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Hansen-Jagannathan (1991) bound. The approach in this paper is different from that of Gallant,
Hansen and Tauchen (1990), but both approaches yield the same bound when the conditional
moments are known. Unlike Gallant, Hansen and Tauchen, our approach is robust to
misspecification of the first and second conditional moments. Potential applications include testing
dynamic asset pricing models, studying the predictability of asset returns, diagnosing the accuracy
of competing models for the first and second conditional moments of asset returns, dynamic asset
allocation, and mutual fund performance measurement. The illustration in this article starts with the
familiar Hansen-Singleton (1983) setup of an autoregressive model for consumption growth and
bond and stock returns. Our innovation is to add time-varying volatility to the model. Both an
unconstrained version and a version with the restrictions of the standard consumption-based asset
pricing model imposed serve as the data-generating processes to illustrate the behavior of the
bounds. In the process, we discover and explore an interesting empirical phenomenon: asymmetric
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1 Introduction

Hansen and Jagannathan (1991) derive a lower bound (the H.J bound) on
the standard deviation of the pricing kernel or the intertemporal marginal
rate of substitution as a function of its mean. Using only unconditional
first and second moments of available asset returns, the HI bound defines
a feasible region on the mean-standard deviation plane of pricing kernels.
Whereas initially HJ bounds primarily served as informal diagnostic tools for
consumption-based asset pricing models (see Cochrane and Hansen (1992)
for a survey), its applications have rapidly multiplied in recent vears. They
now include formal asset pricing tests (Burnside (1994), Ceechetti, Lam and
Mark (1994), Hansen, Heaton and Luttmer (1993)), predictability studies
(Bekaert and Hodrick (1992)}, mean variance spanning tests (Belkaert and
Urias {1996), DeSantis (1996), Snow (1991)), market, integration tests (Chen
and Knez (1995)), mutual fund performance measurenment (Chen and Knez
(1996), Ferson and Schadt (1996), Dahlquist and Siderlind (1997)) and more.

The pricing kernels implied by standard consumption-based asset pric-
ing models with time-additive preferences dramatically fail to lie inside the
feasible region defined by HJ hounds computed using a variety of asset re-
turns. These results guided rescarchoers to develop models that perform bet-
ter (that is, imply more variable pricing kernels)!, whereas others show that
the bounds themselves are weaker when long-horizon returns are considered
(Daniel and Marshall (1996)), or when market. frictions are explicitly accom-
modated (He and Modest (1993), Luttmer (1996)). Of conrse, the tighter
the HJ bound, the stronger the restrictions on asset pricing models. While
a number of methods have been proposed to improve H.J boands?, the most
obvious and promising one is the use of conditioning information in the com-
putation of the bounds.

HJ bounds are computed by projecting the pricing kernel unconditionally
on the space of available asset payoffs and computing the standard deviation
of the projection. Obviously, when agents can use conditioning informa-
tion to form portfolios, the dimension of the space of the available asset
payoffs can be increased. Gallant, Hansen and Tauchen (1990, henceforth
GHT) show how to use conditioning information efficiently. The procedure
15 in principle straightforward. They construct an infinite space of available
payoffs combining conditioning information and a primitive set of asset pay-

'Changes in the preference structure have proved reasonably successful, see for exam-
ple Bekaert (1996), Campbell and Cochrane (1997), Constantinides (1990) and Heaton
(1995) for the effects of habit formation, Epstein and Zin (1991a) for non-expected utility
preferences that disentangle risk-aversion from intertemporal substitution, Bekaert, Ho-
drick and Marshall (1997), Bonomo and Garcia (1993), and Epstein and Zin (1991b) for
disappointment, aversion preferences. Constantinides and Duffie (1996) and Heaton and
Lucas (1996) examine incomplete-market economies with heterogeneous consumers.

ZSnow (1991) studies the restrictions on the higher moments of the pricing kernel.
Balduzzi and Kallal (1997) tighten the bounds by using the risk premiums that the pricing
. kernel assigns to arbitrary sources of risk.



offs. The variance of the nnconditional projecrion of the pricing kernel onto
that space is the efficient L] bound, which we will term the GHT bonnd?.
The GHT bound depends on the Hirst and second conditional moments of
the asset payofls. To estimate these conditional moments, GHT (1996) use
the semi-nonparametric technique (SNP) developed by Gallant and Tauchen
(1989).

The GHT procedure has not been used very much in practice, and re-
searchers have mostly resorted to o simpler technicque of embedding condi-
tioning information in the compuration of I bounds. They simply scale
returns with predictive variables in the information set, angment the space
of available payoffs (and corresponding prices) with the reievant scaled pav-
offs or returns and compute a standard L] bound for the augmented space
(sce, for example, Hansen and Jagannathan (1990), Cochrane and Hansen
(1992), Bekaert and Hodrick (1992), He and Modest (1995) and many oth-
ers). This procedure is much simpler to implement than GHT sinee it does
not require knowledge of conditional mowents at all. Many studies have
found dramatic improvements in H.J bounds with the use of scaled retiurns
and have interpreted this improvement as an indication of predictability in
returns (see for example Bekaert and Hodrick (1992)). This scems intuitively
clear: when a vartable predicts an asset return, it may be possible to create
managed portfolios that tmprove the risk-return trade off as measured by
the Sharpe Ratio and it is well-kuown that HT bounds and Sharpe ratios are
closely related.

In this article, we first find the optimal scaling factor. That 1s, we an-
swer the question: when scaling a return with a function of the conditioning
information, what is the function that maximizes the Hansen-Jagannathan
bound? The solution is an application of functional analysis. As an impor-
tant side result, we explare the relation between improvements in HJ bounds
due to conditioning informatton and the presence of return predictability.
Second, we show that our bound, which we term the optimnal bound, can
be as tight as the GHT bound when the conditional moments are known.
When the conditional moments are not known, our bound has an interesting
robustness property. The GHT bound is only correct when the conditional
moments are accurate, if they are mis-specified the resulting bound may bhe
larger than the variance of the tre pricing kernel. Since the optimal bound
we derive is a standard HJ bound, it always provides a bound to the vari-
ance of the true pricing kernel even if incorrect proxies to the conditional
moments are used. Third, we use data on U.S. stock and bond returns to
illustrate the relation between the GHT, the optimal and standard (scaled)
HJ bounds in the context of a gencralization of the Hansen and Singleton
(1983) log-normal model for consumption and asset returns.

Contemporaneous with our work, Ferson and Siegel (1997a) derive and
study the optimal scaling factor in the setting of mean-variance frontiers.

3While GHT study both conditional as well as unconditional projections, we will only
study unconditional projections.



Since there is a well-known dualiry between Hansen-Jagannathan fronticrs
and the mean-variance frontier, these results are similar and a Anal section
of Ferson and Siegel (1997a) examines the link with H.J honnds. Our proof is
different however, and both the focus and applications of onr work are very
different as well. Ferson and Siegel (1997h) provide an alternative proof of
the optimality of the GHT bound and compare empirically its performance
to the usc of scaled returns. '

The remainder of the paper is organized as follows. In section 2, af-
ter briefly reviewing the construction of standard HJ bounds, we derive the
optimal scaling factor in the one asset case and discuss some of its charac-
teristics. In scction 3, we generalize to the multipte asset case, and explore
formally the relation with the GHT bound. Section 4 contains onr enipiri-
cal illustration. We estimate an asvmmetric GARCH-in-Mean model on US
consumption growth, bond and stock returns and test the restrictions of the
standard consmmption-based asset pricing model. Section 5 nses the con-
strained and unconstrained versions of the model to illustrate the behavior
of the various bounds. We discuss fiuture potential applications of our results
briefly in the conclusions.

2 The Optimal Bound in the One-Asset Case

In this section, we first review the standard HJI bound while setting up nota-
tion. We then prove our main proposition regarding the form of the optimal
scaling factor. Finally we examine under what conditions scaling improves

the HJ bound.

