1994); Hall (1996); Ireland (1997); Kim (1998); Leeper and Sims {1994); and McGrattan,
Rogerson, and Wright (1997).

5 Another paper which does this is Altug (1989). Her methods complement ours.



arithmetically, which frequencies of the data are responsible for the poor model fit. Second,
if parameter estimates look ‘strange’, then it is possible to determine which frequencies are
responsible.

We illustrate the method by estimating and testing simple real business cycle models
using data on aggregate, quarterly, US output growth. We start with a standard real business
cycle model, in which the technology shock is a geometric random walk. We first work with
a version of the model in which the only free parameter is the variance of the technology
shock. All other parameters are fixed at the estimated values reported in Christiano and
Eichenbaum (1992). The likelihood ratio statistic, testing this model against an unrestricted
alternative, rejects the model. When we examine the likelihood ratio statistic in frequency
domain, the reason for the rejection is clear. The model fit is very poor in two frequency
bands of the data: those corresponding to periods of oscillation in the range of 2.5 - 8 years
and those corresponding to periods of oscillation in the range of 7 - 7.5 months. When we
free up some of the other model parameters, our Gaussian estimation criterion drives them
into regions that cause the model to conform better to the data over all frequency bands.
However, the estimated parameter values appear implausible on other grounds. Overall, our
results are consistent with the findings reported in Christiano (1988, p. 274), Cogley and
Nason (1995), and Watson (1993). The poor fit in the 2.5 - 8 year range reflects the difficulty
the standard real business cycle model has in generating output persistence.

We next consider a version of the real business cycle model where capital investment
requires four periods to build. We estimate the fraction of overall resources that must
be put into place in each of the first, second, third, and fourth periods of construction.
The parameter estimates are plausible from the perspective of microeconomic studies of
investment projects. They imply that the amount of resources allocated in the early part
of an investment project is relatively small. For reasons explained in Christiano and Todd
(1996), incorporating this feature of investment projects into the time to build model allows
that model to generate persistence in output growth. This in turn helps the model to match
the 2.5 - 8 year component of the data. In addition, the estimated model also does well in
matching the 7 — 7.5 month component of the data. As a result, our time to build model is
not rejected by the data.

We now consider the relationship of our paper to the existing literature. Several other
papers exploit the fact that the Gaussian density function can be decomposed in the fre-
quency domain. For example, Altug (1989) demonstrates its value for estimating models with
measurement error. Other papers emphasize its value in the estimation of time-aggregated
models.® Christiano and Eichenbaum (1987) and Hansen and Sargent (1993) exploit the de-

6See, for example, Hansen and Sargent (1980a), Christiano (1985), Christiano and Eichenbaum (1987)



composition to evaluate the consequences for maximum likelihood estimates of certain types
of model specification error.”

The value of comparing model and data spectra has also been emphasized in the re-
cent contributions of Watson (1993) and Diebold, Ohanian and Berkowitz (1998). Watson
(1993)’s objective is to provide descriptive tools only, and so his approach is not designed
for conducting statistical inference. Ours is, since our methods are simply designed to help
interpret the results of standard statistical estimation and testing procedures.

Our approach is most closely related to that of Diebold, Ohanian and Berkowitz (1998).
They also do estimation using the frequency domain decomposition of the Gaussian density
function. Their paper differs from ours in three respects. First, they use the frequency
domain decomposition as a convenient way to exclude frequency bands from the analysis.
We incorporate all frequency bands into our analysis, and use the frequency domain decom-
position as a device for gaining insight into the results of analysis based on all frequencies.
Second, their approach to testing is different from ours. We focus on the likelihood ratio
statistic and the value of the frequency domain for diagnosing its magnitude. Third, the
application we use to illustrate the method differs from theirs.

The following section presents our econometric framework. Section 3 presents the results.

Section 4 concludes.

2 Econometric Framework

This section describes the econometric framework of our analysis. First, we display the
frequency domain decomposition of the Gaussian density function. Second, we derive the
log-likelihood function of the unrestricted representation of the data. Third, we display the
likelihood of the representation restricted by the various real business cycle models that we
consider. Finally, we display the linear, frequency domain decomposition of the likelihood

ratio statistic.

