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1 Introduction

The fiscal theory states that the price level is determined by the government budget

constraint,

nominal debt
————— = present value of real surpluses. (1)
price level

The fiscal theory is developed by Leeper (1991), Sims (1994) Woodford (1995, 1996)
and Dupor (1997) with one-period debt. Cochrane (1998) reviews the fiscal theory
and argues for its plausibility.

At heart, the fiscal theory recognizes that even apparently unbacked fiat money is
in the end valued by its backing from real government resources rather than by a lig-
uidity value in exchange. In the fiscal theory, money and nominal debt are essentially
valued as equity claims on the government. Well-understood backing regimes such
as credible commodity standards and currency boards are transparent instances of
the fiscal theory; the theory argues that their price determination mechanisms apply
more broadly. As in these cases, fiscal price level determination is immune to private
note issue and financial innovation in transactions technologies. This fact makes it
an attractive positive and normative theory for the current situation—roughly stable
prices and prodigious financial innovation.

In this paper, I extend the fiscal theory to include long-term debt. When long-
term debt is present, the nominal value of the debt on the left hand side of (1) is not
fixed; it depends on nominal bond prices which in turn depend on expected future
price levels. To see why this fact might matter, suppose that there is bad news
about future surpluses so the right hand side of (1) declines. If there is no long-term
debt, the nominal value of government debt is fixed, so the price level must rise to
re-equilibrate (1). However, if long term bonds are outstanding, their relative price
and thus the numerator of the left hand side might fall instead. Lower bond prices
correspond to expectations of higher future price levels, so long term debt can imply
that bad news about future surpluses results in future rather than current inflation.

To analyze issues of this sort, I solve equations like (1) for the price level at
each date, with surpluses and debt on the right hand side. I use the solutions to
understand the obvious comparative statics exercises: 1) How does the price level
react to current and future surpluses, holding debt constant? 2) How does the price
level react to current and future debt holding surpluses constant? Answers to the first
question are particularly useful in thinking about historical events such as currency
crashes or the ends of hyperinflations. The second question starts us thinking about
what alternative outcomes could have been in such situations.

In answer to the first question, I find that the effects of surpluses on the price
level depend on debt policy: Current and expectations of future state-contingent debt
sales and redemptions matter as well as the maturity structure of outstanding debt.



The effects are often surprisingly different than those in the short-term debt case.
For example, when debt policy consists of paying off an outstanding perpetuity, the
price level at each date is determined only by the surplus at that date. Past or future
surpluses have no additional effect on the price level at all.

In answer to the second question, I find that the effects of debt on the price level
also depend on the maturity structure and expectations of future debt policy. For
example, suppose that the government sells some additional nominal debt. If no long-
term debt is outstanding, the government faces a unit-elastic demand curve. Bonds
are nominal claims to the same real resources, so bond prices fall one-for-one with the
number sold; real revenue from bond sales and the price level today are unaffected
by the number sold. However, if there are long-term bonds outstanding, selling extra
debt dilutes the existing long term bonds as claims to the fixed stream of future real
resources. Therefore, unexpected debt sales can raise revenue today and lower today’s
price level, even with no change in current or future surpluses.

Next, I consider what debt and surplus policies optimally smooth inflation, paying
particular attention to motivations for long-term debt. The three elements of the
government’s policy choice are the average maturity structure, the choice of state-
contingent debt sales and redemptions in response to fiscal shocks, and a limited
control of the surplus. I add each element in turn and analyze the results in terms of
the above comparative statics.

I start by analyzing optimal passive policy, in which the government determines
only the steady state level of debt and its maturity structure, and the government does
not adjust debt in response to surplus shocks. I find that short maturity structures
are preferred when the present value of the surplus varies by less than the surplus
itself; while long maturity structures are preferred when surpluses build up following
a shock so that the present value varies by more than the surplus itself. This finding
is a natural result of the comparative statics: the price level responds to the present
value of surpluses with a short maturity structure, while the price level responds to
the surplus at each date with a long maturity structure.

I then analyze optimal active policy, in which the government also changes the
amount and maturity structure in response to surplus shocks. Now there is a second
motivation for long-term debt. If long term debt is outstanding, the government
can smooth inflation by occasionally and unexpectedly devaluing long-term bonds,
trading a lower price level today for a higher price level in the future. This action
can smooth inflation after a shock has hit. I study a quantitative example in which
the optimal passive policy consists of short-term debt, but the optimal active policy
includes long-term debt so that the government can smooth inflation by such ex-post
devaluations.

I then add a limited control over the long-term surplus in order to better model



the situation faced by the U.S. government. Actual policy almost always consists
of simultaneous changes in debt and surpluses: Low surpluses are financed by extra
nominal debt sales and extra nominal debt sales almost always come with implicit or
explicit promises to increase future surpluses.

This optimal policy analysis solves some empirical puzzles. A simpleminded appli-
cation of (1) and its comparative-static predictions for the effects of surplus and debt
shocks seems disastrous for the fiscal theory in U.S. data. However, if we regard the
U.S. government as solving such an optimal policy problem, adapting debt and fiscal
policy to defend price level stability in the face of surplus shocks rather than causing
price level disturbances by exogenous surplus and debt movements, we explain many
of the initially puzzling features of the data.

For example, equation (1) suggests that the price level should move together with
total debt. On the reasonable assumption that the present value of the surplus is
higher when the surplus itself is high, it also suggests that the price level should move
inversely with the surplus and that the real value of the debt should move together
with the surplus. But none of these patterns is an even vaguely plausible description
of U.S. data. Figure 1 presents the primary Federal surplus/consumption ratio and
CPI inflation. If anything there is a slight positive correlation between surplus and
inflation or price level growth at business cycle frequencies. (This data is presented
in more detail in Cochrane 1998. Dividing by consumption gives a more plausibly
stationary series, and the theory adapts easily to this transformation.) Figure 2
presents the surplus/consumption ratio together with the level and difference in total
real value of the debt. Comparing the two figures, we can see that there is little
correlation between the level of debt and the price level, inflation, or the surplus,
as debt moves much more slowly than any of the other series. The surplus is nicely
negatively correlated with changes in debt. Perhaps unsurprisingly, high surpluses
pay down the debt.

By contrast, I find that the optimal policies produce time series that are similar
to these U.S. time series in many dimensions. For example, the optimal policies
generate a negative correlation between surpluses and debt growth, as in the data.
The government smooths the effects of a negative surplus shock by issuing long-term
debt, and by promising to raise future surpluses.

I close the paper by returning to solutions of equations like (1) for the price level
given the sequence of surpluses and debt policy. All of the analysis described so far
uses a convenient linear approximation. I derive a solution that is general and exact,
though algebraically cumbersome, and I compare it to the approximate solution.
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Figure 1: Federal primiary surplus / nondurable + services consumption and CPI inflation.

Real debt and surplus

Figure 2: Surplus/consumption ratio, real value of the debt / consumption and difference

of real value/consumption.
2 Definitions and identities

Let B;(j) denote the face value of zero-coupon nominal bonds outstanding at the end
of period ¢ that come due in period j. Let Q;(j) denote the nominal price at time



t of a bond that matures at time j. Of course, Q;(t) =1 and By(j) = Ofor j <¢. Let
p: denote the price level and let s; denote the real primary surplus, i.e. tax collections
less government purchases.