2.1 Notation and Review

Let there be an asset with payeff #,; and price p,. When the payoff is
a (gross) return, the price equals one. Let the vector w, denote the set of
conditioning variables in the economy and let [, be the o algebra of the
measurable functions of y,, that is, [, is the information sct. The pricing
kernel m;., prices the payoffs correctly if

E-Tnt.-rlrt+l|[t:| =Dt (1)

By the law of iterated expectations, this implics

E mt+lrt+l} = E{Pt] =1q : (2)

Hansen and Jagannathan (1991) derive a bound on the volatility of m,, | that
can be computed from asset payoffs and prices alone. This bound follows
immediately from (2} by noting that

E[mtﬂ'rtﬂ} = cov !:7”/,f+[, ‘r¢+1] -+ E[mtﬂ} E [‘I‘H,l]
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and applying the Cauchy-Schwarz inequality:

9

o] o)

Var {r‘“r 1} )

To simplify notation, let’s denote the unconditional first and second moments

of ryp by o= E[rﬁl} auel 7 = \QLI‘[I‘;‘JH} The HJ bound is a tinction of

v = E[TH,HL] and of the first two moments (j1, 0%) of 7o (it ¢ 1s 1), hence,

we denote the bound as o2 (ulr4 ). Re-writing from (3}, we find:

a*{v

rig) = du ~ 200+ a, (4)

where d = ;*/c” b = pg/o?, and @ = ¢*/c?. The parabola (v, a?(n)) is

the HJ fronticr. Note that if ¢ cquals 1 and there exists a risk free asset
~1

such that rf = E[m,_ﬂ] , then o (v

rie1) 1s proportional to the square of

the Sharpe ratio on the asset. Heénce a sharper HJ bound corresponds to a
better risk-return trade-off on the asset.

2.2 The optimal HJ bound

Although only one asset is available, the presence of the conditioning vari-
ables y, allows construction of a much larger payoft space. Let z, = f{i),
where f is a measurable function, then the space of scaled payofts, zyre 1, can
in principle be infinite dimensional (see Hansen and Richard (1987)). Such
scaling has an intuitive interpretation when excess returns, vy | = 7 — .
are scaled as in Bekacrt and Hodrick (1992) and Cochrane (1996). The gross
"scaled” return, v = zr + r/ =z + (1 = )07, can then be inter-
preted as a "managed” portfolio with z, being the time-varying proportion
of the investment allocated to the risky asset.

Scaling will likely only improve H.J bounds if the weight 2, has information
on future returns. In the literature, one sets z; = e'y,, where e is an indicator
vector selecting the variable in %, believed to predict ryy; or to capture the
time-variation in the expected return. But is this the optimal way to select
from the set of information variables?

To pose the problem more formally, by varying z,, we obtain different HJ
bounds that only depend on the unconditional moments of ;7.

(B[zm] - UE{ztrMDQ

Var |i25t‘rt+1:|

Uz(UthTHl) =

(5)

The formal question our proposition answers is: What z; yields the best
(largest) HJ bound? Since z, = f(y,), this is a problem in functional analysis.



Proposition 2.2: The solution z;' to the maximization problem

max 7 (v]zr4,) (6)
el

is given by

. Pt Ay -
zp = —5—, (7)
jty + O}
where
Nt:E{rH-llIt}a 1+ :E[rﬁd[,], (8)
5 - b—wv (9)
1 —d
Py
h=F[ L] (10)
pi + af
2
Hy
1=EB[E il
‘ ,uf + Uf (L)
Furthermore, the maximmun bound is given by
- ) . all —d) + 0% = 2b v+ d v?
o (v|zriey) = o (vlzrg) = (12)
1~
Where
2
Pt
ui +of )

PROOF: The Appendix contains a formal proof. The proof proceeds
in two steps. First, the optimal functional form is solved for. Second, the
remaining constant parameter characterizing the function = then solved for
in a separate maximization.

Not surprisingly, the optimal scaling factor depends on the conditional
distribution function only through the first and second conditional moments.
Whereas the optimal scaling factor is decreasing in the conditional variance
crf, it is not monotonic in the conditional mean, p;. The non-monotinicity is
easy to understand using the duality with the mean-variance frontier. Con-
sider two independent riskv assets with a different expected return but iden-
tical variance. In this case, this minimum variance portfolio is the equally
weighted portfolio. Also, the inefficient part of the frontier goes through a
point where the expected return is the return on the lowest vielding asset
and all funds are invested in that asset. When, without loss of generality, the
expected return on the best yielding return is raised, the minimum variance
point is raised as well, but the inefficient part of the frontier still intersects
the point where all is invested in the lowest vielding asset. The part of the
new frontier beyond that point is below the old frontier.

Ferson and Siegel (1997a} provide a detailed characterization of the scal-
ing factor in a mean-variance setting.



2.3 When does scaling improve the HJ bound?

Since the conditional wmoments are usuallv nnknown, it would be useful to
derive conditions nnder which sealing tmproves the bouud. In particular, one
would hope that predictable variation in returns would result in sharper HLJ
bounds. Unfortunately, it s difficult to derive sufficient counditions bur it is
straightforward to derive a necessary condition. [ the scaling factor z, is
uncorrelated with the first and second conditional moment of r | (that is,
cov(py, z) = covirie, =) = cov(ri, |, =7} = 0. then scaling the return with z,
will decrease the HJ bound. To see this, note that

E*(2)(Ep —vEr)?
E(z%)E(r?) = E2(2) L7 (r)
(Ep — vEr)? y LA E(?) - E
E(?) — B ()« E(HE(D) = EI(:)E
E() - BX0)
B PENER) ~ B0)

where we omitted the time subseripts.  The last inecuality follows since
E{z2]/E*[z] > 1. Intuitively, scaling by an independent random variable
just adds noise to the retnrn. Conversely, the scaling Factor has to be corre-
lated with the future return for the scaled HI hound to improve relative to
the standard bound. In other words, when the return is scaled with a conedi-
tioning variable (for example, a stock retnrn with its lagged dividend vield)
the variable must predict the return in order for the HJ bound to improve.
Bekacert and Hodrick (1992) use this intuition to interpret the dramatic
improvement of the HJ bound when foreign exchange returns are scaled by
the forward premium as evidence of strong predictability in the foreign ex-
change market. As in other studies (sce Cochrane and Hansen (1992) and
Cochrane (1996), for example), they consider two-dimensional spaces of the

form
( Tir1 ) (1 ])
2T ?

where z, = €'y, In this case, since ri € {re, zri0 ), we know for sure
UQ(U‘THrI) < 0'2('0’7%“1 Z¢Teq1 )y V2t

Even in this case, for the bound to strictly improve, the predictable varia-
tion in the conditional mean or variance 1s a necessary condition To see this,
first note that the optimal scaling factor remains the same for this “stacked”
return and scaled return case, which we show in the next proposition.

a?(v|zr)

(e
——
-
[ E—
Qe

= o2 (ev|r) x < 7 (ulr),

Proposition 2.3: Suppose there is an asset with payoff r,,,, price p,. Let I,
denote the ¢ algebra of the measurable functions of the couditioning variables
yr. Then the solution z; to the maximization problem

2
ax Vo, 2T
21616[‘:0( | t+1: 27 l)



1s given by

—~

N AL
ST

The proof is given in the appendix,

Now, suppose ; and ¢, arc constants (that is, there is no predictable vari-
ation in conditional means or variances), then zf is a constant and r,,; and
zirey are linearly dependent. It follows that a2(vfry, 20 r) = o2 (elre).
But since our bound is optimal, this implies o%(vlre, 2r0) < o2 (vlr)).
Conversely, for the bound to improve, z; must predict v,,,.

In the empirical illustrations below, we will use standard scaling in the
“stacked” space as indicated above and we will sometimes refer to the re-
sulting bounds as “naive” bounds. Apart from our optimal bounds, we will
also report “stacked” optimal bounds, o2 (elr,, 27 ). which ought to be
identical to the optimal bounds swhen the conditional moments are known
(see below).

