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I. Introduction

Substantial job destruction occurs during aggregate contractions. Thanks

to pioneering work by Davis and Haltiwanger [1990 and 1992], data on job

destruction have made possible much more thorough investigation of its role. This

paper looks at one critical aspect of job destruction—its concentration during

brief periods, typically the most intense parts of cyclical contractions.

I consider the following explanation of the temporal concentration of job

destruction: Production occurs in units such as plants. Owners decide each period

whether to continue or to shut down each unit by comparing a continuation value

to a shutdown value. During periods of calm, the difference—the net continuation

value—of some units drifts toward zero as these units depreciate physically or

become obsolete. They enter a zone of vulnerability to adverse shocks. When a

shock occurs, it clears out the zone of vulnerability. Until the zone begins to fill

up again through the normal diffusion of units across the spectrum of

productivity, another shock will have less effect. Thus a shock releases job

destruction that might otherwise have occurred earlier and also accelerates

destruction that would otherwise have occurred later. Job destruction is

concentrated in one episode.

Temporal concentration arises when productive units are heterogeneous. I

describe the simplest possible model, of the type developed by Caballero and

Hammour [1996, 1998]; Caballero, Engle and Haltiwanger [1997]; and others,

and show that it results in concentration of episodes of job destruction and

inventory runoff. Data on job destruction and employment changes show

temporal concentration. On the other hand, the model suggests that job creation is
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a more persistent process, driven by the availability of unemployed workers. Data

on job creation support this prediction as well.

II. Concentrated Processes

I define a concentrated process as one whose current value is likely to be

lower if its values over a span of time up to the recent past have been higher. Let

dt  be a covariance-stationary series. I define its concentration function with lag

τ  and window N to be
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This is negative of the coefficient of the regression of dt  on the lagged moving

average, 
1

1N
d dt t N− − − ++ +τ τLb g . For a window one observation wide, the

concentration function is the negative of the autocorrelation function,

φ τ
τ

t
t tc

Cov d d
V d

= − = −
,

( , )

( )1  . (2.2)

A concentrated series has a concentration function with positive values. The

concentration function provides a way to determine the degree of concentration of

a series and a way to test for concentration. The reason for skipping the first τ −1

lags will become apparent from some examples shortly.

Concentration is also manifested in the three standard representations of

time series. First, as noted above, a concentrated series will generally have

negative autocorrelations except at the shortest lags. Second, in the moving
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average representation of a concentrated series, the coefficients on longer lags of

the innovation are negative. An innovation causes a unit increase in the series

when it occurs, but causes lower future values. For job destruction, an impulse

that causes destruction today means less destruction is likely in the future. Third,

in the autoregressive representation, the coefficients on longer lags of a

concentrated series are negative. Concentration could be detected and measured

by estimating an autoregressive-moving average process and then studying either

its moving-average or autoregressive representations. However, it appears that the

estimation of a full process with many parameters results in weaker tests than the

direct estimation of a well-chosen point on the concentration function. I will refer

to such a single value of the concentration function as a concentration coefficient.

A concentration coefficient can be estimated as the negative of the

coefficient in the regression of dt  on 
1

1N
d dt t N− − − ++ +τ τLb g . Its sampling

dispersion can be measured by the Newey-West robust standard error. The reason

for choosing a window of width N greater than one is, as usual, to reduce the

effect of sampling error. With very long series, or in situations where the

autocorrelations are known with certainty, it is appropriate to use N = 1 and thus

to study the autocorrelation function or correlogram. The correlogram is also

useful to diagnose concentration even when sampling variation is considerable.

A. Concentration with a White-Noise Driving Force

A simple example of a concentrated process is
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Let



5

V
L

d dt t=
−

− −
1

1 1φ
c h , (2.4)

interpreted as the stock of vulnerable jobs, which builds up during periods of

below-average job destruction. Then the model can be written as

d Vt t t= +λ ε . (2.5)

Job destruction is more likely when the stock of vulnerable jobs is high.

The correlogram for this process is:
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The autocorrelations are negative, starting near −λ  at lag 1 and falling in

magnitude at rate φ λ−  for longer lags.

B. Concentration with a Persistent Driving Force

A more general model is

d L d zt t t= − +−βb g 1  , (2.7)

where β( )L  embodies concentration and zt  is moderately persistent. The driving

force zt  might be a low-order moving average or an autoregressive process with

roots not too close to one in modulus. The dynamics of dt  will reflect both those

of the driving process and of concentration.

Consider an MA(1) process for the driving force,

z Lt t= +1 θ εb g  , (2.8)
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with θ ≤ 1 without loss of generality, together with the concentration specification

of the previous example,

β λ
φ

( )L
L

=
−1

, (2.9)

The left side of Figure 1 shows the correlogram for θ = 0.7.