2.1 Spectral Decomposition of the Gaussian Likelihood

The logarithm of the Gaussian density function for a 7' dimensional vector of observations,

Yty Y, 180

T 1 1,
L(y) = —5 log2m — Slog V| — 5y’v ly

and Christiano, Eichenbaum and Marshall (1991).
"These approaches to specification error analysis are similar in spirit to the early approach taken in Sims

(1972).



where V is the T by T covariance matrix of 4y = [y1, ..., yr|'. It is well known (Harvey, 1989,
p. 193) that for T large, this expression is, approximately,

L(y) = — i 2log 27 +log f (w;) + (1)

(NN

where I(w) is the periodogram of the data:

1 T
1) = ) Y gexp(~iwt)] ®)
2T ;
and o
w; = —;i j=01,..T-1.

Finally, f(w) is the spectral density of y at frequency w implied by V" for large T2
We find it convenient, for later purposes, to express the likelihood function as a weighted
likelihood, as in Diebold, Ohanian and Berkowitz (1998):

. 1 -1 I(wj)
L(y) = —3 jz:% wj |2log 27 + log f (w;) + o) (3)

In our analysis, we will consider w; € {0,1}.

2.2 Likelihood Function for The Structural Model

This subsection derives the restricted reduced form representation for output growth implied

by two structural models, and their associated log likelihood functions.

2.2.1 Real Business Cycle Model

The representative agent in our model has preferences, Eq 350, 0° [log(C:) + ¥ log (1 — ny)],
where C, denotes consumption and n; denotes hours worked. The time endowment is nor-
malized to unity and the parameters [ and % satisfy 0 < @ < 1, ¢ > 0. The resource
constraint 1s C; + I; <Y, where

Y, =K (zn)"", 0<0 <1,

with a technology shock z

8Let V;; denote the 4t element of the I** row of V. Then,

flw)y=Vu+2 > Vijcos(w(i—1),
Jj=i+1

for any L.



log(z,) = log(ze—1) + M

where 7, is i.i.d. Normal with mean u and variance . In the real business cycle (RBC)

version of this model,

Kt+]—(1‘—(5)Kt:It, 0<(5<1

We denote the unknown parameter values of the RBC model by the vector ®. In the next
section’s estimation exercise, we consider two cases. In one, § = 0.344, ¢ = 3.92, § =
0.021,3 = 1.03 %% and ® = 0, In the other, ¥y = 3.92, 8 = 1.037° %% and ® = (0y,6,0).
These choices are made to enhance the illustrative value of the application studied in Section

Three.

2.2.2 Time to Build Model

The time to build model differs from the RBC model only in the investment technology.

Period t investment is:

Iy = 1oy + Doy + G349 + PaTi_3,

where ¢; > 0 fort =1,2,3,4, and

Pr+odr+ P+ =1

The investment technology requires that if x; units of net investment are to occur during
period t + 3, i.e.,

Kita— (1 - 6)Kt+3 = Iy,
then, resources in the amount ¢z, must be applied in period ¢, ¢9z, must be applied in
period t + 1, ¢z, must be applied in period t 4 2, and finally ¢4z, must be applied in period
t + 3. Once initiated, an investment project’s scale cannot be expanded or contracted. As

in the RBC model, ® denotes the vector of parameters to be estimated. In our analysis,
(I) = (O—U7 d)lu ¢2> QS.S)
2.2.3 Reduced Form Representation and Likelihood Function

We used the undetermined coefficient method described in Christiano (1998) to approximate
the policy rules for employment and capital that solve the planning problem associated with
the above two model economies. We manipulated these approximate policy rules to obtain

a reduced form representation for y; = log(Y:/Y;-1):
ye = oLy @)y = (D) + a1 (D) -1 + (D)2 + ... (4)
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This representation is a restricted ARM A(4,8) model®. That is, a(L; @) is the ratio of an
8" order polynomial in the lag operator, L, and a 4** order polynomial in L. We restrict ®

so that

guaranteeing that the spectral density of y; exists. We also restrict ® so that a(z;®) = 0
implies |z| > 1.
The spectral density of y; at frequency w is

2

J7(@; @) = Z2ale ¥ B)a(e; @),

where the superscript, 7, indicates the restricted model for 1. The frequency domain ap-

proximation to the restricted likelihood function is (1) with f(w) replaced by f7(w;®).

