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Abstract

In a growth model we show that “rent-grabbing” and “free riding” aspects
of the investment process can give rise to substantial inequality in productivity
and firm size. Moreover, small firms have larger Tobin’s ¢’s than big firms do
even though returns to scale are constant, and capital markets are perfect.

1 Introduction

We study a one-sector growth model with convex capital-adjustment costs. The
nonstandard feature is that the entire distribution of capital — and not just its average
or its maximum — enters the production function “externally”. Such external effects
should arise among agents that invest in learning, but they also can arise, in a reduced
form sense, in situations like patent-races that may not involve external effects among
the investors.

We get two main results. First, when the incentive to grab rents or to free ride is
strong enough, inequality is the only long-run outcome. We analyze long-run growth
and the distribution of incomes in a series of examples in which markets for knowledge
do not exist and in which one cannot exclude others from using one’s own knowledge.
Inequality affects the incentive to invest, and the distribution of capital that induces
everyone invests at the same rate is the long run equilibrium distribution.

We follow Lucas and Prescott (1971) and Hayashi (1982) and assume constant
returns in production and in adjustment costs for investment, and perfect capital
markets. The conclusion, however, is starkly different: Average Tobin’s ¢ generally
exceeds marginal ¢. That is, the unit value of capital is lower in big firms, and
evidence dating back to Fazzari, Hubbard, and Petersen (1988) supports this claim

*Affiliations: Univ. Pompeu Fabra and NYU, respectively. We thank the National Science
Foundation, the C.V. Starr Center for Applied Economics at New York University and the European
Commission {TMR) for financial help, and Fernando Alvarez, Roland Bénabou, Bart Hobijn, Robert
Lucas, and Vincenzo Quadrini for helpful comments.



quite decisively. Such evidence is usually taken to imply that small firms invest at
a rate lower than its perfect capital market rate. In our model, however, it arises
because small firms rely more on copying than big firms do: The marginal product
of capital is equal across firms, but its average product is higher than that because
small firms get a disproportionately high external benefit.

The results change if one introduces markets for knowledge that internalize the
externalities. We analyze the case in which pairs of firms can form research consortia
and exclude others from using the knowledge that they generate. This exercise in
the theory of clubs and assignments shows that the market outcome is efficient. We
lose the theory of inequality when sorting among firms is positive, but retain it when
assignments are negative.

2 Intuition

Let’s start with a graphical exposition of the case in which the external benefit that
a firm receives depends only on that firm’s rank in the population distribution of
capital stocks, k. The Figure 1 illustrates the effect that inequality then has on a
firm’s incentive to invest.

Frequency >
Distribution |

/II
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Figure 1: Inequality and the incentive to invest

The figure displays two hypothetical distributions of k£ in the population of firms.
Distribution I7 is more spread out than distribution I. A firm that raises its stock
of capital by one unit from &k to k + 1 will experience a gain in rank equalling the
darker rectangle if Distribution /7 is the relevant one, whereas under Distribution
its gain in rank would be larger by the lighter rectangle.



A
Frequency Rent- ggﬁr\g
Distribution Grabbing Case

. .

Km K

Figure 2: The density must be zero at one endpoint or the other

Whether inequality is a stimulus or a deterrent to investment and growth depends
on whether we are in the rent-grabbing case in which rank raises access, or in the free
riding case in which rank reduces access to usable knowledge of others. In the rent-
grabbing case, leadership is a blessing, the prospect of a gain in rank is a stimulus to
investment, and the incentive is higher under Distribution /. In other words, under
rent-grabbing, inequality is bad for investment-incentives. On the other hand, if free-
riding dominates, leadership is a curse, the prospect of a gain in rank is a deterrent
to investment, and the incentive to invest is higher under Distribution /7. In other
words, under free riding , inequality is good for investment-incentives.

Figure 2 shows why the distribution of capital must, in general, have at least one
tail in the sense that its density must be zero either at the minimum or maximum
capital-level, or both.

For the free riding case, consider the example of a flock of birds flying south.
There is a continuum of birds in the flock. The leader breaks the wind. The farther
back a bird is, the wider the wind-tunnel it enjoys, and the easier it flies. If it flew
faster, the bird would gain rank, and this would be bad. But the leader, bird K,
wouldn’t gain rank if it flew faster. For birds K and K j ¢ to fly at the same speed,
the density must be zero at K. For if, instead, it were strictly positive (as, say, the
shaded density is), the marginal payoff to effort would jump up at K. Bird K would
then pull away from bird K j € because it would face no disincentive from a gain in
rank. A positive density at K would thus lead to a convexity and a kink in the payoff
that go away only if the density at K is zero.



In the rent-grabbing case, the density must be zero at km, the manimal level of
capital. Suppose that it wasn’t and that, instead, it was positive, as shown by the
shaded density. Bird &, could fall back to k., — ¢ and not lose rank. Bird &, + ¢, on
the other hand, faces a loss of rank if it were to fall back. There is, in other words,
again an upward jump of the marginal payoff, this time at k = kn, and the last bird
would fly more slowly than the rest. This time the convexity and the kink are at kn,
and they go away only if the density at k., is zero.

3 Model

Preferences: There is one final good. Preferences over consumption streams are

t 1-—
Sy 1_~1fp) 51‘:%, where v > 0. The capital market is perfect and the interest rate,

r, is assumed to be constant. Maximization of this subject to the constraint that

b (L)t ¢; not exceed wealth leads to a growth rate of consumption = given by

1+
1 1/~
a::( J”") _1 (1)
1+p

Production capacity: The agent runs his own firm. Let 1 denote the economy-
wide distribution function of firms’ capital, k. Agent ks production capacity, or
“potential output” is f(k,p). While k is a scalar, p is a function, and so f is a
functional.

Accumulation of k : Starting from k, the cost of getting &’ units of capital next
period is kC (%), where €7 > 0. Also assume there are costs of rapid adjustment, so

that C” > 0. Qutput is
kl

If there is no investment, capital depreciates by & percent. That is, C(1-6)=0"

Firm’s maximization problem: Let v(k, i) be the value function. Tt satisfies

v(k, p) = max {f(k,u) — kC (%) + v(k’,/-t’)} : (2)

147

If v is differentiable, the first order condition of the problem in (2) 18

kl

L - () -0 3)

1+7r

1gaction 7.1 studies the effect of having u enter C' instead of f.
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The envelope theorem says that

e = itk — ¢ (7 ) + € (%) (@)

Using (4) to eliminate v;(.) from (3), yields the second-order difference equation for
k:
, kl k” k” k”
s =aene (5)-%e (7)o (%) 6

Relative capital, z: Let K; denote the largest k in the support of z, that, we
assume, is bounded. Let
zZ = k/Kt

denote capital relative to the current maximum. For any ¢, its cumulative density
function, H; is
Hy(z) = e (zKy) (6)

for z € [0,1].