I simplify the analysis by assuming that the expected real rate of return on gov-
ernment debt is equal to a constant r across time and maturity, and I denote the
corresponding discount factor § = 1/r. Bond prices are therefore equal to

Qilt+j) = FE, (p—) . @

Pty

I also simplify the analysis by assuming a frictionless economy in which no cash is
held overnight. The economy need not be “cashless,” transactions may be facilitated
by money created each morning and retired each night rather than by direct exchange
of maturing bonds, and any amount of private money, bonds, banknotes, checking
accounts etc. may be created with no effect on the government budget constraint
and hence no effect on the price level. Since the models are frictionless, standard
Modigliani-Miller theorems by which the maturity structure of the debt is irrelevant
for real quantities still apply. Here I study the effects of the maturity structure on
the nominal price level, and such effects can occur even in a frictionless economy.

The entire analysis flows from two equivalent identities. The flow identity says
that the surplus must equal bond redemptions plus net repurchases,

By 1(t > 1 ) ,

Pl 5 i (o) 1)~ B+ = )
yg; =1 Di+j

while the present value identity says that the real value of outstanding debt equals

the present value of real surpluses

Bia(®) + iﬁjEt <L> B,_1(t+]) = E, iﬂjstﬂ* (4)
Dt j=1 Pt+j 7=0

The appendix presents a derivation of these equations. I use whichever form is more
convenient for a given application. The content of equations (3) and (4) is an ac-
counting identity plus the assumption of constant expected real returns. Lacking a
better word, I call them “identities.”

A solution is the sequence of prices {p;} that solves either (3) or (4) at each date
and state, for a given sequence of debt policies {B;(t + j)} and surpluses {s;}. In
simple terms, a solution is an equation with p; on the left and other quantities are on

the right. Because prices multiply quantities in (3)-(4), such solutions are not trivial
to find.



3 The effect of surpluses on the price level

In several special cases of the debt policy, we can find price-level solutions easily and
directly. These cases also allow us to characterize the effect of surpluses on the price
level, holding debt constant.

3.1 Omne period debt

Suppose that the government only issues one period debt, rolled over every period.
This is the standard case analyzed in the fiscal theory, for example Woodford (1995).
All terms B;_1(t + j) other than B, 1(t) are zero. Then, the present value identity,
(4), specializes to a solution directly,

B 1(t)

= , 5
Ey 3720 35145 (5)

e

With one period debt, future deficits affect the price level today. The price level
today responds only to the present value of surpluses.

While this case is familiar to fiscal-theory readers, it is not generally true that the
present value identity is also a solution. In general, there are additional bonds on the
left hand side of (4) and hence terms in p; ;.

3.2 No new debt

Suppose instead that a full maturity structure is outstanding at time 0, and the
government neither issues debt nor retires debt before it is due. For example, the
government could pay off a perpetuity. In this case, debt due at tis constant over
time, B;_1(t) = By_a(t) = By(t). The flow identity (3) is now also a solution,

p= 200 )

St

Now, prices are determined by bonds that fall due at each date divided by that
date’s surplus. Shocks to future deficits have no influence at all on the current price
level. Instead, long-term bond prices, reflecting future inflation, entirely absorb the
shocks to the present value of surpluses. To see this fact, apply (6) at ¢ + j; a shock
to expected s, ; changes expected 1/p,.; and thus changes bond prices Q.(t + j) =
BE, ().

Dt+j



3.3 k-period debt

As an intermediate example, suppose that each period the government issues By (t+k)
k-period discount bonds each period, and then lets them mature. With this debt

policy, Bi(t + k) = Bit1(t + k) = -+ = Byyx_1(t + k). The flow identity (3) then
becomes
By (t 1
L() _ ﬁkEt (_) Byt + k) = s;.
Dt Dt+k
This is a k-period difference equation, with solution

_ Bt—k:(t) _ Bt—l(t)
B Y520 8% By o520 B%sugn

Dr

The price level is still determined by a sort of present value, but only every kth
term matters! For example, if the government issues 5 year debt, then expectations
of surpluses in years 5, 10, 15, etc. matter to today’s (0) price level, but surpluses in
years 4, 6 etc. do not matter. As k — 1 we recover the one period debt solution (5)
in which all future deficits matter. As k — oo, we recover the case (6) in which only
today’s surplus matters to today’s price level.

3.4 Geometric maturity structure

A geometric pattern gives a tractable and reasonably realistic way to analyze a rich
maturity structure. Suppose that the amount of debt outstanding at the beginning
of t (end of t — 1) that will mature at ¢ + j declines at a rate ¢’:

By1(t+j) = Biyj1(t +5)¢’. (7)

Equivalently, the fraction of debt that matures at date ¢,sold at date ¢t — j,is fixed

across time,
Bi(t+j) — Bia(t + j)

Bt+j—1(t + ])

=¢ ! (1—9); j>1. (8)

To derive a solution for this debt policy, plug (7) into the present value identity
(4), and plug (8) into the flow identity (3). Adding the first and ¢/(1 — ¢) times the
second equations and solving for p; we obtain the solution,
_ By _1(t)

si+ (1= @) E 52, Bisiyy

(9)

DPe

This example also nests the one period debt case and the no-change-in-debt case
as ¢ varies from 0 to 1. For ¢ = 0, there is only one period debt, and price is
determined by the present value of surpluses. For ¢ = 1, price is determined only by
the surplus at each date.



4 An approximate solution

To evaluate more complicated examples, and to study the effects on the price level
of changing debt policy, we need to find price solutions in a more general setting.
Section 8 below presents an exact general solution, but it is algebraically complex, it
hides much of the intuition, and it does not allow us to use standard linear time-series
techniques. Therefore, I start with a linearized solution about a steady state with a
geometric maturity structure.

Denote steady states by
pe=p, Bii(t+j) = B¢, s, =s. (10)
Evaluating (4) at the steady state yields a restriction between steady state parameters,

ps 1-p

5 =155 (11)

Denote by Z; the proportional deviation of each variable x; from the steady state,

. —-p . -5 = ~ Bia(t+j)—¢’'B
pt:pt p; St:St S;th(t-l-]): S .

P S B

(12a)

(It turns out to be more convenient to scale debt by Brather than B¢’.) Differenti-
ating the present value identity (4) about the steady state and using (11) then gives
the approximate present value identity.

iﬁjébjEtﬁHj = - 1=5 iﬁjEt§t+j + iﬁjétq(f + 7). (13)
j=0 1— (¢ j=0 j=0

Comparing this equation with its exact counterpart (4), we see that the approximation
uses the steady state price level to value outstanding debt rather than the actual
price levels, hence terms 3/ B,_;(t + j) appear in place of 37 E, (1/pisj) Bia(t + j).
It also uses the steady state maturity structure B¢’ rather than the actual maturity
structure B;_1(t+ j) to capture the trade-off between current and future price levels.
As usual, linearizing a product gives the steady state of each term times the deviation
of the other and ignores terms in which deviations are multiplied by each other.

Since the weights ¢/ are geometric, iterating (13) forward to solve for p; is easy,
and gives the approximate price solution,

b= — <11__;¢> (gzbét + (1 - 9) iﬁjEtgtﬂ-) + Bi-1 — BB, (14)
j=0



where
oo

By =Y FBia(t+j)

=0
The appendix gives some more details of this iteration.