3 The Optimal and GHT Bound in the Multi-
Asset Case

[n this section, we extend the results to the multi-asset case and explain
the links with the GHT bound. We now let r,o and p, v n-dimensional
vectors. A scaled asset is a one dimensional asset, v, = zjr,, where
z; 18 a n-dimensional vector whose entries are measurable functions of v,
(so they belong to I;). The space of all such scaled payoffs is an infinite
dimensional conditional Hilbert space P = {zjr;1, : ¥z}, Gallant, Hansen
and Tauchen directly project the pricing kernel onto this space. They show
that the projected pricing kernel is

myy = (pe+ Apig) (e pry, + Sl)‘lrrﬁ+l A,

where g, is the conditional mean vector and ¥, the conditional variance-
covariance matrix of the returns (the above equation is obtamned from equa-
tion (20) »f GHT noting that w is a constant}. A is given by

b—w
A= 5
- (15)
where
b= E[M’t(#tui + Et)_lpt}a (16)
@ = Bt (s + Te) ) (17)
a= E['P;(Mtﬁfg + Zn>_11)n]- (18)



The GHT bound by definition is

o™ () = var(m; ). (19)

[t 15 a lower bound to the vartance of all valid pricing kernels.

The approach in this paper is dilferent. Consider the family of infinitely
many one dimensional scaled pavott spaces P, = {azir 1 o0 € R} in-
dexed by z,. There is a Hansen-Jagannathan bound o2 (v]z/r, ) associated
with each scaling vector z;. The optimal bound is the highest such Hansen-
Jagannathan bound

G (e) = sup e (e|zrm).

Both bonnds o*?(¢} and 6**(¢) depend on the conditional mean and the
conditional variance of the payvoffs which may or may not be known to re-
searchers. We will discuss the relation between a*?(w) and *2(v) in both
situations.

3.1 When conditional moments are known

Proposition 3.1: For a n-dimensional payoff », | with price vector p,, con-
ditional mean i, and conditional variance-covariance matrix ¥,

a — ad + b* = 2hy + dv?

" (v) =6 (v) = )

where a, b, and « are defined in equations (16), (17), and (18).

Proof: Since P, € P (the GHT bound represents the most efficient way of
using conditional information), it follows:

o2 (v|2iree) < supat(vlzirge) = 32 (v) < ™ {(v). (20)

The optimal scaling vector, z;, follows from the multivariate extension to
proposition 2.2. That is,

2= (et + o) " Hpe + M)

Moreover, we know that o?(v|z}7¢41) has the form described in the proposi-
tion. Now consider the variance of m}, -

o**(v) = var(my;;) = E[(z}'rer1 + A)?] = (Bl 150 + A% (21)

Using the expression for z;, the law of iterated expectations and simplifying
algebra, it follows

o (v) = Bl(p+ M) (e + Ze) (e + Apse)]
= E({(pe + Mwa) (e + Z0) 7 - M) (22)

Using the definition for a, b and d, the result follows.

9



This result is at first surprising. Onr oprimal bound is a standard HJ
bound for a scaled return. Since the sealing tactor depends on », the mean of
the pricing kernel, the optimal bound is the ratio of a quartic polynomal in
v over a guadratic polvnomial in ¢ which is generally not a quadratic poly-
nomial in v. Nevertheless, when evaluated at the true conditional moments,
the quartic polynomial becomes proportional to the square of the quadratic
polynomial, and the optimal bound becomes quadratic in v and the optimal
scaled frontier becomes a parabola, identical to the GHT frantier

3.2 When conditional moments are not known

The GHT bound is given by var(my; ), where m;_, depends on the condi-
tional mean y; and the conditional variance o2 of the returns. [u practice,
these conditional moments are not known. We use a proxy for them and
thus a proxy hy,, for my . In that case, the proxy for the GHT bound,
var(rhy, ), may either nnderestimate or overestimate var(my ). When it
overestimates, var(my, ) fails to be a lower bound for the variance of valid
pricing kernels.

On the other hand, the optimal bound is *(v|zr, 1), where 27 depends
on the first two conditional moments. When the conditional moments are

*

unknown, 27 is unknown and so is o*(e|zr ). However, for every

Tt
o?{v|z;r,41) remains a lower bound to the variance of all pricing kernels since
o?(v|ziry) is a HI bound. Hence, even when using a proxy for the condi-
tional moments to get a proxy 27 for z7, the resultant optimal bound remains
a valid lower bound to the variance of pricing kernels.

This robustness property is important since conditional moments are no-
toriously difficult to estimate from the data. GHT (1990, propose to use
the SNP method to estimate conditional moments. The SNP method ap-
proximates the conditional density using a Hermite expansion, where a stan-
dardized Gaussian density is multiplied with a squared polynomial. In their
preferred model, the leading term is a lincar vector-antoregressive (VAR)
model with ARCH volatility. In GHT’s application on stock and bond re-
turns, the conditioning set is restricted to contain only past returns, and SNP
estimation may be adequate. However, when the data generating processes
for returns contain jumps or regime - switches, it is not clear that the SNP
approach provides a good approximation. Moreover, the current empirical
evidence suggests that stock returns are predictable by a variety of variables,
such as dividend yields, term spreads, forward premiums (sce Bekaert and
Hodrick (1992) and Ferson and Harvey (1993) for international evidence),
and it is not clear how accurate SNP estimation is in such a complex multi-
variate setting.

The risk of over-estimating the variance bound can be avmdod by ap-
plying our method. Given an empirical specification for the conditional mo-
ments, our "optimal” bound is as easy to implement as the ¢riginal Hansen-
Jagannathan bounds, since we only need to compute unconditional moments.

10



For example, if we deem the time-variation in the conditional mean to be
more important than the time-variation in the conditional variance, we ob-
tain valid bounds by just replacing &, by the unconditional variance. The
resulting bound will not necessarily be the tightest bound and if there truly
is time-variation in the conditional variance it will not he optimal. Neverthe-
loss it is hoped that if the time-variation in conditional variances is minimal.
our bound may still be sharper than using arbitrary scaling, a conjecture we
will examine in the empirical section of this paper.

The fact that optimal bounds computed from mis-specified conditional
moments remain valid bounds which are best when the true conditional mo-
ments are used, suggests an interesting application of our procedure. We can
use the optimal bound to study not only which predictive variables yield the
sharpest HJ bounds (as in Bekaert and Hodrick (1992)), but also to diagnose
the accuracy of competing models for the first two conditional moments. To
see this, note that when conditional moments are mis-specified, it need not
be the case that o(vir ) < o%(v|z]reo). Henee, mis-specified conditional
moments may reveal themselves through poorly performing optimal bounds
relative to the conditional, “naively” scaled or stacked optimal bounds. They
may also result in the optimal HJ bound failing to be a parabola. We will
illustrate the use of the optimal bound as a diagnostic tool in our empirical
illustration below.

4 Empirical Application: The Model

4.1 The Econometric Model

Let R be the logarithm of the stock return (¢ = s} and the boud return
(4 = b) and let X, be the logarithm of gross consumption growth. Define Y, =
(X, B3, R%]. In the seminal work of Hansen and Singleton (1983, henceforth
HS), it is assumed that y, follows a vector-autoregressive (VAR) process
with normal disturbances. HS then examine the restrictions imposed by
the standard consumption - based asset pricing model with time-additive
Constant Relative Risk Aversion (CRRA) preferences on the joint dynamics
of the variables.

A critical assumption is the time-invariance of the cor litional covari-
ance matrix of Y;. It is well-known that in this lognorma! version of the
consumption-based asset pricing model, time-variation in expected excess
returns is driven by the time-variation in this covariance matrix.

Given that there is ample evidence of predictability in excess returns,*
a natural extension of the HS framework is to allow for heteroskedasticity
using the GARCH-in-Mean framework of Engle, Lilien and Robins (1987).
Surprisingly, apart from an application to international data®, there is little

4Gee for example, Camphell {1987) and Bekaert and Hodrick (1992).
5See Kaminsky and Peruga {1990).
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work in this arca. Two reasons may be the parameter proliferation that oc-
curs with the multivariate GARCH models and the lack of heteroskedasticity
in consumption growth (which may be due to i temporal aggregation bias®).
Nevertheless, we will use this familiar framework to illustrate the properties
of our “optimal bound”.