2.3 Unrestricted Reduced Form Likelihood

In order to test our model, we need to estimate an unrestricted version of (4):
Yy = (L), (5)

where
o (L) =1+ oL +ayL*+ ...

Also,

> () < oo,

i—0
and «*(z) = 0 implies |z| > 1. These correspond to the analogous restrictions imposed on the
restricted reduced form. The polynomial in L, (L), is the ratio of an 8" order polynomial
and a 4" order polynomial, with constant terms normalized to unity. This specification
nests the real business cycle model and the time to build model. It has 13 free parameters:
the 12 parameters of a*(L), and o.. We denote these by the 13 dimensional vector, 7. Let
f*(w;y) denote the spectral density of y;:

Qe o (e)

fi(wiy) = S,

The frequency domain approximation to the unrestricted likelihood function is (1) with f(w)

replaced by f*(w; ).

9The appendix presents the derivation of this ARMA representation.



2.4 Cumulative Likelihood Ratio

The likelihood ratio statistic is
A=2(L"-L"),
where L” and L* are the maximized values of the restricted and unrestricted log likelihoods,
respectively. Under the null hypothesis that the restricted model is true, this statistic has a
chi-square distribution with degrees of freedom equal to the difference between the number
of parameters in the restricted and unrestricted models (Harvey, 1989, p. 235). Define
fMw; ® 1 1
) = G 1) | s~ )

where a hat over a variable indicates its estimated value. Then, it is easily confirmed that,

A= X:: AMw;).

This expression can be simplified because of the symmetry properties of Mw) :

)\(w%Al) = /\(W%H)’ = 1,2, ceey % — 1.
These imply that A can be written:
T
A=A0)+2 Awy) 4+ A(m). (7)
j=1

This is our linear, frequency domain decomposition of the likelihood ratio statistic.
If ) is large, then we should be able to determine which w;’s are responsible for this. To
assist in this, we define the cumulative likelihood ratio:

Aw) = 20)+2 ) Mwj), O<w<T

wy <w

A(0) = X0), (8)

A sharp increase in A(w) in some region of w’s signals a frequency band where the model

fits poorly.

3 Results

This section presents our results for estimating and testing the RBC and time to build
models. The periodogram of the data, (2), and the spectral density of the unrestricted
reduced form are important ingredients in the analysis, and so we begin by presenting these.
The following two subsections present the analysis of the RBC and the time to build models,

respectively.



3.1 Periodogram and Spectrum of Unrestricted Reduced Form

Figure 1 presents a smoothed version of I(w) for w € (0, 27), based on (2).!® The thick solid
line in Figure 1 is the spectrum of our unrestricted ARM A(4, 8) representation of US GDP
growth. Note how similar these are. This is to be expected, since both represent consistent
estimates of the spectrum of the data.

Vertical bars draw attention to three frequency bands, the low frequencies (those corre-
sponding to period 8 years to infinity), the business cycle frequencies (period 1 year to 8
years) and the high frequencies (period 2 quarters to 1 year). Note that the low and business
cycle frequencies have high power. In addition, the spectrum has pronounced dips in the
7 — 7.5 months (near w = 2.5) range and in the higher frequency component of the business

cycle (near w = 1.5).

Figure 1: Estimated Spectral Density
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3.2 Estimation and Testing of RBC Model

We begin by estimating the version of the RBC model in which only the innovation variance
of the technology shock, oy, is free. We call this the ‘restricted RBC” model. We then turn
to the version (the ‘unrestricted RBC’ model) in which § and @ are also free.