In (14), we see again how the geometric maturity structure nests short and long
term debt cases. If ¢ = 0, price is proportional to the present value of the surplus; if
¢ = 1, price is proportional to the surplus at each date.

The geometric steady state is distinct from the geometric maturity structure stud-
ied above. In the previous case, the maturity structure is always exactly geometric.
In this case, debt of various maturities can wander away from the geometric steady
state, and we can evaluate the effect on the price level of such wandering.

5 The effects of debt policy

This approximate solution (14) allows us to answer, what are the effects of debt
changes, holding surpluses constant?

The first debt term in (14) means that an increase in debt at date ¢t — 1, B;_1,
that is repurchased at ¢ (so that B; does not also change) moves the price level p; one
for one. With one-period debt this effect is simple: more debt as a claim to the same
fixed resources must result in a higher price level. The solution shows that more long-
term debt at time ¢t — 1 also raises the price level at time ¢, even though the debt does
not come due until later. Working through the definitions of B,_; and B,_y(t + j), if
maturity j debt B,_;(t+j) increases 1% relative to total steady state debt 3", 8*¢* B,
the price level rises by 37 /(1 — 3¢)percentage points. Thus, the effect of debt on the
price level is attenuated for longer term debt and as the maturity structure shortens.

The second debt term in (14) means that an increase in debt at date ¢, B;, can
decrease the price level at time ¢, but only if some long-term debt is outstanding, i.e.
if ¢ > 0. If the government just rolls over short-term debt, this effect does not exist.
New long-term debt dilutes outstanding long-term debt as a claim to fixed resources.
The more long-term debt is currently outstanding, the less the dilution, and hence
the more revenue the government can raise for each dollar of extra long-term bond
sales. In turn, the more real revenue raised, the greater the impact on the price level.

In most cases the government does not sell long-term debt and then repurchase it
one period later. Rather it sells additional long term debt and then lets it mature. To
calculate the effects of such a policy, suppose that at time 0 the government sells an
additional 10 year bond, starting from a geometric steady state maturity structure,
and then lets that bond mature. This means By(10) = B;(10) = B,(10) = ... =



By(10) = 1. Using (14), the resulting price path is

o = —B'"%
o= U1 -9);t=1,2,..9
po = 1L

Figure 3 plots this price path. At date 0, we only have the second, negative debt
term in (14); the price level is reduced if there is long term debt outstanding. At
time 10, we only have the first, positive term in (14), so the price level rises by 1.0
for any maturity structure. One more bond must be redeemed from the same set of
resources. In the intermediate dates, both terms in (14) are present. With long term
debt, they cancel so there is no intermediate effect on the price level. With shorter
term debt, the price level increases all the way out to period 10.

Figure 3: Effect on the price level of an increase in 10 period debt at time 0 that is allowed
to mature, starting in a steady state with a geometric maturity structure.

5.1 Postponing inflation

As we have seen, additional sales of long term debt can lower the price level today
while raising it in the future, when some long term debt is outstanding, even with no
change in surpluses.

To what extent can the government affect the price level today through unex-
pected bond sales? For example, can it completely offset surplus shocks? The present

10



value identity (4) answers these questions directly and exactly Rewriting the identity
slightly,

© 1 =

ZﬁjEt <—> Bia(t+j) = ZﬁJEt(SHj)- (15)
=0 Pt+j j=0

We can read this equation as “budget constraint” for achievable expected inverse
price levels. The maturity structure of outstanding debt B,_1(t+ j) gives the rates at

which the government can trade off the price level today for price levels in the future.

The government can always raise future prices by selling more debt; the issue is
whether such sales affect today’s prices. With outstanding long-maturity debt, terms
B 1(t+j), 7 > 11in (15) are present, so that raising future price levels (by selling
more long term debt) can lower today’s price level. If only one period bonds are
outstanding, these terms are absent so there is nothing the government can do with
debt policy to affect prices today.

Furthermore, there is a debt policy — a choice of {Bi(t + 1), Biy1(t +1i)...; i =
1,2,...00} that achieves any set of price paths consistent with the constraint (15). To
verify this fact, we can construct a policy that works for a given price path. It is not
unique. Let the government adjust its maturity structure once, determining B;(t + j)
and then making no further changes. Future price levels are given by the solution
(6), and taking expectations at time ¢,

St4j 1
EFEEl————— | =F—|.
t (Bt+j1(t +J)> t <pt+j>

Therefore, if the government sets

By(t + j) = —totss)

£ (75)

the desired path of future price levels {E; (1/piy;)} results. Then (15) produces the
price level at time t.

The converse statement is also true. If there is no j period debt outstanding at time
t, then there is no debt policy — no choice of {Byy1(t+1i), Biio(t+i)..;i=1,2,...00} —
by which the government can lower the price level at time t in exchange for raising
the price level at time t + J.

Can the government go so far as to attain a constant price level in the face of
surplus shocks by appropriately buying and selling bonds? The constraint (15) shows
that this much is not possible, because debt at time ¢t must be in the time ¢ information
set. Take innovations of equation (15), resulting in

f;ﬁjwt B (suy) = > B Bu(t + ) (Er — Eiy) (L)

=0 DPt4j

11



A constant price level implies (F; — E;_1) (pti,) = 0 for all j. The right side is
J
zero and the left side is not, so this cannot be a solution. This conclusion holds in

continuous time versions of the model as well.

5.2 Complete markets and commodity standards

With state-contingent debt, the government can attain a constant price level via
debt policy alone despite surplus shocks. For example, suppose that the government
has issued state-contingent debt at time 0 and engages in no further debt sales or
repurchases. Let B(co") denote the amount (positive or negative) of nominal debt
that comes due at date tin state o'. Similarly, let s(c') denote the real surplus at
time ¢ in state o'. The budget identity at each date is then simply

In this case, the government can attain any stochastic process for prices, including a
constant price level, by choosing the appropriate state-contingent debt structure.

A constant price level is not possible with non-state-contingent debt, even when
we allow dynamic trading and long-term debt. Therefore, though dynamic trading
of long term debt allows a greater array of state-contingencies than short term debt,
it does not attain the complete-markets limit. In this paper, I focus on non-state-
contingent nominal debt because that is the nearly universal structure of nominal
government debt.

Similarly, if the government financed its deficits with indexed debt, if explicit
default rather than inflation were the habitual mechanism for adjusting the value of
the debt to the value of surpluses, or if government debt was not used as numeraire,
then the fiscal theory would have little to say about the price level. It is relevant
because governments issue (almost) default-free nominal debt.

Commodity standards are an instance of the fiscal theory of the price level, and
they can give a constant price level as well. How is this consistent with the above
statement? Commodity standards do endogenize government debt, since people can
trade goods for debt freely, but this is not how they determine a constant price
level. Commodity standards are also a commitment device for surpluses. If there is a
transitory adverse surplus shock, in order to maintain the commodity standard forever
the government must change policy so that the present value of future surpluses is
unchanged.

12



6 Optimal debt policy

We have seen that debt policy can affect current and future inflation. Now I examine
optimal policies that smooth inflation. I proceed in three stages: First, I find an
optimal passive debt policy, i.e. an optimal steady state maturity structure, given
that the government does not adjust debt ex-post in response to shocks. Then, I
allow the government to additionally pursue active debt policy, adjusting the level
of debt of various maturities in order to offset surplus shocks. Finally, I allow the
government to control part of the surplus as well.