A linear homogeneous production function: We now restrict f so that
returns in the aggregate are constant. From (6) a sufficient statistic for p is the pair
(K,H). We can therefore write f(k,pu) in terms of the triple (k, K, H). We shall
restrict the process by which external effects take place and assume that capacity can
be written as

[k, p) = F(k, k), (7)

where k,, a scalar, represents “accessed” knowledge, and that I is linear homogeneous.?
At this point, one would normally assume that k, is average knowledge, or frontier
knowledge, and this is where we depart from the norm.

3.1 Type-dependent access: k, = KA(z | H)

The main obstacle to the flow of information these days surely isn’t geographical
distance, but distance in human-capital space. In this space, a firm is located at k
and the locations of other firms are described by (K, H). We assume thaf accessing
the knowledge of others does not use up resources and that:

ke = KA(z | H).

We emphasize the following features of the “access function” A:

2WWe relax this assumption in section 7.2.



(i) A search-theoretic interpretation: If we write

Az | H) = fo olz, s)dH(s), (8)

then one may think of a(z,s) as the knowledge that firm z can get from firm s, and
of dH (s) as the probability of contacting such a firm. Moreover, a firm has no market.
power because it has no effect on H and, hence, on other firms’ ky’s.?

(1) A “usability” interpretation: Patents temporarily prevent a firm from making
money with knowledge that it has accessed given that someone else has accessed it
first. This would imply that A(z | H) is zero for all z < 1.

(iit) A may be increasing or decreasing in z: It is increasing if, as Nelson and
Phelps (1966) have emphasized, the more you know, the easier you can learn from
others. Or it could be decreasing if, as Jovanovic and Rob (1989) and Parente and
Prescott (1994) have emphasized, the more you know, the less there is left for you to
learn — the “fishing out” phenomenon. Jovanovic and Nyarko (1996, sec. 3.3) provide
an information-theoretic example in which A is inversely proportional to the distance
between z and s.

(iv)  Under equalily it 1s an “aK” model: Let H = 1 denote the distribution that
assigns all mass to z = 1. By Euler’s theorem, each firm’s capacity then is

FIK,KA(L 1)) = {R(1, AL 1) +F(LAQ| DAL D)}E =K (9)

4 Equilibrium

The linear homogeneity of F' and the functional form of A imply that f; depends
only on the pair (z, H):

dF

h=tr

= i+ BA = ¢(z | H). (10)

If we rule out “leapfrogging”, the only way that H can be constant is if every firm
grows at the same rate z. We assume that z is constant we have, for any & > 0,
k' =(1+z)kand k" = (1 + z)k’, and (5) reads

¢(z| H)=C(A+z)+(r—x)C(1+2). (11)

If every firm’s k grows at the same, constant rate, each firm’s z is constant over time,
and so is f1.

30me may think of a(z,s) as also reflecting firm 2's effort to direct its search towards firms of
type s, as in Jovanovic and MacDonald (1994).



Solve the optimum saving condition (1) for r to get r(z) = (1 +p) (1 + )" — 1,
and substitute it into the right-hand side of (11) to get

P(z)=C(1+1z)+ [r(z) — 2] C'(1 + ). (12)
Therefore (11) boils down to,

¢(z | H) = 1(z). (13)

This eliminates r from the system, and reduces the objects of steady state equilibrinm
to just two: = and H.

Definition 1 A constant growth equilibrium is a growth-rate & > —6, and o distrib-
ution function H on a subset of (0,1] so that (13) holds for all z €suppH (z).

The definition is incomplete for two reasons. First, condition (13) is necessary for
a maximum, but, as we illustrated with Figure 2, it is not sufficient for firms at one
of the corners — z € {zy,1}. We shall, in each example need to check that each firm
is indeed at a global maximum. Second, if v < 1, consumers’ lifetime utility becomes
unbounded when r gets large. This limits how large x can be before r(z) ceases to
have meaning. The growth factor of utility is Flp (1 +z)'7, which means that when
~ < 1 admissable z must not exceed an upper bound of

M= (14 )Y —1 (14)

Equilibria will be denoted by z* and H*.

The definition asks that firms all grow at the same rate. If a subset of firms were
to grow at a rate that was slower than the rest, relative inequality would be widening
for ever, and H* would then have a mass-point at zero. We do not wish to consider
such cases, and we therefore do not allow any firms to be at z = 0. Indeed, if a
firm ever reached z = 0 it would be stuck there forever. The investment technology
implicit in the cost kC (k'/k) is defined only for £ > 0.

Because costs of adjusting k are convex, and because r(.) is increasing, the effective
marginal cost of investment, ¢(.), is increasing:

Lemma 1 v is strictly tncreasing.

Proof ¢/(z) = r'(2)C'(1 + z) + [r(z} — ] C"(1 4+ z) > 0, because y > 0, r'(z) > 0,
and r(z) > z, and because C’ and C” are both positive. B



4.1 Inequality

By “inequality” we mean the variance or the range of the following variables, each of
which has been normalized by division by K:

e Capital stocks z = k/K . Investments in k and, hence, stocks of k, are likely
to be unmeasured, but one can infer k£ by measuring a firm’s “total factor
productivity” that measures a firm’s efficiency.

e Qutputs, F(z, Az | H*)),
e Profits, F(z, A(z | H*)) — 2C(1 + z*),

¢ Firm values
Flz, Az | H*)) — 2C(1 + z*)

r(z*) — g

= v(z), (15)
e Average Tobin’s ¢’s, v(z)/z.*
Equality in k implies that all z’s are unity. Equality is an equilibrium if the equation

$(111) = ¢(z) (16)

has a solution for z that exceeds —¢, and if investment is less than output. When
this is not the case, equality cannot arise in steady state. In fact, if A(.) is sufficiently
sensitive to z then equality is ruled out:

Proposition 2 For equality to exist it is necessary that

(¥(e™) — F[1L, AL ] 1))
1, A(1] 1)] ’

—A[1, A 1)]
B[1, AL | 1)]

<A(l|1) <

where

2™ = min {z*, -1+ C7 (F[L A1 1)])}.

4“Tobin's ¢” is the market value of the firm divided by the replacement cost of its capital. There
is no market for k in the model — the only cost of accumulation is the foregone output cost kC{(k'/k).
But it is straightforward to interpret the empirical measure in terms of our model. Suppose that
each unit of human capital, k, requires ¢ machines to work with before it could be productive.
If machines and goods trade one for one, the purchase of machines requires that the investment
cost be augmented by an amount ¢(k' — k), then ¢ is be the theoretical counterpart to the per-
unit replacement cost of capital. The internal adjustment cost then represents the output foregone
because of the accumulation of the requisite human capital. But for the presence of u in f, this
would make our firms identical to the firms in Lucas and Prescott (1971) and Hayashi (1982).



Proof Under equality, (13) reads Fi[1, A(1 | 1)] + F3[1, A(1 | 1)]A'(1 | 1) = ¢ (z),

(¥(z) — A1, A(1 [ 1)])

BLALIL
The first inequality in (17) follows because #(z) > 0. The second inequality follows
from the following two observations:

() Firms have access to perfect capital markets. Off the steady state they may
incur losses, but a firm cannot have negative profits for ever. It cannot grow faster
than at a rate at which all output is invested, so that F(1,A(1 | 1)) = C(1 + z).
Denote this maximal growth-rate by ! = —1+C~1 (F'[1, A(1 | 1)]). Then by Lemma

P(x) < ().

