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ABSTRACT

Even relatively poor people oppose high rates of redistribution because of the anticipation
that they or their children may move up the income ladder. This “prospect of upward mobility”
(POUM) hypothesis commonly advanced as an explanation of why most democracies do not engage
in large-scale expropriation and highly progressive redistribution. But is it compatible with everyone
-- especially the poor -- holding rational expectations, given that not everyone can simultancously
expect to end up richer than average? This paper establishes the formal basis for the POUM
hypothesis. There is a range of incomes below the mean where agents oppose lasting redistributions
if (and, in a sense, only if) tomorrow’s expected income is increasing and concave in today’s income.
The laissez-faire coalition is larger, the more concave the transition function and the longer the
policy horizon. We illustrate the general analysis with an example (calibrated to the U.S.) where,
in every period, 3/4 of families are poorer than average, yet a 2/3 majority has expected future
incomes above the mean, and therefore desires low tax rates for all future generations. We also

analyze empirical mobility matrices from the PSID and find that the POUM effect is indeed a

significant feature of the data.
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“In the future, everyone will be world-famous for fifteen minutes.”
Andy Warhol (1968)

Introduction

The following argument is commeonly advanced to explain why democracies, where a relatively
poor majority holds the political power, do not engage in large-scale expropriation and redistribu-
tion. Even people with income below average, it is said, will not support high tax rates because of
the prospect of upward mobility: they take into account the fact that they, or their children, may
move up in the income distribution and therefore be hurt by such policies.! The question we ask
in this paper is simple: does this story make sense?

To the best of our knowledge this “prospect of upward mobility” hypothesis has never been
fci'rmalized, which seems rather surprising for such a recurrent theme in the political economy of
redistribution. A moment’s reflection may explain why: this “intuitive” argument is flawed, or more
precisely severely incomplete, if it is to be compatible with everyone holding rational expectations
over their income dynamics.

There are three implicit premises. The first is that redistributive policies chosen today will,
to some extent, persist into future periods. Some degree of inertia or commitment power in the
setting of fiscal policy seems quite reasonable. The second assumption is that agents are not too
risk—averse, or that future income is fairly predictable. Otherwise, they must realize that it may
go down as well as up, in which case redistribution provides valuable insurance. The third, and
key, premise is that individuals or families who are currently poorer than average —for instance, the
median voter— expect to become richer than average. This “optimistic” view clearly cannot be true
for everyone below the mean, barring the implausible case of negative serial correlation. Moreover,
a standard mean-reverting income process would seem to imply that tomorrow’s expected income
lies somewhere between today’s income and the mean. This would leave the poor of today still
poor in relative terms tomorrow, and therefore demanders of redistribution. Finally, even if a
positive fraction of agents below the mean today can rationally expect to be above it tomorrow,
the expected incomes of those who are currently richer than them must be even higher. Does this
not then require that the number of people above the mean be forever rising over time?

The contribution of this paper is to formally examine the “prospect of upward mobility”
(POUM) hypothesis, asking whether and when it can be valid. The answer turns out to be surpris-
ingly simple, yet a bit subtle. We show that there exists a range of incomes below the mean where
agents oppose lasting redistributions if (and, in a sense, only if) tomorrow’s expected income is an
increasing and concave function of today’s income. The more concave the transition function, and
the longer the length of time for which taxes are pre-set, the lower the demand for redistribution.

!See for example Roemer (1998) or Putterman (1996). There are of course other complementary explanations,
such as the deadweight loss from taxation, or bias against the poor in the political system; Putterman (1996) provides
a review. The prospect of upward mobility hypothesis is also related to Hirschman's (1973) famous “tunnel effect,”
although his argument is more about how individuals or groups use observations on the mobility experience of others
to update their beliefs concerning their own prospects.



Even the median voter —in fact, even an arbitrarily poor voter- may oppose redistribution if either
of these factors is large enough. We also explain how the concavity of the expected transition func-
tion and the skewness of idiosyncratic income shocks interact to shape the long-run distribution of
income. We construct, for instance, a simple Markov process whose steady-state distribution has
77% of the population below mean income, so that they would support purely contemporary re-
distributions. Yet when voters look ahead to the next period, 67% of them have expected incomes
above the mean, and this super-majority will therefore oppose (perhaps through constitutional
design) any redistributive policy that bears primarily on future incomes.

There are two intuitive ways to understand the key role of concavity -a requirement which
is stronger than simple mean reversion or convergence of incomes.? For maximum simplicity (but
minimum realism), let agents decide today between “laissez-faire” and complete sharing with respect
to next period’s income, which is a deterministic function of current income, y' = f (y). Without
loss of generality, normalize f so that someone with income eqtfal to the average, ¥ = i, maintains
that same level tomorrow (f(z) = u). As shown on Figure 1, everyone who is initially poorer will
then see their income rise, and conversely all those who are initially richer will experience a decline.
The concavity of f —more specifically, Jensen’s inequality— means that the losses of the rich sum
to more than the gains of the poor; therefore tomorrow’s per capita income g’ is below yx. An
agent with mean initial income, or even somewhat poorer, can thus rationally expect to be richer
than average in the next period, and will therefore oppose future redistributions. Alternatively, let
us now normalize the transition function so that tomorrow’s and today’s mean incomes coincide,
i = p. To say that f is concave is then equivalent to saying that g’ is obtained from y through
a progressive, balanced budget, redistributive scheme, which shifts the Lorenz curve upwards. As
is well known, such progressivity leaves the individual with average endowment better off than
under “laissez-faire”, because income is taken disproportionately from the rich. This means that
the expected income 1 of a person with initial income p is strictly greater than u, hence greater
than the average of 3/ across agents. This person, and those with initial incomes not too far below,
will therefore be hurt if future incomes are redistributed.

Extending the model to a more realistic stochastic setting brings to light another important
element of the story, namely the skewness of idiosyncratic income shocks. The notion that life
resembles a lottery where a lucky few will “make it big” is somewhat implicit in casual descriptions
of the POUM hypothesis. But, in contrast to concavity, skewness in itself does nothing to reduce
the demand for redistribution (in particular, it clearly does not affect the distribution of expected
incomes). The real role played by such idiosyncratic shocks, as we show, is to offset the equalizing
effect of concave expected transitions functions, so as to maintain a positively skewed distribution
of income realizations (especially in steady-state). The balance between the two forces of concavity
and skewness is what allows us to rationalize the apparent risk-loving behavior, or over—optimism,

of poor voters who consistently vote for low tax rates due to the slim prospects of upward mobility.

2The latter could occur, for instance, with a (globally or locally) linear or even convez transition process, as long
as its slope was less than one in the relevant range.



The paper will formalize these intuitions and examine their robustness to the presence of aggre-
gate and idiosyncratic uncertainty, discounting over longer horizons, risk—aversion, and endogenous
mobility. It will also provide two important analytical examples. The first one is the Markov
process mentioned earlier, which demonstrates how a large majority of the population can be si-
multaneously below average in terms of current income and above average in terms of expected
future income, even though the income distribution remains invariant. A calibrated version of this
simple model fits the main features of the US income distribution and intergenerational persistence
rather well. The second example is a log-linear, log-normal process where complete closed-form
solutions are obtained. This autoregressive specification is common in econometric studies of in-
come persistence, and implies a strictly concave transition function between income levels. Finally,
the paper offers a direct empirical assessment of the POUM hypothesis. Using interdecile mobility
matrices from the PSID, we compute over different horizons the proportion of agents who have ex-
pected future incomes above the mean. Cdnsistent with the theory, we find that this “laissez—faire”
coalition grows with the length of the forecast period, to reach a majority for a horizon of about
twenty years.

With the important exceptions of Hirschman (1973) and Piketty (1995a, 1995b), the economic
literature on the implications of social mobility for political equilibrium and redistributive policies
is very sparse. For instance, mobility concerns are completely absent from the many papers recently
devoted to the links between income inequality, redistributive politics, and growth (e.g., Alesina
and Rodrik (1994), Persson and Tabellini (1994)). A key mechanism in this class of models is that
of a poor median voter who chooses high tax rates or other forms of expropriation, which in turn
discourage accumulation and growth. We show that when agents vote not just on the current fiscal
policy but on one that will remain in effect for some time, even a poor median voter may choose a
low tax rate —independently of any deadweight loss considerations.

While sharing the same general motivation as Piketty (1995a, 1995b), our approach is rather
different. Piketty’s main concern is to explain persistent differences in attitudes towards redistri-
bution as resulting from divergent beliefs about the determinants of social mobility. He therefore
studies the inference problem of agents who share the same redistributive goals but have conflicting
priors over the contributions of family background and individual effort to personal success. Be-
cause their main source of information is personal or dynastic experimentation through costly effort
they may never completely learn the true mobility process, and thus end up with different long-run
posterior beliefs over the incentive costs of taxation. We focus instead on agents who have com-
plete knowledge of the true (stochastic) mobility process, and whose primary concern when voting
is to maximize the present value of their after-tax incomes, or that of their progeny, rather than a
common social objective function. The key determinant of their vote is therefore how they assess
their prospects for upward and downward mobility, relative to the rest of the population.

The paper is organized as follows. Section 1 introduces basic concepts and notations. Sections
2 and 3 develop the main theoretical analysis, first in a deterministic, then in a stochastic context.
Section 4 discusses some extensions, while Section 5 works out the lognormal example. Finally,
Section 6 conducts the empirical exercise. All the proofs are gathered in the appendix.