We can anticipate the qualitative results. As we have seen, shorter maturity
structures relate today’s price to many leads of the surplus; such a maturity structure
smooths inflation if surpluses have a transitory component. Long maturity structures
relate today’s price to fewer leads of the surplus. Therefore, a passive policy with a
long maturity structure smooths inflation better than a passive policy with a short
maturity structure when surpluses build following a shock so that the present value
is more volatile than the actual value, and vice versa. Long maturity structures also
make active debt policy possible, so that the government can smooth a surplus shock
as it happens by selling more long-term debt. This fact weighs in favor of a long
maturity structure, even when short term debt is the optimal passive policy.

6.1 Statement of the problem

Given a stochastic process for the surplus {s;} , the government picks the parameters

governing the steady state maturity structure ¢, B and a debt policy {Bt(t +7 )} to
minimize the variance of inflation,

man [var (py — pr—1)] (16)

given that prices are generated by the solution (14). The steady state maturity
parameter ¢ must respect the restriction 0 < ¢ < 1 and the debt choice By(t + k)
must be in the time ¢ information set, and must be a stationary (not explosive)
process. (The notation is defined in (10)-(12a).)

I state the objective and constraints in terms of steady states and deviations about
the steady state, since I use the approximate price solution to solve the problems.
In order to use the approximate solution, I constrain the government’s choice to a
geometric steady state.

Smoothing the volatility of inflation is a reasonable characterization of central
bank objectives. In this model, the level of inflation is arbitrary and so it is not in-
teresting to add it to the objective. I follow a long tradition in monetary economics,

13



for example Sargent and Wallace (1975), and do not delay or complicate the analy-
sis by justifying the inflation-smoothing objective from welfare maximization in an
economy with specific frictions. Modeling “inflation” as the difference of proportional
deviations from the steady state as in (16) rather than the ratio of price levels is an
analytically convenient simplification.

The methods adapt easily to other objectives. For example, one can minimize
the variance of the price level, which may describe prewar or gold-standard policy.
Alternatively, one can minimize the variance of unexpected inflation minvar(p, —
E;_1p:), motivated by the Lucas (1972, 1973) world in which only unexpected money
has real effects.

6.2 Passive policy

I start by analyzing passive policies: The government chooses only a steady state ma-
turity structure, governed by the parameters B, ¢, in order to minimize the variance
of inflation given that prices are generated by (14). I calculate results for an AR(2)
surplus process,

gt = ()\1 + )\2)515,1 — ()\1)\2)51572 + &;.

Figure 4 presents the optimal steady state maturity parameter ¢ as a function of
the two roots A; and \,.The calculation is detailed in the appendix. The overall level
of debt B simply governs the steady state price level p, and so is irrelevant to the
inflation-smoothing objective.

For every stationary AR(1) (one root equal to zero, the other strictly less than
one) the optimal maturity is short, ¢ = 0. In these cases the variance of the present
value of the surplus is smaller than the variance of the surplus, so short term debt
smooths inflation by making the price level equal to the smoother series. Two large
roots A produce hump-shaped impulse response functions that continue to rise after
an initial shock, and for which the present value varies by more than the series itself.
In this region, the longest possible maturity debt ¢ = 1 is preferred, because long
term debt makes the price level proportional to the surplus at each date.

Most interestingly, there is a region with two reasonably large roots A; and A, for
which a maturity structure with ¢ intermediate between 0 and 1 is optimal. This case
is not implausible, as many macroeconomic time series have hump-shaped impulse-
response patterns with roots roughly those of this region.
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Figure 4: Optimal geometric maturity ¢ of passive debt policies that minimizes the variance
of inflation, as a function of the two roots of the AR(2) surplus process. 3 = 0.95.

6.3 Active policy

To study active policies, I further specialize to an AR(1) surplus process
St = pSi_1 + &

The methods generalize to arbitrary processes but this case will provide enough inter-
esting behavior, and more than enough algebraic complexity. The problem is now to
choose ¢ € [0, 1], { B;} to minimize var(p; —p;_1), given that, using the AR(1) surplus
in (14), p; is generated by

Pt = —k(¢)5t + Bi—1 — ¢fB; (17)

where (1= B)(1 = fop)
=B 0= 59

The solution to this problem, derived in the appendix, is the following policy:

k() =

o =1 (18)
(1-L)(1-BL)B; = (=7+PBL)st,
where
7:1—p+ﬁ(1—ﬁ)
= v .
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Note from (18) that debt B, depends on the whole history of s, despite the AR(1)
structure.

Note that a long maturity structure ¢ = 1is in fact optimal in this case, even
though ¢ = 0 or short term debt is the optimal passive policy for an AR(1) surplus.
Long term debt makes active debt policy possible, and the ability to offset shocks
as they come by diluting and devaluing outstanding long-term debt dominates the
passive inflation-smoothing properties of a short maturity structure.

The active policy fundamentally transforms the price level process. While the
price level would follow the surplus AR(1) with a passive policy, now inflation follows
an AR(1),

(=) (1-0) _
(1-pf) (1-pL)"

By making the price level nonstationary, inflation can be smoothed.

(1= L)pr = —

If the government minimizes the variance of the price level rather than that of
inflation, optimal debt policy produces artificial time series reminiscent of prewar or
gold-standard time series. In place of a unit root price level and smooth inflation, this
objective produces a price level with low autocorrelation, and inflation that varies a
great deal. Thus, the shift in the character of inflation in the U.S. between the prewar
and postwar period can be understood as a shift from a price-level targeting objective
to an inflation smoothing objective.

Artificial data, active debt policy

Figure 5: Artificial data from optimal active debt policy with an AR(1) surplus.

Figure 5 presents artificial time series for debt growth, surplus and price level for
this model. Debt has a unit root, while inflation and the surplus are stationary. As
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in the data, there is no visible correlation between debt or the surplus and the price
level. As in the data, nominal debt growth is negatively correlated with the surplus.

Artificial inflation data, active debt policy

Figure 6: Artificial inflation data. “Active” gives inflation from the optimal active debt
policy with an AR(1) surplus. “Passive, long term debt” gives inflation with the long
(¢ = 1) maturity structure of the optimal active policy, but uses only a passive policy; debt
is always equal to the steady state value. “Passive, short term debt” gives inflation with
short term debt (¢ = 0), which is the optimal passive policy for an AR(1) surplus.

Figure 6 contrasts inflation from the optimal active policy with the inflation that
would result from a passive policy with long term debt (¢ = 1) and from the optimal
passive policy, which uses short term debt (¢ = 0). With either passive policy,
the price level is perfectly correlated with the surplus, and so inflation is perfectly
correlated with surplus growth. Comparing active and passive policy with long term
debt, we see that active policy dramatically smooths inflation. Active policy also
produces inflation smoother than the optimal passive policy, which uses short-term
debt.

Following a negative surplus shock, the government sells additional long term
debt. This action lowers the price level at the moment of the shock, but raises the
price level in the future. The result is a smoother path of inflation at the cost of a
more volatile — a unit root in fact — price level.