Our specification has two tmportant features. First, we impose a parsi-
monious factor structure on the conditional covariance matrix inspired by
Engle, Ng and Rothschild (1990). Secound, we allow negative shocks to have
a different, effect on the conditional variance than positive shocks, that is, we
accommodate asymmetric volatility”. Table 1 demonstrates che importance
of this feature. We report cstimates of a simple univariate GARCH model
with asymmetry, applied to the residuals of a first-order VAR on 1, The
asymmetry in stock returns is no surprise, but we also find some evidence of
asymmetry in the conditional variance of quarterly consumption growth.

Whereas this evidence is economically and statistically wealk, it 1s strongly
suggestive of an asymmetric component in the volatility of consumption
growth. First, it is intuitively plansible that uncertainty about future con-
sumption growth is higher in a recession than in a boom.? Second, we know
that there is strong asymmetry in stock returns thas may help accommodate
the negative skewness we observe, which a standard GARCH model with
normally distributed innovations cannot match. It is likely that temporal
aggregation and the lack of data considerably weaken the results. We will
see below that in the multivariate GARCH model we estimate, the asymme-
try patterns become stronger.

For the multivariate set-up, we begin by parameterizing an uncoustrained
model:

Vi = per + AYi + Qe (23)
where
Hat
He = | Hee | (24)
Hst

and e|I,_; is N(0, H,} with H, a diagonal matrix where the diagonal ele-
ments, hj;, follow

hiit = d,; -+ aihﬁg_l + b,‘fﬂi—t,1 + T)i{max[O, —81'1'5_1]}2. (25)

6See Bekaert (1996) for an elaboration of this point.

"See Glosten, Jagannathan and Runkle (1993) and Bekaert and Wu (1997).

8We could not find articles in the business cycle literature that document this phe-
nomenon. Most empirical articles (see, e.g., Filardo (1994)) focus on the conditional mean
dynamics (the duration and steepness of recessiens and expansions.) Sichel (1983) does
report evidence of “deepness”, troughs are further below the trend than peaks are above.
An interesting implication of this feature is that the stationary component of the series
should exhibit negative skewness, which we observe in consumption growth and which
may be accommodated by volatility asymmetry.

12



If n; > 0, volatility displays the well-known asymmetric property.

The e,-vector constitutes the fmndamental shocks to the system. The
error terms of the svstem are linked to ¢, through €2,. A parsimonious factor
structure arises by assuming that £, is thue-invaviant and upper trnangular:

10 0
QL =Q= .f:ﬂh 1 0 (26)
f:z:s fbs‘ 1
To further limit parameter proliferation, we set f,, = 0 and let the con-

sumption shock be the only factor. This is consistent with the standard

consumption-based asset pricing model, where consumption growth is the
only state variable. In addition, we sct.

ay=b,=m=a,=0,=1,=0. A (27}

All the time-variation in volatility of the Yi-svstem is driven by time-varyving
uncertainty in consumption growth.
The covariance of the error terms becomes

s, = QH,QY. (28)

We denote its elements by o, with i, ) = 2.0, 5.

Since the consumption-based asset pricing model introduces elements of
the conditional variance-covariance matrix in the conditional mean, the un-
constrained model should should allow the conditional covariance matrix to
affect the conditional mean as well. Therefore, we let

M — 'Uih‘rfn:‘, + His (29)

where 7 is either b or s. This simple expression for the constant arises be-
cause of the one-factor structure of the conditional covariance matrix. The
parameter vector to be estimated is

e = [VGC(‘Ll)” ,uat: “’bv ,u'.sv Ufh ’Ua‘a frf)r f£.3‘1 dil:: aI: bﬂ:s T];ﬂ: dfh ds]"

Hence, there are a total of 22 parameters and it is clear that relaxation of
some of the parameter restrictions we impose would be stretching the data
too far.

This unconstrained model serves as a natural alternative to the model
constrained by the consumption-based asset pricing model Let v be the
CRRA and let 3 be the discount factor. The model implies

. 1 72
Er[ :+1] = _agiit - 'Q_Uxa:t + YOzt + ”/Et{XtH] —Ing
If conditional variances are constant, the time variation in the conditional
means of asset returns and consumption growth is proportional and the pro-
portionality constant is the CRRA. The restriction also shows the role of v
as the price of risk with the risk being the covariance with consumption.
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With our particular GARCH structure, the model further sumplifies to

) 1 L, - o
E'—[ ';:+l} = —(1Il “‘3 + :;h‘h) - T)'LAF’ - j‘lrr]-hrni + Af'hr[*\lirt] (3())

Note hy; does not depend on £ for i = 6,5 because of equation (27). Our par-
ticular parameterization has the implication that increased uncertainty about
futnre consumption growth always decreases expected returns. This scems
at odds with the data where the price of risk has been empirically shown
to move countercyclically (Fama and French (1989), Bekacrt and Harvey
(1993)).

The model does predict that, if shocks to returns depa d positively on
consumption shocks, an incréased covariance with consumption will drive up
expected returns. Furthermore, the covariance with consumption increases
when consumption volatility increases because of the factor structure. How-
ever, this effect is swamped by the Jensen's inequality terms which depend
negatively on consumption volatility. As a result, this comparative static is
not necessarily true for gross returns.

E,,[exp(]?.iﬂ)] = exp (— In g — ?—‘)h — 2 f i) rr + ”/E)E[X,,H]) (31)

Depending on the relative size of the sensitivity to consumption shocks,
fr: and the CRRA, higher consumption volatility may now increase the gross
expected asset return. Empirically, our unconstrained model potentially al-
lows for a positive relation between consumption volatility and expected log
returns and so we can test whether this feature of the model is a source for
rejection.

The restricted parameter vector O contains 14 parameters,

eR = [/L'J:: Alls Al2a A137 :Baﬂl/: f:L'fH .f.z:sa diaai: bi:’h],, = b, 5.

4.2 Data

Our consumption measure is the sum of per capita real non-durables and
services consumption in the US. These data were downloaded from DATAS-
TREAM, The stock return is the quarterly value - weighted dividend-inclusive
index return on the NYSE, taken from Wharton's web site (http://wrdsx.
wharton.upenn.edu). The interest rate is the U.S. 3 month Treasury Bill rate
taken the Federal reserve web site. We used a data set on weekly secondary
market rates (averages of daily) and used the rate closest to the end of the
month. All data run from the second quarter in 1959 to the end of 1996.
Table 1 summarizes some of the data properties. Consumption growth
and real bond returns have about the same mean and volatility, dwarfed by
the mean and volatility of stock returns. All series show leptokurtosis, but
only consumption growth and stock returns show negative skewness. Con-
sumption growth is more highly antocorrelated than could be explained by
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time-averaging and bond returns have an antocorrelation of . 734, Univariate
GARCH processes reveal “strong™ asvinmetry (in that positive shocks reduce
the variance) for both stock returns and consumption growth. Bond returns
show very weak asymunetry. The high standard ervors for all estimated svs-
tems are hardly a surprise given that we are working with 151 quarterly data
points. Nevertheless, we know that use of high frequency stock return «ata
leads to the finding of strong asvmmetric GARCH patterns which remain
preserved here in the quarterly data but are necessarily statistically weak.
Similarly, our resnlts suggest (although do not prove) that if we were able
to use high frequency consumption growth data we might find similar strong
asymmetric volatility patterns.