(it) The definition of equilibrium requires that consumers cannot feasibly attain

infinite utility, and this, from (14), requires that z < z™. Bl

or

A1) = (18)

Corollary 3 When A is representable by (8), wn (18) we can make the following
substitutions: A(1|1) = (1,1) and A'(1|1) = o (1,1).

4.2 INlustrations of economies in which equilibrium must in-
volve inequality

The following three cases illustrate the failure of condition (17). Each assumes the
production function F(k, k,) = k%kL~F.

Illustration 1: a(z,s) = 2*1s*2. Now (17) reads

—6 p[CH(1) 1] -6
T g=MS 1-0 '

If A; does not fall in this interval, constant growth cannot involve equality.

INlustration 2 (Students and teachers): a(z,s) = wy — (s — 2z — w)? so that a type
z student is best taught by a type s = 2z + w teacher. The parameter wy is set
to ensure that a(z,s) is positive for all (s,2) € [0, 1]2. If w = 0, it is optimal for
equal types to match. Matching is random, however, so that (8) still holds. As a
function of z, then «(z, s) has an inverted-U shape, peaking at the point s —w. Using
the same production function, since a(z,8) = 2(s — z —w), ay(1,1) = —2w, and
a(l,1) = wy — w?. The first inequality in (17) now reads

Fl(l,wo——wz)_ 0
F(lwy—w?) 1-0

(wo — w?) > 2w (19)
If @ is small or if w is large, the condition fails. Intuitively, if acquired knowledge

matters enough and if having a smarter teacher also matters enough, there is an
incentive to deviate to a lower z. As w — 0 equality is always an equilibrinm.

9



Illustration 3: A(z | H) = w.[H(z)]”. Now A(1l | 1) = w. We also can imagine
approaching equality with a sequence of differentiable functions H, in which case®
A'(1]1) = limp, .1 pwH'(1) = 400, and the second inequality in (17) fails for all
values of the parameters. Equality therefore cannot occur. Instead, this example has
a steady state with inequality that we shall characterize fully in Section 5.1.

It is not a rare event, therefore, for equality to fail to be a steady-state equilibrium.
The sections that follow will solve several examples the equilibria of which have
inequality. In each, the support of H* will be an interval without holes in it. Yet,
nothing in the definition of equilibrium ensures that this will be so generally.

Since we know little about the exact form of A () we shall analyze a set of ex-
amples. Equality is not an equilibrium in any of them. We begin with examples in
which a larger z allows more access.

5 Leadership a blessing: A increasing in z

This section discusses two examples in which A is increasing. The first example is
that of illustration 3 above, and it has the property that in the cross section of firms
Tobin’s ¢ is a constant, independent of z. In the second example, g declines with z.

5.1 Example 1: A(z | H) = w. [H(2)]’

The parameter p > 0 is an index of how fast access rises with rank. In Section 4.2,
lustration 3, we showed that equality is not an equilibrium. Instead, an equilibrium
is the Pareto distribution

H*(z) = 2° z €[0,1].
That is because w [H*(2)]* = wz, so that A(z | H*) = wz, and so that
F(z, A(z | H")) = zF(1,w)
The value of the firm in (15) now simplifies to
F(l,w) = C(1+2)
z.
r—g
Since all firms face the same purchase price of capital, firms’ outputs, profits, and
values are all proportional to z. This means that average and marginal Tobin’s ¢’s
coincide. Inequality in z depends on p, As p — 0, H* converges to a mass point at

z=1, and as p — oo, H* converges to a mass point at z = 0. So the density of z, of
profits, and of Tobin’s ¢’s can, in general, be skewed to the left or to the right.

(20)

5 Assuming we approach 1 by a sequence of differentiable functions such as, e.g., Hp(z) = 2" for
n=1,2..

10



5.1.1 Other cases in which average ¢ = marginal g.

The access function in example 1 had the property that there is at least one distri-
bution function, call it H*, that renders A proportional to z. Let the constant of
proportionality be 7, so that A(z | H*) = wz. Firms’ capacities are then proportional
to their capital stocks because

flk,p) =kF (1,%) =kF(1,7).

Since the cost function is also linear homogeneous, a firm’s valie is then proportional
to its k, and its marginal and average Tobin’s ¢ coincide. Let where z,, denotes the
smallest z in the support of H. We now state the generalized version of example 1:

Proposition 4 Let m > 0 be given. If H* solves, for H, the equation
Az | H) =7z (21)
for all z € supp(H), ond if
lime_oA (z, —e | H) <, (22)
then H* is an equilibrium distribution, and the growth rate solves
Fi(l,m) + nF(l,7) = ¢(x). (23)

Proof. Since A’ = 7, (13) and (10) imply that at H* (23) holds for all values of
z. Since (22) holds for z in a neighborhood of z,, there is no kink at z, and no
convexity.l °

Since a firm’s output is proportional to k, this class of examples does fit the
observation that larger firms have lower Tobin’s ¢’s (Fazzari, Hubbard and Petersen
1988). Since k is also a firm’s productivity, the class of examples does not fit the
observation that the elasticity of ¢ with respect to a firm’s T'F P-level is less than unity
(Dwyer 1997), the rejection from the proportionality in (20) is not overwhelming.

6 Another example that meets the restrictions of Proposition 4 is a{z,s) = z& (s), in which case

1
Az | H’):z[0 G (s)dH(s).

It leads to multiple steady states — a continuum, in fact — because of the positive strategic comple-
mentarity in the access subgame. One steady state distribution is = 1 — equality.

11



5.2 Example 2: A increasing in z, but A(z, | H) >0

Suppose that for any I, the least efficient firm can freely access one unit of k, from
a source other than its rivals. This implies that for z < zp,

A(z | H) = A(zm | H) = 1. (24)

The function ¢(-) = dF/dk = F; + F,A’ is constant on the interval [2m, 1]. For the
firm at z, to be at a maximum, ¢ must not exhibit a downward jump anywhere on
an open neighborhood of z,,. This is the convexity at k., that we saw in Figurc 2.
Let us now discuss it again with the help of Figure 3.

Zm

Figure 3: Marginal Tobin’s ¢

Since F, and A’ are both nonnegative, a downward jump at z,,, (such as the one
that would occur if MPK behaved as in curve I) is ruled out. And an upward jump
(such as the one that would occur if MPK behaved as in curve IT) is ruled out by the
second order conditions. Therefore, the second order conditions imply that

Fy [z, Alzm | H)] = (z), (25)
which, if F, > 0, requires that
A'(zm | H") = 0. (26)

This condition will turn out to imply that Tobin’s ¢ decreases as z rises.

12
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Flz, Az | H

— Flz, Atn | H)]

v

Zm 1

Figure 4: Potential output when A" >0

No conditions corresponding to (25) and (26) are required at = = 1, because at
that value of z, because neither an MPK like line IV in Figure 3 nor one like III would
violate the second order conditions.

Figure 4 plots F'(z, A(z | H*)) — the heavy curve — which is concave in z when
(25) holds. This means that average g will exceed marginal g.