In the case of an AR(1) driving process, say

z
Lt t=

−
1

1 ψ
ε , (2.10)

with ψ  = 0.5, the resulting correlogram is shown on the right side of Figure 1,

with the same concentration specification.
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Figure 1. Correlograms of Concentrated Processes with Moderately Persistent
Driving Processes
The left panel shows the autocorrelations when the concentration results from a
geometric lag process and the driving force is first-order moving average. The right panel
refers to the same situation except that the driving force is first-order serially correlated

For both MA and AR driving processes, the resulting correlograms of the

series combining the driving process and the concentration effect have the shape
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characteristic of a concentrated series except for the low-order correlations.

Estimation of a concentration coefficient with an appropriate lag τ  should reveal

the effect of concentration even though it is obscured by the dynamics of the

driving process for the low-order coefficients.

As these examples illustrate, the detection of concentration is most

effective if the lag, τ , is chosen just high enough to avoid contamination by the

short-run dynamics of the driving process, and the window width, N, is chosen not

so high as to extend the window into ranges where the concentration effect has

disappeared. In results reported later in this paper for U.S. job destruction, I use τ

= 6 quarters of lag and N = 4 quarters wide.

III. A Model of Shutdowns

The model developed in this section embodies standard ideas about job

destruction and the life cycles of units—see my companion paper Hall [1999] for

a discussion of a fuller model and the related literature. All job destruction occurs

because of shutdowns. The purpose of the model is to make some simple points

about the behavior of job destruction, not to create a general equilibrium model of

recessions. In the model, there is a discrete set of alternative levels of profit that a

unit can earn. The concept of profit is the one suited to the decision-making unit,

which may or may not internalize all costs associated with job destruction (see

Hall [1999]). A new unit starts at the highest level, of profit, 1. With probability

δ  each period, profit, zt , falls by a factor ω < 1:

Pr[ ]z zt t= = −−1 1 δ (3.1)

Pr[ ]z zt t= =−ω δ1  .
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Each period, all units shut down that would otherwise be at or below a cutoff level

of profit zt
* ; the cutoff level evolves as a stationary random variable. Shutdowns

define the flow of job destruction in the model. Upon shutdown, workers remain

idle for one period and then have a constant probability each period, f, of

employment at a new unit, which starts at the highest level of profit.

Figure 2 shows 270 periods of history of job destruction from the model,

with the shutdown margin following an AR(2) process. Parameter values are:

Parameter Interpretation Value

δ Probability of transition to lower profit level 0.2

Roots of process for shutdown margin 0.9, 0.5

Mean of shutdown margin 0.84

Standard deviation of innovation in
shutdown margin

0.1

ω Profit reduction factor 0.98

f Job-finding rate 0.2
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Figure 2. Job Destruction from Model.

The model generates occasional bursts of job destruction, during times

when the shutdown margin rises into a region of the current distribution of units

across categories where there are substantial numbers of vulnerable units. Figure

3 shows the correlogram of job destruction. For lags past the first, the

autocorrelation of job destruction is negative, showing that the series is

concentrated. With τ = 6  and N=4, the concentration coefficient is 0.198 with a

standard error of 0.039 (based on 1300 observations).
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Figure 3 Correlogram of Job Destruction from Model.

Employment dynamics depend on job creation as well as job destruction.

A simple view of job creation is that a job is always created when a qualified

worker encounters an employer. The model of this section embodies that view.

The flow of job creation is proportional to the number of unemployed workers

searching for new jobs. Job creation shares the highly persistent dynamics of

unemployment. Aggregate shocks have their immediate effect on job destruction

in the short run and only affect job creation through the cumulating stock of

searching workers.

In the simple model, an impulse that results in a sharp spike in job

destruction causes a prolonged period of unemployment and job creation. Job

creation is a geometric moving average of job destruction, so the correlogram of

creation has much more positive serial correlation at short and medium lags.

Eventually, the concentration of job destruction shows through in negative serial
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correlations of creation, but only after a considerable lag. Figure 4 shows the

correlogram of job creation for the simple model.
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Figure 4. Correlogram of Job Creation from Model

IV. Job Destruction in U.S. Manufacturing

The Davis-Haltiwanger data break job destruction into components from

plant shutdowns and from employment reductions in plants that continue to

operate. The second type of job destruction includes the elimination of shifts and

the closing of productive units within plants, as well as reductions in staffing that

do not involve shutting down discrete units. Over the entire sample period, 1972-

88, 12 percent of total job destruction in manufacturing occurred because of plant

shutdowns. Plant-shutdown job destruction is more sensitive to aggregate shocks

than is the remainder of job destruction—shutdown destruction rose to 18.5

percent of total destruction in 1974, 21.3 percent in 1981, and 23.9 percent in
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1986. Davis, Haltiwanger, and Schuh [1996, p. 29] report that another 44 percent

of destruction takes the form of employment reductions of 25 percent to 99

percent.