4.3 Estimation Results

To lead into our GARCH-in-mean models, Table 2 first presents the antore-
grossive dynamics iplied by a first-order VAR, Except for autocorrelation
coefficients in the consumption growth and bond return equations, there are
no highly significant coefficients. Table 3 shows the results from the uncon-
strained estimation. The conditional mean parameters mimic the coeflicients
of the unconstrained VAR rather well, despite the presence - f very large co-
efficients on the GARCH-in-mean term. Although the standard errors seem
very small, they should be interpreted with much caution. Standard errors
computed from the cross-product of the first derivatives of the likelihood are
quite large and more adequately represent the uncertainty regarding these
parameter estimates. In fact, the likelihood function is very flat with respect
to these parameters, and a number of locals exist where the GARCH-in-mean
parameters are in fact positive. This is not that surprising. Much work on
GARCH-in-mean models for stock returns (see for example French, Schw-
ert and Stambaugh {1987), Glosten, Jagannathan and Runkle (1993)) has
stressed the weakness of a positive relation between stock return volatility
and its conditional mean. In this model, stock and bond returns are linked to
consumption volatility which in turn drives asset return volatility. The much
smaller magnitude of consumption volatility relative to stock return volatility
explains the large coefficients we find relative to the GARCH-in-mean liter-
ature for stock returns. When we estimate a univariate GARCH-in-mean
model for stock returns we find a GARCH-in-mean parameter of 6.29 with a
large standard error of 5.23. Note that there is virtually no GARCH in the
volatility dynamics but strong asymmetry. This is somewhat problematic
since the conditional variance may theoretically become nega.ive although it
never does in sample. It should be noted that the local optima with positive
GARCH-in-mean parameters typically display larger volatility persistence as
does the univariate stock return model.

The constrained model (see Table 4) is not surprisingly rejected by a
likelihood ratio test. The chi-square test statistic is 73.32 with a p-value of
0.000 (there are 8 restrictions). The CRRA is estimated to be 14.675 and
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the discount factor 3 is 1.071. Although the latter is above 1, we know from
Kocherlakota’s (1996) work that the economy remains well-defined and in
fact our parameter valies ave quite close to the ones he used to explain the
equity premium puzzle and they are less extreme than the ones reported by
Kandel and Stambaugh (1990). The estimation results reveal that the key
parameter the model attempts to mateh is the autoregressive coefficient in
‘the bond equation, which is almost perfectly matched. Given the propor-
tionality restrictions imposed by the model on expected returns, this causes
a bad fit for both stock returns and especially consumption dynamics. Given
that the GARCH-in-Mean paranicters are pretty similar, and are impre-
cisely estimated, it is very likely that the model rejection is driven by this
phenomenon. This confirms the importance of the autoregressive dvnamics
in the performance of the consumption-based asset pricing model, first noted
by Singleton (1990). He pointed out that in a GMM estimation, the En-
ler equation residual simply inherited the serial correlation properties of the
original return series. In our set-up, the model matches the bond dynamies,
but fails to match the autoregressive dynamics in consumption growth.

5 Empirical Application: the Bounds

This section illustrates the performnance of our optimal bound along three
dimensions. First, we show the role of the predictability of returns on HJ
bounds, by comparing unconditional HJ bounds with the different bounds
embedding conditioning information. In particular, our optimal bound should
vield sharper HJ bounds than the standard method of arbitrarily scaling the
returns with instruments. Second, we demonstrate the robustness of our op-
timal bound relative to the GHT bound. That is, we give an economically
interesting case in which the GHT bound over-estimates the variance of the
true pricing kernel. Third, we show that the difference between the our op-
timal and the GHT bound in certain settings can be used as diagnostic tool
for dynamic asset pricing models.

The setting is the log-normal mode! for stock and bond returns and con-
sumption growth estimated before. The model, in its unconstrained and
constrained form, yields two candidates for the computation of the condi-
tional moments we need in deriving the optimal and GH'T bounds. We will
also use these models as data generating processes in simulations. Simula-
tions will both serve to illustrate the effect of mis-specifications where the
conditional moments are known, and to help interpret data results that may
be sensitive to sampling error in our short sample. Simulations use 10,000
observations.? Generally, we defer formal econometric issues and the formal
handing of sampling error to future work (see Bekaert and Liu (1998}).

9We simulate 10,100 observations but discard the first 100 observations to reduce de-
pendence on initial conditions. Such dependence is unavoidable in the graphs using the
short data sample.

16



5.1 Predictability

Figure 1 graphs the unconditional bound, the naively scaled hound, the opti-
mal bound, the optimal stacked and the GHT hound for the two returns. as-
swming the unconstrained wodel for the conditional moments. Naive scaling
uses the past bond and stock returns as instruments for both returns. First of
all, the difference between the unconditional and scaled bounds reveals con-
siderable predictability. By varying the instrument set, it is straightforward
to establish that the main source of the predictability is the autoregressive
compouent in bond returns. Sccond, the difference between the varions scaled
bounds is small, but the arbitrarily scaled bound is even somewhat sharper
than the optimally scaled bounds and the GHT bounds. This can be due
to either mis-specification of the conditional moments or chance (sampling
error). In any case, for this particular example, the naive scaling moethaod
suffices to get a sharp, valid bound.

To examine this issue closer, we first produce the same graphs for a long
simulated sample from the unconstrained model in Figure 2. As should be
the case, the GHT and optimal bounds are now on top of onc another and
dominate arbitrarily scaling, but only slightly. In other words, i a world
where the unconstrained model generates the data, naive scaling will closely
approximate the efficient nse of the couditioning information. In fact, since
our model deseribes the data rather well, the dominance of th - naively scaled
bound in Figure 1 may be simply due to sampling error, which we confirmed
by performing simulations using 151 data points only.

It is no mystery why the use of the true conditional moments adds little in
this setting. The feature of the data that arbitrary scaling would most likely
fail to capture is the GARCH-in- mean feature, but that is exactly quite weak
in quarterly data. In fact, a linear VAR with constant variance-covariance
matrix describes the data rather well. When we replace the conditional
moments generated by the unconstrained model by the moments generated
by a simple lincar VAR, the optimal and GHT bounds change very little.
Clearly, the importance of optimal scaling in generating sharper Hansen-
Jagannathan bounds is potentially more dramatic when strong non-linearities
are present, as in regime-switching models or high frequency GARCH or
stochastic volatility models.

5.2 Diagnostics

Figure 3 graphs the naively scaled bound, the optimal bound and the stacked
optimal bound, but this time the constrained model vields the conditional
moments. Two factors stand out. First, the stacked optimal bound gets
pretty close to the naively scaled bound, despite the mis-specification of the
conditional moments. Of course, the constrained model managed to repro-
duce the most important aspect of the predictability, namely the autoregres-
sive component in hond returns, so this result is not so surprising. What
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may strike some readers as surprising is the second main fact: the optimal
bound is not a parabola. As we indicated above, if the moments are correctly
specified it ought to be. Since we know the model is rejected, the optimal
bounds seem to provide a striking alternative specification test. O course,
it is again possible that sowme quirk in the constrained model coupled with
sampling error generates this result. This is not the case. Figure 4 produces
the optimal, stacked optimal and naively scaled bounds for data simulated
from the constrained model. Since the model for conditional moments 1s
correctly specified in this case, we now do obtain smooth parabola. We also
produced these bounds for a munber of simulated samples of length 151 and
never found the same "strange” behavior. .

To illustrate the diagnostic power of the optimal bound more starkly, we
can use simulations and our two data generating processes to generate mis-
specified bounds. Figure 5 shows the optimal and naively scaled bound for
data simulated from the unconstrained model, but conditional moments er-
roneously generated from the constrained model. Figure 6 reverses the roles
of the unconstrained and constrained model, generating data satistying the
constrained model and computing the optimal bound using moments accord-
ing to the unconstrained model. In both cases, the optimal and naively scaled
bounds are close and the bounds are uniformly higher when the data satisfy
the unconstrained model {that is, the constrained model misses some of the
predictable components the unconstrained model generates). Strikingly, in
both casecs, the optimal bound does show non-parabolic behavior near the
trough of the graph.