1 Preliminaries

We consider an endowment economy, pepulated by a continuum of individuals whose initial levels
of income lie in some interval X = [0, ], 0 < § < oco. We shall often simplify the notation by
identifying each individual with her initial income y € X.

An income distribution is defined as a strictly increasing function F' : X — [0, 1] such that
F(0) = 0, limy,5 F(y) = 1 and pp = [y ydF < co. The class of all such distributions will
be denoted by F. We shall be particularly interested in income distributions which are positively
skewed, or more generally whose mean is at least as great as their median, denoted mp = F1(1/2).
This subset of F will be denoted F.

A redistribution scheme is defined as any function 7 : ¥ — F which preserves mean income:
Br(F) = Jx ydr(F) = pp, for all F € F. We thus abstract from any deadweight losses which such
a scheme might realistically entail, so as to better highlight the different mechanism which is our
focus. Both represent complementary forces which reduce the demand for redistribution, and could
be combined into a commeon framework.

The class of redistributive schemes used in a vast majority of political economy models is that
of proportional schemes, where all incomes are taxed at the rate 73 and the collected revenue is
redistributed in a lump-sum manner.® Given a pre-tax income distribution F(y), the post-tax
distribution is then 75(F) = Fo 'I'El, where r(y) = (1 — B)y + Bup for all y € X. We shall
mostly work with just the two extreme members of the set P = {r5|0 € 8 < 1}, namely, 7o
and 7. Clearly, 7o corresponds to the “laissez-faire” policy, ro(y) = y, whereas 7 corresponds to
“complete equalization,” T1(y) = pp.

Our focus on these two polar cases is not as restrictive as it might initially appear. First, the
analysis directly extends to the comparison between an arbitrary pair of proportional redistribution
schemes, say 7g and 74, with 0 < 8 < B8 < 1. Second, Tp and 77 are in a certain sense “focal” “
members of P since, in the simplest framework where one abstracts from taxes’ distortionary effects
as well as their insurance value, they are the only candidates in this class that can be majority rule
(Condorcet) winners. Thus, for any distribution with median income below the mean, 71 beats
every other linear scheme under pairwise majority voting if individuals’ preferences are defined only
in terms of their present disposable incomes. We shall see that this conclusion may be dramatically
altered when individuals’ voting behavior also incorporates concerns about their future incomes.
Finally, we do provide extensions of the analysis to certain non-linear (progressive or regressive)
schemes in Section 5.

The third key feature of the economy is the mobility process. We shall initially focus on de-
terministic income dynamics, then incorporate random shocks, starting in Section 3. While the
stochastic case is obviously of primary interest, the deterministic one provides more transparent

intuitions, as well as useful intermediate results. All proofs are gathered in the appendix.

3Gee, for instance, Meltzer and Richard (1981), Persson and Tabellini (1991), or Alesina and Redrik (1994).
Proportional schemes reduce the voting problem to a single-dimensional one, thereby allowing the use of the median
voter theorem. More fundamentally, when unrestricted non-linear redistributive schemes are allowed there is no
voting equilibrium (in pure strategies): the core of the voting game is empty.

4



2 Income Dynamics and Voting under Certainty

It will be assumed for now that individual (pre-tax) incomes or endowments evolve through
time according to a transition function f : X — X which is continuous and strictly in-
creasing. The resulting income stream of an individual with initial endowment ¥y € X is then
v F@) F2@)y---, fY¥), ..., and for any initial F' € F the cross-sectional distribution of incomes
in period t is F, = F o f~%. A particularly interesting class of transition functions for the purposes
of this paper is the set of all concave (but not affine) transition functions; we denote this set by 7.

2.1 Two-Period Analysis

To distill our main argument about voting and income mobility to its most elementary form, we
focus at first on a two-period scenario where individuals vote “today” (date 0), over alternative
redistribution schemes which will be enacted only “tomorrow” (date 1). For insta:nce, the predom-
inant motive behind the voting behavior of the constituent agents could be the well-being of their
offspring, who will be subject to the tax policy designed by the current generation.® Accordingly,
agent y € X votes for 71 over Ty if she expects her period one earnings to be below the per capita
average:

() <fxdeo=#F1- (1)

Suppose now that f € 7T, that is, it is concave but not affine. Then, by Jensen’s inequality,

f(;upo)=f( / deo) > [ rar=pn, @

so the agent with mean income at date zero will oppose date one redistributions.® On the other
hand, it is clear that f(0) < up,, so there must exist a unique yy in (0, pg,) such that

flyp) =pp- (3)

Of course y; = (e Foo f—l) also depends on Fp but, for brevity, we do not make this dependence
explicit in the notation. Since f is strictly increasing, it is clear that y; acts as a tipping point
in agents’ attitudes towards redistributions bearing on future income. Moreover, since Jensen’s
inequality —with respect to all distributions F- characterizes concavity, the latter is both neces-

4More generally, f describes the transitions which agents expect to occur, and therefore base their votes upon.

5One can also think of the case where the tax rate is set for two periods, and agents care about some present value
of income, as a mixture between two polar situations: that where only current income matters (as usually assumed),
and that where only future income matters (as here). This perhaps more realistic intermediate setup is covered by
the multi—period model studied in the next subsection.

SNote that Jensen’s inequality does not presuppose, but rather establishes, the fact that F1 has a finite mean.
Indeed, denoting the right derivative of f (which exists everywhere by concavity) by Fi , wehave f(y) < flup)}+
Filir,) @ — pp,) for all ¥ € X. Thus: pp, = [ J@)dFo(y) < fx J(r ) dFo() + [3(1r,) [ (v = prp) dFoly) =
J(pg,) < co. This result will be used repeatedly in the paper.



sary and sufficient for the “prospect of upward mobility” hypothesis to be valid, under any linear
7

redistribution scheme.
Proposition 1 The following two properties of a transition function f are equivalent:

(a) For any income distribution Fy € F there exists a unique y; < jiF, such that all agents in
[0,4}) vote for Ty over 7o, while all those in (v} g] vote for T over T1.

(b) f is concave (but not affine), i.e. f €T.

Compared to the standard case where individuals base their votes solely on the effect of taxation
on their current incomes, we see that popular support for redistribution falls by a measure Fp (ep)—
Fo(y}) > 0. Moreover, the underlying intuition suggests that the more concave is the transition
function, the fewer people should vote for redistribution. This simple result, shown below, will
turn out to be extremely useful in establishing some of our main propositions on the outcome of
majority voting and on the effect of longer political horizons.

We shall say that f € 7 is more concave than g € 7, and write f » g, if and only fis
obtained from g through an increasing and concave (not affine) transformation, that is, if there
exists an h € T such that f = ho g. Put differently, f > g if and only if f o g~ ! € T. Clearly, the
relation = is irreflexive, asymmetric and transitive, hence it is a strict partial ordering on T.% The

following elementary observation makes clear why it is relevant in our context.
Proposition 2 Let Fy € F and f, g € T. Then f > g implies that y} <y,.

The interpretation is straightforward. If two societies start from an identical pre-tax income
distribution, the demand for redistribution will be lower in the one whose transition function already
equalizes incomes at a faster (i.e., more marginally progressive) rate.

Can the prospect of upward mobility be strong enough for 7 to beat 71 under majority voting?
Clearly, the outcome of the election depends on the particular characteristics of f and Fp. One can
show, however, that for any given pre-tax income distribution Fp there exists a transition function
f which is “concave enough” that a majority of voters choose “laissez-faire” over redistribution.?
The construction of such a transition function is discussed below, together with a caveat. When
combined with Proposition 2 and a continuity property, it allows us to show the following, more
general result.

"For any Tp and T, in P such that 0 < 8 < @' < 1, agent y € X votes for 4 over 75 iff (1 - B)f () + Bup <
(1-8)/{y) + 8'isp, , which in turn holds iff (1) holds. Thus, as noted earlier, nothing is lost by focusing only on the
two extreme schemes in P, namely 7o and 7.

8 Analogues of this partial ordering are widely used in the theory of risk aversion, especially when individual
preferences are defined over more than one good {see Kihlstrom and Mirman (1974)). A number of remarkable
properties of this ordering are obtained by Debreu (1976) and Kannai (1977).

%In this case, 7o is the unique Condorcet winner in P. We shall assume throughout that indifferent agents abstain
from voting.



Theorem 3 For any Fy € F, there exists an f € T such that T beats 71 under pairwise majority
voting for all transition functions that are more concave than f, and 7y beats ¢ for all transition

functions that are less concave than f.

The caveat mentioned above is that for a majority of individuals to vote for “laissez-faire”,
the transition function must be sufficiently concave to make the date one income distribution Fy
negatively skewed. Indeed, if y; = f “Wug) < mp, then pp < f(mg,) = mp.!° There are
two reasons why this is far less problematic, from an empirical point of view, than might initially
appear. First and foremost, it simply reflects the fact that we are momentarily abstracting from
idiosyncratic shocks, which typically contribute to reestablishing positive skewness. Section 3 will
present a stochastic version of Theorem 3 where F} can remain as skewed as one desires. Second, it
may in fact not be necessary that the cutoff y; fall all the way below the median for redistribution
to be defeated. Even in the most developed democracies it is empirically well documented that
poor individuals have lower propensities to vote, contribute to political campaigns, and otherwise
participate in the political process, than rich ones. The general message of our results can then
be stated as follows: the more concave the transition function, the smaller the departure from the
“one person, one vote” ideal needs to be for redistributive policies to be defeated.!!