However, the surplus is still positively correlated with the real value of the debt
in this model, as it must in any AR(1) surplus model. To match the fact in the data
that both real and nominal debt growth are negatively correlated with the surplus, I
consider surplus policy below.
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7 Optimal surplus and debt policy

So far, I have examined the price level effects of changing surpluses with constant
or exogenous debt, and then I have examined the effects of changing debt with con-
stant or exogenous surpluses. These are natural places to start analyzing the logical
possibilities implied by the fiscal theory, but neither is a realistic descriptions of ac-
tual debt policy. Governments have at least some control over the surplus as well as
nominal debt, and a realistic policy optimization exercise should recognize this fact.
Most importantly, the vast majority of debt sales come together with an implicit or
explicit promise to increase future surpluses.

A second and related issue is that the AR(1) or AR(2) surplus processes inves-
tigated above, though they are natural examples and plausible descriptions of the
univariate behavior of the U.S. real primary surplus, lead to a completely counter-
factual description of the joint behavior of surplus and debt. Simple AR surplus
processes imply that the value of the debt should be positively correlated with sur-
pluses. Higher current surpluses mean a higher present value of future surpluses and
hence a higher value of the debt. In the data, as shown in Figure 2, high surpluses
are unsurprisingly associated with declining real debt. Cumby Canzoneri and Diba
(1998) use these counterfactual predictions of AR(1) surplus processes to reject the
fiscal theory.

To make this point precisely, denote the real value of the debt v,. The present
value identity (4) says that the real value of the debt — of any maturity structure —
is equal to the present value of real surpluses.

vy = Ey Zﬁjstﬂ'- (19)
=0
With an AR(1) surplus, s; = ps;_1+¢, the surplus and real value of debt are perfectly

correlated. 1

1—05p
This result is true for any debt policy, including the active debt policy analyzed
above. More generally, any time series process in which the present value on the right
hand side of (19) moves positively with the series itself predicts that surpluses should
be positively correlated with debt.

St (20)

UV =

Therefore, to plausibly describe the joint behavior of surplus and real debt, the
surplus must follow a process whose level is negatively correlated with long-run and
present values. This statement has nothing to do with the fiscal theory, since equation
(19) is entirely in real terms and holds in all models, fiscal or not.

On first glance processes with negative long-run responses seem strange. On
second glance they suggest that surpluses respond to real debt values, the “Ricardian
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regime” special case that invalidates the fiscal theory. But on third glance such
processes are a natural outcome of a debt policy run to smooth inflation in the face
of transitory surplus shocks.

In a recession, the government must finance a deficit. It can do one of three things:

1. It can inflate away existing debt. For example, with one-period debt we have

B, {(t 1
L() + Et <—> ﬁBt@ + 1) = S¢.
Dt Pt+1

If the government does not change nominal debt By(¢t + 1) and future surpluses
81+, a negative s, shock will be met by a rise in p;, i.e. by inflating away the
real value of outstanding debt.

2. As discussed above, if long-term debt is outstanding, the government can sell
additional long term debt with no change in future surpluses; this action deval-
ues outstanding long term debt, causing future rather than current inflation.

3. The government can sell additional debt, while promising to increase future
surpluses. For example, with one-period debt, an increase in debt sales By(t+1)
while holding future surpluses s;.; constant results in an equiproportionate
increase in the future price level p;,; and hence does not raise any revenue
or affect prices at time ¢. But if the government can promise to raise future
surpluses, then it can sell more debt B,(t+1) with no effect on p,,1; hence it can
raise more revenue without inflating away existing debt. In this last example a
negative surplus shock today is followed by an increased surplus in the future.

The first two options lead to large swings in inflation. The third strategy leads to
much less volatile inflation. Hence, we expect a government that wishes to smooth
inflation to follow something like the third strategy. And in fact we routinely think
of governments offsetting current fiscal stringency by borrowing, and implicitly or
explicitly promising to raise future taxes or cut future spending to pay off the resulting
debt. Thus, we routinely think of surplus processes, which, under partial government
control, have response functions which reverse sign after a shock.

The first two options also lead to real values of the debt that are positively corre-
lated with the surplus. The fact that high surpluses seem to pay down the real value
of the debt is not an accounting identity; it results from the government’s choice to
do so rather than to meet surpluses with inflation.

7.1 A model of optimal fiscal policy

Here, I pursue a model that captures the intuition of the last few paragraphs. First,
we must describe the surplus process. There is a cyclical component to the surplus
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that is by and large beyond the government’s control. In a recession, lower income at
constant tax rates means less tax revenue, and entitlement and other program-based
spending automatically rise. Denote this cyclical portion of the surplus

¢t = pci_1+ & (21)

The government does control a long-term component of the surplus. By changing
tax rates and the terms of government programs, it alters the overall level of the sur-
plus. For good optimal-taxation reasons it does not change tax rates and spending
policies to offset the transitory, cyclically-induced component of the surplus, for ex-
ample raising tax rates in recessions and lowering them in booms. Let the controllable
component of the surplus follow a random walk,

2t =241+ 525- (22)
The actual surplus is the sum of the two components,
gt =C + %

(The random walk is merely a convenient simplification. The model works in much
the same way if z; follows any process z; = nz;_1 + 6; that is more persistent than ¢,
n > p so that z; controls the long-run surplus.)

Next, we must state the government’s problem. The government now picks the
change in the controllable component of the surplus é; at each date. 6, must be in the
time-t information set, and it must not be predictable from time ¢t — 1 information.
The government also picks nominal debt B, in the time ¢ information set, stationary
(not explosive) as above, and the steady state maturity structure ¢. (Once again the
steady state level of debt B affects only the steady state price level.) The government
picks ¢, {6}, {B;} to minimize the variance of inflation, given that the price level is
determined by (14), which specializes given this surplus structure to

(1= 8)(1— Bép)

(1—L)pe = T 1= 3p)(1=39) (1 —L)ey — 6+ (1 = L)(L — ¢B) Bt (23)

Now we can study solutions to this problem. There are policies that set the
variance of inflation to zero. The government may choose ¢ arbitrarily (the optimum
policy is not unique) and then chooses debt and the long-run component of the surplus
according to

B 1-06 1—p
(1-L)B, = _1—ﬂ¢1—ﬁp0t (24)
1—
(St = _]_—ﬁﬁpgt' (25)

To check this solution, plug these choices into (23) and verify that each power of L on
the right hand side is equal to zero.
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7.2 Character of the solution

From (25), shocks to the long run surplus are negatively correlated with shocks to
the transitory component of the surplus. As expected, the government meets a short
run negative surplus shock by raising surpluses in the long run.

7.2.1 A graph of artificial data

Figures 7 and 8 plot simulated time series from the optimal policy system. The
parameters are p = 0.6 and § = 0.95. The pictures are identical for any value of
¢ € [0,1]. The random number draw is the same across the two pictures.

In Figure 7 we see how the surplus is generated from its permanent and transitory
components. There are periodic recessions, in which the transitory component of the
surplus declines, and booms in which it rises. The government slightly raises the
permanent component of the surplus in the recessions and lowers it in the booms.
This change has little effect on the short run properties of the surplus, since the actual
surplus tracks the transitory component closely. But it has a dramatic effect on the
long-run or present value properties of the surplus. The long-run surplus rises in
recessions so the government can raise revenue by selling debt, and it falls in booms
as the government pays off debt.

Artificial time series

Figure 7: Simulated surplus, and its permanent and transitory components.