Figure 4 shows that the decreasing Tobin’s g result hinges on the second-order con-
ditions: If A’ were not zero at the point z = z,, the envelope curve, F [z, A(z | H*)]
would have a kink at z, and the heavy straight line could then be equal in slope
to, or even steeper than the 45° line. We can derive the equilibrium access function
A(z | H*) when the production function is Cobb-Douglas. Let F(k, k,) = k%", so
that (25) reads

5\ 00
Y(z) =02, or, z,= ("9/)(55)) : (27)
Condition (13) reads
81 9 dA
6(2) +a-9(5) o =vl), (28)

which leads to the differential equation

dA 9 A\? A
ad 0 AN _a-e_ A
dz 1—6’{(2) “m z} (29)



with the boundary condition A(z,) = 1.
The solution: As the appendix verifies, the general solution to (29) is

A= (z;(l_g)é’zl_g + Cz*‘g) a9

3

where C is arbitrary. The boundary condition A(z,,) = 1 implies that C' = 2, (1 — 6),

which gives
L\ 1-? L\ 1/(1-6)
= (o(2) -0 (2))
Zm Zm,

for z € [zm,1]. This solution depends on a parameter, z,,, yet to be determined. But
note that A is increasing and convez. To solve for it we need to know what A(1) is,
and to get this boundary condition we must specify a form for A(z | H).

Assume that the access function is
A(z| H)=1+ H(z),
which implies that A(1} = 2 for all H, a condition that will enable us to solve for zy,.
Now A(1) = 2 implies that (z;l(l_g)ﬂ + C)lmg) = 2. And, since C' = 2 (1 - 6),
we end up with a restriction on z,, alone:

0:-1 4 (1-6)28 =27 (30)

T

The left-hand side decreases monotonically from infinity to one, whereas the right-
hand side exceeds one. The unique solution for z,, is plotted in Figure 5.
Human capital differentials therefore increase with 8.

Output differentials: Let Iy denote the ratio of the output of the leader to the
laggard, conditional on 8:

I Fl1,Aq | m)]  2v°
O Flom, Alzm | H)] ~ 28

m

From (30) one can show that limg_q 2% = limg_,; 22, = 1/2, so that as # increases
from zero to one, Iy falls from 4 to 2. Output differentials therefore rise with the
strength of the external effect, 1 — 8.

Externalities and growth: The figure also shows that the ratio 8/z,, rises as # does.
A fortiori, so does 0277 and so by (27), so does z = ™ Bz;(l_g)) , the long-run

growth rate. So, growth is higher when the share of own-capital in production is
higher, and externalities reduce growth.”

"The optimal rate of growth is 1¥~! (1). It is attained when # = 1 and there are no spillovers. As
# declines, so does the growth rate.

14



Figure 5: The dependence of z,, on 8

Skewness of H: Since A is convex, so is H. Since A'(z,) = H'(zn) = 0, the
density, H’, rises monotonically from zero up to a maximum at z = 1. It has a left-
tail, and no right-tail. In contrast to Example 1 (which had no particular implications
for skewness), Example 2 produces skewness in the wrong direction.

6 Leadership a curse: A decreasing in z

The ability to access usable knowledge may, in many kinds of activities, decline
as one’s knowledge increases. Goolsbee and Klenow (1998), for instance, find that
spillovers in the decision to adopt a computer emanate entirely from a small group of
elite computer owners - people who use their computers intensively and have owned
several computers in their lifetimes. It seems reasonable to expect such spillovers to
flow mainly towards the novices. If so, this is an example in which A decreases in z.

In this class of examples, the larger is z, the smaller is A, and so the ratio z/A
increases with z. Tobin’s ¢ declines with z because (24) holds. We now assume that
once a firm is at the head of the pack, it has reached the minimum k,. That is,but
that

Alz| H)=A(1|H) forz>1.

Equality is not an equilibrium because a mass point would induce firms to pull back
their investments and take advantage of the increased access to the knowledge of oth-
ers that backwardness offers. In order to eliminate the convexity at z = 1 (discussed
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Figure 6: Potential output when A’ < 0

graphically in Section 2) we require that
F L AL HY)] = (), (31)
which, if 3 > 0, now requires that

A(1| HY) =0. (32)

Figure 6 shows that if (32) failed and A’ were, instead, positive at z = 1,
F'|z, A(z, H)] would have a kink at z = 1, and the firm’s objective would not be
concave.

6.1 Example 3: A(z,) >0, and A decreasing in z

As in Example 2, we shall normalize externalities to equal unity when they are at
their lowest. Since A is now decreasing in z, this means that, instead of (24), we now
have A(1 | H) = 1. Again, let F(k, k;) = k%k1=%, so that (31) reads

8 = ¥(x). (33)
Condition (13) is again given by (28). Combine it with (33) to get the differential

equation
dA g [A4\° ANT?
= 1-6 (—) {1‘ (—) ] (34)
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which is negative because A exceeds one, except at z = 1, where it equals zero. Note
that (34) is a special case of (29). The solution now is

A= (0220 + )07
where C is arbitrary. Now A(1 | H) = 1 implies that C' = (1 — ), and therefore
A= (0204 (1-9) )0

for z € [z, 1]. Differentiation shows that A is now decreasing, and still convex. This
solution is not final yet, because z,, is yet to be determined, and for that we shall
need to specify A(z | H).

6.2 Restricting A further to A(z | H) =2 — H(z)

We chose this example for its tractability. For some distributions H, however, it
violates free disposal of % in production because dF/dk = F} — Fy H' is negative! This
happens when H is concentrated so that, as a result, H'(z) becomes large. This will
not happen in equilibrium, though.
Since A(zm) =2,
0210 4 (1 —0) ;¢ =217,

The solution for z,, is plotted in Figure 7.

Figure 7: The dependence of z,, on 8
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The human capital differential still increases in §. The negative MPK problem
leads to non-existence of a steady state when external effects matter enough. This
occurs for § < 0.10, and so we rule out #’s in this region.

Output differentials: Let Iy again denote the output differential conditional on :

FILAQIH) 1 1 1

Ip = = = =
’ 226 Gz +1-0 1-0(1—z,)

a F [z, A(zm | H)]

which rises from 1.1 when 6 = 0.1, to 2.7 when # approaches 1.

Ezxternal effects and growth: We can solve for the rate of growth from the condition
Fi(1] A(1)) = v(z), so that now z = /=1 (#) so that, once again, growth is higher
when appropriability is higher.

7 Robustness

This section reports a diverse set of departures from the maintained assumptions.
First, the conclusions seem to be survive if, instead of entering f, w is assumed to
enter C. They also largely survive if we relax the assumption that £ is linear homoge-
neous. The first two subsections deal with these two departures from the model. The
remaining three subsections will show that without type-dependent access, we get
equality, and that if we remove external effects altogether, we get an indeterminacy
in H. We end the section with a brief and partial analysis of welfare.