2.2 Multi-Period Redistributions

In this section we examine how the length of the horizon over which taxes are set and mobility
prospects evaluated affects the political support for redistribution. We thus make the more realistic
assumption that the tax scheme chosen at date zero will remain in effect during periods¢ = 0,...,T,
and that agents care about the present value of their disposable income stream over this entire
horizon. Given a transition function f and a discount factor § € (0,1], agent y € X votes for

“laissez—faire” over “complete equalization” if

T T ‘
D 8y > Y S, (4)
t=0 t=0

where we recall that f* denotes the t-th iterate of f and F; = Fy o f¢ is the period ¢ income
distribution, with mean pup,. We shall see that the basic findings from the two-period analysis
carry over to a great extent to this setting.

1%The simplest type of transition function which achieves this outcome is f(y) = min{y,mgr, + a(y — mry )} + Kk,
where ¢ is small enough and k is any constant, which could for instance be chosen so as to ensure that F, = HEy
For details see the proof in the appendix, which also shows that Theorem 3 -like every other result in the paper
concerning median income mp,— holds in fact for any arbitrary income cutoff below pu .

'Tn the deterministic case the minimum bias required varies monotonically with the skewness of F, as seen above.
In the stochastic case they need not be related, so that the “laissez-faire” policy can be the perfectly democratic
outcome of the clection even with mg < ip,, l.e. with F1 € F,. The political process could even be biased towards
the poor, rather than the rich, without affecting the result; see the proof of Theorem 5.



First, there again exists a unique tipping point y3(T’) such that all agents with initial income
less than y7(T’) vote for 71, while all those richer than y} (T) vote for To. When voters only consider
current incomes, or when the policy has no lasting effects, it coincides with the mean: y3(0) = pp,.
When future incomes are factored in, however, the coalition in favor of “laissez-faire” expands:
y#H(T) < pg, for T > 1. In fact, the more farsighted voters are, or the longer the duration of the
proposed tax scheme, the less support for redistribution there will be: y}(T) is a strictly decreasing
function of T. The intuition is very simple, and related to Proposition 2: when forecasting incomes
further into the future, the one-step transition f gets compounded into f2,..., f7, etc., and each
of these functions is more concave than its predecessor.

Second, whether or not the increase in the vote for 7g is enough to ensure its victory over 7, in
the election depends on the particular forms of f, F, on the degree of forward-looking, and on the
specifics of the political system {e.g., relative propensities to vote of the different income classes).
With standard majority voting, for instance, a generalization of Theorem 3 can be established,

provided of course that agents care enough about future incomes.

Theorem 4 Let F € Fy and § € (0,1).
(a) For all f € T, the longer is the horizon T, the larger is the share of the votes that go to To.
(b) For all § and T large enough, there exists an f € T such that 7o ties with T, under pairwise
majority voting. Moreover, To beats 71 if the duration of the redistribution scheme is extended
beyond T, and is beaten by 71 if this duration is reduced below T.

Simply put, longer horizons magnify the strength of the “prospect of upward mobility” effect.1?
Finally, note that relaxing the assumption of constant marginal utility for money does not alter
the results. If individuals have access to perfect credit markets, their lifetime utility remains an
increasing function of the present discounted value of their net incomes, so nothing changes. Even
when there are no such borrowing and lending opportunities, so that agents must consume their
disposable income in each period, the results remain: Theorem 4 easily extends to the case of agents
who vote for 7o over 71 whenever Yo 48U (f(y)) > Yo08U(1r,), given any continuous and
strictly increasing utility function U on X. In the presence of uninsurable uncertainty over future
incomes, however, we shall see that risk aversion does complicate matters by creating a demand
for redistribution for insurance purposes. This second effect works in the opposite direction of the
POUM hypothesis.

12The reason why & and T must be large enough in part (b) of Theorem 4 is that redistribution is now assumed
to be implemented right away, starting in period 0. If it takes effect only in period 1, as in the previous section, the
results apply for all § and T > 1. In either case, the same caveat discussed following Theorem 3 now applies to the
skewness of the terminal distribution Fr, in the absence of idiosyncratic shocks.



3 Income Dynamics and Voting under Uncertainty

3.1 Stochastic Income Processes

The assumption that individuals know their future incomes with certainty is obviously unrealistic.
Moreover, in the absence of idiosyncratic shocks the cross-sectional distribution converges over time
to a single mass-point. In this section we therefore extend the analysis to the stochastic case, while
maintaining risk-neutrality. The role of insurance will be considered later on.

We shall now identify each individual by an index i € [0, 1], and denote her endowment at date ¢
by yi. The evolution of yi is determined by a stochastic transition function f, whose properties

are discussed below, and a random shock 6}, ; whose realization is denoted o 318

Yirr = S5, 0641), t=0,...,T—1 (5)

We require that the random variables ©%, (i,¢) € [0,1] x {1,...,T}, all have a common proba-
bility distribution function P, with support 2. This means that everyone faces the same uncertain
environment, which is stationary across periods.!® It is important to note, however, that we put
no restriction on the correlation of shocks across individuals. We thus allow for purely aggregate
shocks (©% = 9{ for all 4,7 in [0, 1]), purely idiosyncratic shocks (the i's are independent across
agents and sum to zero), and all cases in between.!4

In the deterministic case the transition function was taken to be continuous, strictly increasing,
and concave (but not affine). The most strict extension of these requirements to the stochastic case
is that they should hold with probability one. Let us therefore denote as Tp the set of (P, Fo)-
measurable functions f : X x §2 — X such that Prob[{8] f(-;6) € T }] = 1. It is clear that any f
in Tp has the following properties:

(i) The expectation Eg[f(y;©)] is well-defined on X, and Eg[f(:;®)] belongs to 7.

(ii) Future income increases with current income, in the sense of first-order stochastic dominance:
for any (y,3') € X2, the conditional distribution M (y'| y) = Prob({6 € Q| f(y;0) < ¢'}) is
decreasing in y, with strict monotonicity on some non-empty interval in X.

For some of our purposes, the requirement that f € 7p is too strong, so we shall develop our
analysis for the larger set of ((P, Fop)-measurable) functions from X x {2 to X which simply satisfy
properties (i) and (ii}. We denote it as 7.

13The first requirement is one of anonymity: two individuals with the same income history have the same probability
distribution over future endowments. The second is made only to simplify the notation; one could easily allow for
time—variable or serially correlated shocks,

“Throughout the paper we shall follow the common practice of ignoring the subtle mathematical problems involved
with continua of independent random variables, and thus treat all 8}’s as jointly measurable, for any t. Consequently,
the law of large numbers and Fubini’s theorem (switching the order of double integrals) are applied as usual.



3.2 Two-Period Analysis

We first return to the case where risk—neutral agents vote in period 0 over distributing period 1
incomes. Agent y* € X then prefers ¢ to 71 if and only if

Eet [f(¥':0%)] > E [1p ], (6)

where the subscript ©* on the left-hand side indicates that the expectation is taken only with respect
to ©%, for given y*. When shocks are purely idiosyncratic, the future mean / is deterministic due
to the law of large numbers; with aggregate uncertainty it remains a random variable. In any case,

the ezpected mean income at date one is the mean expected income across individuals:

Efun) =€ | [ 167004 = [ Bt ioNdi= [ Easlri69] 4Rt

by Fubini’s theorem. This is less than the expected income of an agent whose initial endowment is

equal to the mean level pp, whenever f(y;6) —or, more generally, Eqi(f{y; ©%)]- is concave in y :

[X Ees [/(v:©)] dFo(y) < Eex [/ (15 )] - (7)

Consequently, there must again exist a nonempty interval [y}, ) of incomes in which agents will
oppose redistribution, with the cutoff y} defined by

Eo: [f(y}; @i)] =E [!‘Fl] . (8)

The basic POUM result thus holds for risk-neutral agents whose incomes evolve stochastically. To
examine whether an appropriate form of concavity still affects the cutoff monotonically, and whether
enough of it can still cause 7o to beat 71 under majority voting, observe that the inequality in (7)
involves only the expected transition function Eg:[f(y; ©%)], rather than f itself. This leads us
to replace the “more concave than” relation with a “more concave in expectation than” relation.

Given any probability distribution P, we define this ordering on the class 75 as
f>pg ifandonlyif Ee[f{;0)]> Eelg(:;0),

where © is any random variable with distribution P.1° It is easily shown that f >p g implies
yr < Yg- In fact, making f concave enough in expectation will, as before, drive the cutoff y; below
the median mpg,, or even below any chosen income level. Moreover, since this condition bears only
on the mean of the random function f(-;8), it puts essentially no restriction on the skewness of the
period 1 income distribution Fj, in sharp contrast to what occurred in the deterministic case. For
instance, a sufficiently skewed distribution of shocks will ensure that Fy € F, without affecting the

Y5 Interestingly, > and >=p are logically independent orderings. Even if there exists some h € T such that f(-, 0)
h(g(-,0)) for all 4, it need not be that f >p g.
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cutoff v} Combining a formal proof of this claim with the monotonicity of the cutoff, we establish

a stochastic generalization of Theorem 3.

