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ABSTRACT

According to conventional wisdom, long-term bonds are appropriate for long-term investors
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We calibrate our model to postwar US data and compare consumption and portfolio rules
with and without bond indexation, portfolio constraints, and the possibility of investment in equities.
We find that when indexed bonds are not available, inflation risk leads investors to shorten their
bond portfolios and increase their precautionary savings. This has serious welfare costs for
conservative investors, who are much better off when they have the opportunity to buy indexed
bonds. We also find that the ratio of bonds to equities in the optimal portfolio increases with the
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1 Introduction

Long-term bonds have been issued for centuries, and they remain extremely common
financial instruments. It is natural to suppose that bonds have been popular because
they meet the needs of an investor clientele. Investment advisers and financial jour-
nalists, for example, often say that bonds are appropriate for long-term investors who
seek a stable income. :

Curiously, modern financial economics has little to say about the demand for long-
term bonds. In the early postwar period Hicks (1946), following Keynes (1930) and
Lutz (1940), argued that investors would naturally prefer to hold short-term bonds
and would only hold long-term bonds if compensated by a term premium. Modigliani
and Sutch (1966) countered that some investors might have a preference for long-
term bonds (a long-term “preferred habitat”), and such investors would require a
premium to go short, not a premium to go long. However Modigliani and Sutch were
vague about the characteristics of investors that would lead to a long-term preferred
habitat. They took it as a given that some investors would desire stable wealth at a
long rather than a short horizon.?

Since the 1960’s there has been a vast increase in the sophistication of bond pric-
ing models, but little further progress has been made in understanding the demand
for long-term bonds. Recent authors, building on the seminal contributions of Va-
sicek (1977) and Cox, Ingersoll, and Ross (1985), have related term premia to the
covariances of bond returns with an exogenously specified stochastic discount factor,
but have not asked what bond portfolios are optimal for different types of investors?

One reason for this gap in the literature may be that it is extremely hard to
characterize optimal portfolio strategies for long-term investors. Samuelson (1969)
and Merton (1969, 1971) obtained some explicit results under the assumption that
real asset returns are independently and identically distributed over time; but this
assumption implies that real interest rates are constant, so in the absence of inflation
uncertainty—or with full indexation of bond payments to inflation—bond returns are
nonrandom and all bonds are perfect substitutes for cash. Fischer (1975), Bodie,
Kane, and McDonald (1985), and Viard (1993) have nonetheless used this assump-

2They wrote: “Suppose that a person has an n period habitat; that is, he has funds which he will
not need for n periods and which, therefore, he intends to keep invested in bonds for n periods. If he
invests in n period bonds, he will know exactly the outcome of his investments as measured by the
terminal value of his wealth.... If, however, he stays short, his outcome is uncertain.... Thus, if he
has risk aversion, he will prefer to stay long” unless compensated by a term premium (pp. 183-184).

3Campbell, Lo, and MacKinlay (1997), Dai and Singleton (1997}, and Shiller (1990) review the
recent bond pricing literature.



tion to study bond demand. In Fischer’s model there is one nominal bond with a
fixed nominal interest rate, and one indexed bond with a fixed real interest rate. The
maturity of these bonds need not be specified, since bonds of all maturities are per-
fect substitutes for each other* Bodie, Kane, and McDonald use historical data to
estimate the variance-covariance matrix of real returns on nominal bonds, assuming
that this matrix and mean real bond returns are constant over time. In their model
random inflation allows imperfect substitutability among nominal bonds of different
maturities, but constant real interest rates imply that long-term and short-term in-
dexed bonds are perfect substitutes. Viard uses the same framework as Bodie, Kane,
and McDonald and derives some further analytical results.

Merton (1969, 1971, 1973) studied the intertemporal portfolio choice problem
with time-varying investment opportunities, introducing the important concept of
intertemporal hedging demand for financial assets, but he did not obtain explicit
solutions for portfolio weights. Recently a number of authors such as Balduzzi and
Lynch (1997), Barberis (1998), Brandt (1998), and Brennan, Schwartz, and Lagnado
(1996, 1997) have used numerical methods to solve particular long-run portfolio choice
problems, while Kim and Omberg (1996) and Campbell and Viceira (1999) have
derived some analytical results, but these papers generally concentrate on the choice
between cash and equities rather than the demand for long-term bonds.

In this paper we study intertemporal portfolio choice in an environment with
random real interest rates. We use an approximation technique developed in our
earlier papers (Campbell 1993, Campbell and Viceira 1999) to replace the intractable
portfolio choice problem with an approximate problem that can be solved using the
method of undetermined coefficients. We use the approximate solution to understand
the demand for long-term bonds.

We calibrate our model to historical data on the US term structure of interest rates,
and report optimal portfolios for investors with a wide range of different attitudes
towards risk and intertemporal substitution of consumption. In order to study the
effects of inflation risk on optimal bond portfolios and investor welfare, we compare
the solutions to our model when only indexed bonds are available with the solutions
when only nominal, or both nominal and indexed bonds are available. We also allow

4Fischer also considers multiple goods whose relative prices may change; this allows him to
introduce multiple indexed bonds, but the bonds are distinguished by the prices to which they
are indexed, and not by maturity. Fischer recognizes that his assumptions may be problematic,
concluding “It is possible that too little uncertainty about the returns from holding nominal bonds
and equity over long periods is reflected in the basic model of the paper and that such uncertainty
would result in portfolio holders being willing to pay a substantial premium for a long-term indexed
bond” (p. 528). This paper explores Fischer’s conjecture.



for borrowing and short-sales constraints, and for the possibility of investment in
equities.

We begin by specifying a simple two-factor model of the term structure of interest
rates, augmented to fit equity as well as bond returns. The two factors are the log
real interest rate and the log expected rate of inflation. Each factor follows a normal
first-order autoregressive (AR(1)) process with constant variance. This implies that
log bond yields are linear in the factors and the model is in the tractable “affine yield”
class (Dai and Singleton 1997, Duffie and Kan 1996). The model for the real term
structure is a discrete-time version of Vasicek (1977), while the model for the nominal
term structure is a discrete-time version of Langetieg (1980). Closely related models
are discussed in Campbell, Lo, and MacKinlay (1977), Chapter 11.

Next we consider the portfolio choice problem for an infinitely-lived investor who
has only financial wealth and must choose consumption and optimal portfolio weights
in each period. Because the investor is infinitely-lived, she does not value stability
of wealth at any unique horizon; rather she cares about the long-run properties of
her consumption path. We assume that the investor’s preferences are of the form
suggested by Epstein and Zin (1989, 1991); the investor has constant relative risk
aversion and constant intertemporal elasticity of substitution in consumption, but
these parameters need not be related to one another. Epstein-Zin preferences nest the
traditional power-utility specification in which relative risk aversion is the reciprocal
of the intertemporal elasticity of substitution.

We show that the investor’s demand for long-term bonds can be decomposed into
a “myopic” demand and a “hedging” demand. Myopic demand depends positively on
the term premium, and inversely on the variance of long-term bond returns and the
investor’s risk aversion. As risk aversion increases, myopic demand shrinks to zero.
Hedging demand, on the other hand, is proportional to one minus the reciprocal of risk
aversion. It is zero when risk aversion is one but accounts for all bond demand when
risk aversion is infinitely large. We show that an infinitely risk-averse investor with
zero intertemporal elasticity of substitution in consumption will choose an indexed
bond portfolio that is equivalent to an indexed perpetuity, that is, a portfolio that
delivers a riskless stream of real consumption. In this way we are able to support the
commonsense view that long-term bonds are appropriate for long-lived investors who
desire stability of income.

Our analysis delivers explicit solutions for portfolio weights, consumption rules,
and investor welfare. We can compare investor behavior under alternative assump-
tions about the available menu of assets. We find that when indexed bonds are not
available, inflation risk leads investors to shorten their bond portfolios and increase
their precautionary savings. This has serious welfare costs for conservative investors,
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who are much better off when they have the opportunity to buy indexed bonds.

We also consider optimal portfolios when equities, as well as bonds, are available.
We find that the ratio of bonds to equities in the optimal portfolio increases with
the coefficient of relative risk aversion. As Canner, Mankiw, and Weil (1997) have
pointed out, this is consistent with conventional portfolio advice but inconsistent with
static mean-variance analysis. The static mean-variance model with a riskless one-
period asset (“cash”) predicts that all investors should hold a single mutual fund of
risky assets; more conservative investors should increase the ratio of cash to the risky
mutual fund, but should not change their relative holdings of risky assets. Our model
helps to resolve the asset allocation puzzle identified by Canner, Mankiw, and Weil;
more generally it underscores the dangers of using static portfolio choice theory to
study the dynamic problems faced by long-term investors.

The organization of the paper is as follows. Section 2 presents the two-factor term
structure model, and shows how it can be solved for bond prices at all maturities. Sec-
tion 3 sets up the investor’s intertemporal consumption and portfolio choice problem,
explains our approximation to the problem, and discusses the approximate solution
in the case where only indexed bonds are available. This section also explains the
relation of our solution method to the approach of Cox and Huang (1989). Section
4 asks how things change when only nominal bonds, or both nominal and indexed
bonds, are available. This section also shows how to impose borrowing and short-sales
constraints. Section 5 considers the consumption and portfolio choice problem in the
presence of equities, and section 6 concludes.



2 A Two-Factor Model of the Term Structure of
Nominal Interest Rates

2.1 Specification of the model

Our focus in this paper is the microeconomic problem of portfolio choice for an in-
dividua)] investor facing exogenous bond returns. In order to generate empirically
reasonable and theoretically well-specified bond returns, however, we start by writing
down a general equilibrium bond pricing model. We consider a discrete-time, two-
factor homoskedastic model that allows for non-zero correlation between innovations
in the short-term real interest rate and innovations in expected inflation.

The real part of the model is determined by the stochastic discount factor (SDF)
M, that prices all assets in the economy. In a representative-agent framework the
SDF can be related to the marginal utility of a representative investor, but here we
simply use it as a device to generate a complete set of bond prices. We assume that
M,,1 has the following lognormal structure, a discrete-time version of Vasicek (1977):

—Myy1 = Tt + Umpttl,
Tyl = (1 - ¢z) Hy + ¢_TIL'5 + Ex,t+1s
Umt+1l = Bmafzitl T Emttls (1)

where my,; = log(M;.,) and z,, the one-period-ahead conditional expectation of
ms.1, follows an AR(1) process.

The nominal part of the model is also characterized by a lognormal, conditionally
homoskedastic structure:

Tep1 = Zt T Unttls
zi1 = (L=¢.) p, + @20 + Va1,
Vptrl = Bozfzpri T BomEmps1 + €41,
Vegrl = DBrz€oitl + BamEmist + Brofapst + Empra, (2)

where 7,1 is the log inflation rate and z is the one-period-ahead conditional expec-
tation of the inflation rate.

The system is subject to four normally distributed, white noise shocks €z 441,
Emt+1> Ezt+1, and €441 that determine the innovations to the log SDF, the log in-
flation rate, and their conditional means. These shocks are cross-sectionally uncor-
related, with variances o2, o2, o2, and o2. It is important to note that 241, the
expected inflation rate, is affected by both a pure expected-inflation shock ;141 and
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the shocks to the expected and unexpected log SDF e;,41 and €n:51. That is, inno-
vations to expected inflation can be correlated with innovations in the log SDF, and
hence with innovations in the short-term real interest rate. These correlations mean
that nominal interest rates need not move one-for-one with expected inflation—that
is, the Fisher hypothesis need not hold—and nominal bond prices can include an
inflation risk premium as well as a real term premium.

We have written the model with a self-contained real sector (1) and a nominal
sector (2) that is affected by shocks to the real sector. But this is merely a matter of
modelling convenience. Our model is a reduced form rather than a structural model,
so it captures correlations among shocks to real and nominal interest rates but does
not have anything to say about the true underlying sources of these shocks.