The spectrum of the estimated restricted RBC model is displayed in Figure 2. For conve-
nience, Figure 2 reproduces the spectrum of the unrestricted ARM A(4, 8) representation of
the data from Figure 1. As emphasized in Watson (1993), the spectrum of the RBC model

10The data are seasonally adjusted, cover the period 1955Q3 to 1997Q1, and are from the Citibase database.
The sample mean of y; is subtracted from the data, so that /{0) is zero. We present the smoothed version
of the periodogram because, as is well known, the unsmoothed periodogram is quite volatile. The smoothed
periodogram at frequency w; is a centered, equally weighted average, 2?273 I{w;v4)/7.



is essentially flat. To a first approximation, the model implies that aggregate output inherits

the persistence properties of the technology shock, which is a random walk by assumption.

Figure 2 Spectra
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For a formal evaluation of model fit, consider Figure 3 which displays the cumulative
likelihood ratio, (8).
w = 7). Under the null hypothesis that the restricted RBC model is true, A is the realization

Note that A is just under 25 (see the cumulative likelihood ratio for

of a chi-square statistic with 12 degrees of freedom. The statistic has a p-value of 1.5 percent
and hence the model is rejected at the five percent significance level. To see why the model
is rejected, note that the cumulative likelihood ratio displays sharp increases in the low

frequency component of the business cycle, and in the frequencies corresponding to periods
7-7.5 months.

Figure 3: Cumulative Likelihood Ratio
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We now turn to the unrestricted RBC model. The estimated parameter values are 0 =
0.37 and § = 0.73. Although the estimated value of capital’s share is reasonable, the estimated
value of 8 is much larger than seems plausible in light of data on investment and the stock
of capital (Christiano and Eichenbaum,1992). To see what frequency component of the data
drives this result, we recomputed g, § several times using alternative weights in the weighted

likelihood function, (3). The estimation results are displayed in Table 1 and Figure 2.

Table 1: Weighted Likelihood Estimation Results

Frequencies 0 ) o A Aw | Observations
Used

High 0.25]0.99|0.0126 | 9.6 | 3.7 | 50%

Business Cycle | 0.51 | 0.99 | 0.0170 | 26.1 | 2.3 | 43%

Low 0150 0.0100 | 373 | -0.2 | 7%

All 0.37 1 0.730.0144 | 85 | 8.5 | 100%

e Notes: These are the results of estimating the unrestricted RBC model by weighted maxi-
mum likelihood (i.e., by maximizing (3) ). Low frequencies: w; equals 1 only for w;’s that
belong to frequencies corresponding to periods 8 years and up. Business cycle frequencies: w;
equals 1 only for w,’s that belong to frequencies corresponding to periods 1 to 8 years. High
frequencies: w; equals 1 only for w;’s that belong to frequencies corresponding to periods
2 quarters to 1 year; All frequencies: w; equals 1 for all 7. Percent of observations used:
fraction of j € {0,1,...,7 — 1} equal to unity in the weighted likelihood estimation. A:
likelihood ratio statistic. Ay: likelihood ratio statistic based only on the subinterval for the
weighted likelihood function.

The business cycle and high frequency components of the data drive § to nearly unity.
With § near one, the model reduces to the scalar version of the model in Long and Plosser
(1983), in which output growth is a first order autoregression with autoregressive parameter
9. With the spectrum of this process, proportional to 1/(1 + 6% — 20 cos(w)), the model is
able to match the shape of the data spectrum in the business cycle and high frequencies (see
‘Unrestricted RBC, Business Cycle’ and ‘Unrestricted RBC, High’ in Figure 2). However,
different values of  work better in the two frequency ranges.

To match the low frequencies, a very different parameterization is needed, with ¢ nearly
0 and 0 small (see ‘Unrestricted RBC, Low’ in Figure 2). The parameter estimates based on

all frequencies are roughly an average of the results over the various frequencies.

3.3 Time To Build Model

Results for estimating the time to build model are displayed in Figure 4. For convenience,
Figure 4 displays the spectrum of the restricted RBC model, and of the data. Both of these
are taken directly from Figure 2. Our estimates of the weights are: ¢; = 0.01, ¢ = 0.28,
¢3 = 0.48, and ¢4 = 0.23. Note that the first weight is almost zero. This implies that in

10



the first period of an investment project, essentially no resources are used. This motivates
referring to this first period as a planning period, one in which plans are drawn up, permits
are secured, etc.!! We refer to this as the estimated time to plan model.