7.1 External effects in C(.) instead of in f(.)

Instead of entering the production function f, suppose that y affects learning possibil-
ities. Starting from k, the cost of getting &’ units of capital next period is c{k, &', k,).
We shall suppose that ¢ is homogeneous of degree one so that

kK k
! - e
C(k:k:ka)_“kc(ka k)a

where C' is increasing in its first argument, and, since the externality reduces costs,
decreasing in the second. Capital still depreciates by é percent, so that C' (1 — &, ’“—k“) =
0. We need a linear homogeneous production function, so we assume that f(k) =
nk.The firm’s value still is v(k, i), except that the Bellman equation now reads

Kk, L
o(k, ) =m,gx{nk—kc (zz) ¥ 1+T”(k,u)}- (35)

If » is differentiable, the first order condition now is

18



1
1+7r

A kK kg
w(k' @) —C (E’?) = 0. (36)

The envelope theorem now says that

K k, dk,
T)l(k,,LL)Z?]—C+—k:'C1+ |:—k—— dk:\CQ (37)

We shall continue to assume that k, = KA(z | H), so that

ko _AEIH) g

dky _ dkadz
k z dk dz dk '

Using these facts and using (37) to eliminate v;(.) from (36), yields the second-order
difference equation for & that, when evaluated in steady state, reads

n=(r(z) —2)CL+C + [i:- —A’] C. (38)

The functions C, Cy, and Cjs are all evaluated at the point (1 + x, ﬂéﬂl) Therefore

(38) is of the form
n=M(z,z H) (39)
which, as before, must hold for all z in the support of H.
The analogy of Proposition 4 is the following result:

Proposition 5 An H* that solves, for H, the equation A(z | H) =z is an equilib-
rium, and under it

n=((x)—-2)Ci(1+z,m)+C(l+z,m)

Proof An H* that solves, for H, the equation A(z | H) = =z for all z € (0,1]
implies that A—(zzlﬁl = A'(z | H) = , so that the last term on the right-hand side of
(38) is zero. The claim then follows. H

Condition (39) is not additively separable in x and z, and is therefore harder to
analyze than (13) . The analogy of a ¥(-) that increases in z is an M (.) that increases
in z. When it is, there is at most one solution for z for any H. In the case covered by
the above proposition, this is obviously true. But it holds more generally: As Lemma
1 shows, the term (r(z) — z)Cy + C is increases with z. And when A" < 0, and if

2 > 0, the last term is too, because then [ﬁﬂ—m — Az | H)} > 0. .
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7.1.1 Cobb-Douglas example

Let
Cla,b) = a'*®b7¢,

so that, since in the steady statea =1+ z and b = ﬂleﬁl

7

omth0 (L522) a cumo(2222)"

and (38) reads
== (S s () 2] ()

Rearranging,

"7 (é) = (r(@) = o) 1L+ 0) 1+ ) + (1+0) (1 +2)" = ZA8 (1 +2)'"

or, since

Z o dln A
A7 dlnz’
1

dinA
dlnz  g(1+z)'*

where
1 )(1 + SE)H_H

m(z) = (r(z) —x) (1 +6)(1 +$) +(
(4)" = exp{8(y —w)}, and the

Now let ¥ = InA and u = Inz, in which case
differential equation becomes

dy 1

Tu W[ m(z) —nexp{f(y —u)},]

This differential equation is of the form

dy_ _
2. =0 bexp {# (y —u)},

Tts exact solution (using Maple) is

In(—exp (—0(y(u) —u)) +aexp (—0(y(u) —u)) —b) —u=C
(—1+a)6 '
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7.2 Increasing returns to scale

We have assumed throughout that F' is linear homogeneous, and that its inputs
are reproducible - production does not require labor services. Per capita output is
y= F(k, k) — kC (%) . In steady state, the output-capital ratio of each firm,

% = F(z,A(z, H)) - C (1 +2),
is constant through time (but not, necessarily, among firms at a point in time) as per

capita output.

Let F' be homogeneous of degree A. Then F(k, k) = K*F (£, A(z | H)), so that
Pk, k) = K*1F (2, A(z | H)) and Fy(k, k) = K 'Fy(z, A(z | H)). If adjust-
ment costs were of the form k*C (%’), then marginal costs would equal 1O (%’),
which, on a growth path of 2 would equal K*"1z*~1C (1 +- z).

In a steady state (z, H), v(k, pt) now satisfies

ol ) = g { 5,0 = P°C (%)+ i)}

1+r

The first order condition is v (¥, ') — ¥*1C’ (£) = 0. The envelope theorem

now says that v, (k, 1) = fi(k, p) — k*1 [AC (%) - %C’ (%)} . Since
filk,p) = KA [Fy (2, Az | H) + Fa (2, Az | H) A'(z | H)) = Ko (2, H),

the second-order difference equation for & now reads:

k' K K, (K
(147)C’ (g) =279 (= H) — {AC (?) %Y (?)] ’

so that in steady state, )

276 (2, H) = (2,0,
where ¢ (z,\) = AC(1 + z) + (r(z) —2)C’ (1 + ). When A = 1, this condition
collapses to (13), as it must. Evidently, the essence of the linear homogeneous case
extends to the increasing returns case.

7.3 A independent of z : Equality

Without type-dependent access, we get no theory of inequality. Indeed, if F' is strictly
concave in k, we still have long run growth, but equality is the only outcome because,
as in many other models, the diminishing marginal product of capital is a force for
convergence:
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Proposition 6 If k, does not depend on z, and F is concave in k, egqualily is the
only long Tun outcome, and the rote of growth satisfies the condition

Fi(1,e0(1,1) = (). (40)

Proof. The first-order condition in steady state reads Fi(k, &,) = ¢(x). This
equation cannot hold for two distinct k, except when F] is a constant (i.e. Fj; = 0).
This implies that & = k,. Finally, the linear homogeneity implies that [ depends
only on k/k,, and this ratio is one. B

Predictably, when A’ = 0, no rent-grabbing can arise, and growth is slower than
optimal:

Proposition 7 If k, does not depend on z, the equality-constrained socially optimal
rate of growth satisfies the condition

Fi(1,1) + Fa(1, a(1,1))a(1, 1) = 4(z). (41)

Proof. Assume that every agent has capital kg at ¢ = 0. A growth rate = is
optimal only if it the solution to the problem of maximizing the stream of consump-
tion weighted by the discounted marginal utilities. That is, using (9), maximizes

discounted output > ;°, (%ﬂ“)t [T-’Ct — k,C (k};l” The first order conditions to this

problem, evaluated under constant growth, boil down to (41). W

The situation is described by Figure 8 where z* is equilibrium growth-rate, and
2% i1s the optimal rate.

7.4 F independent of k,: “Gibrat’s Law”

We say that “Gibrat’s Law” holds if any initial distribution of firms replicates itself.
Since we only consider steady states, this can take place in our equilibrium only if
any H satisfies the definition of steady state equilibrium at some growth-rate x. This
is stronger than the usual definition of the law, which, in our context, says that a
firm’s growth rate does not depend on its size.