Campbell, Lo and MacKinlay (1997) note that ep, 441 only affects the average level
of the real term structure and not its average slope or time-series behavior. Accord-
ingly, we can either drop it or identify its variance with an additional restriction. We
follow the second approach and introduce equities in the model. We assume that the
unexpected log excess return on equities is affected by shocks to both the expected
and unexpected log SDF":

Tet+l — Kt Tetyl = ﬁexga:,H-l + /BemEm,t-{-l- (3)

Campbell (1998) shows that this decomposition of the unexpected log equity return
into a linear combination of the shocks to the expected and unexpected log SDF is
consistent with a representative-agent endowment model where expected aggregate
consumption growth follows an AR(1). From the fundamental pricing equation 1 =
E¢[Miy1R:11} and the lognormal structure of the model it is easy to show that the
risk premium on equities, over a one-period riskless return ry ¢41, is given by

1
Ei[ress1 — T1es1] + 3 Vary(resr1 — Tier1) = Covi(Tessr — Tie+a, —My41)
= BrngBesOs + Bemm: (4)

The variance term on the left hand side of (4) is a Jensen's Inequality correction that
appears because we are working in logs, and the terms on the right hand side relate
the risk premium on equities to the covariance of equity returns with innovations
in the SDF. This specification implies that the equity premium, like all other risk
premia in the model, is constant over time. Thus it ignores the time-variation in the
equity premium that is the subject of our earlier paper on long-run portfolic choice
(Campbell and Viceira 1999).



2.2 Pricing indexed bonds

Our model can price both indexed bonds and nominal bonds. In this section we
show how to price indexed bonds, defined as zero-coupon bonds paying one unit of
consumption at maturity and free of default risk.

Characterizing the stochastic discount factor is equivalent to characterizing the
return on the one-period indexed bond, since ry 41 = — 10g E;[M,1]. Because M,
is lognormal, we have that

Tl = Eel—me] — 3 Var[m 1]
1
= T3 ( fnzai + J,zn) ) (5)

Therefore, our assumptions on M1 imply that the short term interest rate on indexed
bonds is stochastic, though riskless one period in advance. It inherits the stochastic
properties of z;41, and follows an AR(1) process with mean g — (82,02 +0%,)/2 and
persistence ¢.

Campbell, Lo and Mackinlay (1997), following Singleton (1990), Sun (1992), and
Backus (1993), show that a lognormal, conditionally homoskedastic stochastic dis-
count factor implies a pricing structure for log indexed bond yields which is affine in
Z¢41. The log yield on an n-period bond, yn:, times bond maturity n, which equals
minus the log price of the bond, pre, is given by

N Ynt = “Pnt = Ap + B, x, (6)

where A,, and B, are functions of bond maturity n but not of time £, and satisfy the
following recursive equations:

1—¢7
n - 1 Bno1= _H—_.ii
B + ¢, 1= T 6.
1
A As = (=8B = 5 (B4 B on) D

and Ag = Bo = 0. An implication of (6) is that yields on indexed bonds of different
maturities are perfectly correlated with each other.

The one-period log return on an n-period bond is by definition (Pn_14+1 — Prt)-
Combining this expression with (6) and (7), the excess return over the one-period log
interest rate is

1
— 2 2 2
Totdl — Thtrl = _QBn—lgf — B,z Bn-10% — Bn-1Ez+1 (8)
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so the n-period bond is risky, with a risk premium given by

1
E: [Pnt+1 — 7‘1,t+1] -+ 3 Vary (T 41 — Tieel) = Covi(Tnt41 — T1t+1 —Mi41)
= -ﬁmmBn—lai' (9)

The variance term on the left hand side of (9) is a Jensen’s Inequality correction that
appears because we are working in logs. The conditional covariance of the excess
bond return with the log SDF determines the risk premium. In our homoskedastic
model the conditional covariance is constant through time but dependent on the bond
maturity; thus the expectations hypothesis of the term structure holds for indexed
bonds. It is important to realize that constant risk premia do not imply constant
investment opportunities because real interest rates are stochastic in our model.

Since Bn-; > 0, the Jensen's-inequality-corrected risk premium is negative if
Bme > 0, and positive otherwise. With positive 3,,,, long-term indexed bonds pay off
when the marginal utility of consumption for a representative investor is high, that
is, when wealth is most desirable. In equilibrium, these bonds must have a negative
risk premium. With negative 8,,., on the other hand, long-term indexed bonds pay
off when the marginal utility of consumption for a representative investor is low, and
so in equilibrium they have a positive risk premium.

Equations (8) and (9) imply that the Sharpe ratio for indexed bonds is —B oz
which is independent of bond maturity. The invariance of the Sharpe ratio to bond
maturity follows from the one-factor structure of the real sector of the model. The
ratio of the risk premium to the variance of the excess return, which determines a
myopic investor’s allocation to long-term bonds, is —Fmy /By—1. This does depend on
bond maturity but not on the volatility of the real interest rate.

2.3 Pricing nominal bonds

The pricing of default-free nominal bonds follows the same steps as the pricing of
indexed bonds. The relevant stochastic discount factor to price nominal bonds is the
nominal SDF M2, ,, whose log is given by:

m§+1 = M1 — T+l (10)

Since both M, and Il are jointly lognormal and homoskedastic, M¥., is also log-
normal. The log nominal return on a one-period nominal bond 18 ¥, = —logE: (M2,
which implies that rf,t 41 1s a linear combination of the expected log real SDF and
expected inflation given in the Appendix.
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The log price of an n-period nominal bond, pf;,t, also has an affine structure. It is
a linear combination of z; and z; whose coefficients are time-invariant, though they
vary with the maturity of the bond:

_pi,t = Ai + B%,n“rt + Bg,nzt' (11)

The Appendix gives expressions for the coefficients A%, Bf | and Bf .

Since nominal bond prices are driven by shocks to both real interest rates and
inflation, they have a two-factor structure rather than the single-factor structure
of indexed bond prices. Inflation affects the excess return on an n-period nominal
bond over the one-period nominal interest rate, so risk premia in the nominal term
structure include compensation for inflation risk. Like all other risk premia in the
model, however, the risk premia on nominal bonds are constant over time; thus the
expectations hypothesis holds for nominal as well as for real bonds.

2.4 The term structure of interest rates in the US

We estimate the two-factor term structure model using data on US nominal interest
rates, equities and inflation. We use nominal zero-coupon yields at maturities 3
months, 1 year, 3 years, and 10 years from McCulloch and Kwon (1993), updated by
Gong and Remolona (1996a,b). We take data on equities from the Indices files on the
CRSP tapes. We use the value-weighted return, including dividends, on the NYSE,
AMEX and NASDAQ markets. We take data on CPI inflation from the SBBI files
on the CRSP tapes. Although the raw data are available monthly, we construct a
quarterly data set in order to reduce the influence of high-frequency noise in inflation
and short-term movements in interest rates.

To avoid the implication of the model that bond returns are driven by only two
common factors, so that all bond returns can be perfectly explained by any two bond
returns, we assume that bond yields are measured with error. The errors in yields
are normally distributed, serially uncorrelated, and uncorrelated across bonds. Then
the term structure model becomes a classic state-space model in which unobserved
state variables z; and z follow a linear process with normal innovations and we ob-
serve linear combinations of them with normal errors. The model can be estimated
by maximum likelihood using a Kalman filter to construct the likelihood function
(Berardi 1997, Harvey 1989, Pennacchi 1991, Gong and Remolona 1996a,b, Foresi,
Penati, and Pennacchi 1997). This is an attractive alternative to the Generalized
Method of Moments used to estimate term structure models by Gibbons and Ra-
maswamy (1993) and others.



In Table 1 we report parameter estimates for the period 1952-96 and the period
1083-96. Interest rates were unusually high and volatile in the 1979-82 period, during
which the Federal Reserve Board under Paul Volcker was attempting to reestablish
the credibility of anti-inflationary monetary policy and was experimenting with mon-
etarist operating procedures. Many authors have argued that real interest rates and
inflation have behaved differently in the monetary policy regime established since 1982
by Federal Reserve chairmen Volcker and Alan Greenspan (see for example Clarida,
Gali, and Gertler 1998). Accordingly we report separate estimates for the period
starting in 1983 in addition to the full sample period.

In earlier versions of this paper we reported completely unrestricted maximum
likelihood estimates of the model. In 1952-96 these estimates fit the data well, but
in 1983-96 the unrestricted estimates deliver implausibly low means for short-term
nominal and real interest rates. (The model does not necessarily fit the sample
means because the same parameters are used to fit both time-series and cross-sectional
behavior; thus the model can trade off better fit elsewhere for worse fit of mean short-
term interest rates.) Accordingly in this version of the paper we require that the model
exactly fit the sample means of nominal interest rates and inflation. This restriction
hardly reduces the likelihood at all in 1952-96, and even in 1983-96 it cannot be
rejected at conventional significance levels.

The first two columns of Table 1 report parameters and asymptotic standard
errors for the period 1952-96. All parameters are in natural units, so they are on a
quarterly basis. We estimate a moderately persistent process for the real interest rate;
the persistence coefficient ¢, is 0.87, implying a half-life for shocks to real interest
rates of about 5 quarters. The expected inflation process is much more persistent,
with a coefficient ¢, of 0.9985 that implies a half-life for expected inflation shocks
of almost 115 years! Of course, the model also allows for transitory noise in realized
inflation.

The bottom of Table 1 reports the implications of the estimated parameters for
the means and standard deviations of real interest rates, nominal interest rates, and
inflation, measured in percent per year. The implied mean log yleld on an indexed
three-month bill is 0.85% for the 1952-96 sample period. Taken together with the
mean log yield on a nominal three-month bill of 5.31% and the mean log inflation rate
of 3.99% (both restricted to equal the sample means over this period), and adjusting
for Jensen’s Inequality using one-half the conditional variance of log inflation, the
implied inflation risk premium in a three-month nominal Treasury bill is 49 basis
points. This fairly substantial risk premium is explained by the significant positive
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coefficient 3, and the significant negative coefficient 3,,, in Table 1.3

Risk premia on long-term indexed bonds, relative to a three-month indexed bill,
are determined by the parameter §,,,. This is negative and highly significant, im-
plying positive risk premia on long-term indexed bonds and an upward sloping term
structure of real interest rates. Risk premia on nominal bonds, relative to indexed
bonds, are determined by the inflation-risk parameters 3, and 3,,,. The former
is positive but statistically insignificant, while the latter is negative and significant.
Both point estimates imply positive inflation risk premia on nominal bonds relative
to indexed bonds.

Table 2 explores the term-structure implications of our estimates in greater detail.
The table compares implied and sample moments of term structure variables, mea-
sured in percent per year. Panel A of Table 2 reports sample moments for returns
and yields on nominal bonds, together with the moments implied by our estimated
model; panel B shows comparable implied moments for indexed bonds, and panel C
reports sample and implied moments for equities. Row 1 of the table gives Jensen’s-
Inequality-corrected average excess returns on n-period nominal bonds over 1-period
nominal bonds, while row 2 gives the standard deviations of these excess returns.
Row 3 reports annualized Sharpe ratios for nominal bonds, the ratio of row 1 to row
2. Row 4 reports mean nominal yield spreads, row 5 reports the standard deviations
of nominal yield spreads, and row 6 reports the standard deviations of changes in
nominal yields. Rows 7 through 12 repeat these moments for indexed bonds. Note
that the reported risk premia and Sharpe ratios for nominal and indexed bonds are
not directly comparable because they are measured relative to different short-term
assets, nominal and indexed respectively.