Theorem 5 For any Fp € F and any o € (0,1), there exists a probability distribution P and an
f € Tp such that Fi(ug) > o and, under pairwise majority voting, To beals 71 for all transition
functions in T3 that are more concave than f in expectation, while T1 beats To for all those that
are less concave than f in expectation,

Thus, once random shocks are incorporated we reach essentially the same conclusions as in
Section 2, but with much greater realism. Concavity of Eg[f(-;©)] is necessary and sufficient for
the political support behind the “laissez-faire” policy to increase when individuals’ voting behavior
takes into accofint their future income prospects. If f is concave enough in expectation, then 7g
can even be the preferred policy of a majority of voters.

3.3 Steady—State Distributions

The presence of idiosyncratic uncertainty is not only realistic, but also required to ensure a non—
degenerate long-run income distribution. This, in turn, is essential to show that our previous
findings describe not just transitory, short-run effects, but stable, permanent ones as well.

Let P be a probability distribution of idiosyncratic shocks and f a transition function in 75.
An invariant or steady-state distribution of this stochastic process is an F € F (not necessarily
positively skewed) such that

F(y)= f f 1{f(z,0)<y} AF(x) dP(9) for ally € X,
NJX

where 1.} denotes the indicator function. Since the basic result that the coalition opposed to lasting
redistributions includes agents poorer than the mean holds for all distributions in F, it applies to
invariant ones in particular: thus y}y F < pp.® This brings us back to the puzzle mentioned in
the introduction. How can there be a stationary distribution F where a positive fraction of agents
below the mean uj have expected incomes greater than piz, as do all those who start above this
mean, given that the number of people on either side of up must remain invariant over time? The
answer is that even though everyone makes unbiased forecasts, the number of agents with expected
income above the mean, 1 — F (y;’ ), strictly exceeds the number who actually end up with realized
incomes above the mean, 1 — F(;1), whenever f is concave in expectation. This result is apparent
on Figure 2, which provides additional intuition by plotting each agent’s expected income path,
E ['y; | yf,] . In the long run everyone’s expected income converges to thé population mean pg, but

'*While concavity of Ee[f(-;©)] is still a sufficient condition, it is no longer a necessary one if the inequality
Y} r < pp is required to hold only for the steady—state distribution(s) F induced by f and P, rather than for all
initial distributions. But even then, some form of concavity “on average” is still required, so to speak: if Ee[f(-; ©)]
were linear or convex, we would have y; r > pup for all distributions, including stationary ones.
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this convergence is non-monotonic for all initial endowments in some interval (QF’ yr) around pp.
In particular, for y§ € (y 1 Hp) expected income first crosses the mean from below, then converges
back to it from above. While such non-monotonicity may seem surprising at first, it follows from
our results that all concave (expected) transition functions must have this feature.

This still leaves us with one of the most interesting questions: can one find income processes
whose stationary distribution is positively skewed, but where a strict majority of the population
nonetheless opposes redisiribution? The answer is affirmative, as we shall demonstrate through a
simple Markovian example, Let income take one of three values: X = {a1,a2,a3}, with a; < as <
az. The transition probabilities between these states are independent across agents, and given by
the Markov matrix:

l—7r r 0
M= ps 1-s5 (1-p)s |, t (9)
0 q l-q

where (p,q,7,5) € (0,1)2.!7 We require that the conditional distribution of next period’s income
Y41 be stochastically increasing in current income yi.!8 It is easily checked that this holds if and
only if

. [1-7 l—q}
s<min{ ——,—— ;. 10
{5 (10)

Expected income E [y; 1l yz] is then strictly increasing in current income yi; its concavity will
follow from a stronger requirement imposed below. We now turn to the steady-state properties
of this economy. The invariant income distribution induced by M over {a1,ay,a3} is the unique
probability vector 7 that solves 7M = 7, namely,

= pas g = qr
(1 - p)s + g(r + ps)’ r(1 —p)s + q(r + ps)

M and 73 =1—m; — 7. (11)
"The corresponding mean income is u = ma; + may + (1 — m — m3)as. The median income is as
provided that my < 1/2 < 7y + 9, that is,

9

STp—r(i-p)

(12)

Agents with ¥ = a2 (hence, a fortiori, those with yi = a3) will oppose redistribution of time

"In the formalism of our general model, the random variable O is three-dimensional: 8 = (8;, 6,, 93), where the
probability distribution of ©; over {a;,az2, a3} is given by the i-th row of M,i=1,...,3. The transition function is
then, simply: f(y,0) = 1/y—0;161 + 1{y=03102 + 1{y—0,}O3. The only (minor) difference in this formulation is the
restriction to a discrete support.

18pyt differently, we posit that M = [mu]sxs be a monotone transition matrix by requiring row k +1 of M to
stochastically dominate row k, i.e., my1 > ma; > ms; and myg + maz = may + m2a > ma; + maz. Monotone Markov
chains are introduced by Keilson and Ketser (1977), and applied to the analysis of income mobility by Conlisk (1990)
and Dardanoni (1993).
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t + 1 incomes if and only if E [y}, | ¥§ = @2] > p. One can show that this condition holds for all
a < az < az when 1?

r(1-q) g(1-1)
T(l—p)+qpss<r(l—p)+qp' (13)

The entire set of requirements on s can thus be summarized as:

r{l —q) . {l—r 1—q gq(i—-r1) Tq } _
8= < 8§ < min , , =3 14
r(l-p)+gq "1—-p'r(1 -p)+ap’|gp—r(1-p)| 1)
One easily verifies that s < 5 if and only if r < g and
. [r(l-p) : pq }
1-2 <mm{ — , 15)
1 pg 'r(1-p) (

which holds for all ¢ > max{r,1/2}. It then suffices to chose any s in (s, 5} for all the desired
conditions to hold, independently of (a1, as,a3). The final requirement is that the stationary income
distribution be positively skewed: pu > ag, or equivalently

az — az Pq
> . 16
ag—a;  r(l—p) (16)

In conclusion, there is a wide set of parameters (p,q,r, s; a1, a2, a3) for which the steady-state of
this economy has all the desired properties.?® In particular, over half of the population is always
poorer than average, but over half of the population always has expected income above average. Put
differently, the distribution of expected incomes is negatively skewed even though the distribution
of actual incomes is positively skewed and every one has rational expectations. But, one might ask,
is such a process empirically plausible?

It is actually not difficult to find a specification which matches the broad facts of the US income
distribution —say, in the 1990 Census— and its intergenerational persistence. Let p = .55, ¢ = .6,
r = .5, and s = .7, leading to the stationary distribution (my, 72, 73) = (.33, .44, .23). Hence, while
67% of the population has erpected income above the mean, in each period only 23% actually
end up with realized incomes above the mean.?! Choosing (a1, az,az) = (16000, 36000, 91000), we
obtain a rather remarkable fit with the data, especially in light of the model’s simplicity.

19T see this, note that Aa + X'b > O holds for all 0 < a < b if and only if A’ > 0 and A+ X' > 0. Since
E [yfs1| ¥ = a2] —p = (1—s—m2){az — 1) +((1 —p)s — (1 — m —72)){as — a1}, the inequality E [y, | ¥i =az] > p
therefore holds for all a; < a2 < as whenever (1 —p)s > 1 — 7y — g and 1 —ps > 1 — ;. Condition (13} follows from
this observation,

2 The requirement that E [y{,, | 4} = a2] > u > ay automatically implies that the conditional expectation g(y) =
E [yf+1 | ¥ = y] = Ee [f(y; O)] is strictly concave in y (hence f € T3). This can be verified by direct computation,
or more simply by observing that the strictly increasing, piece-wise linear function defined on {ai, as] by linearly
interpolating g between (ay,g(e1)), (a2,9(az2)) and (as, g(aa)) is, necessarily, either concave or convex. If it were
convex this would imply: g(a2) < g(u) = g(E3_7; a;) < Ti_;7; 9(az) =, a contradiction.

2'In addition we also verify, numerically, that the middle class has expected income above the mean not just in the
next period, but in all future periods.
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Data (1990 ) | Model
Median family income $ 35,353 36, 000
Mean family income $ 42,652 41,872
Standard deviation of family incomes $ 29,203 28,138
Share of bottom 1/3 % 11.62 12.61
Share of bottom 3/4 [77%] % 52.23 50.44
Share of top 1/4 [23%)] % 47.77 49.56
Intergenerational correlation of log-incomes 0.4 to 0.5 .45,

Table 1: Distribution and Persistence of Income in the United States 22

The resulting income process also has more persistence for the lower and upper income groups
than for the middle class, which is consistent with the findings of Cooper, Durlauf and Johnson
(1994). But most striking is its main political implication: a fwo-thirds majority of voters will

support a policy or constitution designed to implement a zero tar rate for all future generations,
even though: ‘

(a) no deadweight loss concern enters into voters’ calculations;

(b) three quarters of the population is always poorer than average;

(c) most of the members of the “laissez-faire” coalition (m2/(m2+m3) = 66% of them) are below
mean income, and know that their children are four times more likely than not to end up in that
same situation, where they would benefit from redistribution.