If f did not depend on g at all then a homogeneous [ is of the form f(k) = nk; ¢
would not depend on H, and the long-run rate of growth would be unique and given
by 1! (n). Then z would solve the following version of (11):

n = ¢(z), (42)

The unique rate of growth would be ¥~!(n). Although z would be determined
uniquely, any H would be an equilibrium, and the model would have no transitional
dynamics. Any initial distribution of z, including the Dirac distribution, would repli-
cate itself indefinitely, and “Gibrat’s Law” would hold.
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W(x)

Fi1+aoF2

Fi

Figure 8: Equilibrium and equality-constrained optimum when £, does not depend
on k

Gibrat’s Law” can, in fact, arise more generally. Even if F, > 0 and A, > 0, it
may still be the case that for all (z, H),

dF(k, k,)

= = F) + F, A" = constant

Since F' is linear homogeneous, 3 = 0 implies that %% = Fj is a constant. However,
consider the separable production function F' = Bk+Ck, with €' # 0. “Gibrat’s Law”
holds as long as A”(z | H) = 0 for all (z, H), simply because - = B + A'C is then a
constant. In general, any ' and H that satisfy Fi; + 2A Fip + Foo (A’)2 + A" =0,
V(z, H) satisfies “Gibrat’s Law”

In our framework, for a theory of inequality, A" # 0 is a necessary condition:
Without an access function that varies with z, the model either predicts equality (the
case where Fy > 0), or (when Fy = 0) that the distribution of income is arbitrary.

7.5 Equality?

When A does depend on z, equality can, in general, still be a long-run equilibrium.
This is illustrated by example 1, where, when p = 0, equality is an equilibrium. {23)
now reads £1(1,w)+wE(1,w) = (z). The rate of growth depends on w, and Figure
1 applies, with w in place of a.

The next proposition provides sufficient conditions under which equality is the
only long run outcome. These are more general than those of Proposition 6 because
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they cover the case in which A" # 0.

Proposition 8 Let Fio > 0. If A" (2, H) < 0 and A’ (z,H) <0, ¥V (2, H) (with at
least one tnequality being strict) and if a1(1,1) satisfies (17), a unique steady state
equilibrium ezists with equality and with growth rate

¥ = (1, 0q(1,1)) + Fo(1, a0 (1, 1) A(1 ] 1)) .

Proof. Suppose, contrary to the assertion, that in a steady state equilibrium there
is inequality and that for z € [zp, 1], F1 + A'F, is constant and equal to ¢ (z). Then
the second derivative, Fi1 + 2A'Fjs + Fho (A’)2 + FL,A” = 0. But linear homogeneity
of F implies that Fy; < 0, Fyy < 0, and F15 > 0, and, given the assumptions of this
proposition this expression is always negative. This rules out inequality. Finally, since
(17) holds, equality is an equilibrium. Finally, by Lemma 1, ¢ is strictly monotone,
and therefore z* is the only solution for z. Wl

7.6 Equilibrium vs. optimum under equality

If equilibrium has equality as its long-run outcome, the equilibrium condition reads
FllLa(l,D)]+Fla(l,1) o (1,1) = ¥(z), (43)

which is solved by x*. If, on the other hand, the planner were to start from a situation
in which everyone was equal and if he were also constrained to treat everyone equally,
the optimal rate of growth would be z°, that solves (41). Since 1) is strictly increasing
we therefore have the following result:

Proposition 9 If z* is an equality equilibrium growth rate and z° the equality-
constrained optimal rate,

« < o <
AR as ar (1, 1) = o(1,1).

This result describes how private incentives in the access game relate to social
incentives. Since k, = Kaf(l,1), accessible knowledge grows by a(1,1) units for each

unit increase in K, whereas the private return (in access) to capital accumulation is
03] (1, 1)

Corollary 10 In case (b), x* < x°, whereas in case (a) x*

VIIA
8

Proof: Tn case (b) oy < 0, whereas « itself is positive. B
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8 Markets for knowledge

Firms form, it is said, to internalize externalities. In our model, the externalities are,
in general, economywide, and only a national monopoly would internalize them fully.
To handle this meaningfully, we shall assume that externalities are not economywide
but that, instead, one can learn from at most one person at a time. Two-person
coalitions with side payments will then fully internalize the externality. The coworkers
access one another’s knowledge, but not anyone else’s.

Production capacity and access to knowledge: If workers of type k and 5 are
in the same firm, worker % can then access an amount of knowledge k, = K a(%, %),
and worker S can access an amount of knowledge k, = Ka(£, £). Since knowledge
is confined within firms, k, cannot depend on the knowledge of other workers in the
economy, and this means that they cannot depend on K. But this can only be true

if o () itself is linear-homogeneous, so that
kS
Ko|—,2)=alk,S 44
(%) =20:9) (44)
This is a property that we shall assume for the remainder of this section.
Worker k’s capacity to produce is®

Flk Ka)=F (k Ko (}’% %)) — KF(z,a(z9),

where s = S/K. Worker S can produce K F(s,a (s, z)).

Side payments: We assume complete markets with Walrasian prices. Each
worker retains property rights over his net output, and pays to, or receives a transfer
from the other worker. Worker & gets a gross payment

k
P (k) = Kp(—=
(k) = Kp()
from the agent he is paired with. If he is paired with S, he pays that agent
S
P(S) = Kp(—=
(5) = Kp()

The net payment by worker & to worker S is P(S)—P(k). We restrict that equilibrium
prices be linear homogeneous as in the two preceding equations, simply because this
is necessary for the decisions problems to be stationary along a balanced growth path

Agent k's maximization problem: Each worker controls his own & and maxi-
mizes the net present value of his own output net of the costs of his own investment,

8Being a function of two scalars, f is a different function from f, which depends on the scalar &
and the measure p.
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and net of transfers. His decision variables, at each date, are his investment in %, and
the identity of his partner, S. Let v(k) be the worker’s value function. It satisfies

v(k) = P(k) +%%x{f(k,Ka) — kC (%’) —P(S)+ lJer

»u(kf)} . (45)

If v is differentiable, the first order conditions of the problem (45) are

v (k) = C (%) —0, (46)

and

f_g(k, KC\!)O&Q - P’ (S) =0. (47)

Since k&' and S are “enveloped out”,

S E) = P'(K) + Fi (k. o) + Fok, Kaag — C (’%) + %c’ (%) o (48)

Using (48) to eliminate +'(.) from (46), yields the second-order difference equation
for k:

_ _ k/ k/l k/f ki!
P+ KK+ T ke = ene (5) -5 () e ()

49)

Steady state growth. As there now are no externalities among firms, the only
link between the decisions of different firms is the interest rate r and the price function
P. These prices will need to be such that every firm wishes to grow at the same rate.
We would like to know if such an equilibrium places any restrictions on the rate of
growth, x, and the distribution of capital over workers, k. From (47),

P'(8) =p'(s) = Fo{z,a(z,3))) oz (z,s)
Interchanging the arguments for a given match between s and z
P'(k) =p'(z) = Fa (s, (s,2))) ca (s, 2)
Let the equilibrium assignment be S = K¢ (%)SO that in intensive form,
s=£€(z).