Figure 8 presents the joint properties of the total surplus, debt and debt growth.
Comparing Figure 8 to actual data in Figure 2 we notice the striking similarity. Debt
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is not well correlated with the surplus, and it wanders at much lower frequency than
the surplus; growth in debt is nicely negatively correlated with the surplus. The
simple model thus accounts for the initially puzzling time-series behavior of debt
and surplus, and shows why despite a simple AR(1) input, the result is far from the
perfect positive correlation of debt and surplus that a pure AR(1) surplus process
predicts. (Since the quantities B, s denote are proportional deviations from steady
state, Figure 8 presents

ps 1-p
This transformation converts the debt series to the same units — real and relative to
the surplus steady state — as the surplus series. This transformation also completely
removes ¢ from the time-series properties of By, §;.)

Artificial time series

20

A Surplus s
Debt By
— — = Debt growth AB;
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Figure 8: Simulated surplus, debt and debt growth.

7.2.2 Time series processes

For a slightly more formal comparison of model and data, we can compare the time-
series process of debt and surplus predicted by the simple model to those we can
estimate in the data. Then debt and surplus in the model follow the joint time series
process

(- pL)(1 - L)B, = —%et (26)
(- pL)(1—L)5 = %(B—L)& (27)
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and hence the two series are related by
5 =—(8-L)B,. (28)
These relations hold for any value of the steady state maturity structure ¢.

Of course, inflation is not constant in actual data, and there is no linear function
linking debt and surplus with no error term. Therefore, a formal test of (26)-(28)
rejects the model. Nonetheless, we can see to what extent this model captures features
of the data, as the above graphs suggest it does.

Debt process Table 1 presents regression estimates of the total debt process (26).
The Table verifies that an AR(2) with one root near unity and one root around 0.5
is an excellent fit to this process.

B,y B B.3 R DW
By= | 142 -0.49 0.93 2.16
t-stat. | (9.1)  (-3.2)

B,= |1.29 -0.14 -0.23 0.93 1.94
t-stat. | (6.99) (-0.43) (-1.25)

AB,, AB,_, R* DW
AB; = | 0.46 0.18 2.06
t-stat. | (2.90)

AB, =036 018  0.18 1.91
t-stat. | (1.94) (0.96)

Table 1. Autoregressions of total debt/consumption ratio, 1960-1996.

Debt-surplus relation Equation (28) is consistent with the finding in the data
that the surplus is strongly negatively correlated with changes in the total value of
the debt, and given the debt process (26), poorly correlated with the level of the total
value of the debt. To quantify this relation, Table 2 presents a regression of surplus
on debt.

B, B, R? DW
S = -0.44 0.48 0.61 2.15
t-stat. | (-6.65) (7.34)

Table 2. Regression of surplus/consumption ratio on total debt 1960-1996.

The relative values of the coefficients on current and lagged debt conform to the
prediction of (28). The absolute values are about a half too small. There is of course
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no error in (28), while there is an error in the actual data. The data for Table 2 obey
the identity ) R
st =14Bi1— By

where r; is the gross ex-post real return on the government bond portfolio less the
consumption growth rate. Therefore, the error term in the regression is largely the
real return on government bonds. That return was low in the first half of the sample,
when the surplus and right hand side of (28) was high, and high in the latter part of
the sample when the surplus and right hand side of (28) was low. There is a decade-
long movement in the error term, correlated with the right hand variable. This fact
lowers both coefficients but does not affect their relative values.

Surplus process The surplus/consumption ratio is well- modeled as an AR(1), or
at most an AR(2). Table 3 presents autoregressions. The autocorrelation function
also has a classic AR(1) shape, with at most a small secondary hump with t-statistics
around 1.5.

St—1 St—2 DW

s.= | 0.56
t-stat. | (3.93) 1.62
s;= |0.72 023

t-stat. | (4.22) (-1.35) 1.99

Table 3. Autoregressions of the surplus/consumption ratio

Equation (27) represents the evolution of s, from shocks to the bivariate {s;, B;}
system. However, since # < 1 the moving average term is not invertible. Hence, this
is not the univariate Wold representation as would be recovered by autoregressions
or univariate ARMA estimation. The univariate Wold representation is'

1—-pBL - e~
(1-L)s = (1 —fL) M, e = S¢ — Proj(8¢l8i—1, St—2...). (29)

Figure 9 plots the univariate (response to n)and multivariate (response to ¢)
response functions. The univariate response function is very close to an AR(1):

!To find the univariate representation, write the spectral density of (27)

(2) = <1—p>2 ,(1— Z)(l—%z_l)g

S-r)s, (2 1-3p (1—pz)(1—pzt) 7
< 1—p ) (1—5271)(1—52)02
1-08p) (T—pz)(L—pz1) *

The roots of the last expression are all stationary, so this corresponds to the Wold representation.
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£ &~ 0.95 so the unit root on the left hand side nearly cancels the moving average root
on the right hand side, leaving only the autoregressive root (1—pL). At long horizons,
the univariate response function stops decaying at a positive value (1 — 3) /(1 —p) =
0.125 so it is in fact even more persistent than an AR(1). A researcher examining
the univariate properties of s; from this model would undoubtedly stop at an AR(1);
most diagnostics are not capable of noticing the long-run divergence from an AR(1)
implied by the near-canceling of roots. Thus, the univariate surplus process is broadly
consistent with the data.

©—— Univariate
B—— Multivariate

0.8
T

0.6
T

0.4
T

0.2
T

-0.0
T

-0.2

Figure 9: Response of the surplus to univariate Wold representation shocks 7; and to
fundamental, multivariate shocks ¢;. Parameters are 3 = 0.95, p = 0.6.

A subtle trap for empiricists Figure 9 reminds us of a very subtle trap for
empiricists. What could be more natural in evaluating the fiscal theory than to
fit a surplus process, take its expected present value, and then test whether the
real value of the debt does indeed correspond to the estimated present value of the
surplus? A reader of Hansen, Roberds and Sargent (1991) already knows that one
cannot follow this procedure; present values in such a test must be calculated from the
joint debt-surplus process, because the univariate surplus model cannot reveal agent’s
information sets. Furthermore, we have already seen in (29) that the shock to agents’
information sets cannot be recovered from current and past surpluses. Figure 9 shows
what will go wrong if we try to take present values using the univariate process: The
univariate response is always positive, while the true response function to shocks to
agents’ information is eventually negative. Thus “present values” calculated from
responses to the univariate shock move positively with the surplus itself, while the
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true present value moves negatively with surpluses.

To give a better feel for this problem, Figure 10 plots simulated surplus time series
along with the true value of the debt, the value predicted by an AR(1) and the value
predicted from the correct univariate process. The true value of the debt is equal to
the true present value of the surplus, v; = F; >272, (1, as in previous plots. The
AR(1) debt prediction uses the AR(1) model s; = ps;_1 + &; to calculate the present
value -

U?R(l) = E; Zﬁjstﬂ‘ = s¢/(1 = Bp).
7=0
As the graph shows, this calculation predicts a value of the debt that is perfectly
correlated with the surplus, and nothing at all like the true value of the debt. The
univariate debt prediction uses the true univariate surplus process (29) rather than
the AR(1) approximation to calculate the present value of the surplus,?