3.4 Multi—Period Redistributions

We now extend the analysis of the general model to multi-period redistributions under uncertainty,
maintaining the assumption of risk-neutrality (or complete markets). Thus, agents care about the
expected present value of their net income over the T° + 1 periods during which the chosen tax
scheme is to remain in place. For any individual i, we denote by @} = (6%, ...,0}) the random
sequence of shocks which she recejves up to date £, and by Qi = (G‘i, ...,Bi) a sample realization.
Given a one-step transition function f € 7p, her income in period ¢ is:

where f(y};8;) now denotes the t—step transition function. Under “laissez-faire,” the expected

present value of this income stream over the political horizon is:

*?Sources: median and mean income are from the 1990 US Census (Table F-5). The shares presented here are
obtained by linear interpolation from the shares of the five quintiles (respectively 4.6, 10.8, 16.6, 23.8, and 44.3
percent) given for 1990 by the US Census Bureau (Income Inequality Table 1). The variance is computed from the
average income levels of each quintile in 1990 {Table F-3). Estimates of the intergenerational correlation from PSID
or NLS data are provided by Solon (1992), Zimmerman, (1992) and Mulligan (1995). Cooper, Durlauf and Johnson
(1994) allow for non-linearities in the transmission process, and find persistence to be a U-shaped function of initial
income.
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T T T
VT(y) =Ee, - Ee, [z 8'y; |y5] =) 0'Eqif'(%:01) = ) 6'Ee, S (y: ©y),
t=0 t=0 t=0
where we suppressed the index i on the random variables 83 since they all have the same probability
distribution P*(8,) = [T._, P{6) on §2t. Under the policy 71, on the other hand, agent i’s expected
income at each ¢ is the expected mean Eg, [.UF,]’ which by Fubini’s theorem is also the mean
expected income. The resulting payoff is

T T T
gﬁtE[ﬂnl = §5t (/01 Eo [ft(yg;ﬁ‘;f)] dj) = gﬂstfx Ee, [/*(4:8)] dFo(y)

so that agent ¢ votes for 7| over 7¢ if and only if

VT(5) > [ VT (y) dFo(y). (18)
X

It is easily verified that for transition functions which are concave (but not affine) in y with prob-
ability one, that is, for f € Tp, every function f*(y;8), t > 1, inherits this property. Naturally, so
do the weighted average 3"1_, 8* f*(y; 8}) and its expectation VT (y), for T > 1. Hence, in this quite
general setup, the now familiar result:

Proposition 6 Let Fo € F, § € (0,1], T > 1. For any probability distribution P and any transition
function f € Tp, there exists a unigue y3(T) < pp, such that all agents in [0, y3(T)) vote for T4
over Tg, while all those in (y}(T), 1} vote for g over 7. .

Note that Proposition 6 does not cover the larger class of transition processes 77 defined
earlier, since VT(y) need not be concave if f is only concave in expectation. For f € 7p, can one
obtain a stronger result, similar to that of the deterministic case, namely that the tipping point
decreases as the time horizon lengthens? While this seems quite intuitive, and will indeed occur
in the “natural” example of Section 5, it may in fact not hold without relatively strong additional
assumptions. Technically speaking, this is because the expectation operator does not, in general,
preserve the “more concave than” relation. One interesting sufficient condition that insures this
result is that the £ + 1-step transition function be more concave in expectation than the t-step
transition function.

Proposition 7 Let [ € F, § € (0,1}, T > 1, and let P be a probability distribution on Q2. If, for
all t, le(';.QH_l) =pe1 f4;8,), that is,

Ee]' . 'EQH_I [ft+1(‘;e}, ...,9t+1)] b Eel' ' 'Eeg [ft(';elv"'vet)] ’

then the larger the political horizon T, the larger the share of the votes that go to 7.
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When the condition holds, the proof is analogous to Theorem 4(a), and so is the interpretation:
the more forward-looking voters are, or the more long-lived the tax scheme is, the lower is political
support for redistribution. An immediate and useful corollary is that this monotonicity holds when
the transition function is of the form f(y,8) = y*$(6), where « is any number in (0,1) and ¢ can
be an arbitrary function.?> Such will be the case in the log-linear example of Section 5.

4 Extending the Basic Framework

4.1 The Effect of Risk—Aversion

When agents are risk-averse, the fact that redistributive policies provide insurance against idiosyn-
cratic shocks increases their attractiveness, hence the breadth of their political support. Conse-
quently, the cutoff separating those who vote for 74 from those who prefer 7 may be above or below
the mean, depending on the relative strength of the “prospect of mobility” and the risk-aversion
effects. While the tension between these two forces is very intuitive, and will be made explicit in the
next section’s example, no general characterization of the cutoff in terms of the relative concavity
of the transition and utility functions can be provided. To understand why, consider again the
simplest setup where agents vote at date 0 over the tax scheme for date 1. Denoting by U their
utility function, the cutoff falls below the mean if

EeU (f (Er[y]; ©)) > U (EeER[f(¥;0)]),

‘where E F, denotes the expectation with respect to the initial distribution Fy. Observe that f(-,8) €
7 if and only if the left-hand-side is greater (for all U and P) than Eg [U (Eg, [f(y; 0)])] - But the
concavity of U, namely risk-aversion, is equivalent to the fact that this latter expression is also
smaller than the right-hand side of the above inequality,. The curvatures of the transition and
utility functions clearly work in opposite directions, but the cutoff is not determined by any simple
composite of the two.

4.2 Endogenous Mobility

While we have focused on pure endowment economies, the POUM mechanism remains operative
when agents make effort and savings decisions. One complication that arises with accumulation is
that the transition function now depends on the chosen redistributive policies. Future tax rates
matter through their disincentive effects on savings and labor supply, while current taxes and trans-
fers matters when agents undertake investments subject to borrowing constraints {since disposable
resources then determine the level of investment, hence future earnings). Bénabou (1996, 1997)
develops such a model, allowing also for a continuous policy choice but using very specific functional
and distributional assumptions, as in Section 5 below. The main difference with the endowment

*3Note that the mere multiplicative separability of f inte f(y;6) = ~y(¥)$(f) is not sufficient to ensure that the
requirement of Proposition 7 is satisfied.
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economy is that social mobility is now endogenous: it increases with the progressivity of redis-
tribution, which relaxes the liquidity constraints hindering investment by the poor. The demand
for redistribution may be higher or lower, but its comparative statics properties with respect to
the concavity of the transition function (as reflecting the production and investment technologies),
the length of the political horizon, and agents’ risk—aversion, are all very similar to those derived
here.?

5 The Log—Normal Case

In this section we consider a particular specification which yields simple, explicit solutions, even in
the cases of risk-aversion and non-linear taxes where no general results exist.

5.1 Dynamics and Distribution of Incomes

Let the transition function be log-linear: f(y;6) = #y® for all y > 0, with a € (0, 1) ensuring strict
concavity in the first argument. Individual endowments thus evolve according to the stochastic

process:

Inyj, =alny + 6, t=0,1,... ' (19)
We assume that both the initial income levels and the shocks are log-normally distributed:
Iny§ ~ N(mo, Af) and @} ~ N(—5%/2, s%). (20)

Notice that E[B}] is normalized to one. The log-linear specification is very common in the empirical
literature on income or wage dynamics, whether intra- or inter-generational. Moreover, with log-
normal shocks the cross-sectional distribution also remains log-normal over time, and this is quite
a good approximation to actual income distributions. It is clear from the above assumptions that

Iny} ~ N(my, A?), with the mean and variance given by the following recursion equations:
Mmep1 =oam; —s°/2 and A%, = o?A? + 5% (21)

Note that my is the logarithm of median income (rn; = In mp,), whereas per capita income is given
by In g, = m, + A2/2. From (19) one can easily compute agent ¢’s log-income in period ¢ as

¢
Iny; =alny) + Zat_k In gk, (22)
k=1

Therefore, conditionally on its initial level, yi is also log-normally distributed. Taking expectations
and variances in (22), and using the recursion on m; in (21) to simplify, we have:

**Intuitively, the demand for current redistribution tends to increase (because it allows a reallocation of investment
resource towards those who have a higher marginal product, due to tighter liquidity constraints), while the demand
for future redistribution tends to decrease (because savings distortions may now compound those in labor supply).
The first mechanism tends to increase the growth of aggregate income, the second one to reduce it.
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Eoi.e Iy I90] = me+a® (Inyd —mo), (23)
i, g f1-a®
Varg: e [Iny} lyg] = s (—1__—&2) - (24)

From these moments one can easily compute Ee:. o [(g5)* |4] , for any value of A. We shall make
repeated use of this result in what follows.

5.2 Risk—Neutral Agents

We begin once again with the case where risk-neutral agents vote in period zero over the linear tax

rate to be implemented at date t. Agent i thus supports redistribution when Eet. .o [vi lvd] < pr-
¢

Proposition 8 The tipping point for risk-neutral agents who vote over linear tax schedules to be
itmplemented in period t is:

. 128
Inyr =Inpgp — (1 -« )7

This result clearly shows how political support for redistribution declines as the horizon length-
ens, from the mean of initial income p Fp in the standard case of voting over current taxes, to the
median in the limiting case where t tends to infinity. For a long enough horizon, or a high enough
discount factor § when agents care about expected present values, redistribution can therefore
be blocked by arbitrarily small deviations from perfect democracy.?® In contrast to the Markov
example of Section 3.3, however, the cutoff never falls below the median.