This says that even though the workers can look for new partners at each instant,
they will find it optimal to remain with the same type for ever.
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Next, note that fi(k, Ka) = Fy(z,a(z,s)), so that in equilibrium

filk, Ko) = Fi[z,a(2,€ (2))].

In steady state, z = 2/, and hence £ (z) = € (z') . Therefore (49) reads

Pz)+ Bz a (7 ()] + Rz a(z,£(2)] o (2,£(2) = ¥(z) (50)

Evaluating p'(z) at the equilibrium match s = £(z), and substituting into (50) it
follows that (50) becomes

Py (§(z), a{f(z), 2)) 02 (€2}, 2)+ Fi [2,0 (2, £ (2))[H P2 [z, 0 (2, £ (2))] on (2,€ (2) = 9(z).
(51)
Interpretation: The first term is the marginal contribution of agent z’s capital
to his partner s’s output for which he gets rewarded p'(z). The remaining terms are
the marginal contributions to his own output.
When can equality survive? At £(z) = z =1, (51) reads

Fl (].,OJ (]-a 1)) + F2 (lva(la 1)) (al (1= 1) + oy (1: 1)) = ¢($)

Proposition 2 applies to this case too, with the sole difference that in the inequalities
displayed in (17), a; (1, 1) should be replaced by a3 (1,1)4az (1, 1), where oy corrects
for the externality. The logic of the proof is exactly the same. Thus we have shown
that

Proposition 11 In o decentralized market equilibrium, a constant growth-path with
equality does not exist unless
_Fl[ln a(la 1)}
FQ[I, 05(1, 1)]

(¥(=™) — Fi[L, o1, 1)])
R[1,a(1,1)]

~a(1,1) € au(1,1) €

— (L 1),  (52)
where ™ 18 defined in Proposition 2.

8.1 Equilibrium sorting

We shall show next that in the noncooperative assignment game sorting is positive
if the two worker-types are strategic complements in the joint net surplus function
v(k) + v(8). That is, if
02 [v(k) + v(S)]
0koS

> 0.

Proposition 12 k and S are strategic complements (substitutes) if for any pair (2, s)

Fia(z, a)as(z, 8} + Fy(z, @)ans(z, 8) + Foalz, @)ai(z, s)as(z, s} > (<)0 (53)
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Proof. The joint net surplus function is v(k) +v(S). Then,

82 [u(k) +~v(S)] _ @ (av(k)) 49 (6’1)(3)) .0

koS "9k \ 8s as \ 0Ok

and a similar expression holds for the second term. Now by the envelope theorem

gk- (agg’f)) = 58';; (fg(k,KCﬁ)O[g — P’ (S)) = f_lg(k,KOf)ag + fgg(k, KO()OQOZQ —+ ‘]FQU{J, KO{)Q{u

_ _Il? (Fialz, a)as(z, 5) + Falz, a)an(z,8) + Pialz, ) (2, 8)aalz, 5))

Therefore, if (53) condition holds everywhere, i.e. for both (%, S) and (S, k), the claim
is valid. ®

Example — The standard assignment game: This arises if outpnt depends
only on accessed knowledge. That is, if F (k,k,) = k,. Since here F} =0, Fy = 1,
and Fb, = 0, condition (53) reduces to the familiar one:

Q1 > (<)0

8.2 Planner’s optimum

This subsection will show that the equilibrinm maximizes aggregate discounted out-
put so that, in this sense, it is socially optimal. Even though matches are chosen
in each period, in steady state growth equilibrinm the types of the matched agents
never change. We assume that the planner’s steady state growth path has the same
property. Tt follows that the optimal investment policy must maximize the discounted
output. of each infinitely-lived match.

Optimal investment in stable matches: The planner’s rate of discount would
equal the marginal rate of substitution of the consumers, and we shall retain the
notation of (l%rr)t for this variable. We assume that the planner cannot transfer
knowledge among matches. We now use the assumption in (44). For the match

between workers k and S, the planner solves the investment problem

1\ k s
<kf%3’§zlz (1 — T) {F (key o (K, S1)) — ke (;Ttl) + F (8, 0(S k) — S, C ( ;1)}
(54)

subject to kg, and Sp given. Note that the planner is not solving an assignment
problem here, he just decides on the sequence of capital levels that the two workers
should have, conditional on remaining together for ever. We shall now show that the
first-order conditions to this problem are the same as (51) as long as 7 is the same,
and as long as the assignment is the same.
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Proposition 13 If Sy = K¢ (ko/K), and if v is constant, the solution to (54) is
ke = (1+2) ko, and S, = (1 +2)' Sp,

where z solves (51). That is, the planner chooses the same growth rate as the equi-
librium growth rate.

Proof. The planner’s value function is

K S’ 1
= — — — —_ — k‘l !
Wk, S) Ig}%)’c{F(k,a(k,S)) kC(k) + F(S,a(S,k)) — SC (S) + 1+TW( ,S)}
The first-order conditions are —hlw Wi(k', S = ' (’%)and =Wa(K,8) = (%—')

The envelope theorem says, for instance, that

Wik, S) = Filk, o (k, S)+Fy (k,a (k,9)) ay (k, S)+F5 (S, (S, k)) s (S, k)=C (k’) +E’C'
(

so that, using (48),
Wi(k,S) =v'(k) + F2 (S, (S,k)) aa (S, k) — P'(k) =/ (k). (56)
and similarly,
Walk, ) = v/(5) (57)
So, if the planner maintains the same assignment this completes the proof. B

Equilibrium growth is therefore optimal. This is because prices induce investment
to be such that the marginal cost 1(z) equals the sum of a worker’s contribution to
his own output, oy, and his marginal contribution to the output of the other worker,
[a 52

Optimal matching: It remains to be shown that the pattern of assignment is
the same for the planner as it is in equilibrium. The planner wants positive sorting
if, for all (k,S), Wiz > 0, and negative sorting if Wi, < 0.

Proposition 14 The planner’s and the equilibrium sorting patterns are the same.

Proof. (56) and (57) imply that ﬁ[v_{%ﬂ%ﬂ =2W(k,S). 1

8.3 Positive sorting

We show next that when & and S are strategic complements, Gibrat’s Law holds, and
2

we lose the theory of inequality. When 6—%@ > 0, we have positive sorting. In

this case, £ (z) = 2, and (51) reduces to

Fy[z,0(z,2)] + Fp [z, (2, 2)] [o1 {2, 2) + @2 (2, 2)] = ¥(x) (58)
The simplified production function facilitates the characterization of the positive

sorting equilibrium.
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Proposition 15 Ifk and S are strategic complements (&%%gsﬂén > 0), the resulting
positive sorting equilibrium satisfies Gibrat’s law.

Proof. Since o (-) is homogeneous, « (z, z) is proportional to z. Since Fi is homoge-
neous of degree zero, it does not depend on z, because the ratio of the two arguments
of F| is constant in z. Similarly for F,. Finally, since @ (-) is homogeneous, o, and
vy are homogeneous of degree zero as well. W

Corollary 16 In an economy with positive sorting and provided equilibrium ezists,
equality is always an equilibrium.

Note that in the standard assignment game example where F(k, k,) = k,, (51)
reduces to as (z,z) + a1 (2, 2) = ¥(x).