Figure 5 shows job destruction from plant closings, seasonally adjusted, as

measured by Davis and Haltiwanger from the Longitudinal Research Database.

For details on the construction of the data, see Davis, Haltiwanger, and Schuh

[1996]. In brief, the database reports employment each quarter in a large random

sample of manufacturing plants. A closing is defined as a change to zero

employment. The series is calculated as the ratio of employment in all closed

plants in the quarter before closing to total employment in the sample.
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Figure 5. Shutdown Job Destruction Rate in U.S. Manufacturing, 1972-1988
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Figure 6 Correlogram of Shutdown Job Destruction

Figure 6 shows the correlogram of the shutdown job destruction rate. The

positive values for the first three lags appear to relate to the dynamics of the

driving force. The autocorrelations for lags 5 through 17 are negative, suggesting

considerable concentration. The concentration coefficient with lag 6 and width 4

is 0.395 with a standard error of 0.183, statistically unambiguous evidence of

concentration (p = 0.035).

The data in Figures 5 and 6 relate to plant closings. The bulk of job

destruction arises not from plant closings but from events that cause employment

in a plant to shrink to levels still above zero. Shifts may be eliminated, units

within plants shut down, or there may be reductions in staffing without explicit

shutdowns. Although these decisions involve stronger interactions with other

influences than the decision to shut a plant, the character of the decision is the

same. In particular, all forms of job destruction should be concentrated for the

reasons discussed earlier in this paper.

Figure 7 shows job destruction at continuing plants, seasonally adjusted,

as compiled by Davis and Haltiwanger. This component of job destruction also

tends to concentrate in bursts, such as in 1982 and 1975.
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Figure 7. Job Destruction Rate for Continuing Plants in U.S. Manufacturing, 1972-
1988
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Figure 8. Correlogram of Job Destruction at Continuing Plants
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Figure 8 shows the correlogram of job destruction at continuing plants.

Again, the first few autocorrelations are positive, presumably reflecting the short-

run dynamics of the driving force. At lag 5, they turn negative and remain

consistently negative through lag 18. The concentration coefficient with lag 6 and

width 4 is 0.285 with a standard error of 0.228, reasonable but not statistically

unambiguous evidence of concentration (p = 0.217). A longer window would

probably result in a nominally stronger finding, but the test is hard to interpret if it

is based on a preliminary inspection of the correlogram.

V. Job Creation
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Figure 9. Job Creation Rate in U.S. Manufacturing

Figure 9 shows job creation in U.S. manufacturing as measured by Davis

and Haltiwanger. There is no doubt that job creation reaches its highest levels

around the time that unemployment reaches its maximum during a recession,
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usually a few quarters after the initial shock. On the other hand, in some

recessions, notably in 1975, job creation falls sharply, contrary to the simple

model. But the correlogram in Figure 10 shows that the model’s predictions about

concentration of job creation are consistent with the data. There is no systematic

tendency for the autocorrelation of job creation to turn negative after a few

quarters.
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Figure 10. Correlogram of Job Creation.

VI. Concentration of Employment Changes

In the simple model, most of the short-run dynamics of employment come

from job destruction. Data on job destruction and creation are generally consistent

with this view, though creation has more short-run movements than is strictly

consistent with proportionality of creation and unemployment. Nonetheless, it

seems reasonable to expect to find concentration in employment changes, which
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are the negative of the difference between job destruction and creation. Figures 11

and 12 show the correlograms of the log-changes in employment in durables

manufacturing and non-durables.
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Figure 11. Correlogram of Employment Change, Manufacturing Durables
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Figure 12. Correlogram of Employment Change, Manufacturing Non-Durables
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Concentration is pronounced in durables and is statistically unambiguous.

The concentration coefficient for lag 6 and window width 4 is 0.277, with a

standard error of 0.10 (p value of 0.006). Though the correlogram for non-

durables shows signs of concentration, the evidence is ambiguous: the coefficient

is 0.172 with a standard error of 0.147 (p value of 0.243).

VII. Concluding Remarks

A simple model of heterogeneous jobs has a sharp testable implication:

The flow of job destruction should have the econometric property of

concentration. The likelihood of additional job destruction falls below normal a

few quarters after a spike of job destruction. On the other hand, job creation tracks

the stock of unemployed workers, and creation is more persistent than is

destruction. Data from the U.S. manufacturing sector supports these predictions.
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