A comparison of the model implications in rows 1 and 7 shows that 10-year nominal
bonds have a risk premium over three-month nominal bills of 2.06% per year, while
10-year indexed bonds have a risk premium over three-month indexed bills of 1.62%
per year. These numbers, together with the 49-basis-point risk premium on three-
month nominal bills over three-month indexed bills, imply a 10-year inflation risk
premium (the risk premium on 10-year nominal bonds over 10-year indexed bonds)
of slightly less than 1%. This estimate is consistent with the rough calculations in
Campbell and Shiller (1996).

Rows 2 and 8 show that nominal bonds are much more volatile than indexed bonds;
the difference in volatility increases with maturity, so that 10-year nominal bonds have

5This result is somewhat sensitive to the sample period. An earlier version of this paper found
a smaller inflation risk premium at the short end of the term structure over the period 1952-79,
consistent with the results of Foresi, Penati, and Pennacchi (1997).
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a standard deviation three times greater than 10-year indexed bonds. This difference
in volatility makes the Sharpe ratio for indexed bonds in row 9 considerably higher
than the Sharpe ratio for nominal bonds in row 3. Since indexed bond returns are
generated by a single-factor model, the Sharpe ratio for indexed bonds is independent
of maturity at 0.46. The Sharpe ratio for nominal bonds declines with maturity; short-
term nominal bonds have a ratio close to that for indexed bonds, but the Sharpe ratio
for 10-year nominal bonds is only 0.20. These numbers imply that in our portfolio
analysis, investors with low risk aversion will have a strong myopic demand for indexed
bonds.

Table 2 can also be used to evaluate the empirical fit of the model. A comparison
of the model’s implied moments with the sample moments for nominal bonds shows
that the model fits the volatility of excess nominal bond returns and changes in yields
extremely well. It somewhat overstates the average excess nominal bond return and
the nominal Sharpe ratio, but this can be attributed in part to the upward drift in
interest rates over the 1952-96 sample period which biases downward these sample
means. Overall the model appears to provide a good description of the nominal US
term structure considering its parsimony and the fact that we have forced it to fit
both time-series and cross-sectional features of the data.

Rows 13, 14 and 15 give comparable figures for equities: the annualized Jensen'’s-
Inequality-corrected average excess returns on equities relative to nominal bills, the
standard deviation of these excess returns, and their Sharpe ratio. The model fits the
standard deviation of equities extremely well but overpredicts the equity premium
and the Sharpe ratio for equities. With an implied Sharpe ratio of 0.53, investors
with low risk aversion will have an extremely large myopic demand for equities.

The right hand sides of Tables 1 and 2 repeat these estimates for the Volcker-
Greenspan period 1983-96. Many of the parameter estimates are quite similar; how-
ever we find that in this period real interest rates are much more persistent, with
¢, = 0.986 and an implied half-life for real interest rate shocks of about 12 years.
The expected inflation process now mean-reverts much more rapidly, with ¢, = 0.866
implying a half-life for expected inflation shocks of about 5 quarters. These results are
consistent with the notion that since the early 1980’s the Federal Reserve has more
aggressively controlled inflation at the cost of greater long-term variation in the real
interest rate (Clarida, Gali, and Gertler 1998). The increase in real-interest-rate per-
sistence increases the risk premia on indexed and nominal bonds, but it also greatly
increases the volatility of indexed bond returns so the Sharpe ratio for indexed bonds
is lower at 0.15. In the remainder of the paper we present portfolio choice results
based on our full-sample estimates for the period 1952-96, but we also discuss results
for the 1983-96 period where they are importantly different.
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3 The Demand for Indexed Bonds

3.1 Assumptions on investor preferences

The investor is infinitely-lived, lives off her financial wealth and faces the investment
environment described above. We assume that her preferences are described by the
recursive utility proposed by Epstein and Zin (1989) and Weil (1989):

;]
1— iy1=+
UGB = {(1-0)C7 +8(UT) | (12)

where § < 1 is the discount factor, v > 0 is the coefficient of relative risk aversion,
¥ > 0 is the elasticity of intertemporal substitution, and 8 = (1 —v)/(1 — 1/4). The
recursive utility function (12) reduces to the standard time-separable, power utility
function with relative risk aversion y when 1 = 4=, which implies 8 = 1.

Recursive preferences are useful because they allow us to separate the investor’s
attitude towards risk from her attitude towards intertemporal substitution of con-
sumption over time. This separation is particularly important in our framework,
where the short-term interest rate moves over time giving the investor an incentive
to change her planned consumption growth rate.

3.2 Euler equations and the value function
The investor maximizes (12) subject to the intertemporal budget constraint
Wip1 = Bpp (W = Cy), (13)

where Rp;.1 is the gross return at time ¢ + 1 on her portfolio at time 2.

Epstein and Zin (1989, 1991) have shown that when the budget constraint is given
by (13), the optimal portfolio and consumption policies must satisfy the following
Euler equation for any asset i:

2]
Cooi\"% )
1=E {5 ( t+1) } Rp,gle)R'i,t-;-l . (14)

1=E, {5 (%:—1)”% Rp,t+1}9 : (15)



Dividing (12) by W; and using the budget constraint we obtain the following
expression for utility per unit of wealth:

-3 1-3 1) ¥
= {(1 o (5) Twe(i-g) 7 (e REL)) } . ()
where V, = U,/W,. Epstein and Zin (1989, 1991) show that the value function per unit
of wealth can be written as a power function of (1 — §) and the consumption-wealth
ratio: )
—(1-8)% ,91) e

V=0-07 () (17)
Two special cases are worth noting. First, as ¢ approaches one, the exponents in
(17) increase without limit. The value function has a finite limit, however, because
the ratio C,/W; approaches (1 — 6) as shown by Giovannini and Weil (1989). Second,
as 9 approaches zero, V; approaches C;/W;. A consumer who is extremely reluctant
to substitute intertemporally consumes the annuity value of wealth each period, and
this consumer’s utility per dollar is the annuity value of the dollar.

3.3 Loglinear approximation of the model

At this point, to simplify the analysis we assume that there are only two bonds avail-
able to the investor, a one-period indexed bond and an n-period indexed bond. Given
the one-factor structure of our model for indexed bonds, this is equivalent to providing
the investor with a complete indexed term structure. Under this assumption, £, 11
is equal to

Ryt = oy (Roty1 — Rig1) + Riesn, (18)

where ¢, is the fraction of the investor’s savings allocated to the n-period indexed
bond at time t.

In order to find optimal savings and the optimal allocations to the two bonds, we
adopt an approximate analytical solution method. The first step is to characterize
Qn.t, the optimal allocation to the n-period bond, by combining a second-order log-
linear approximation to the Euler equation with a first-order approximation to the
intertemporal budget constraint. We then guess a form for the optimal consumption
and portfolio policies and show that policies of this form satisfy the approximate
Euler equation and budget constraint. Finally we use the method of undetermined
coefficients to identify the coefficients of the optimal policies from the primitive pa-
rameters of the model. By using a second-order expansion of the log Euler equation
we account for second-moment effects in the model.
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Following Campbell (1993, 1996), Campbell and Viceira (1996), and Restoy (1992),
we first log-linearize the Euler equation (14) for i = n and ¢ = 1, where asset 1 is
the short-term riskless asset. Subtracting the log-linearized Euler equation for the
riskless asset from the log-linearized equation for asset n, we find:

1 1-—
E; [rpge1 — i) + §V&Tt (Tng+1) = - (i——_%) Covi (ACti1, Tnet1)
1—
+ ( 1 __d;j) Cove (Pp 41, Tn+1) s (19)

where lowercase letters denote variables in logs and A is the first-difference operator.
This expression obtains from (14) by using both a second-order Taylor approximation
around the conditional mean of {ry 41, Aceyr} and the approximation log(l +z) =~ z
for small z. Tt holds exactly if consumption growth and the return on wealth have a
joint conditional lognormal distribution. We show later that this is indeed the case
along the optimal path: the approximate optimal policies imply that the log return
on wealth and log consumption growth are jointly normal.

We can log-linearize (15) in a similar fashion. After reordering terms, we obtain
the well-known equilibrium linear relationship between expected log consumption
growth and the expected log return on wealth:

EiAciyy = Ylogd + vy + YEerp e, (20)

where the term v, is an intercept proportional to the conditional variance of log
consumption growth in relation to log portfolio returns:

Upt = —% (;_—;) Var, (ACt+1 - wrp,t—i-l) . (21)
In general this intercept is time-varying, but in our model it becomes a constant.
These equations, like (19), hold exactly if consumption and asset returns are jointly
conditionally lognormal.
Taking the return on wealth as given, we can also log-linearize the intertemporal
budget constraint (13} around the mean log consumption-wealth ratio:

1
A’LUt+1 ~ Tp,t+1 + (]. — ;) (Cg — wt) + k, (22)

where k& = log (p) + (1 —p)log(l —p)/p, and p = 1 — exp {E(c; —w:)} is a log-
linearization parameter. Note that p is endogenous in that it depends on the average
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log consumption-wealth ratio which is unknown until the model has been solved.
Campbell (1993) and Campbell and Koo (1997) have shown that the approximation
(22) holds exactly if the consumption-wealth ratio is constant over time.

Finally, equation (18) allows us to approximate 7,41, the log return on wealth,
as follows:

1
Tpt+l = Qnjt (Tnts1 — Tiee1) + el + §an,t (1 — oy y) Vary (rnt+1) s (23)

which is a discrete-time version of the log return on wealth in continuous time, where
Ito’s Lemma can be applied to equation (18).
Combining the trivial equality

Actyr = (Cor1 — Wepr) — (6 — we) + Awpyn (24)
with equations (19), (22), and (23) and the definition of ¢ we find that

o = 1E; [Pager — Tiega] + %Val"t (rre+1)
=
" Y Var, (rn,t41)

1— w ¥ VaI'g (Tn,H-l) '

This equation was first derived by Restoy (1992). The first term is the myopic
component of asset demand; it is proportional to the risk premium on the n-period
bond and the reciprocal of the coefficient of relative risk aversion. The second term is
Merton’s (1969, 1971, 1973) intertemporal hedging demand. It reflects the strategic
behavior of the investor who wishes to hedge against future adverse changes in invest-
ment opportunities, as summarized by the consumption-wealth ratio. In our setup
the investment opportunity set is time-varying because interest rates are time-varying
(although expected excess returns are constant); accordingly the investor may want
to hedge her consumption against adverse changes in interest rates. Intertemporal
hedging demand is zero when risk aversion v = 1, but as v increases myopic demand
shrinks to zero and hedging demand does not. In the limit as y becomes arbitrarily
large, hedging demand accounts for all the demand for the risky asset.

An important special case arises when the elasticity of intertemporal substitution
is unity. As % — 1, the log consumption-wealth ratio becomes constant so the
covariance of asset returns with this ratio approaches zero. However the covariance
is divided by 1 — 1, which also approaches zero. Giovannini and Weil (1989), by
taking appropriate limits, have shown that portfolio choice is not myopic in this case
even though the consumption-wealth ratio is constant. The solution presented in this
paper is exact for the case ¥y = 1.
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3.4 An explicit solution

Equation (25) is recursive in the sense that it relates current portfolio decisions to
future consumption and portfolio decisions. In order to get a complete solution to
the model we need to derive consumption and portfolio rules that depend only on
current state variables. We do this by guessing that the consumption function takes
the form

Cy — Wt — bg + b1$t. (26)

Calculations summarized in the Appendix verify this guess and show that the coeffi-
cients are given by

b P [u*wnl—w(@m+ o ):i-iu—¢Wﬁ

d¢10g5+k+u(1—¢)ﬁf(%] (27)
and
m=u—whﬂi%. (28)

In addition, the optimal portfolio share in the risky asset is constant over time and
can be written as

ant:an:fy_B;—__l_[ﬁmz-'_(l—ﬁY)

. 2

These solutions are analytical, given the log-linearization parameter p. But p itself
is a nonlinear function of the coefficients by and by, since p = 1 — exp{E[c; — ws]} =
1 — exp{hy + b1, }. Equations (27), (28), and the expression for p define implicitly a
nonlinear mapping of p onto itself which has an analytical solution only in the case
¥ = 1, when p = 6. In all other cases we solve for p numerically using a simple
recursive algorithm. We set p to some initial value (typically p = 6) and compute the
coefficients of the optimal policies; given these coefficients we compute a new value
for p, from which we obtain a new set of coefficients, and so forth. We continue until
the difference between two consecutive values of p is less than 107*. This recursion
converges very rapidly to a number between zero and one in cases where the value
function of the model is finite; there are some cases, however, in which p is driven
to zero or one because the value function is infinitely positive or negative and the
infinite-horizon optimization problem is not well defined. We discuss these cases
further below.
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Equations (26) and (28) show that the log consumption-wealth ratio is linear in
the short-term real interest rate (since x; is linearly related to ry441). The response of
consumption to the interest rate depends on the investor’s elasticity of intertemporal
substitution, but does not depend directly on her relative risk aversion. The risk aver-
sion coefficient affects the dynamic behavior of consumption only indirectly through
its effect on the log-linearization parameter p. Below we show that this indirect effect
is quantitatively negligible.