5.3 Robustness

We have so far not focussed on the GHT bounds very much. Generally,
optimal bounds do not much worse or better than the GHT bound. Moreover,
our simulations reveal that the GHT bounds quite often over-estimate the
variance of the true pricing kernel. A first example is in Figure 7. In Figure 7,
we generate data from the unconstrained model. We show tvio GHT bounds,
one bound uses the actual, true conditional moments, the other mis-specified
moments from the constrained model. We also show our optimal bound,
which uses the constrained moments. When the moments are mis-specified,
the GHT bound generates too high values for the bounds on the right-hand
side. When we reverse the roles of the unconstrained and constrained models
in Figure 8, a similar phenomenon appears. This time, the bound over-
estimates at the left hand side of the graph. The optimal bound never exceeds
the true GHT bound but manages to be quite close to it.
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§] Conclusions

With the contimied interest of the fnance profession in the use of {(uncon-
ditional) HJ bounds on the one hand, and the growing evidence of time-
variation in conditional means and variances of asset returis on the other
hand, it becomes important to optimally incorporate conditioning informa-
tion in these bounds'®. Our paper provides a bridge between the insightful
but complex analysis of GHT (1990), and the simple but sub-optimal prac-
tice of arbitrarily scaling of returns with mstruments that predict them. The
advantage of the latter approach is that it alwavs produces valid bounds
to the variance of the pricing kernel, whereas the GHT bound mayv over-
estimate the variance of the pricing kernel when the concitional moments
are mis-specified. In this article, we derive the best possible scaled bound,
the optimal bound. As does the GHT hound, this bound requires specifying
the conditional mean and variance of the returns and we show that the opti-
mal bound is as good as the GHT bound when these moments are correctly
specified. When they are mis-specified our bound is robust, in the sense that
it will always produce a valid hound to the variance of the pricing kernel
since it is a HJ bound.

There are potentially many interesting applications of our framework.
First, as we showed in section 5, the difference between the GHT bonnd or
the stacked optimal bond and the optimal bound can sometimes serve as a
diagnostic tool to judge the performance of dynamic asset nricing models.
Although we restricted ourselves to the well-known world of the standard
consumption-based asset pricing model, applications could extend to any
other dynamic asset pricing model, for example affine term structure models.

Second, as partly illustrated in section 4 as well, the bounds can be used
to re-examine the predictability of asset returns and to examine which nstru-
ments vield the sharpest restrictions on asset return dynamics. In Bckaert
and Liu (1998), we repeat the analysis of Bekaert and Hodrick (1992) on
international asset return predictability, with an expanded data set and in-
corporating conditioning information optimally.

Third, the bounds can also yield information on expected return and con-
ditional variance modeling. The reason is t hat the optimal scaling function
depends on the conditional mean and conditional variance of the returns and
that the resulting HJ bound is best when they represent the true conditional
moments. There exists the danger that empirical models of conditional mean
and variance fit quirks in the data that are of no statistical significance. It is
therefore critical to develop statistical tests. In Bekaert and Liu (1998), we
develop the econometrics needed to compare various models of time-variation
in expected returns and variances and use the optimal bound to learn about
various conditional moments specification of international stock, bond and

100ne response may be to drop an unconditional framework all together, but in both
financial practice and the recent academic literature (see especially Cochrane and Saa-
Requejo (1997)) the importance of unconditional analysis remains prevalent.
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foreign exchange returns.

Fourth, using the duality with the meap-variance frontier, the optimal
bound can be used in dynamic models of optimal asset allocation that seck
to maximize an unconditional mean-varianee criterion. The groundwork for
such an application has been i in the work of Ferson and Siegel (1997a).

Fifth, the bounds could be used in developing performance measures for
portfolio managers. In the standard mean-varlance paradigm, there 1s no
role for a portfolio manager, since the optimal portfolio weights are fixed
over time. In a dynamic setting, with changing conditional information, the
role of the portfolio manager is to adjust the portfolio weights according to
the arrival of information, preferably optimally. The role optimal bounds
can play in this setting is also briefly discussed in Ferson and Siegel (1997a).
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Appendix

Proof of proposition 2.2: The problem we would like to solve is

‘ VI (- rzr))?
sup - (elzrip) = sup

. . E(zr)? = E%(ar)

This is a well defined problem since o*(v[zr41) s bounded from above by

the GHT bound ¢*?(v) and from helow by 0. We will show “he case of one

asset, the general case of multiple payoffs is a straightforward extension.
For the case of one asset r, we have

E(l’f,'[)r,) - E(Vﬁf(:’;’t))a

E(zirir) = B(nE(r4)) = E(f (g,
and _ |
E((zn"‘n+1)2) = E(sz,,(er)) = E(j'”(.q,)(;,:,f + a1,

where p, and ¢, are the conditional mean and conditional variance of the
return respectively. So the above problem is reduced to the problem (we
omit the subscript ¢ in the derivation),

[E((p — v f))]*

31(15)) E(f2y)(p* +02)) = EX(fnp) (32)
~ where .
E(lo - mftsh) = [t = 1 ftgltind.
and '
Bl ) = [ nfwotuty,
and .

E(P )2 +0%) = / P + o) plu)dy.

p(y) is the multi-variate distribution function of y, and y is a multi-dimensional
vector. This is a variation-like problem and we adapt the calculus of variation
technique to solve it.

Let g(y) = f(y) + ehly), the first order condition with respect to ¢ gives

(p—vp) 1 (W2 +0%)f — E(uf)u
E [E(pf) = vE(uf)h(y)] - {E((ﬂf" +02)f) — B uf)

So this implies that (we write f instead of f(y) whenever there is no
confusion),

(p-vy) W+ o*)f - Ewfin
E(pf) —vE(uf)  E((p? + 03 f) = E2uf)"

hly)], vh(y)

(33)
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Note that the probability density function of y does not appear explicitly.
Solving for f from (33), we obtain:

E(f(i* +0%) = E*(/11) L
: L p =) + () , 341
E((p —vi)f) B };1 + o? L)
This completes our solution for the functional form of f(y), since the expec-

tations in right-hand side of (34) only depends on y through some constant
parameters, representing uncenditional moments. Hence, we obtain,

f=A

_ap+ Ap
ot +o?

where o and A are constants. Further, note that the scaling by a constant
does not change the Hansen-Jagannathan bound, so we can solve f only up
to a constant. We can thus let @ = 1. With the functional form of the
scaling factor known, we can determine the constant A by solving a standard
maximization problem (instead of a functional problem):

(E((p — vp)(p + M)/ (p* + o))

s A b A .-
max g(N) = M G e A By < GRS oD
So we have
o) (a —vbh+ Xb — Avd)?
gt (@ + 270 + A2d) — (b + Ad)?’
(36)
where
a = Ep/(y+0),
= E(punf (i + 7)),
d = E(u/(+o7))
(37)

Now we can just use the standard first order conditions to determine A. The
first order condition in A gives

2(a — vb + Ab — Nud) (b - vd)

(a+ 20k + A2d) — (b + Ad)?)

(a = vb + Ab — Avd)22(b + A ~ (b + Ad)d)
(@ + 2Ab + A2d) — (b + Ad)2)? '

0 =

(38)

Factoring out (a — vb + Ab— Avd) (A= 'b':)j is a minimum since it leads to
¢*2(v) = 0), we have

0= (b —bd)((afz,\bu d)— (b+/\uf)2) —{a—vb+Ab-Avd) (b-l—x\(l—(b+)\d}d).
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Simplifving this cquation gives

h—r

:l—r/-

So the optimal scaling factor is

Dy + Ay _
5= A (39)
fy + T

and the optimal scaled asset is
~% p' + /\,U/
Tio1 = —5 5 - 40
t+1 = ;1 + ol 41 (40)

Substituting the optimal scaled returms into equation (3), we obrain the
optimal bound

-, a — ad + b = 2be + du?
5 w) = o (v T .

We should remark that the above formulas constitute solutions to the first
order condition which is only a necessary condition for optimality, We need
to verify that the solution is a maximun, We can argne that the first order
condition is sufficient in the following way. Note in the problem (32)

s [E((p = o) f ()]
iy E(f2y) (2 + o)) — B (i)

is homogencous of degree zero in f(y), so it is equivalent to the problem!!

ming E(f*(y)(i? +0%) = E*(fly)p)
st [E((p— v )l =1
Because both E(f2(y)(p2+02))— E*(f(y)p) and [E((p—uvp) f(y))]? are convex
in f(y) and there is interior point. this is a convex programming problem and

there is a minimum. In fact, one can easily verify that the solution is the one
we obtained above.