In the long run the economy settles to its asymptotic income distribution, denoted F.,, with
variance A%, = s2/(1 — a?) by (21). Replacing A2 with A2 in the expression for Y}:, we obtain
the value of the cutoff y},‘ corresponding to Fi:

. 1—aty s?
Inyy =Inpg  — T—aZ) 5

Our characterization of political support for redistribution (or lack thereof ) thus remains unchanged
in steady-state.

5.3 Risk—Aversion

The log-linear/log-normal specification also allows us demonstrate explicitly how the size of the

coalition for redistributive policies is shaped by two opposing forces: (a) the concavity of the tran-

sition function, which tends to lower y}i; (b} the concavity of the utility function, which tends to

*Note that lengthening the horizon, which raises a to a higher power, is a special case of taking a strictly concave
transformation A{(y*) =47, 0 <y < 1.

18



increase it. For simplicity we continue to focus on the case where agents in period zero vote on the

tax rate for period ¢.26 Their preferences over random levels of disposable income at that date are
given by Eg; et [U(yi) | ¥6] , where

Ule)= ——, B<1. (25)

Agent i compares her expected utility under “laissez-faire” to the sure level to be received under
(complete) redistribution at date ¢, and votes for 7 over 7; when Eoi..ei [(41)° |4h] > (ug)P.

Proposition 9 The tipping point for risk—averse agents who vote over whether To or 71 should be
implemented in period t is:

A2 2\ /1 _ o2
lny},:lnypo—(l—at)To +a {1-7) (%) ( ° ) .

1—a?

Under risk-neutrality (3 = 1), this expression reduces of course to the result derived earlier,
where the cutoff y}, declines from the mean p Fo to the median as t becomes larger. The role of
(relative) risk-aversion 1 — 3 is to increase everyone’s demand for redistribution, thereby raising
the cutoff y;,. With one-period ahead decisions, for instance, the cutoff remains below the mean if
and only if

2

o1~ 022 > (1) (%) (26)

Note how this turns on the comparison between the concavity of the transition function, a(l — a),
and the degree of relative risk-aversion, 1 — 3.27 As the horizon lengthens, however, the cutoff y},
inevitably rises above the mean, and ultimately tends to infinity. This is because all agents face
the same long-run distribution of income F.,. Thus when making decisions over redistribution in
the very far future, they essentially have an ex-ante perspective, and (in the absence of offsetting
distortions) their desire for insurance becomes the dominant factor. When mobility prospects and
this insurance motive are combined, finally, the size of the “laissez—faire” coalition may have an

inverse U-shape with respect to the horizon or duration of the redistributive scheme.

5.4 Non—Linear Taxation

To illustrate the fact that the paper’s insights are not limited to the set of linear schemes P, we
shall now extend the preceding results to a one-dimensional family on non-linear tax schemes,
denoted P'. This family also has the advantage of yielding simple, explicit results when combined
with the log-normal specification and CRRA utility functions. For each 7 € (—o00, 1], consider the

**The more standard case where agents care about an expected present value of utilities is, qualitatively speaking,
a weighted average over t = 0,... , T, of the “pure” t-periods—ahead problems considered here, and therefore leads
to similar results.

*"In steady-state, condition (26) simplifies to a/(1 + a) > 1 - 8.
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following redistributive policy, to be implemented at date ¢. Agent i pays net taxes @1+ (4}, leaving
her with a disposable income equal to

Gor =¥ — e (¥) = )" ()", (27)

where the break-even level §, ; is defined by the government budget constraint [, $prrdFy =0, or

[X W @er)” AFY) = g (28)

Note that the scheme is progressive for 7 > 0 and regressive for 7 < 0 : t(*) is convex in the first
case, concave in the second. We shall refer to T as the progressivity rate. Clearly, “laissez—faire”
and “complete redistribution” correspond to 7 = 0 and 7 = 1, respectively.?®

To compute an agent’s welfare under a policy 'rie T, let us first derive the distribution of her
future post—tax income ¢} .., conditional on her current pre-tax income ¥4 From (23), (24) and (27)
it follows that

.5 ; - 1—a?
Ing;, ~N (at(l —7)(Inyy — mo) 4 (1 - TYme + TInger, (1 — ‘r)2.<s2 ( a2 )) , (29)
where §:r can be obtained as a function of T, m¢, and A? by solving (28).
We can now examine the outcome of pairwise voting over two possible schemes in P with
arbitrary progressivity rates 7 and 7, —co < 7 < 7 < 1. Given a relative risk-aversion of 1 — g,
agent 2 will prefer the latter when

E[(#:,+)° lvo] > E[(7 )" lvi)- (30)

Proposition 10 The tipping point Yye (z,7) for risk-averse agents choosing between two non—linear
redistributive schemes ¥ and 1 in P is:

“« (= . _ Al —t _ 1 —a?ty [s?
Inyje(r,7) = lnpg, — [1 — a(2 - 7 — 1) (7) Fa(1l-p)E@ -7 1) (T:) (5):
In the case of an all-or-nothing policy decision (F =1, 7 = 0) this coincides of course with the
expressions derived earlier. More generally, risk—aversion has the same effect of raising the cutoff as
before; the longer the horizon ¢, the more so. To isolate the new effects which arise from non-linear
taxation, let us now focus on the case of risk-neutrality, 8 = 1. The cutoff is then below the mean

*®In the terminology introduced by Musgrave and Thin (1948), the elasticity 1 — T of post—tax to pretax income is
the rate of “residual progressivity”. The scheme (27) takes it to be the same at all income levels, in which case T is
also the income-weighted average marginal tax rate paid by agents, as shown in Bénabou (1997). This isoelastic or
“constant residual progression” specification has been used to study insurance or risk—taking in a static context by
Feldstein (1969), Kanbur (1979) and Persson (1983}, and in models with accumulation by Bénabou (1996, 1997).
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., if and only if
a2-F+1)) <1 (31)

In the usual case of contemporaneous redistribution (t = 0), this becomes # + 7 > 1. If the
first scheme is progressive while the second is regressive (1 < 0 < 7 < 1, with at least one
strict inequality) the indifference point is always above the mean, in conformity with the main
result of Marhuenda and Ortufio-Ortin (1995).2° This is intuitive, since a progressive scheme
redistributes income disproportionately from the very rich to everyone else, including those with
average resources. When mobility prospects are taken into account, however, this result does not
hold any more: y}, (z,7) falls below kg, for 1 large enough. More generally and more importantly,
the cutoff declines with the time between voting and the implementation of the policy, converging
again (in the absence of an insarance motive) to the median myg as ¢ tends to infinity. Finally, note
that even for a contemporaneous redistribution (t = 0) the cutoff can be below the mean if we are
comparing —perhaps more realistically— two progressive policies with 0 < T<7T<1<7+7, rather
than a regressive and a progressive one.3°

6 Uncovering POUM in the Data

The main objective of this paper was to determine whether the POUM hypothesis is theoretically
sound, in spite of its apparently paradoxical nature. As we have seen, the answer is affirmative.
Furthermore, the Markovian example of Section of Section 3.3 showed that this effect can be strong
enough to swing a majority, or even a supermajority, while still maintaining empirically reasonable
values for income inequality and the average degree of serial persistence. The final question which
naturally arises is whether this effect is at all present in the actual data, and if so, whether it is
large enough to matter for redistributive politics.

Our purpose here is not to carry out a large-scale empirical study, but to show that the POUM
effect can be measured quite simply from income mobility and inequality data —with rather inter-
esting results. In doing so we shall continue to abstract, as in most of the paper, from the other
forces which contribute to shaping the political equilibrium (e.g., tax distortions and demand for
insurance). The question we ask, therefore, is the following: at any given horizon, what is the
proportion of agents who have expected Juture incomes strictly above the mean? In particular, does
it increase with the length of the forecast horizon, and does it eventually rise above 50% 23!

As a first pass at the numbers, let us continue to work within the loglinear-lognormal specifica-
tion. Given an autoregressive coefficient  and an initial variance of log-incomes A2, Proposition

Y3ee also Mitra, Ok and Kogkesen (1997) for a generalization.

%1In contrast to the other results, which are in closely related the general propositions in our paper, this one is
more dependent on the particular form of progressivity which we have assumed.

* Recall that there is no reason a priori (i.e., absent some concavity in the transition function) why either effect
should be observed in the data, since these are in no way general features of stationary processes. Rather than simply
“mean-reverting”, the income dynamics need to be “mean—crossing from below” (in expectation), over some range.
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8 shows that the proportion of agents with conditional expected incomes below the mean at any
horizon t is ®(atAg/2), where @ is the c.d.f. of a standard normal. According to the Census
data used earlier in Table 1, the standard deviation of families’ log—incomes in the United States
in 1990 was about .64. Under log-normality this means that $(.32) = 62.5% of the families are
poorer than average. Yet with a typical estimate of the intergenerational persistence coefficient,
say a = .4, only ®(.4 x .32) = 55.9% of the children have expected incomes below the mean. As
the issue debated shifts from current to future redistribution, the POUM effect thus moves about
7% of the population towards “laissez-faire”. This is by no means negligible, especially since the
differentials rates of political participation according to socioeconomic class which are observed in
the U.S. imply that the pivotal agent is almost surely located above the 56th percentile.32

However, the loglinear example is not really suited to this empirical exercise, because it imposes
concavity from the start, and because the cutoff can never fall below the median.3® In what follows
we shall therefore use the much more detailed and flexible description of the mobility !process
provided by empirical mobility matrices. These are often estimated in terms of income quintiles,
which is too coarse a grid for our purposes, especially given the importance of what happens near
the median. We shall therefore use the more disaggregated data compiled by Hungerford (1993)
from the PSID (Panel Study on Income Dynamics), namely:

(a) interdecile mobility matrices for the periods 1969-1976 and 1979-1986, denoted M and
ME§ respectively. Each of those is in fact computed in two different ways: using the straight data
on annual family incomes, and using five-year averages centered on the first and last years of the

transition period, so as to provide less noisy measures of “permanent income”.