Note how well the spectrum of the time to plan model conforms with the spectrum of
the data. The time to plan model even matches the dip in the spectrum in the 7-7.5 month
range. This is reflected in the good performance of the model’s cumulative likelihood ratio
(see Figure 3). The cumulative likelihood ratio rises slowly with frequency and achieves a
maximum value just under 10. Under the null hypothesis that the model is true, this is the
realization of a chi-square distribution with 9 degrees of freedom. Under these conditions,

the p-value is 35 percent. As a result, the model is not rejected at conventional levels.

Figure 4 Estimation Results for the Time to Build Model
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& RBC Model
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o
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We compare the estimated time to build model with two others: the time to build model
suggested in Kydland and Prescott (1982), where ¢; = 0.25, i = 1,2, 3,4; and the version of
the time to plan model analyzed in Christiano and Todd (1996), where ¢; = 0, ¢; = 1/3,
i = 2,3,4. We do not display the spectrum implied by Kydland and Prescott’s model, because
that essentially coincides with the spectrum of the restricted RBC model (King, 1995). As
a result, Kydland and Prescott’s model is rejected like the restricted RBC model. For a
detailed discussion of the similarity of these models, see Christiano and Todd (1996) and
Rouwenhorst (1991). The Christiano and Todd (1996) parameterization of the time to plan
model is an improvement over the restricted RBC model in the business cycle components

of the data (Figure 3). Over all frequencies, the two models, however, have a comparable fit.

11See Christiano and Todd (1996), who argue that the notion of a planning period conforms well with
studies of investment projects.

11



4 Conclusions

We have described some advantages, for diagnosing model estimates and fit, of using the
frequency domain decomposition of the likelihood function. We illustrate the approach
with an empirical analysis of the standard RBC model and a version with a time to build
technology. We reject the former in favor of the latter. The time to build technology that fits
the data best appears to be one in which investment projects begin with a planning period,
during which relatively few resources are expended. Christiano and Todd (1996) emphasize
that this specification conforms well with microeconomic studies of investment projects, and

discuss other advantages to this model for business cycle analysis.

5 Appendix: Showing that y is an ARMA (4,8)

The policy rules that solve the time-to-build model are linear equations in the log of capital

In K and of hours-worked Inn and the technology shocks (where In z; equals Inz,—1 + 7;).

nK, = (1-AQ)InK+AL)InK, +(1—A(L))Inz g+ +B(L) (-4 — 1)
Inn; = Inn—C(1)Ink+C(L)InKyyqa — C(L)Inze + D(L) (e — 1)

The terms A(L) and B(L) are polynomials of degree four and C(L) and D (L) are poly-
nomials of degree three in the lag operator. Capital is a function of the past capital and the
shocks to technology from four to eight periods ago. Hours worked is a function of future
capital (since you have to work for the investment that you have already committed to mak-
ing) and the current and lagged shocks. The variables without the time subscript are the
variables at steady state.

Taking the first difference of the above two equations eliminates the steady state values.

AlnK, = A(L)AInK,+ (1—A(L) Alnzeg+ B(L) & (g — )
 (1-AL)+BL)(-L)L*
- 1— A(L) G

Alnn, = C(L)AlnKepq— C(L) Alnz,+ D(L) A (n — )

The next step is to derive an equation for . Output is produced using a Cobb-Douglas

production function. Hence, output can be written as

12



lnY}, = gant+ (1 - 9) lnnt + (1 - 9) Inzt
Taking the first difference
Yt = A].Iln = HAant—{— (1 —8) Alnnt+ (1 —G)T]t

Substituting in the values for Aln K; and A lnn, we have

0(1—- A(L)+ B(L)(1—- L)) L*+
1—- A(L =
= AEDs= (1 gy D) 0 A BE - 1)+ )
The polynomials A and C are fourth order and the polynomials D and B are third order.
As the first difference operator is also present, the moving average component is an eighth
order polynomial. The autoregressive term is the same order as A. The time-to-build model,
therefore, can be characterized as a restricted version of an ARMA(4,8) model. The RBC

model nests inside this specification.

13
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