) = (11)

Proof of proposition 2.3: Note that the pricing kernel written in terms
of scaled assets formed using ry,1 and z;r.) can always be written as Zrpq
for some %,. So we have

max o2 (v|rie1, 271 ) = max o*(vlzre) = (]2 Tee)
zely €l

But
02(’U‘Z;7"t+1) < 02(U1T¢+1: ZZ‘T:.H)

Combining the above two expressions, we get

?133{52{“17"t+1,3t7“t+1) = 02(”12:”"“—1} = U‘ﬁ(’t’\”'tﬂa 3T
[3 t

11We would like to thank Darrell Duffie for suggesting this proot.

23



Table 1; Univariate Propertics of the Data

X, R? R
mean 0119 0.121 Lol
volatility — 0.547 (.561 8.05
Skewness  -0.4491 ).5659 -1.08
Kurtosis 1.01 1.18 2.146
P (0.489 0.734 0.077
a -0.0:348 0.1354 -0.0434
(0.0583)  (0.1373)  (0.L141)
b (.7847 0.8126 0.3763
(0.5417)  (0.1047)  {0.1478)
7 (0.08495 ().0266 {).4208
(0.1885)  (0.1232)  (0.4606)

Notes: The sample period for X, (log-consumption growth), R} (log-
real bond return) and R? (log-real stock return} is frow 2nd quarter
of 1959 to the fourth quarter of 1996, for a total of 151 observations.
The mean and volatility are expressed in percent (not annualized), p
stands for first-order autocorrelasion. The last three rows contain the
estimated coefficients (with standard ervor in parentheses) ot a univari-
ate GARCH(1,1) model applied to the residuals of a first order VAR
on Y, = [X,, R?, B5)". That is, if /i, is the conditional variance and ¢
the residual, the model for 7o, is:

he = ¢4 ael_| + bhy_y + n{max[0, —er )2

Hence, the GARCH model accommodates asymmetry as in Glosten,
Jagannathan and Runkle (1993).
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Table 2: Unconstrained VAR

Equations Cocfficients
Constant X, RV ( R;_,
X, 0.002 0.181 0.0058  0.0085
(0.0006)  (0.081)  (0.0526)  (1.0053)
Ri’ 0.0013 -0.027 0.735 -0.0013
(0.0005)  (0.086)  (0.070)  (0.0043)
R} 0.015 -1.259 1.144 0.076

(0.011) (1.052) (1.315)  (0.092)

Notes: A first-order VAR on Y, = [N, R}, R is estimated using
OLS. Standard errors are in paratheses and are heteroskeodasticity-
consistent.
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Table 3: Unconstrained GARCH-in-Mean Model

Equations Coctlicients
Constant X, n; R,
X 0.00295 0.361 -00.029 0.0038
(0.00047) (0.033) {0.022) (0.005)
R 0.00555-162.65/ 1.1/ -0.198 0.738 -0.0002
{0.00059) (0.00007) (0.031) (0.037) (0.0043)
R} 0.0188-58.02%4.r, -1.734 1.029 0.077
(0.0083) (0.0003) (0.005) (0.014) (0.034)
Constant ; b 1),
hoine 0.000019 -0.0265 0.0008 (12705
(0.0600018) (0.0807) (0.7898)  (0.0426)
hao g 0.000014 Q 0 0
{0.000002)
Dt 0.006134 0 0 0
(0.00103)
frv=-0.0564 frs=3.182
(0.1425) (0.003)

Notes: The model estimated is described in equation (23) to (29}, Stan-
dard crrors are in paratheses and are robust to mis-spectfication of the
error distribution in the sense of White {1982). Parameter values with-
out standard errors reflect constrained parameters.



Table 4: Constrained GARCH-in-Mean Model

Equations Coclficients
Constant, X, R;‘_l Ry,
X 0.005 -(.018 0.050 0.0001
(0.0005) (0.005) (0.005)  (0.0003)
Rl,f 0.0053-108.97 /4 11 0264 0.7:34 0.0012
B} 0.0021-82.086/,,4 -0.206:1 (0.734 0.0012
= 14.675 = 1071
(0.0376) (0.0082)
Constant f; b, 7);
hogty (.000022 -0.0652 (.00 0.3907
(0.000006) (0.0208) (0.00)  (0.0876)
Pozo 0.000013 ( 0 0
(0.000002)
has e 0.006457 0 0 0
(0.001009)
Fp=-0.0877 Frs=1.847
(0.0813) (0.0872)

Notes: The model estimated imposes the following constraint on the
unconstrained model reported in Table 3:

| 1 1 , .
Eﬁ[R;+l] = —(IO{:’,B + ihii) - ;[ﬁ/’ - f.m.]“h:z:z:ﬂ + A./EI,[A\H_g]-

The table reports all parameters, including parameters constrained by
the model. Robust standard errors are in parentheses.
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Conditional moments are calculated from the unconstrained model

Figure 1: Hansen-Jagannathan Bounds for Real Data
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Conditional moments are calculated from the unconstrained model.

Figure 2: Hansen-Jagannathan Bounds for Simulated Data According to the
Unconstrained Model
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Figure 4: Hansen-Jagannathan Bounds for Simulated Data According to the
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Figure 5: Hansen-Jagannathan Bounds for Simulated Data According to the

Unconstrained Model
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Figure 8: Hansen-Jagannathan Bounds for Simulated Data According to the
Clonstrained Model



References

(1] Balduzzi, Pierluigi and Hedi [Kallal (1997), “Risk Premiums and Vari-
ance Bound”, Journal of Finance, v32. 1o, 1913-:49.

(2] Bekaert, Geert (1996), “The Time Variation of Risk and Return in For-
eign Exchange Markets: A General Equilibrium Perspective”, Review
of Financial Studies, v9, n2, 427-70.

[3] Bekaert, Geert and Robert Hodrick (1992), “Characterizing Pre-
dictable Components in Excess Returns on Equity o ad Foreign Ex-
change Markets”, Journal of Finance, v47, n2, 467-50.

[4] Bekaert, Geert and Campbell R. Harvey (1995), “Time-Varying World
Market Integration”, Journal of Finance, vH0, n2, 403-44.

(5] Bekaert, Geert, Robert J. Hodrick and David A. Marshall (1997), “The
Implications of First-Order Risk Aversion For Asset Market Risk Pre-
miums”, Journal of Monetary Economics, 40, 3-39.

(6] Bekaert, Geert and Jun Liu (1998), “Opitmally Exploiting Interna-
tional Return Predictability”, work in progress, Stanford University.

(7] Bekaert, Geert and Michael Urias (1996). " Diversification, Integration
and Emerging Market Closed-End Funds”, Journal of Finance, vol,
n3, 835-69.

(8] Bekaert, Geert and Guoju Wu (1998), “Asymmetric Volatility and Risk
in Equity Returns”, Working Paper, Stanford Univers ty.

(9] Burnside, Craig (1994}, “Hansen-Jagannathan Bouvnds as Classical
Tests of Asset-Pricing Models”, Journal of Business and Economic
Statistics, v12, nl, 57-79.

[10] Bonomo, Marco and Rene Garcia (1993), “Disappointment Aversion
as a Solution to the Equity Premium and the Risk-Free Rate Puzzles”,
Cahier 2793, C.R.D.E., University de Montreal.

[11] Campbell, John and John H. Cochrane (1997), “By Force of Habit:
A Consumption-Based Explanation of Aggregate Stock Market Behav-
ior”, Working Paper.

[12] Cecchetti, Stephen G., Pok-sang Lam, and Nelson C. Mark (1994),
“Testing Volatility Restrictions on Intertemporal Marginal Rates of
Substitution Implied by Euler Equations and Asset Returns”, Journal
of Finance, v49, ni, 123-52.

[13] Chen, Zhiwu and Peter J. Knez (1995), “Measurement of Market Inte-
gration and Arbitrage”, Review of Financial Studies, v8, n2, 287-325.

36



[14]

[15]

[16]

21]

[22]

23}

Chen, Zhiwu and Peter J. Knez (1996), “Portfolio Peformance Mea-
surement: Theory and Applications”, Review of Financial Studies, v9,
n2, 511-55. :

Cochrane, John H. (1996), " A Cross-Sectional Test of an Investment-
Based Asset Pricing Model”, Journal of Political Economy, v104, n3,
572-621.