The log consumption-wealth ratio is constant only when ) = 1. In this case ¢; —w;
equals log(l — §). For this reason investors with unit elasticity of intertemporal
substitution are called “myopic consumers.” Since 0 < p < 1 and |¢| < 1, the
consumption-wealth ratio increases with the interest rate if ¢» < 1 and falls with the
interest rate otherwise. An increase in the short-term real interest rate is equivalent
to an improvement in the investment opportunity set, and it has both income and
substitution effects. An investor with low 2/ is reluctant to substitute intertemporally,
and for her the income effect dominates, leading her to increase her consumption
relative to her wealth. This increase in consumption is larger, the more persistent
is the improvement in investment opportunities—the closer is ¢ to one. Conversely,
the substitution effect dominates for an investor with high ¢ > 1. This investor will
reduce present consumption when the interest rate increases, and will do so more
aggressively when the interest rate process is persistent.

Equation (29) shows that the optimal portfolio allocation to the long-term bond
is constant over time and independent of the level of the short-term interest rate.
The portfolio allocation depends on the bond maturity, on the persistence of the
short-term interest rate, and on the investor’s relative risk aversion, but does not
depend directly on her elasticity of intertemporal substitution. The elasticity of
intertemporal substitution affects portfolio choice only indirectly through its effect
on the log-linearization parameter p, and we show below that this indirect effect is
quantitatively negligible.

The first term inside the brackets in (29) represents the myopic demand for long-
term bonds, while the second term inside the brackets represents the intertemporal
hedging demand. The myopic demand depends on the parameter 3., which deter-
mines the term premium; it is zero if 8,,, = 0, and it shrinks as risk aversion -y
increases. The intertemporal hedging demand for bonds is zero when v = 1. That
is, the long-term bond demand of investors with unit relative risk aversion coeflicient
is driven exclusively by the risk premium. For this reason they are called “myopic
investors.”

Hedging demand is negative for investors with y < 1; these investors prefer to hold
assets that pay off when investment opportunities are good, so they “reverse hedge”
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the risk of adverse shifts in investment opportunities. As risk aversiony increases, the
hedging demand increases and becomes positive when v > 1. Meanwhile the myopic
demand for bonds shrinks, so the hedging demand for bonds increases relative to the
myopic demand; in section 3.7 we discuss what happens in the limit as the investor
becomes infinitely risk averse.

3.5 Implications of complete markets

We have allowed the investor to form a portfolio from only two assets, a short-term
indexed bond and a single long-term indexed bond. Even with only two assets, how-
ever, markets are complete with respect to real-interest-rate risk because our real
term-structure model has only one factor. This fact has several interesting implica-
tions.

First, with complete markets the investor can combine short- and long-term bonds
so that the return on her bond portfolio 1s independent of the maturity of the long-
term bond traded in the market. That is, she can synthesize her own optimal long-
term bond, with the maturity optimal for her given her risk preferences. The return
on the optimal bond portfolio is given by

1 1
Tpt+l = — (-2_ (O!an_]_)2 + aan—l/Bmm) Oi - —2_ (163:'1.3;0-3: + O-gn)
+x; — aan—l‘EI,t+1a (30)

and only the product a,Bn_ enters this expression. Qur portfolio solution (29)
implies that o, Bn-1 does not depend on n.

Second, if real-interest-rate variation is the only source of risk, then markets are
complete with respect to all sources of risk. We can explore this case by setting
o2 = 0 so that emy+1 drops from the definition of myp; in (1). In this case the
SDF is unique. Since the intertemporal marginal rate of substitution (IMRS) of any
investor can be used as a valid SDF, it follows that all investors must have the same
IMRS which must equal the SDF we specified exogenously for our term structure
model. This provides a check on the internal consistency of our solution. Using (14)
to express the investor’s IMRS as a function of consumption growth and the portfolio
return, we must have

g
Coar\ ¥ | p-a-
IMRSi1 = {5 ( t“) } Rp,:(tj-lg) = M. (31)



Taking logs and using our solution, it is straightforward to show that

8
log (IMRSi 1) = Ologé — EACHl — (1= 0)rpen
= —It— ﬂmzsx,t-k-l = TNt41, (32)

which is the required result.

Third, Cox and Huang (1989) have proposed an alternative solution method for
intertemporal consumption and portfolio choice problems with complete markets.
They work in continuous time and show that with complete markets, optimally in-
vested wealth must satisfy a partial differential equation (PDE). Unfortunately this
PDE does not generally have a closed-form solution. We now show that our solu-
tion methodology is equivalent to a discrete-time version of the Cox-Huang approach;
our loglinear approximation allows us to solve the discrete-time equivalent of the
Cox-Huang PDE in closed form.

To keep the analysis simple, we will specialize the discussion to the power utility
case (¢ = 1/7). The extension to recursive utility is discussed in the Appendix. We
start by defining a new variable W;" = W, — C,—invested wealth—and note that from
the budget constraint (13), the portfolio return equals Ryp1 = (Wi + Crpr) /W
Then the Euler equation (15) implies that the ratio W /Cy must satisfy the following

equation:
Wy Wi\ [ Cen Cer1\ "
=E1++()6(), 33
Ce K Cin ) \ G Ch 33)
where 6(C41/C;) ™" is the investor’s IMRS.

Equation (33) defines an expectational difference equation for W' /C that depends
on endogenous consumption growth. However, if markets are complete, the equality
of IMRS and SDF implies that (Ci11/C;) = §Y/ ”M;Lll/ 7. Substituting into (33), we
can derive an expectational difference equation for W /C, that contains only the
exogenous SDF and not endogenous consumption growth:

|44 Wi 1. 1-%
= 1+ =) 6 M, |- 34
Ct Et [( + C'H—l) t+1 :| ( )

This nonlinear expectational difference equation is the discrete-time equivalent of the
Cox-Huang PDE.

Equation (34) does not generally have a closed form solution, so it must be solved
numerically or using an analytical approximation method. We can apply the same
approximation that we have already used. Taking logs on both sides of (34) and using
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the same approximation around the mean log consumption-wealth ratio that we use
to loglinearize the budget constraint®, we can write (34) in log form as

1 1
c— Wy = plk — —’; log 6 — (1 — Ty) E: Mo + Ee(Ct1 — Wiy1) (35)

1 1
__-i Vart ((1 - -&) M1 + (Ct+1 —- wt+1))]

which is linear. It 1s trivial to show that this equation has the same solution that we
have already derived.

3.6 Empirical properties of the solution

Tables 3-5 explore the properties of our solution using the bond-pricing parameters
estimated in Table 1 for the period 1952-96. We compute optimal portfolio and
consumption rules for investors with the same time discount rate (4%) but ditferent
coefficients of relative risk aversion and elasticities of intertemporal substitution. We
consider risk aversion coefficients of 0.75, 1, 2, 5, 10, and 5000 (effectively almost
infinite), and elasticities of intertemporal substitution that are the reciprocals of these
values. The tables are organized so that very risk-averse investors are at the bottom,
investors who are very reluctant to substitute intertemporally are at the right, and
power-utility investors (for whom the elasticity of intertemporal substitution is the
reciprocal of risk aversion) are along the main diagonal. The top panel of each table
assumes that the bonds available to investors are one-quarter and ten-year Zzero-
coupon indexed bonds.

The top panel of Table 3 reports the percentage portfolio share of a ten-year zero-
coupon indexed bond. Since indexed bonds have attractive Sharpe ratios, we find
that investors with low risk aversion have a very large myopic demand for long-term
indexed bonds; they want to invest many times their total wealth in these bonds
and borrow at the short-term riskless interest rate. As risk aversion INCreases, the
demand for indexed bonds gradually declines, but it does not go to zero because highly
-

W,
log (—sz- (1 - %)) = — (¢ — ws) +1og (1 - %)

1 1
= —(Ct‘wt)+k+(1—;> (Ct—wt) =k——p—(ct——wt),

6The approximation is
W*
1 t
o ( Ce )

where p and k have been defined in (22).

i
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risk averse investors have a positive intertemporal hedging demand for long-term
indexed bonds. Table 4 clarifies this point by reporting the share of intertemporal
hedging demand in the total demand for long-term bonds. This share rises from
zero when v = 1 to 99.7% when y = 5000. Note also that different columns of these
tables, corresponding to different elasticities of intertemporal substitution, are almost
identical. This confirms our theoretical claim that the elasticity of intertemporal
substitution, operating only indirectly through the log-linearization parameter p, has
a negligible effect on portfolio allocation.

Table 5 summarizes the optimal consumption behavior that is associated with
these portfolio rules. The left hand side of the table shows the average consumption-
wealth ratio, while the right hand side shows the standard deviation of optimal con-
sumption growth. To understand the patterns of average consumption-wealth ratios,
recall that an investor with zero elasticity of intertemporal substitution consumes the
annuity value of wealth each period, so the average consumption-wealth ratio for this
investor is just the average expected return on the portfolio. This average return
declines with risk aversion, and so the average consumption-wealth ratio also declines
with risk aversion as shown in the 1/5000 column. Investors with higher elasticities
of consumption, shown to the left of the 1/5000 column, are willing to substitute
intertemporally in response to incentives. The direction of the substitution depends
on the average return on the portfolio in relation to the time discount rate and the
risk of the portfolio. Investors with low risk aversion (at the top of the panel) have
high average portfolio returns so they substitute by reducing present consumption,
while investors with high risk aversion (at the bottom of the panel) have low average
portfolio returns so they substitute by increasing present consumption. The magni-
tude of these effects is such that all investors with unit elasticity of substitution have
the same average consumption-wealth ratio of (1—6), regardless of their risk aversion.

The accuracy of our loglinear approximation to the intertemporal budget con-
straint depends on the volatility of the log consumption-wealth ratio. We do not
report this volatility in Table 5, but it is zero for ¢ = 1 (the case where our approx-
imation holds exactly) and is roughly proportional to (1 — 1). (It would be exactly
proportional if the log-linearization parameter p were fixed.) The maximum standard
deviation of the log consumption-wealth ratio is about 3% for ¢ close to zero at the
far right of the table. These numbers suggest that our approximation should be ex-
tremely accurate for a term-structure model of the sort we have estimated in 1952-96.
Campbell and Koo (1997) use numerical methods to solve a model with an exogenous
portfolio return that follows an AR(1) process like the endogenous portfolio return in
our model; they find that approximation error is very small whenever the standard
deviation of the log consumption-wealth ratio is 5% or below.
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The right hand part of Table 5 illustrates some interesting patterns in the condi-
tional volatility of consumption growth. Investors with low risk aversion hold lever-
aged bond portfolios that given them highly volatile consumption, regardless of their
intertemporal elasticity of substitution in consumption. Conservative investors hold
indexed bonds for hedging purposes. Investors who are both highly risk-averse and
highly reluctant to substitute consumption intertemporally reduce the conditional
volatility of their consumption growth to zero; highly risk-averse investors who are
willing to substitute intertemporally, however, respond to interest rate movements by
adjusting their consumption, so their conditional consumption volatility is positive.
We now explore in more detail the behavior of highly risk-averse investors.