(b) mean income for each decile, in 1969 and 1979. We shall treat each decile as homogenous,
and denote the vectors of relative incomes as agg and azg.

Let us start by examining these two income distributions:

age = (211 410 .566 .696 .822 .947 1.104 1.302 1.549 2.393)’
aze = (.179 .358 .523 .669 .801 .933 1.084 1.289 1.588 2.576)’.

In both years the median group earned approximately 80% of mean income, while those with the
average level of resources were located somewhere between the 60th and 70th percentiles. More
precisely, by linear interpolation we can estimate the size of the redistributive coalition to be 63.4%

32Bénabou (1996, revised version) uses data on how the main forms of political participation (voting, trying to
influence others, contributing money, participating in meetings and campaigns, etc.) vary with income and education
to compute the resulting bias with respect to the median. It is found to vary between 6% (when only voting
propensities are taken into account) and 24% (when only propensities to contribute to campaigns are taken into
account), with most values being above 10%. Depending on the (unknown) relative efficacy of the different forms
of activity at influencing actual policies, the pivet is thus located somewhere between 55% and 75%, and probably
occurs around 60%.

33More generally, a single persistence coefficient captures only a small part of the relevant information about income
transitions. For instance, the Markovian example of Section 3.3 shows that the same degree of serial correlation in log—
incomes can be generated by a very different process, where the POUM effect is so strong as to turn a supermajority
from pro—redistribution to pro—“laissez-faire”.
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in 1969 and 64.4% in 1979.34

Next, we apply the appropriate empirical transition matrix to compute the vector of condition-
ally expected relative incomes ¢ x 7 years ahead, namely (Mgg)t-aﬁg or (M?g)t-a-,-g, fort=1,..4.3
The estimated rank of the cutoff Y} where expected future income equals the population mean is
then obtained by linear interpolation of these decile values. The results are presented in Table 2.

Horizon (years)
Mobility Matrix 0 | 7 [ 14 ] 2] 28
1969-1976 %
Annual income 63.39 | 61.83 | 54.22 | 48.77 | 47.25
“Permanent” income 63.39 | 60.77 | 56.36 | 52.91 | 50.38
1979-1986 % '
Annual income 64.42 | 60.90 | 51.31 | 48.11 | 46.54
“Permanent” income 64.42 | 58.80 | 54.29 | 51.43 | 49.10
1969-1976 x 1979-1986 %
Annual income 63.39 52.53 46.83
“Permanent” income 63. 39 55.08 50. 08

Table 2: Income Percentile of the Political Cutoff
Source: authors® calculations using PSID data from Hungerford (1993)

The message delivered is consistent across all specifications: the POUM effect is present and
significant in the data —even at relatively short horizons, but especially over longer ones. It affects
approximately 3.5% of the population over 7 years, and 10% over 14 years. Since the patterns
of voting and political participation by the different socioeconomic classes imply that the “upper
fifties” represent a lower bound on the rank of the pivotal group, a horizon of a decade or so could
already suffice to swing the political outcome against redistribution.?® In any case, over a horizon
of approximately 20 years mobility prospects wipe out the entire 13-15% point interval between
mean and median incomes, bringing a strict majority to the “laissez—faire” side. Thus, in both

1969 and 1979, 64% of the population was poorer than average in terms of current income and yet

n passing, it is interesting to note that the Lorenz curve for 1979 is everywhere below its 1969 counterpart,
meaning that income inequality increased unambiguously —albeit slightly- between these two dates.

35 There are two implicit assumptions in this procedure. First, by iterating a 7-year transition matrix to compute
mobility over 14, 21 and 28 years we are treating the transition process as stationary over time. Similarly, by applying
these matrices to the income distribution vector at the beginning of the transition period we are abstracting from any
changes in the deciles’ relative incomes during that time. These are obviously simplifying approximations, imposed
by the availability of the data. To check the robustness of the results, however, we also used the composite matrix
ME - MES to recompute the 14 and 28 year transitions; see the bottom part of Table 2. Similarly, we applied the
transition matrices MZ$ and MIE. MES , and their iterates, to the income distribution ase instead of asa (the two
were seen in footnote 34 to be somewhat different). In all cases the results remained essentially unchanged.

3 3ee footnote 32.
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51% could rationally see themselves as richer than average in terms of expected income two decades
down the road.

We conclude from this empirical exercise that the POUM hypothesis is not only a theoretical
possibility but also a significant feature of the actual process of socioeconomic mobility.?” Natu-
rally, it does not explain all by itself (especially with discounting) why democracies with skewed
distributions of incomes maintain relatively low rates of redistribution. But the empirical evidence
brought to light by Table 2 shows that it represents —alongside with deadweight losses, political
bias, and risk aversion— an important entry in the balance of forces which determine the equilibrium
rate of redistribution.

7 Conclusion

‘This paper has established the formal basis for the “prospect of upward mobility” hypothesis in
regard to the political economy of redistribution. Voters poorer than average will nonetheless
opt for a zero or low tax rate if the policy choice bears sufficiently on future income, and if the
latter’s expectation is a concave function of current income. The political coalition in favor of
redistribution is smaller, the more concave the expected transition function, the longer the duration
of the proposed tax scheme, and the more farsighted the voters. We provided an example where,
in every period, three quarters of the population have less than mean income, yet a two-thirds
majority supports a zero tax rate for their children’s and all future generations. This is in spite
of the fact that there are no deadweight loss concerns, and that voters in the pivotal middle class
know that their children have no more than a 20% chance of rising above the mean income level.
A calibrated version of this simple model was shown to match the main features of the US income
distribution and the average degree of intergenerational persistence.

Using income mobility and inequality data from the PSID, we also provided direct empirical
evidence of the POUM effect. As the horizon over which incomes are forecasted increases from 0
to 7, then 14 years, the proportion of agents with expected income above the mean rises from 36%
to 39% and 47%, respectively. Over a 20 year horizon, mobility prospects bring the size of this
“laissez—faire” coalition up to 51%, thus “erasing” the entire interval between mean and median
incomes.

At the same time, the prospect of upward mobility effect is subject to limitations, which we
have also analyzed. In particular, there must be sufficient inertia or commitment power in the
choice of fiscal policy or institutions, and voters’ risk-aversion must not be too large compared to
the curvature of the transition function.

3 Tracing the effect back to its source, one can also examine to what extent expected future income is concave in
current income. The expected transition is in fact concave over most, but not all, of its domain: of the nine slopes
defined by the ten decile values, only three are larger than their predecessor when we use (M{5; ago), and only two
when we use (Mf5;aro). Recall that while concavity at every point is always a sufficient condition for the POUM
effect, it is a necessary one only if one requires ¥; < pp, to bold for any initial F. For a given initia! distribution,
such as the one observed in the data, there must be simply “enough” concavity on average, so that Jensen’s inequality
is satisfied. This is clearly the situation encountered here.
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Appendix

Proof of Proposition 2
By using Jensen’s inequality, we observe that f > g implies

flyp) = /X fdFpy = /;( h(g)dFo < h ([X ngo) = hg(yz)) = f(yy)-

The proposition follows from the fact that f is strictly increasing,. ||

Proof of Theorem 3
Let Fp € F4, so that the median mg, is below the mean p Fy+ More generally, we shall be interested
in any income cutoff n < pg,. Therefore, define for any a € [0,1] and any 77 € (0, & F,)» the function

Yy ifo<y<n
In,a (y) = 3 (A'l)
n+aly—n), fnp<y<y

which clearly is an element of 7, It is clear that

/ o0 dFy < n < Hry = / gn,1 dFO:
X X

so by monotonicity there exists a unique (and easily computable) a(n) € (0,1) which solves:

j; In.e(n) dig=n (A.Q)

Finally, let f = 9n,a(n)s S0 that up = 7 by (A.2). Adding the constant itg, — 1 to the function f
so as to normalize pp = pp would of course not alter any of what follows. It is clear from (A.1)
that everyone with y < #n prefers 7¢ to 71, while the reverse is true for everyone with y > 7, so
¥; = 1. By Proposition 2, therefore, the fraction of agents who support redistribution is greater
(respectively, smaller) than F(z) for all f € T which are more (respectively, less) concave than f.
In particular, choosing 7 = mp, < pp, yields the claimed results for majority voting. ||

Proof of Theorem 4
For each ¢ = 1,...,T, f* € 7, so by Proposition 1 there is a unique y7, € (0,pp) such that
f*(y}e) = pp,- Moreover, since fT = fT-1 = ... s f, Proposition 2 implies that yir < yjr_; <
"+ < ¥y <Yjo = pig,- The concavity of f also implies f (1R} > #g,,, for all t, from which it follows
by a simple induction that

I (tp) 2 pp, = 1)) (A.3)

with strict inequality for ¢ > 1 and ¢ < T respectively. Let us now define the operators VT : T — T
and WT : T — R as follows:
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T T
V=38 amd W= [ VIR =Y S (A4)
t=0 X t=0

Agent y achieves utility V7(f)(y) under “laissez-faire”, and utility W7 (f) under the redistributive
policy. Moreover, (A.3) implies that

T T T
VI 1r) =) 8 ur) > Y 8 up > ) 8 (W) = VT (N Wr)
t=0 t=0

t=0

forany T > 1.
Since VT(f)(:) is clearly continuous and increasing, there must therefore exist a unique yy(T) €
(ys7, 445,) such that

T
VIN@HD) =Y 8ug, = WT(f). (A.5)
t=0

But since yir.: < yjr, we have yir,, < y§(T). This implies that pp, = fT“(y}TH) <
ST (y}(T)), and hence

T+1 T+1
VI (i) = S 87 wM) > Y o, = VI ()T +1)).