The Gibrat’s Law outcome that the previous proposition proves would be of great
interest if we believed that markets for knowledge were complete. Since markets for
many types of knowledge go not exist, however, this result is merely a benchmark.

8.4 Negative sorting

We shall now show that when & and S are strategic substitutes (‘92”6—[—%%521 < 0)

and when, as a result, sorting is negative, inequality will sometimes be the only
equilibrium outcome, just as it was in the incomplete markets case. The allocation
now satisfies H (£ (z)) =1 — H(z) so that if H is invertible

£(2)=H7' 1 - H(2)].

Equation (51) now contains H and we can now hope that we can, consequently,
restrict H. If H has a density h, since h(£ (2)}¢'(z) = —h/(z2),

! —h,(Z)
Y& = - @)

(59)

If F(k, k,) = kg, equation (51) reads

a2 (5 (Z) ,Z) + oy (Z,é(z)) = ¢(m)

For a steady state to exist, this condition must hold for all z, so that & {2 (£ (2), 2} + a1 (2,£ (2))} =
0, and this implies, in turn, that

o) - Tl (6D Ton € 2 k)
a2 (€(),2) +an (5, ()) A[H(1- HE))

where the second equality follows from (59).

(60)
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8.4.1 Example 4:F(k, k,) = k,, and a(z,s) = z(6 — s*)
Since a;(z,s) = (0 — s*), and aq(z,s) = —4zs®, (51) reads

a1(z,8) + ag(s,2) = 0 — s* — 4sz* = ¢(x) (61)
Let C' = 8 — 4(z), so that (61) reads s* + 4s2* = C, and so that:

3/ (C — s*)

s) = - (62

It remains to solve for C. Since £(1} = z,, it must be that z, = { LC4;1). Since
&(zy) = 1, this means that Substituting into (62) s = zy,,

which yields 3 solutions for C: C = 1.08, C' =5, and C = 208.9. If we choose a value
for  appropriately, we can rule out two of these solutions. In particular, if § = 2,
say, then C' = 2 — (z) = 1.08 is the only solution at which ¢ (x) is positive. In this

case zn = /2 = 0.27. A plot of £(z) is in Figure 9:
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Figure 9: Plot of £(z) in Example 4

We now derive the support of the equilibrium distribution. The mutual consent of
matching partners requires that £ [£(2)] = z, for all z in the support of H. Substitution
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into (62) yields

| o8- (3 (uﬂij" ))4

(=)

£[€(2)]

which we plot in Figure 10:

1
09
08
0.7:
06
05
04

0.3
0'3 0.4 05 06,07 0.8 0. 9

Figure 10: Plot of £ [£(z)] in Example 4

The curve evidently does not coincide with the 45° (dashed) line. The entire
interval z € [0.27, 1] cannot therefore be in the support of the equilibrium distribution
H(z). Only intersections with the 45° line satisfy £ [£(z)] = 2, and these intersections
occur at the points .27, .64, and 1. This, then, is the support of the equilibrium
distribution. There exists a continuum of equilibrium distributions on this support,
as long as they are symmetric around the point .64 and provided the solution is
feasible:

g if z=.27
H(z)=¢ 1-0 ifz=.64
1 ifz=1

Such a distribution has mass # at the points .27 and 1, and the remaining mass of
1 — 8 is at the point .64.

On the one hand, this result is encouraging because any equilibrium distribution
must have a range of [.27,1]. Equality is not an equilibrium because (61) and the
fact that ¥(x) > 0 imply that

s* 4+ 452’ =0 — y(z) < 2,

but at s = z = 1, the left-hand side of this expression equals 5, a contradiction.
On the other hand, however, almost all the agents could be at the midpoint — 2%,
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which is de facto equality. This seeming paradox arises because the function « is not
homogeneous of degree 1, so that its first derivatives are not homogeneous of degree
zero. This is not so reasonable in a model in which every other function is linear
homogeneous, but it is the one tractable example we have so far for the negative
sorting case, and it does show that inequality may be necessary for steady state
growth.

The upshot of all this is that the introduction of even complete markets does not,
overturn entirely the conclusions of the incomplete markets model. In particular, if
the access function has sufficient strategic substitutability between the team members,
equality fails as an equilibrium and we, instead, get inequality.

9 Conclusion

Growth theorists have assumed that human capital enables one to use more efficiently
the knowledge of others, to produce output as in Lucas (1988), or to accumulate
knowledge as in Romer (1990). They assumed, however, that accessed knowledge
depends on the mean or on the maximum of the population distribution of human
capital. We generalized this by allowing access to depend on all the moments of the
distribution, one of which is the variance.

This allows for theory of inequality based on external effects. In several examples
we solved for the exact distribution of cutput as a function of the form of externalities.
This mechanism for generating inequality is unexplored in the growth literature even
though there are notable models of heterogeneous agents are linked by external effects
in human capital. In his industry-level model for example, Nelson (1988) sketches a
“nonsymmetric” equilibrium in which innovators coexist with imitators and in which
both groups grow at the same rate, but he does not explain why inequality arises in the
first place. Since then, Tamura (1991), Glomm and Ravikumar (1992}, and Bénabou
(1996) have studied how inequality evolves in a group of heterogeneous agents in
models with externalities, and they have even carried out fully dynamic analyses
whereas we look only at balanced growth. In those models, however, inequality
either explodes, or it disappears unless fueled by repeated idiosyncratic shocks. Such
models capture important reasons for inequality — shocks and initial conditions — but
one that clearly differs from the mechanism that we highlight, namely, externalities.

Externalities also offer a new explanation for why Tobin’s ¢ is smaller for efficient
(and, hence, big) firms. Small, inefficient firms benefit disproportionately from ex-
ternalities and this causes them to have a higher average product of capital. The
usual explanation for this observation is that small firms are financially constrained.
We have shown, however, that one may expect to see such a relation even if capital
markets are perfect.
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10 Appendix: Check of the solutions to (29) and
(34)
Check that the solution to the ordinary differential equations (29) and (34) works.

1 1/(1-6)
The solution is A = (zm(l )g,1-0 4 C'z‘e)
Differentiating,

where C is an arbitrary constant.

1-—- g
{2;1(1_9)921_9———9 —Cz7 -

Z z

da ()]
dz 1-—86

But 1-0 0 8
R L (20702170 (1 - 8) — CZAQ}
A 4 A

Z;]‘(I—GJ 921~6
But

[z;b(l‘g)zl_a (1-6)— Cz”g] = - [Bz;(lvg)zl_e + C’z_g} + z;l(l_e)zl’g

— _Alw-G _,_21:1(1—8)21—9

Therefore

g
F4 z oz

[_Al_e n Z;Lu—e)zpe}

Therefore )

dA ()T lg 6. —(1-8) 1
E: - ;[_Al 9+zm(1 9) ,1 a}
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Now 1_£6 —-1= '1'3'0- Therefore (.)lTlﬂ_1 = A?

A = A7 g[—A1“e+z;(l_9)zl‘9]

dz 1—-60=
-8
Zz -4

g

1-9
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