3.7 On the economic definition of the riskless asset

In financial economics a one-period indexed bond is usually thought of as riskless.
Over one period, a nominal bond is a good substitute for an indexed bond (Viard
1993), and thus by extension the riskless asset is often identified with a short-term
nominal asset such as a Treasury bill. In a world with time-varying interest rates,
however, only the current short-term real interest rate is riskless; future short-term
real interest rates are uncertain. This makes a one-period bond risky from the per-
spective of long-horizon investors. For such investors, a more natural definition of a
riskless asset might be a real perpetuity, since this asset pays a fixed coupon of one
unit of consumption per period forever.

We now show that in our model an individual who is infinitely risk-averse and
infinitely reluctant to substitute consumption intertemporally chooses a portfolio of
indexed bonds that is equivalent to a real perpetuity. That is, if a real perpetuity
were available, the portfolio would be fully invested in that bond. To see this, we first
note that, from (30) and (29), the interest-rate sensitivity of the the optimal portfolio
for an infinitely risk-averse individual is given by

. Orpen . P
1 B =] —apBn_1) = — . 36
75& aum,t—%—l .YLI&( * 1) 1- p¢z ( )

A real perpetuity pays a fixed coupon of one unit of consumption per period
forever. The log coupon on the bond is therefore d.; = 0 Vt. Campbell, Lo and
MacKinlay (1997, p. 408), following Shiller (1979), show that a log-linear approxi-
mation to the log yield on a real perpetuity is

Yert ~= (]- - Pc) E¢ Z p‘zrc,t-}-l-i-jv (37)

=0
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where y.; is the log yield on the real perpetuity, rcs41 is the log return on the per-
petuity, and p, is a log-linearization constant equal to p =1 — exp{E(—pct)}, where
ey is the log “cum-dividend” price of the perpetuity including its current coupon.”

The return on the real perpetuity must verify the pricing relationl = E;[M;41 Re 1]
Assuming that R4 is lognormally distributed, we must have that

1
Etlreee] = T — 5 Var, (mey1) — 3 Vary (Tope1) + Cove (May1, Tepr)

= z +uw? (38)

where w? is a positive constant. Equations (37) and (38) imply that

1-p 1-p
2 c c
ot R +{1 - — + [ —=— . 39
Yert W, ( l—pc¢z) o (1___pc¢$) Ly ( )

But Campbell, Lo and MacKinlay (1997, p. 408, eq. 10.1.19) also show that

1 Pe
Tet+1 ~ (1 _ pc) Yet — (1 _ Pc) Ye,t41 (40)

2 Pe _ 1 _ Pe
- wc+ (lﬁpcqu) (1 ¢m)#$+ (1_pc¢m)$t (1—}95@53;) Tt+1,

which in turn implies that the interest-rate sensitivity of a real perpetuity 1s given by

6Tc,t+l —_ pc (41)

auI,H-l B 1-— pc¢:z: ‘

Equations (36) and (41) differ only by the log-linearization constants p and p.
These two constants are the same for an individual who is infinitely reluctant to
substitute consumption intertemporally (¥ = 0). Such an individual consumes the
annuity value of wealth, the consumption stream that can be sustained indefinitely by
the initial level of wealth. But the annuity value of a real perpetuity is just its dividend
of one. Thus for this investor C/W = 1/P., which implies E[c — w| = E[~p.], and
thus, from the definitions of the log-linearization parameters, p = p.. The infinitely
risk-averse investor who is infinitely reluctant to substitute intertemporally holds a

7Campbell, Lo, and MacKinlay give an alternative definition of p, in relation to the “ex-dividend”
price of the consol excluding its current coupon. This is more natural in a bond pricing context, but
less convenjent here because the form of the budget constraint (13) implies that we are measuring
wealth inclusive of current consumption, that is, on a “cum-dividend” basis.
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real perpetuity that finances a riskless consumption stream over the infinite future.
In this sense a real perpetuity rather than a one-period indexed bond is a riskless
asset for a long-horizon investor.

Our empirical results in Table 3 illustrate these findings. Given the parameters
of the real term-structure model we have estimated, a 10-year indexed zero-coupon
bond has a very slightly greater interest-rate sensitivity than an indexed perpetuity.
Accordingly an investor with risk aversion of 5000 (effectively infinite) and elasticity
of intertemporal substitution of 1/5000 (effectively zero) holds 96% of her wealth in
10-year indexed zero-coupon bonds, and 4% in indexed bills, creating a portfolio that
is equivalent to an indexed perpetuity.

25



4 The Demand for Nominal Bonds

4.1 TUnconstrained demand

The results in the previous section can easily be generalized to the case where the
investor can hold only nominal bonds, or both nominal and indexed bonds. We can
assume that the short-term asset is indexed or nominal, or allow both types of short-
term asset. For realism, however, and since inflation risk is modest at the short end
of the term structure, we now assume that the one-period asset is nominal.

Even in the presence of nominal assets, the log consumption-wealth ratio still
depends only on the state variable z,, and not on expected inflation 2. Furthermore
this ratio is still a linear function of z;, and the slope coefficient is still given by
by = p(1 — 1) /{1 — pd) as in equation (28). The menu of available assets affects this
coefficient only indirectly by affecting the intercept by of the consumption function,
which in turn determines the log-linearization parameter p.

We write the vector of allocations to long-term (nominal and indexed) bonds as
. Then we have

o= -%a, (42)

where ¥ is the variance-covariance matrix of excess bond returns over the short-term
asset and

|t/
a=m+yp+-—h 43
w1, (43)
Here m is a vector of Jensen's-Inequality-corrected mean excess returns whose ith
element is
1
m; = Eq[riges — (M — Tee1)] ﬁvarﬁ[ri-t-"l = r — mena)ls (44)

p is a vector of conditional covariances with the real return on the short-term bond
whose ith element is

pi = Covilrigrn — (73 41 — mean)y P — el (45)

and h is a vector of conditional covariances with the consumption-wealth ratio whose
1th element is

hi = Cove[ries — (T?,t+1 — Mi41), Ce1 — Wy 1]

= 1 _pp(p(l - TP)COVt[Tz‘,tH - (7“015_,:+1 - 7Tt+1),93t+1]- (46)
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The vector m gives the standard one-period mean-variance analysis, while the vector
p appears because we have assumed that the short-term asset is nominal so that it
is risky in real terms. In practice the elements of p are all extremely small and have
little impact on the portfolio allocation. The vector h represents the intertemporal
hedging component of bond demand.

The solution of the model is analytical given the loglinearization parameter p. We
find p using the same recursive procedure as before; we assume a value for p, solve
the model, get a new value for p, and so on until convergence.

The second panel in Tables 3-5 reports the optimal portfolio and consumption
rules implied by the nominal term structure model estimated over the period 1952-
96, assuming that the only assets available to investors are one-quarter and ten-year
nominal zero-coupon bonds. Nominal bonds have slightly higher average returns than
indexed bonds, but are subject to inflation risk. Table 3 shows that when investors
are forced to bear this risk they shorten the maturities of their bond portfolios.

The third panel in Tables 3-5 reports the solution to a model in which both indexed
and nominal bonds are available. We allow investors to hold three-month nominal,
ten-year nominal, and ten-year indexed bonds. Investors with low risk aversion hold a
mix of both indexed and nominal bonds, seeking to earn both the real term premium
and the inflation risk premium, and exploiting the imperfect correlations between
the real and nominal sources of risk. More conservative investors concentrate their
portfolios on indexed bonds.

The bottom panel in Tables 3-5 reports the optimal portfolio allocation and con-
sumption choice when the assets available to investors are three-month, three-year,
and ten-year nominal bonds. Investors hold highly leveraged portfolios, with long
positions in the three-year nominal bond and short positions in the ten-year nominal
bond. Risk-tolerant investors do this because they are attracted by the high Sharpe
ratio of the three-year nominal bond relative to the Sharpe ratio of the ten-year
nominal bond, and they short ten-year bonds to reduce their portfolio risk. Conser-
vative investors exploit the fact that three-year bonds have a greater real-interest-rate
sensitivity than ten-year bonds to create bond portfolios with similar properties to
long-term indexed bonds, even though indexed bonds are not directly available in the
marketplace. They are not able to avoid all inflation risk, however, because there are
three sources of risk in the model—shocks to real interest rates, expected inflation,
and unexpected inflation—and only three assets are available. Thus markets are not
quite complete.

When only nominal bonds are available, our solution procedure fails to converge
for investors with risk aversion v = 5000 and elasticity of intertemporal substitution
¥ # 1. The explanation is that these almost infinitely risk-averse investors are forced
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to bear inflation risk. They respond by increasing their precautionary saving (when
¥ < 1) or decreasing it (when ¢ > 1) so that the consumption-wealth ratio is zero or
one.

4.2 Constrained demand

The unconstrained portfolio allocations reported in Table 3 are often highly leveraged,
and this may not be realistic. We now analyze the optimal allocations to indexed and
nominal bonds when investors’ portfolio choice is limited by borrowing and short-sales
constraints. Because the unconstrained optimal porfolio policy is constant over time,
we can do this using results in Tepld (1997). Following Cvitani¢ and Karatzas (1993),
Tepld (1997) shows that standard results in static portfolio choice with borrowing and
short-sales constraints extend to intertemporal models whose unconstrained optimal
portfolio policies are constant over time. The optimal portfolio allocations under bor-
rowing constraints are the unconstrained allocations with a higher short-term interest
rate, and the optimal portfolio allocations under short-sales constraints are found by
reducing the dimensionality of the asset space until the optimal unconstrained allo-
cations imply no short sales.

Table 6 reports the optimal allocations under borrowing and short-sales con-
straints for the same cases as in Table 3. The optimal constrained allocations in
the upper two panels of the table, where only a short-term bond and a single long-
term bond are available, are trivially zero for those cases in which the unconstrained
allocation implies short sales of the long-term bond, and 100% for those cases in which
the unconstrained allocation implies borrowing. The lower two panels are more inter-
esting, because they consider scenarios where there are two long-term bonds available
to the investor in addition to the short-term bond.

The third panel of Table 6 reports the constrained portfolio allocations when the
only assets available to the investor are a three-month nominal, a ten-year indexed,
and a ten-year nominal bond. The constrained demand for long-term indexed bonds
relative to long-term nominal bonds increases with the coefficient of relative risk
aversion. Investors with low risk aversion hold predominantly nominal bonds, despite
their lower Sharpe ratios, as a way to increase their risk and expected return without
using leverage. Conservative investors hold predominantly indexed bonds because of
their consumption hedging properties.

The bottom panel of Table 6 reports the constrained portfolio allocations in the
model with two long-term nominal bonds, a three-year bond and a ten-year bond.
Investors with low risk aversion hold some ten-year bonds, despite their lower Sharpe
ratios, as a way to increase their risk and expected return without using leverage.
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Investors with moderate risk aversion hold only three-year bonds, while extremely
conservative investors hold three-year bonds and cash.

4.3 A welfare analysis of bond indexation

We now consider the welfare effects of switching from a world where only nomi-
nal bonds are available to a world where all debt instruments are indexed, or to a
world where both nominal and indexed bonds are available. We study this issue
using equation (17), which gives the value function per unit wealth as a monotonic
transformation of the optimal consumption-wealth ratio. Hence, we can compute an
approximate value function without any need for further approximations just by sub-
stituting into this expression our approximate consumption-wealth ratio. For very
low 1, the value function per unit wealth will actually equal the consumption-wealth
ratio.?