Cochrane, John H. and Lars. P. Hansen (1992), “Asset Pricing Exple-
rations for Macroeconomics”, Blanchard, Olivier Jean; Fischer, Stan-
ley, eds.. 1992 NBER VIACROECONOMICS, ANNUAL, 1992, MIT
Press.

Cochrane, John H. and Jesus Saa-Requejo {1996), “Beyond Arbitrage:
"Good-Deal” Assct Price Bounds in Incomplete Markets”, NBER
Working Paper No. 5489.

Constantinides, George M. (1990), ”Habit Formation: A Resolution of
the Equity Premium Puzzle”, Journal of Political Economy, v98, n3,
519-43.

Constantinides, G. M. and Darrell Duffie (1996). " Asset Pricing with
Heterogeneous Consumers”, Journal of Political Economy, v104, n2,
219-40.

Dahlquist, Magnus and Paul Séderlind, 1997, “Evaluating Portfolio
Performance with Stochastic Discount Factors”, forthcoming, Journal
of Business.

Daniel, [{ent and David Marshall (1996), “Consumption-Based Mod-
eling of Long-Horizon Returns”, Manuscript, University of Chicago.

De Santis, Giorgio (1995), “Volatility Bounds for Stochastic Discount
Factors: Tests and Implications from International Stock Returns”,
Working Paper, Univsersity of Southern California.

Engle, Robert F., David M. Lilien, and Russell P. Robins (1987). “Esti-
mating Time Varying Risk Premia in the Term Structure: The Arch-M
Model”, Econometrica, v35, n2, 391-407.

Engle, Robert F., Victor K. Ng, and Michael Rothschild (1990), “Asset
Pricing with a FACTOR-ARCH Covariance Structure: Empirical Esti-
mates for Treasury Bills”, Journal of Econometrics, v45, nl-2, 213-37.

Epstein, Larry G. and Stanley Zin (1989), ”Substitution, Risk Aver-
sion, and the Temporal Behavior of Consumption and Asset Returns:
A Theoretical Framework”, July 1989, ECONOMETRICA, v57, nd,
0012-9682.

37



26
1)
29)
20)

[30]

[33]
[34]
[35]

(36]

37)

Epstein, Larry G. and Stanley Zin (1991a), ”Substitution, Risk Aver-
sion, and the Temporal Behavior of Consumption and Asset Returns:
An Empirical Analysis”, Journal of Political Economy, v99, n2, 263-86.

Epstein, Larry G. and Stanley Zin (1991b), "The Independence Axiom
and Asset Returns”, July 1991, National Bureau of Economic Research
Technical Paper: 109.

Fama, Eugene and Kenneth French (1989), “Business Conditions and
Expected Returns on Stocks and Bonds”, Journal of Financial Eco-
nomics, 25, 23-49. '

Ferson, Wayne E. and George. M. Constantinides (1561), "Habit Per-
gistence and Durability in Aggregate Consumption: Empirical Tests”,
Journal of Financial Economics, v29, n2; 199-240.

Fers'on,'Wayne E. and Rudi W. Schadt {1996), “Measuring Fund Strat-
egy and Performance in Changing Economic Conditions”, Journal of
Finance, vb1, n2, 425-61.

Ferson, Wayne and Andrew Siegel (1997a), " The Efficient Use of Con-
ditioning Information in Portfolios”, manuscript, University of Wash-
ington.

Ferson, Wayne and Andrew Siegel (1997b), “Optimal Moment Restric-
tions on Stochastic Discount Factors”, manuseript, University of Wash-
ington.

Filardo, Andrew J. (1994), “Business-Cycle Phases and Their Transi-
tional Dynamics”, Journal of Business and Economic 3tatistics, v12,
n3, 299-308.

French, Kenneth R., G. William Schwert and Robert F. Stambaugh
(1987), “Expected Stock Returns and Volatility”, Journal of Financial
Economics, v19, nl, 3-29.

Callant, Ronald and George Tauchen (1989), "Seminonparametric Es-
timation of Conditionally Constrained Heterogeneous Processes: Asset
Pricing Applications” Econometrica, v57, nd, 1091-1120.

Gallant, Ronald, Lars P. Hansen and George Tauchen (1990), “Us-
ing Conditional Moments of Asset Payoffs to Infer the Volatility of
Intertemporal Marginal Rates of Substitution”, Journal of Economet-
rics, v45, nl1-2, 141-79.

Glosten, Lawrence R. Ravi Jagannathan, and David E. Runkle, “On
the Relation between the Expected Value and the Volatility of the
Nominal Excess Return on Stocks”, Journal of Finance, v48, n5, 1779-
1801.

38



38
39
[0
fa
2

[43]

[45]
[46]

[47]

Hansen, Lars Peter, John Heaton, Erzo G. J. Luttmer (1995), “Econo-
metric Evaluation of Asset Pricing Models”, Review ¢f Financial Stud-

ies, v8, n2, 237-74.

Hansen, Lars P. and Ravi Jagannathan (1991), “Implications of Se-
curity Market Data for Models of Dynamic Economies”, Journal of
Political Economy, v99, n2, 225-62. '

Hansen, Lars. P. and Scott. F. Richard (1987), ?The Role of Con-
ditioning Information in Deducing Testable”, Econometrica, v53, n3,
587-613.

Hansen, Lars P. and Kenncth Singleton (1983), ”Stochastic Consump-
tion, Risk Aversion, and the Temporal Behavior of Asset Returns”
Journal of Political Economy, v91, n2, 249-63.

Hansen, Lars. P. and Kenneth Singleton (1982), " Generalized Instru-
mental Variables Estimation of Nonlinear Rational Expectations Mod-
els”, Econometrica, v50, n5, 1269-86.

He, Hua and David. M. Modest (1995), “Market Frictions and
Consumption-Based Asset Pricing”, Journal of Political Economy,
v103, n1, 94-117.

Heaton, John (1995), “An Empirical Investigation of Asset Pricing with

Temporally Dependent Preference Specifications”, Econometrica, v63,
n3, 681-717.

Heaton, John and Deborah J. Lucas (1996), “Evaluating the Effects
of Incomplete Markets on Risk Sharing and Asset Pricing”, Journal of
Political Economy, v104, n3, 443-87.

Kaminsky, Graciela and Rodrigo Peruga (1990), “Can a Time-Varying
Risk Premium Explain Excess Returns in the Forward Market for For-
eign Exchange?”, Journal of International Economics, v28, n1/2, 47-70.

Kandel, Shmuel and Robert F. Stambaugh, 1990, “Expectations and

Volatility of Consumption and Asset Returns”, Review of Financial
Studies, v3 n2, 207-32.

Kocherlakota, Narayana R. (1996), “The Equity Prev:.ium: It’s Still a
Puzzle”, Journal of Economic Literature, v34, nl, 42-71.

Mehra, Rajnish and Edward G. Prescott, "The Equity Premium: A
Puzzle”, Journal of Monetary Economics, v15, n2, 145-61.

Luttmer, Erzo G. J. (1996}, ” Asset Pricing in Economies with Fric-
tions” Econometrica, v64, n6, 1439-67.

39



[51] Rietz, Thomas A. (1988), "The Equity Risk Premium: A Solution”
Journal of Monetary Economics, v22, nl, 117-31.

[52] Sichel, Daniel E. (1993), “Business Cycle Asymmetry: A Deeper Look”,
Economic Inquiry, v31, n2, 224-36. A

[53] Singleton, Kenneth (1990), in Advances in Economic Theory: World
. Congress of the Econometric Society, Jean-Jacques Laffont ed., Cam-
bridge University Press, 1995.

[54] Weil, Philippe (1989) " The Equity Premium Puzzle and the Risk-Free
Rate Puzzle”, Journal of Monetary Economics, v24, 1., 401-21.

[53] Snow, Karl N. (1991), "Diagnosing Asset Pricing M. dels Using the
Distribution of Asset Returns”, Journal of Finance, v46, n3, 955-83.

[66] White, Halbert (1982), “ Maximum Likelihood Estimation of Misspec-
ified Models”, Econometrica, v50, nl, 1-25.

40