_ [Bite
St,Stl,Stz,...) = (1+ﬁ) (1 ﬁH‘ﬂL)S (31)

v;mivariatc —F (Z 5]’ Stt (1 — ﬁp) ( 1_ ﬁ L) t

J=0

This prediction for the value of the debt is again positively correlated with the surplus
and has no resemblance to the true debt process.

In sum, a researcher who fit a univariate surplus model and compared its present
value to the value of the debt, using data from this artificial economy, would reject
the present value identity. He would most likely fit an AR(1), coming to the dramat-
ically counterfactual prediction that debt and surplus should be perfectly correlated.
With a lot of data and memories of the unit root debates he might fit the correct uni-
variate process, but he would still come to a dramatically counterfactual prediction
for debt. As in the analysis of Hansen, Roberds and Sargent (1991), the only way to
correctly fit the debt-surplus process in such a way that the value of debt equals the
present value of surpluses is to estimate the joint debt-surplus process. (And even

20One can derive this formula by expressing the surplus as a sum of two AR(1) components, driven
by the shocks 7.

« _ B-=p
(1—=pL)e; = 1 pﬂm
* _ 1 - 6

One can check that (30) gives the same univariate representation for s; as (29). Then,

vy = 1c*+1z*
T\1-Bp 18"

and one obtains (31) by substituting back for s; from ¢} and z;.
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Surplus and debt; artificial time series
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Figure 10: Artificial time series of surplus, real debt, and real debt predicted from the
present values of an AR(1) surplus process and the univariate (Wold) surplus process.

this procedure does not test the fiscal theory, since the present value identity holds
in both “Ricardian” and “non-Ricardian” regimes, but that’s a separate point.)

8 General solution

An exact price level solution for arbitrary debt policy is possible. To find such a
general solution, I start with either the flow (3) or present value (4) identities and
recursively substitute the same equations for future values of prices p;;;. After some
ugly algebra that is relegated to the appendix, the result is

_ Bi_y(t)
E; {Z?io BIW, St—i-j}

2 (32)

To define the W terms, first denote the fraction of maturity j debt issued at time ¢
by
Bi(t+3j) — By a(t + 7).

At +j) = , g =1,2... 33
t( j) Bt+j71<t +]) J ( )

Then, the W are defined recursively by
Wio = 1 (34)

th == At<t+ 1)

)
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Wia = At +2)Weq + A(t +2)
Wis = A2t +3)Wia+ Apia(t+3)Wiy + At + 3)

7j—1
Wei = > At + )Wy
k=0

To get some sense of what this means, write out the first two terms of the general
solution,

- el
9 By 1 (t+1) Bi(t+2) By 1(t+2)
+6 {1 B [ B,(t+1) (1 © Bya(t+ 2)) * By (t+ 2)1 } St+2 ]

The weights W, ; capture the effects of debt policy—the current and future maturity
structure of the debt—on the relation between the price level and the sequence of
surpluses. This general solution delivers the same answer as the special cases which 1
solved directly above. However, their algebraic complexity motivates the approximate
solutions for many applications.

8.1 Linearization about a non-geometric steady state

Above, I linearized the present value identity around a geometric steady state ma-
turity structure to derive an approximate solution. One can also linearize about an
arbitrary steady state maturity structure. The terms of this linearization are al-
gebraically complex, as in the general solution. However, these terms need only be
evaluated once in defining the steady state, and the approximate solution is then a
convenient linear function of surplus and debt policy.

Denote the steady state maturity structure by
Btfl(t + ]) - B¢j

Evaluating (4) at the steady state yields
ps o
EZ(l—ﬁ)Zﬁj%Ef (36)
=0

which defines the symbol €. Denote by B the deviation of debt from the steady state
B,
Btfl(t +]) — ¢jB

Bt_l(t“‘j) - B
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Now we can differentiate the present value identity (4) to give

Z F ¢ Epryj = —& Z F B84+ Z 5jBt—1(t + 7). (37)

J=0 J=0 J=0

The difference between (37) and its counterpart (13) with a geometric steady
state is that the terms in expected future prices no longer have a geometric pattern
representable by the operator (1 — 3¢L~1)~!. Therefore, iterating (13) forward is not
pleasant. I substitute the same equation at ¢t + 1, + 2 etc., and then condense the
resulting mass of algebra. The result, presented in the appendix, is

Dy & —gZﬁjo E,5,1; — Zﬁijq By 14 (38)
j=0 Jj=0
where, as above,
By =Y FBia(t+j)
§=0

The W; can be interpreted as the steady state level of the general-solution weights
Wt,j7

Wo =1

W, = A

W2 - A1WI+A2
j—1

Wi o= > AW
k=0

and the A; can be interpreted as the steady state level of the terms A;(t + j)in the
general solution,

Aj = dj1 — b5 (39)
and the D coefficients are generated from ¢ as the W are generated from the A,
D, = -1 (40)
Dy = ¢
Dy = A\Dy+ AyD_,4
Dy, = AiDy+ AsDy + AsD_4
k+1

Dy = Y ADy .
=1

Despite the appealing recursive structure of the W and D terms, I am not able
to find attractive closed form (non-recursive) definitions. However, they only need
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to be evaluated once, in defining the steady state, where in the general solution they
need to be evaluated at each date and state (before taking expectations).

The D coefficients give the effect on the price level at time ¢ of a bond sale at t + j
that is then repurchased at ¢t + j + 1. (Repurchased, because otherwise By ;.1(t +
k) would increase as well as B;,;(t + k).) In principle therefore, D should have a
k subscript as well, but it turns out that the answer is the same for all k.

Note that D_5, D_3... = 0. Thus, despite the fact that period k debt is sold
(and then repurchased), there is no effect on prices past period 1 when the debt is
repurchased. Once again, the whole debt policy matters for the price level, including
expected future repurchases.

The comparative statics derived above for the geometric case go through. D_; =
—1 < 0, so selling a little more debt today (period zero) and then buying it back
tomorrow (period 1) raises the price level tomorrow. Since Dy = ¢ > 0, selling
a little more debt today can lower prices today (time 0), but only if there is some
long term debt outstanding— if ¢; # 0. Interestingly, whether selling a little extra
k period debt affects prices today depends on the presence of outstanding time 1 debt,
not time k debt.

In general, the terms D;, D,... are present, so prices at tcan be affected by all
future expected debt changes. These terms all specialize to zero with the geometric
steady state, in which case the price level at ¢ is only affected by B;_; and B;. To
see the effect, then, we need an example in which the maturity structure is far from
geometric. Suppose that the steady state maturity structure is ¢1 = 1, ¢ = ¢3 =
.... = 0.5. The government combines some short term debt or money with some
extremely long term debt, for example a perpetuity. Figure 11 plots the response
of prices to an anticipated debt sale at time 0, which is then repurchased at time
1, for this case. All the interesting dynamics before time 0 would be absent with a
geometric steady state.

9 Conclusion

I started by analyzing the comparative statics of the fiscal theory — the effect of
changing surpluses with the debt held constant, and the effect of changing debt with
the surplus held constant — while allowing for long-term debt. These comparative
statics are quite different from the standard case with only short-term debt. Depend-
ing on the maturity structure and debt policy — expectations of future debt sales and
repurchases — today’s price level can be determined by the present value of all future
surpluses, by today’s surplus alone, or by a rich variety of intermediate cases. If and
only if long-term debt is outstanding, a debt sale can depress the price level today by
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Figure 11: Price path in response to an anticipated debt sale at time 0, which is then
repurchased at time 1. The steady state maturity structure is ¢1 = 1, ¢ = 3 = ... =

0.5,and (= 0.95.

devaluing outstanding debt.