The log value function is a linear function of the short-term interest rate, so
it is time-varying. Table 7, which has the same structure as Tables 3-6, reports
the mean value function per unit of wealth implied by our solution method for the
unconstrained allocations on the left, and for the constrained allocations on the right.
Because the recursive utility function (12) is normalized to be homogeneous of degree
one in wealth, we can take the ratios of these numbers across panels, for investors
with identical preferences, as representing the wealth ratios that would be required to
compensate investors for changes in the available assets and investment constraints.

Comparing the first two panels of Table 7, we see that bond indexation can have
substantial benefits to investors. Investors with low risk aversion benefit because
indexed bonds have higher Sharpe ratios than nominal bonds, while more conservative
investors benefit because indexation eliminates an unwelcome source of risk. The
effects on welfare can be substantial; when their portfolio choice is unconstrained,
for many investors the value function is more than twice as high in a fully indexed
environment than in a purely nominal environment. Such investors would be willing to
pay more than half their wealth to enjoy the benefits of indexation. The only investors
who lose from indexation are investors with low risk aversion who are subject to
borrowing and short-sales constraints. These investors prefer to hold nominal bonds,
despite their low Sharpe ratios, as a way to increase risk and expected return without
using leverage.

These findings are in strong contrast with the claim of Viard (1993) that indexation

8We handle the case ¥ = 1 by taking appropriate limits in (17). Campbell and Viceira (1999)
provide a more detailed discussion in a related model.
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has only minor welfare effects. Viard models indexation as elimination of the inflation
risk in a one-period asset, and studies the benefits to one-period investors. Since
there is little risk in inflation over one period, Viard’s result is not surprising. We get
much larger benefits of indexation because we model indexation as elimination of the
inflation risk in long-term assets, and study the benefits to long-term investors.?

An apparently paradoxical result is that for some investors welfare is higher when
only indexed bonds are available (in the top panel) than when both nominal and
indexed bonds are available (in the third panel). The explanation is that in the top
panel the short-term bond is indexed, whereas in the bottom panel it is nominal. The
small benefits of short-term indexation in the top panel are enough to outweigh the
small benefits of the additional long-term nominal asset that is available in the third
panel.

The case where two long-term nominal bonds and one short-term nominal bond
are available is illustrated in the bottom panel of Table 7. This asset menu delivers
the highest welfare for investors with low or moderate risk aversion, but is much less
satisfactory for investors with high risk aversion (above 10 or so). Such investors
have a strong demand for the consumption insurance provided by long-term indexed
bonds.

Advocates of bond indexation have sometimes argued that the availability of in-
dexed assets will stimulate saving. However this effect depends on the elasticity of
intertemporal substitution, 1. If 1 = 1, then the consumption-wealth ratio is con-
stant regardless of the available asset menu. If ¢/ is close to zero, as many empirical
estimates suggest, then the consumption-wealth ratio approximately equals the value
function. Thus the welfare benefit of indexation is accompanied by an increase in
consumption and a decline in saving. This point can be appreciated by comparing
the average consumption-wealth ratios in Table 5 with the welfare measures in Table
7.

Finally, we note that welfare calculations for the 1983-96 sample period, not re-
ported here, deliver qualitatively similar results but considerably smaller welfare bene-
fits of bond indexation. The Volcker-Greenspan monetary regime has greatly reduced
long-run uncertainty about inflation, and has correspondingly reduced the benefits of
eliminating inflation risk entirely.

9Campbell and Shiller (1996) also emphasize the benefits of indexation to long-run investors, but
they do not present a formal welfare analysis of the type attempted here.

30



5 Bond Demand in the Presence of Equities

The realism of the preceding analysis is limited by the fact that we have not allowed
investors to hold equities. We now consider a scenario in which both bonds and equi-
ties are available to the investor. Table 8 reports optimal demands for equities and for
10-year indexed or nominal bonds by investors who are unconstrained (in panel A) or
subject to borrowing and short-sales constraints (in panel B). For simplicity we do not
allow investors to hold equities and both types of long-term bonds simultaneously.!”

In a world with full indexation, the unconstrained demand for both long-term
indexed bonds and equities is positive and often above 100%, implying that the in-
vestor optimally borrows to finance purchases of equities and indexed bonds. The
portfolio share of indexed bonds exceeds that of equities, despite the higher Sharpe
ratio of equities, because indexed bonds are much less risky than equities!' As the
coefficient of relative risk aversion increases, the demands for both long-term indexed
bonds and equities fall, but the share of equities falls faster. In the limit the infinitely
risk-averse investor holds a portfolio equivalent to an indexed perpetuity as we have
already discussed. When there are borrowing and short-sale constraints, investors
with low risk aversion invest fully in equities as a way to maximize their risk and
expected return without using leverage, while more risk-averse investors hold both
indexed bonds and equities. Cash plays only a minor role and only in the portfolios
of the most risk-averse investors, who are almost fully invested in indexed bonds.

In a world with no indexation, bonds play a much smaller role in optimal portfo-
lios. Unconstrained investors with low risk aversion hold modest bond positions, but
constrained investors hold only equities. As risk aversion increases, investors move
into cash rather than long-term nominal bonds.

These findings are related to the “asset allocation puzzle” of Canner, Mankiw,
and Weil (1997). Popular investment advisers often suggest that more conservative
investors should have a higher ratio of long-term bonds to stocks in their portfolios.
Canner, Mankiw, and Weil point out that this is inconsistent with the mutual fund
theorem of static portfolio analysis, according to which risk aversion should affect

1t Oyr solution method fails to converge in a few cases with very low risk aversion and high elasticity
of intertemporal substitution. This corresponds to a violation of the transversality condition; when
equities are available, investors with these preferences are able to achieve a growth rate of utility
that exceeds the time discount rate.

A myopic investor facing independent risks allocates a share to each risk that is proportional to
its mean divided by its variance, or equivalently its Sharpe ratio divided by its standard deviation.
Although equities have a higher Sharpe ratio than indexed bonds, their standard deviation is much
higher so the optimal equity share is lower.
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only the ratio of cash to risky assets and not the relative weights on different risky
assets.

Our analysis shows that static portfolio analysis can be seriously misleading when
investment opportunities are time-varying and investors have long time horizons. The
portfolio allocations to equities and indexed bonds in Table 8 are strikingly consistent
with popular investment advice. Aggressive long-term investors should hold stocks,
while conservative ones should hold long-term bonds and small amounts of cash. The
explanation is that long-term bonds, and not cash, are the riskless asset for long-term
investors.!?

A weakness in this resolution of the asset allocation puzzle is that it assumes that
long-term bonds are indexed, or equivalently, that there is no inflation uncertainty.
The portfolio allocations to nominal bonds in Table 8 do not correspond well with
popular investment advice. In order to rationalize the popular investment advice
for long-term nominal bonds, one must assume that future interest rates will be
generated by a different process than the one estimated in 1952-96, a process with
less uncertainty about future inflation!? Interestingly, we have estimated just such
a process over the Volcker-Greenspan sample period 1983-96. Table 9 repeats Table
8 using our 1983-96 estimates and finds that even when only nominal bonds are
available, aggressive long-term investors should hold stocks, while conservative ones
should hold primarily long-term nominal bonds along with small quantities of stocks.!
These results support the conventional wisdom about optimal portfolio choice for
long-term investors.

12Canner, Mankiw, and Weil are aware of the potential importance of intertemporal hedging
demand for the asset allocation puzzle. They write “In principle, intertemporal hedging of the
sort discussed by Merton could point in the right direction.... Unfortunately, the magnitude of this
effect is not evident a priori, and the empirical literature on intertemporal hedging lags far behind
the theoretical literature” (p. 187). This paper attempts to bridge the gap they identify between
empirical and theoretical work on intertemporal hedging.

13Canner, Mankiw, and Weil argue in the NBER Working Paper version of their paper (1994)
that money illusion might help to resolve the asset allocation puzzle. However they consider maney
illusion in the context of short-term mean-variance analysis and do not relate it to intertemporal
hedging as we do here.

14During the 1983-96 period the interest-rate sensitivity of a 10-year indexed zero-coupon bond
is considerably less than that of an indexed perpetuity. Therefore an infinitely risk-averse investor
would like to hold a leveraged position in 10-year indexed zeros, which was not the case in our 1952-
96 model. For greater comparability with that model, in Table 9 we replace the 10-year zero-coupon
bond with a 20-year zero-coupon bond. This ensures that the optimal portfolio for an infinitely
risk-averse investor is available even when borrowing and short-sales constraints are imposed.
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6 Conclusion

In this paper we have shown that investors may hold long-term bonds for two reasons.
First, if long-term bonds offer a term premium then investors may hold them for
speculative purposes, to increase their expected portfolio return even at the cost of
some extra short-term risk. This “myopic demand” for long-term bonds can be large
when risk aversion is small, because long-term bonds have attractive Sharpe ratios.
Second, long-term investors may hold long-term bonds for hedging purposes. Long-
term bonds can finance a stable long-run consumption stream even in the face of
time-varying short-term interest rates, and this is attractive to risk-averse long-term
investors. In the extreme cases where there is no term premium, or where investors
are infinitely risk-averse, the myopic demand for long-term bonds is zero and all bond
demand is accounted for by the hedging demand.

We have shown that indexed bonds are particularly suitable for hedging purposes,
because they do not impose extraneous inflation risk on long-term investors seeking
a stable real consumption path. When long-term indexed bonds are available, an
infinitely risk-averse long-term investor with zero intertemporal elasticity of substitu-
tion holds a bond portfolio that is equivalent to an indexed perpetuity. The indexed
perpetuity is the riskless asset for a long-term investor, since it finances a constant
consumption stream forever. When only nominal bonds are available, highly risk-
averse investors shorten their bond portfolios in order to reduce their exposure to
inflation risk. Less risk-averse investors hold long-term nominal bonds for speculative
purposes if there is a positive inflation risk premium.

We have extended our approach to solve the intertemporal portfolio choice prob-
lem imposing short-sale and borrowing constraints. This is possible because our
solution takes the same form as the solution to a static portfolio choice problem
for which standard mean-variance analysis is appropriate. Therefore we can solve our
constrained problem using methods that have been developed to solve static problems
with portfolio constraints.

Our constrained solution enables us to study the welfare effects of bond indexation
in a realistic framework. When portfolio constraints are in place, and both nominal
and indexed bonds are available to investors, more conservative investors hold in their
portfolios relatively more indexed bonds than nominal bonds. These investors benefit
substantially from the consumption insurance provided by long-term indexed bonds.

We have also studied the demand for bonds when equities are available as an
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alternative investment. We find that the ratio of bonds to stocks in the optimal
portfolio increases with risk aversion, very much in line with popular investment
advice but contrary to the mutual fund theorem of static portfolio analysis. However
the demand for long-term bonds is only large when these bonds are indexed, or when
inflation uncertainty is low as it has been in the Volcker-Greenspan monetary policy
regime since 1983.

Our approach can be extended in several ways. We can explore alternative term-
structure models, adding factors or allowing for changing interest-rate volatility. A
particularly tractable possibility is a discrete-time version of the Cox, Ingersoll, and
Ross (1985) model, in which interest-rate volatility rises with the level of the interest
rate. Since term premia and bond return variances move in proportion to one another,
this model delivers constant portfolio allocations.

We can consider the effect of investors’ horizons more explicitly by solving a
finite-horizon version of our model, or by varying the time discount factor 6. In a
model with a constant probability of death each period, an investor with a high death
probability has a low 6. Our model predicts that this investor has a high optimal
consumption-wealth ratio, a low value for the log-linearization parameter p, and an
optimal portfolio that is close to the optimal portfolio for a myopic single-period
investor.