Therefore, y3(T" +1) < y;(T') must hold. By induction, we conclude that y3(7") < y;(T) whenever
T' > T; part (a) of the theorem is proved.

To prove part (b), we shall use again the family of piecewise linear functions g, . Recall
that, for all y € X,

gf),(!(y) = Inin{ya n + O:(y - 77)}1 (AG)
where 7 < g, and a € [0,1]. Let us first observe that the iterates of such a function are simply:

(9n.a)(¥) = min{y,n + o' (y — 1)} = gn: (). (A7)

In particular, both g, :y — y and g, 0 : y — min{y,n} are idempotent. Therefore:

T T
VT(ga)(m) =Y &' <Y &g, = W (gya).
t=0 t=0

On the other hand, when the transition function is gno, the voter with initial income n prefers 7o
(under which she receives 7 in each period) to 7y, if and only if
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T T
1+ 380 =V (on0)m) > W (0y0) = i, + 38 [ minly, mhari,
=1 t=1

or equivalently

'U'Fo t 6(1 — ‘ST)
n— fx mm{y,n}dFo ;6 ' (A.8)

This last inequality is clearly satisfied for (6,1/T) close enough to (1,0). In that case, we have
WT(gn1} > Yro8'n > WT(gu0). Next, it is clear from (A.4)-(A.6) that W7 (g, ) is con-
tinuous and strictly increasing in a. Therefore, there exists a unique a(n) € (0,1) such that
wT Gn,atm) = Et—o 8'n. This means that, under the transition function f = 9n.a(n), We have
WT(f) = YT, 65 n) = VT(f)(n) so that the agent with initial income 7 is just indifferent be-
tween receiving her “laissez—faire” income stream, equal to 7 in every period, and the stream of
mean incomes jig, . Moreover, under “laissez-faire” each agent with initial ¥ < 7 would receive y
in every period, while each agent with y > 7 would receive 1 + of(y — 1) > #. Therefore, 7 is the
cutoff y3(7T') separating those who support 7o from those who support 71, given f = Gn,a(n)- This
proves the first statement in part (b) of the theorem.

Finally, by part (a) of the theorem, increasing (decreasing) the horizon T will reduce (raise) the
cutoff y;(T") below (above) 5. Applying these results to the particular choice of a cutoff equal to
median income, 7 = mp,, completes the proof.||

Proof of Theorem 5

As in the proof Theorem 3, let Fy € F; and consider any income cutoff < p F,- Recall the function
In,a(n(¥) which was defined by (A.1) and (A.2) so as to ensure that ttg, = 1. (Once again, adding
any positive constant to f would not change anything). For brevity, we shall now denote a(n) and
9n,a(y) 8s Just a and g. Let us now construct a stochastic transition function whose expectation
is g and which, together with Fp, results in a positively skewed Fy. Let p € (0,1) and let © be a
random variable taking values 0 and 1 with probabilities p and 1 — p. For any € € (0,7), we define
f: X xQ— X as follows:

o f0<y<n—¢ fly;8)=y for all @
, n—¢ ifé=0 (probability p)
e fn—e<y<n, ;6= i
i ysm J(ui6) y—'?i_ﬂp—sl ife=1 (probability 1 — p) (A.9)
. - n—c¢ ife=0 (probability p)
e fnp<y<y, ;0) = _
T=Y=Y 16:6) n+ ﬂ"TLlff—”f ifg=1 (probability 1 — p)

By construction, Eg [f(y;0)] = g(y) for all y € X, therefore, Eg [f(-;©)] = g € 7. It remains to
be checked that f(y;®)is strictly stochastically increasing in y : for any (y,z) € X2. That is, the
conditional distribution M(z|y) = P({0 € Q| f(y;0) < z}) must be decreasing in y on X, and
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strictly increasing on a nonempty subinterval of X. But this is equivalent to saying that [, h(z)
dM(z|y) must be (strictly) increasing in y, for any (strictly) increasing function h : X — R; this
latter form of the property is easily verified by using (A.9).

Because Eg [f(-;8)] = g, so that sz =n by (A.2), it is clear that the cutoff between the agents
who prefer 7¢ and those who prefer 7 is ¥y = 0. This tipping point can be set to any value below
Bp, (such as the median mpg,), and nonetheless the date one income distribution Fj will remain
positively skewed, as long as p is high enough. Indeed,

Fi(pp)=F(n) =p j;( 1otz 0)<nydFo(z) + (1 — p) fx 1o (e, 1y<npdFo(x) = p + (1 — p) Fo(n — pe).

Thus, for any 7, the fraction of agents who end up with income below the mean, 1 — Fy(u,), can
be made arbitrarily close t? 1, by choosing p close to 1. At the same time, choosing 7 small ensures
that the size of the coalition supporting redistribution, 1 — Fp(n), remains arbitrarily small.

To conclude the proof of the theorem, it only remains to observe that a transition function
f+ € T is more concave than f in expectation if and only if Eg[f.(-;©)] = Es[f(-;©0)] = g.
Proposition 2 then implies that the fraction of agents who support redistribution under f, is greater
than Fo(n). The reverse inequalities hold whenever f >p f.. As before, choosing the particular
cutoff n = mp < pg yields the claimed results pertaining to majority voting, for any distribution

FoeFy |

Proof of Proposition 7
Define hy = Eg,- - ‘Eg, f(-;91,...,0;), t = 1,..., and observe that h; € T and hyyq > he for all ¢
under the hypotheses of the proposition. The proof is thus identical to part (a) of Theorem 4, with
hs playing the role of f*. ||

Proof of Propositions 8, 9 and 10
We shall prove Proposition 10 directly, since it includes the other two as special cases. Our task
is thus to compare the expected utility achieved by an agent with relative risk-aversion 1 — 8 > 0
under two arbitrary policies 7 and 7 < 7 in the family 7' of non-linear redistributive schemes
defined in Section 5.4. Recall in particular that 7 = 0 and # = 1 coincide with 7 and 7; in P,
namely with “laissez-faire” and complete redistribution, and that under risk—neutrality the cutoff
between these two extreme policies also applies to any pair of linear schemes in P.

Let 7 be any policy in P'. Given the distribution Iny} ~ N(m;, A?) we can compute the integrals
in (28) and obtain:

TIngjtr =Ilnpp —1n (/ (y)l_f dF},(y)) =my +A?/2 — (1 =7)my—(1-7)2A2/2
x

that is,
Infr =my + (2 —7)A}/2=Inpug + (1 - 7)AY/2. (A.10)
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Consider next the conditional distribution of agent #'s post-tax income which will result from 7.
Clearly, ngi, = (1 —=7)Ing{ + 7Infr = (1 = 7)(Inyf — mu) + m; + 7(2 — 7)A}/2 is also normally
distributed:

ot
lngé,.,. ~N ((1 —7)at(Inyd —mo), + me +7(2—7)A2/2, (1 - 7)2s2 (11—;—%-2—)) . (A.11)

Finally, let V}f;, denote agent #’s expected utility under the policy 7. With the utility function (25),
equation (A.11) implies:

In(1+pVi,) = InEg e [(ﬁ;)ﬁ ny,]
1], B .y
= Ee;...eg [1n(y§)ﬂ |y5] + “Q“Varej...e;' [Inyt |yf)]

B+ 51 = r)atng ~mo) + 72 -7) () + 020 -7 (1255 ) ()

Il

1-a?
2 2t 2
= Plapp +B8(1 - 7)a'(lnys —mo)(1 —7)* + [‘ﬁ (A?) + 52 (11 _iz) (?)] |

But by (21), A? = oA + s%(1 — a?!)/(1 — a?), and hence,
In(14+8V;,;) = Blaug +8(1—7)'(Inyg —mo)

—sa—nra* (B) -0 -p0 -7 (125 (5)- (a2

—a?

The difference in agent i’s expected welfare between two policies 7 and 7 in P’ is thus

- , X 2
In(1+8V};)-In(14+8V¢,) = (F-1) [ﬁa‘(mo —Ing) +B(2 -7 —1)a® (—A?—")

1—a

+6(1-8)2 -7 —1) (1__—::) (g)] : (A.13)

Setting this expression to zero yields the indifference point claimed in Proposition 10. Choosing
T =1 and £ = 0 then yields Propositions 9, and Proposition 8 corresponds to the subcase where

B=1
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Figure 1: Concave transition function
Note that:

» A < B, therefore u' < f(u)
¢ The figure also applies to the stochastic case,
with f replaced by Ef everywhere
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Figure 2: Expected future income under a concave transition function (semi-logarithmic scale)