We can allow for multiple consumption goods, and consider assets that are indexed
to the price of one of these goods. A house, for example, can be regarded as an asset
that delivers a constant flow of housing services, in the same way that an indexed
bond delivers a constant flow of consumption. This perspective might explain why
conservative investors are willing to own houses despite the short-run variability of
house prices (Flavin and Yamashita 1998).

Our analysis also has interesting implications for the design of pension plans
and annuities. Our results suggest that conservative investors should favor indexed
defined-benefit plans, while more risk-tolerant investors may be willing to accept some
inflation or equity risk in their retirement income in exchange for higher average pay-
ments.

Our ultimate goal is to build a more fully realistic model of portfolio choice by
combining the results in several of our recent papers. This paper explores the effects
of interest-rate risk on long-term portfolio choice, while Campbell and Viceira (1999)
studies time-variation in the equity premium, and Viceira (1997 ) considers uninsur-
able risk in labor income. A complete model accounting for all these effects offers the
exciting prospect that financial economists will at last be able to offer realistic but
scientifically grounded investment advice.
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8 Appendix

A. Pricing Nominal Bonds

The pricing of default-free nominal bonds follows the same steps as the pricing of
indexed bonds. The relevant stochastic discount factor to price nominal bonds is the
nominal SDF M}, ,, whose log is given by (10): m$, | = myi1 — w41 Since both M,y
and II;., are jointly lognormal and homoskedastxc M}, | is also lognormal. The log
nominal return on a one-period nominal bond is r1 pi1 = — l0g BE¢[Miy1], or
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a linear combination of the expected log real SDF and expected inflation.
The risk premium on a 1-period nominal bond over a l-period real bond can be

written as
1
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which has the same form as equation (4) for equities.

The log price of an n-period nominal bond, pi't, also has an affine structure. It is
a linear combination of z; and z whose coefficients are time- 1nvar1ant though they
vary with the maturity of the bond. As shown in equation (11), pm = A +B1 2Tt
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and AY = Bf, =B}, =0.
The excess return on a n-period bond over the one-period log nominal interest
rate is

$ $ - $ $ $
Tog+l —TLt+1 = Pn-1t+1 ™ Pug + P
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1 1
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The terms in 32 183, and 32 1. arise because shocks to expected inflation are
correlated with shocks to the expected and unexpected log real SDF. Thus risk premia
in the nominal term structure are different from risk premia in the real term structure
because they include compensation for inflation risk. Like real risk premia, however,
nominal risk premia are constant over time.

B. Solution of the Model

Our guess (26) and the expression for the log excess return on the long-term
bond given in equation (8) imply that Cov; (rp 41, cee1 — wt-l—l) = —B,_1hoi Our
term structure model implies that Ey[rn 441 — 1441 = —Ba_102/2 — B, Bn_10% and
Vary(rns41) = B2_ o2 Substituting these expressions into (25) we obtain:

n

-1 1—vy
Opy = Op=——| B + by}, 51
o= =g (e ) G
which does not depend on the future portfolio and consumption choices of the investor.

Given the optimal portfolio rule (51) we can now solve for the parameters by and
b, of the consumption rule. The expected return on the wealth portfolio is a linear
function of the state variable:

Et [7p41) = Po + T4, (52)
where the intercept
p0 = —(0nBr1)(Bnz0s) = (@nBn1)?02/2 — (Bra0s + 070)/2 (33)
does not vary with ¢ or n. The consumption intercept term given in (21) becomes
vpe = vp = —((1=7)/(L = ¥)[bs = (1 = ¥)(@nBn)]02/2, (54)
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which also does not vary with ¢ or n.
Substituting (52), (53), and (54) into (20), we get a linear expectational difference
equation for (¢; — wy),

¢t —wy = pEeerp — W] + p(1 — )z —p[(1 —w)po—¢10g5—vp+k], (55)

from which we can identify the coefficients of the consumption rule.
C. The Cox-Huang method with recursive utility
With recursive utility the optimal invested wealth-consumption ratio satisfies
VVt,“)(9 Win ? o (Cti1 o(1-3)
=B |[1+ 222 6 (——) . 56
( Ci ‘ Cia Ci (56)

The consumer’s IMRS is now §°(Cy1/Cy) %Y R?, .,, which under complete markets
must equal the SDF M, 1, so that

Cryr\'07%) -
& (__51) Y= st My ROO), (57)
and we can rewrite (56) as
wry° TN gy 2 (11 p(1-8)(1—2)
— t+ - —9)(1—
( C, ) = Ei (1 + —5,::) VM, Ry . (58)

We can loglinearize this equation in a similar fashion to (34) and obtain a linear
expectational difference for the log consumption-wealth ratio whose solution is exactly
the same as the one we obtain using our Euler-equation methodology.
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Term Structure Model Estimation

TABLE 1

1952.1 - 1996.111

1983.1 - 1996.111

Parameter est. s.e. est. s.e.
. 0.0620 0.0125  0.0196  0.0301
e 0.0100 0.0087
Pz 0.8702  0.0070  0.9860  0.0070
bz 0.9985  0.0010 0.8660  0.0342
Bms  -100.5374 19.7436 -31.0690 140.3320
Bex 0.0545  0.0454 -0.3994  0.4428
Bam -0.0012  0.0004 0.0006  0.0017
B 0.9947 0.2728 -0.0175  0.1884
Bam -0.0103  0.0027  0.0016  0.0078
Bz 1.7932  0.4600 -1.5596  1.7914
Bex -4.1449  2.6678 -11.1761  5.2311
Bemn 0.3154  0.0477  0.4780  0.2697
O 0.0023 0.0001  0.0023  0.0008
Om 0.2578  0.0363  0.1424  0.0791
T2 0.0012  0.0001  0.0016  0.0002
O 0.0075  0.0004 0.0071  0.0047

log-lik. 26.6128 27.1526
no. obs. 179 55

E[rl,t-i-l] 085% 272%

Erf, 4]  531% 6.19%

U(Tl,t+1) 093% 282%

o(rf 1) 4.80% 2.69%

E[’/Tt+1] 399% 349%

Ut(ﬂt+1) 172% 151%




TABLE 2

Sample and Implied Moments of the Term Structure

Moment

1952.1 - 1996.111

1983.1 - 1996.111

(6)

(7)
(8)
9)
(10)
(11)
(12)

1 yr. 3 yr. 10 yr. 1yr. 3 yr. 10 31
A: Nominal Term Structure
E[rf oy =73 ] + 0203 — 11 00)/2  sample 0372 0602 0.784 0659 1.957  5.184
implied  0.613 1.411 2.058 0.130 0.546 1.876
o(rd o =78 4 sample 1474  4.227  10.383 1.052 3.898  11.53G
implied  1.486 4.099  10.535 1.213 4.143  13.00%
SR¥ = (1)/(2) ' sample  0.252 0.142 0.076 0.626 0.502 0.449
implied  0.412 0.344 0.195 0.107 0.132 0.144
El o — ¥l sample  0.422  0.759 1.121 0.493 1.183 1.927
implied  0.322 0.825 1.324  0.060 0.230 0.654
oy o — 8 ) sample  0.204 0.377 0.569 0.163 0.316 0.511
implied  0.167  0.449 0.767 0.129 0.355 0.738
o(yS_1epr — Vo trn) sample  0.474 0.377 0.263 0.344 0.350 0.295
implied  0.498 0.375 0.271 0.407 0.378 0.334
B: Real Term Structure
E[Tn,t+1 — Tl,t+1] + 0'2 (Tn,g+1 - Tl,t+1)/2 1mphed 0.556 1.278 1.624 0.203 0.704 2.073
(Tpts1 ~ T1e+1) implied  1.206 2.770 3.520 1.390 4822 14.196
SR =(7)/(8) implied  0.461 0.461 0.461 0.146 0.146 0.146
E{yn,t+1 — Y1,041] implied  0.288 0.763 1.273 0.098 0.318 0.742
(Yn 241 — Y1,041) implied  0.166  0.446 0.753 0.059 0.207 0.649
O(Yno1,041 — Yrott1) implied  0.406 0.255 0.092 0.464 0.439 0.364
C: Equities
Elret+1 — (r’f’t+1 — i) sample 7.093 8.951
+02 (repp1 — (75 1 — Tee1))/2 implied 8.714 4.688
T(ressr — (101 — mir1)) sample 15.904 14.643
implied 15.876 14.715
SR =(13)/(14) sample 0.446 0.611
implied 0.549 0.319




Optimal Percentage Allocation to n-Period Bond

TABLE 3

o, X 100
Model R.R.A. E.LS. E.LS.
1775 100 1/2 1/5 1/10 175000 1775 100 1/2  1/5 110 1/530
0.75 1715 1717 1719 1721 1721 1722
1 1311 1311 131t 1311 1311 1311
Indexed 2 703 702 701 700 700 700
Only 5 337 337 337 337 337 337
10 215 215 216 216 216 216
5000 93 94 95 96 36 96
0.75 245 245 245 245 245 2.
1 185 185 185 185 185 1>
Nominal 2 96 96 96 96 96 4
Only 5 42 42 43 43 43 !
10 24 25 25 25 25 2
5000 + 7 - - -
0.75 1124 1125 1126 1126 1127 1127 160 160 160 160 160 1
Indexed 1 867 867 867 867 867 867 120 120 120 120 120 12
and 2 481 481 480 480 480 480 60 60 59 59 59 o
Nominal 5 249 249 249 249 249 249 23 24 24 24 24 2.
10 171 172 172 173 173 173 11 11 12 12 12 1
5000 94 95 96 97 97 97 -1 0 0 0 0 (
0.75 3486 3490 3496 3499 3500 3501 -1005 -1006 -1008 -1009 -1009 -1014:
Both 1 2662 2662 2662 2662 2662 2662 -769 -769 -769 -769 -769 -TG¢
Nominal 2 1421 1419 1416 1414 1414 1413 -413 -413 -412 -411 -411 -411
(3,10y) 5 673 673 672 672 672 672 -199 -199 -199 -199 -199 -19~
10 424 424 425 426 426 426 -128 -128 -128 -128 -128 =120
5000 + 176 - - - - + -7 - - - -
Note: “-” indicates that the recursion for g converged to p = 1 and “+" that it converged to a negative

value.



TABLE 4

Percentage Hedging Demand Over Total Demand
an,hedging('f’ 1!))/(1,,, (v, '4’) = [1 — ag(l, ¢)/ (van (’Ya 1/)))] x 100

Model R.R.A. E.LS. E.LS.
175 100 1/2 1/5 1/10 1/5000 1/75 1.00 1/2  1/5 1/10 1/5000
0.75 -1.9 -18 -16 -16 -1.5 -1.5
1 0.0 0.0 0.0 0.0 0.0 0.0
Indexed 2 6.8 6.6 6.5 64 6.4 6.3
Only 5 222 222 221 221 221 22.1
10 390 391 39.2 393 393 394
5000 99.7 99.7 99.7 99.7 997 99.7
0.75 -0.9 -0.9 09 09 -09 -0.9
1 0.0 0.0 0.0 0.0 0.0 0.0
Nominal 2 3.4 3.5 3.6 3.6 3.6 3.7
Only 5 12.2 12.5 13.0 133 134 13.5
10 238 244 253 259 261 26.3
5000 -+ 99.4 - - - -
0.75 -2.9 28 27 -26 -26 -2.6 0.1 0.1 0.2 0.2 0.2 0.2
Indexed 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
and 2 9.9 9.8 9.8 9.7 9.7 9.7 -0.4 -0.4 -0.5 -0.5 -0.5 -0.5
Norninal 5 303 304 304 305 305 30.5 -1.9 -1.8 -7 -16  -16 -1.5
10 494 495 49.7 498 499 49.9 -4.5 -4.1 -3.5 3.2 -3.1 -3.0
5000 99.8 99.8 998 998 99.8 99.8 104.1 104.8 1063 107.5 108.1 108.7
0.75 -1.8 -1.7 -15 -14 -14 -1.4 -2.0 -1.9 -1.7 -16  -16 -1.6
Both 1 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Nominal 2 6.3 6.2 6.0 5.9 5.9 9.8 7.0 6.8 6.6 6.5 6.5 6.5
{3,10y) 5 21.0 209 208 208 207 20.7 227 227 226 226 225 22.5
10 372 373 374 3756 375 37.5 39.7 398 399 399 399 40.0
5000 + 99.7 - - - - + 99.7 - - - -
Note: “- " indicates that the recursion for p converged to p = 1 and “+” that it converged to a negative

value.



TABLE 5

Percentage Mean Optimal Consumption-Wealth Ratio

and Percentage Volatility of Consumption Growth

E[Ct/M] x 100

o (Acy1 — By [Aciyq]) X 100

Model R.RA. ELS. ELS.

/75 100 1/2 1/5 1/10 175000 1/75 100 1/2 1/5 1/10 1/5000
075 010 098 229 307 333 359 3076 3021 2951 29.15 29.04 28.93
1 035 008 1.91 247 265  2.83 2364 2307 22.30 21.89 21.76  21.63
Indexed o 073 098 134 1.56 163 170 1293 1236 11.54 11.06 1091  10.76
Only 5 096 098 100 1.02 103 103 648 593 511 461 445 429
10 1.03 098 089 084 083 08 433 379 297 247 231 24
s000 111 098 078 066 063 059 217 165 084 034 017 000
075 098 098 097 096 096 095 13.52 13.27 12.94 12.76 12.71  12.65
1 103 098 089 084 08 08 1039 1014 981 964 959 954
Nominal 2 111 088 077 065 061 057 571 546 516 503 500  4.98
Only 5 117 008 069 052 046  0.40 297 270 246 245 247 250
10 120 098 063 043 036 029 210 182 166 176 183 192

5000 + 098 - - - - + 1.05 - - - -
075 053 0098 164 204 217 230 2349 2299 22.30 21.92 21.80 21.68
Indexed 1 068 098 142 169 178 187 1814 17.62 16.89 1648 1635 16.22
and 2 089 008 110 118 120 123 1009 957 881 837 822 808
Nominal 5 102 0098 091 087 08 0.8 529 477 399 353 337 322
10 106 098 08 077 074 072 371 318 239 192 176 161
5000 113 098 076 065 061 057 219 167 085 035 019 003
075 003 098 239 324 352 380 3140 30.85 30.16 29.80 29.69  29.50
Both 1 029 098 199 260 2.8  3.00 2413 23.55 22.79 22.38 2225 2213
Nominal 2 069 093 140 165 174 182 1319 1262 11.80 11.33 11.17  11.02
(3,10y) 5 093 098 104 1.08 110 111 662 607 526 477 461 445
10 10l 098 092 088 087 08 444 391 311 264 248  2.32

5000+ 098 - - - - + 1.82 - - - .

Note: *- " indicates that the recursion for p converged to p = 1 and “+” that it converged to a negative

value.



TABLE 6

Optimal Percentage Allocation to n-Period Bond
Under Borrowing and Short-Sale Constraints

oy, X 100
Model R.R.A. E.LS. E.ILS.

/75 100 172 1/5 1/10 1/5000 1/.75 100 1/2 1/5 1/10 1/5000

0.75 100 100 100 100 100 100

1 100 100 100 100 100 100

Indexed 2 100 100 100 100 100 100

Only 5 100 100 100 100 100 100

10 100 100 100 100 100 100

5000 93 94 95 96 96 96
0.75 100 100 100 100 100 100
1 100 100 100 100 100 100
Nominal 2 96 96 96 96 96 96
Only 5 42 42 43 43 43 43
10 24 25 25 25 25 25
5000 + 7 - - - -
0.75 0 0 0 0 0 0 100 100 100 100 100 100
Indexed 1 11 11 11 11 11 11 89 89 89 89 89 39
and 2 56 56 56 56 56 56 44 44 44 44 44 44
Nominal b 82 82 32 82 82 82 17 17 18 18 18 18
10 91 91 91 91 91 91 9 9 9 9 9 9
5000 93 95 96 97 97 97 0 0 0 0 0 0
0.75 0 0 0 ] 0 0 100 100 100 100 100 100
Both 1 14 14 14 14 14 14 86 86 86 86 86 86
Nominal 2 &0 80 80 80 80 80 20 20 20 20 20 20
(3,10y) 5 100 100 100 100 100 100 0 0 0 0 0 0
10 100 100 100 100 100 100 0 0 0 0 0 0
5000 + 42 - - - - + ] - - - -

Note: “-* indicates that the recursion for p convergedto p =1 and “4" that it converged to a negative

value.



TABLE 7

Percentage Mean Value Function

E[Vi] x 100
Unconstrained Constrained
Model R.R.A. E.LS. E.LS.

175 100 12 1/5 1/10 1/5000 1/75 100 1/2 1/5 1/10  1/5000
0.75 * 1451 5.37 4.09 3.82 3.60 068 067 064 062 0.61 0.60
1 21.43 668 3.74 311 296 2.84 0.68 067 064 062 061 0.60
Indexed 2 2.35 208 1.8 175 173 1.70 0.68 0.67 0.64 062 061 0.60
Only 5 1.04 1.04 103 103 1.03 1.03 0.68 0.67 0.64 062 061 0.60
10 0.82 0.82 0.82 081 081 0.81 0.68 0.67 064 062 061 0.60
5000 0.66 0.65 062 060 0.60 0.59 066 065 062 060 0.60 0.59
0.75 0.96 097 095 095 095 0.95 0.77 077 075 074 074 0.74
1 0.82 0.82 081 081 031 0.81 075 074 072 071 071 0.70
Norminal 2 066 063 061 059 0.58 0.57 0.66 0.63 061 059 0.58 0.57
Only 5 0.57 053 049 044 042 0.40 057 0.53 049 044 042 0.40
10 052 0.49 041 035 0.32 0.29 052 049 041 035 032 0.29

5000 + 0.00 - - - - + 0.00 - - - -
0.75 598 380 2.7 245 237 2.30 0.96 097 095 095 095 0.95
Indexed 1 2.94 245 208 194 190 1.87 0.75 0.74 072 071 071 0.71
and 2 1.28 1.27 1256 123 123 1.23 0.71 0.70 068 067 066 0.65
Nominal 5 0.85 0.85 0.85 0.85 0385 0.85 0.69 068 065 0.64 063 0.62
10 075 075 073 073 0.72 0.72 0.69 0.67 065 0.63 0.62 0.61
5000 0.62 0.62 060 059 0.58 0.57 0.61 062 0.60 0.59 058 0.57
0.75 * 17.93 5.86 437 406 3.80 096 097 095 095 095 0.95
Both 1 36.86 796 4.08 332 315 3.00 0.75 074 072 071 071 0.71
Nominal 2 278 235 201 189 185 1.82 071 070 068 066 0.65 0.65
(3,10y) 5 1.13 1.12 112 111 1.1l 1.11 068 062 063 061 060 0.59
10 0.87 0.87 08 0.8 (.86 0.86 063 053 057 054 0.52 0.51

5000 + 0.00 - - - - + 000 - - - -

Note: “-” indicates that the recursion for p converged to p = 1 and “+” that it converged to a negative

value.



TABLE 8

Optimal Percentage Allocation to Equities
and to n-Period Bond
a x 100

Equities n-Period Bond
Model R.RA. E.LS. E.LS.

(A) Unconstrained
/75 100 1/2 1/5 1/10 1/5000 1775 100 1/2 1/5 1/10 1/5000

0.75 . 423 423 423 423 423 . 1488 1495 1498 1498 1499

1 - 817 317 31T 317 317 . 1140 1140 1140 1140 1140

Indexed 9 159 159 159 159 159 150 619 616 613 611 610 610
Only 5 63 63 63 63 63 63 304 303 301 300 299 200
10 32 32 32 32 32 32 198 108 197 197 197 197

5000 0 o 0 0 0 0 93 o4 95 96 96 06

0.75 - 450 450 450 450 450 - 61 61 62 62 62

1 - 337 337 337 337 337 - 41 4T 4T 47 47

Nominal 9 168 168 168 168 168 168 98 27 21 21 27 27
Only 5 66 66 66 66 66 66 5 1, 15 15 15 15
10 32 32 32 32 32 32 n 11 12 12 12 12

5000 + 2 - - - - + 8 - - - -

(B) Constrained
/75 100 1/2 1/5 1/10 1/5000 1/75 100 1/2 1/5  1/10 1/5000

0.75 - 100 100 100 100 100 - 0 0 0 0 0

1 100 100 100 100 100 100 0 0 0 0 ] 0

Indexed 2 100 100 100 100 100 100 0 0 0 0 0 0
Only 5 53 58 58 58 58 58 42 42 42 42 42 42
10 29 29 29 29 29 29 71 71 71 71 71 71

5000 0 a 0 0 0 0 93 94 95 96 96 96

0.75 100 100 100 100 100 100 0 0 0 0 0 0

1 100 100 100 100 100 100 0 0 0 0 0 0

Nominal 2 100 100 100 100 100 100 0 a 0 0 0 0
Only 5 66 66 66 66 66 66 15 15 15 15 15 15
10 32 32 32 32 32 32 11 11 12 12 12 12

5000 + 0 - - - - + 7 - - - -

Note: “-" indicates that the recursicn for p converged to p =1 and “+" that it converged to a negative

value.



TABLE 9

Optimal Percentage Allocation to Equities
and to n-Period Bond
Sample Period: 1983-1996

a X 100
Equities n-Period Bond
Model  R.R.A. E.LS. E.LS.
{A) Unconstrained
1,75 100 1/2 1/5 1/10 1/5000 1775 100 1/2 1/5 1/10 1/5000
0.75 279 279 279 279 279 279 -15 -8 -1 1 2 3
1 209 209 209 209 209 209 16 16 16 16 16 16
Indexed 2 105 105 105 105 105 105 55 52 48 46 45 44
Ounly 5 42 42 42 42 42 42 75 73 T 70 69 69
10 21 21 21 21 21 21 81 30 80 79 79 79
5000 0 0 0 0 0 0 87 gr 89 90 90 90
0.75 275 275 275 275 275 275 -13 -6 1 3 4 5
1 207 207 207 207 207 207 18 18 18 18 18 18
Nominal 2 105 105 105 105 105 105 58 55 51 49 48 47
Only 5 44 44 44 44 44 44 78 77 75 74 73 73
10 23 23 23 23 23 23 84 84 84 84 84 84
5000 + 3 - - - - + 92 - - - -
(B) Constrained

175 100 1/2 1/5 1/10 175000 1/75 100 1/2 1/5 1710 1/5000
0.75 100 100 100 100 100 100 0 0 0 0 0 0
1 100 100 100 100 100 100 0 0 0 0 0 0
Indexed 2 58 59 62 63 63 64 42 41 38 37 37 36
Cnly 5 29 30 31 32 33 33 71 700 69 68 67 67
10 20 20 21 21 21 21 80 80 79 79 79 79
5000 0 0 0 0 0 0 87 87 89 90 90 90
0.75 100 100 100 100 100 100 0 0 0 0 0 0
1 100 160 100 100 100 100 0 0 0 0 0 0
Nominal 2 58 59 61 63 63 64 42 41 39 37 37 36
Only 5 27 28 29 30 30 30 73 72 71 70 70 70
10 18 18 17 17 17 17 82 82 83 8 83 83
5000 + 3 - - - - + 92 - - - -

Note: “- " indicates that the recursion for p converged to p = 1 and “+” that it converged to a negative

value.