Then, I considered the question of optimal debt and surplus policy in pursuit of
stabile inflation. I found that long-term debt can be useful when the present value
of surpluses varies by more than surpluses themselves. Perhaps more importantly,
long term debt allows the government to offset surplus shocks as they come. In this
case, and especially when the government can choose the long-term surplus as well,
the optimal policy produces artificial time-series that display many initially puzzling
properties of actual time series.

The optimal policies that I study here do not perfectly describe U.S. time series.
Their primary failing is that they are too successful: they produce much less variation
of inflation than we observe. The optimal active debt plus surplus policy reduces the
variance of inflation to zero. The optimal active debt policy leaves some inflation
variation, but it is much smaller (relative to variation in the surplus) than we observe
in U.S. data, and it has the wrong correlation with the surplus.

One can follow two paths to resolving this issue, both with long histories in the
optimal monetary policy literature. Either the problem is harder than the model
specifies, or inflation was simply a mistake.

The first path suggests that we add further complications to the models, so that
optimal policy produces greater variation in inflation. Most obviously, one could
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add price stickiness or some other friction. Such frictions would revive the inflation-
output trade-offs that were a central part of classical monetary policy analyses such as
Sargent and Wallace (1975), and they would generate a serious welfare maximization
problem in the modern general equilibrium tradition. Woodford (1996) has analyzed
fiscal models with such frictions, and the optimal policy exercises are waiting to be
solved.

Alternatively, perhaps inflation was simply a mistake and we should advocate
better policy. In a fiscal theory context however, the required policies are not as simple
as k-percent rules. Current policy already does a great deal of price stabilization in
the face of surplus shocks. For example a k-percent debt growth rule and an AR(1)
surplus process leads to prices that have the same proportional variance as does the
surplus. The surplus/consumption ratio has, by Figure 2, a standard deviation of
about 2 percentage points around an average value of less than one percent. Hence,
a k-percent debt rule would lead to inflation with 100% or more standard deviation!
For this reason, changing to an explicit rather than implicit commodity standard
may be a more practical institutional route to implementing an optimal debt and
fiscal policy than trying to more closely implement complex state-contingent debt
and surplus choices.

Some interesting behavior is certainly missed by the approximate solutions I use
here. For example, in the approximate solutions only the sums B;_; = 72, ﬁ’“Bt_l(H—
k) matter to the price level. In a general solution, deliberate state-contingent length-
ening and shortening of the maturity structure can affect the time-series process of
inflation. However, one must analyze the much more complex general solutions in
order to address this interesting question.

Finally, I introduced a very simplistic statistical model in which the “long-run”
surplus follows a random walk. The natural direction for an extension of a fiscal
theory of the price level is to include the theory of optimal taxation. The properties
of the long-term and short-term surplus should be analyzed in a real economic model
with distortionary taxation.
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11 Appendix

11.1 Summary of important notation

s; = primary (net of interest) surplus.
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p; = price level.

By(j) =debt due at j outstanding at the end of period ¢.
Q:(j) = nominal price of $1 face value due at j, as of time t.
r = constant expected gross real return on government debt.
B = 1/r = real discount factor.

v; = real value of the debt.

p, s, = steady state values of s, p;.

B,¢ steady state debt parameters, B; i (t + j) = ¢’ B.

Pt = p/p — 1; proportional deviation from steady state.

§; = s;/s — 1; proportional deviation from steady state.
By_1(t+j) = Bi_1(t +j)/B — ¢ ; proportional deviation from steady state.
By = ;’io ﬁjétfl(t + ])

vy = 322 (7 Eysypj real value of the debt.

11.2 Flow and present value identities, (3)-(4).

To derive (3)-(4), start with the accounting identity that the primary surplus equals
purchases less sales of bonds,

Bioat) = 32 Qult +3) [Bilt + ) — Bealt +3)) = s (41)

Substituting constant expected real interest rates (2) in (41), we obtain (3). To derive
(4) define the real value of the outstanding debt as

w=> PL <L> Bia(t + ).

=0 Pt+j

Then, (3) can be rewritten
UVt — /BEtthrl = S. (42)

Iterating forward, or applying E;(1 — B3L~1)~! to both sides®, we obtain (4) and vice
versa.

3This operation also requires the transversality condition that surpluses grow more slowly than
the expected bond return. This condition follows if one views the infinite period economies as limits
of finite economies, since surpluses are always zero past the last period of a finite economy. Woodford
(1995) gives an extensive treatment of weaker transversality conditions in this kind of model.
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11.3 Approximation about a geometric steady state, (14)

Define -
b= FES..
=0
and write (13) in lag operator notation,

1-p
1—p5¢
Now it is a simple matter to solve for p; by applying (1 — 3¢L~1) to both sides. This
gives a suggestive and compact version of the price solution,

E(1-B6L7) fi=— ( ) U + By

D= — (11:;¢> (0y — BOEyy1) + Bi_1 — BOB,. (43)

Substituting the definition of ¥ and rearranging gives (14).
11.4 Optimal passive debt policy

Model the surplus as a linear function of a state vector x;, which may contain lagged
values of s;, by

gt = 6/3715. (44)
x; evolves following a vector AR(1),
ry = Ary 1+ Jey; E(ee)=1 (45)
Plugging into the price solution (14), the price level is then
o= e (I = 30A) (1~ BA) M,
1—p5¢
and the variance of inflation is given by
2 1- B 2 / /
P —pa) = (Tog ) ¢ U~ BOAV (1= GoAY e (46)

where

V=1 —BA) ' Ca.(I —BA)Y

EAJ; =F [(l’t — l‘t_l)(l't — l‘t_l)/] = (A — I) ZA]JJ,AJ/(A — I)I + JJ,

=0
Setting to zero the derivative of (46) with respect to ¢, we find the optimal ¢ from
e(l—A)Ve
e(I—A)VAe

oB =
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11.5 Optimal active debt policy, (18) .

I found the solution (18) numerically. I guessed a debt policy of the form
N
(1 — )\1L> (1 — )\gL)Bt = Za]ét_j = CL(L)gt
j=0

For given values of ¢, A1, A, {a;} I calculated the variance of inflation by numerical
integration in the frequency domain,

varl(1-)p) = o [

2

1 *
T apean) T ) (47)

» (1—e™) (™ —fB¢)
(1 —e )k'<¢) - (1 _ )\16_iw> (1 — )\26_iw)

ale™™).

fw)

I minimized this expression numerically to find the optimal policy ¢, A1, A2, {a;}. 1
found the formulas for the coefficients in (18) by staring at the numerical values of
the optimal parameters Ai, A2, ¢, a; for a large grid of input parameters values p, 3.

One is tempted to solve (17) and set the variance of inflation to zero by the choice

5o lp =0)0-d0)

o8 Bo(l—Bp)(1—B9)

The trouble with this idea is that 3¢ < 1 so the coefficient on lagged debt is greater
than one. If we solve the difference equation backward, debt is an explosive process.
If we solve it forward, debt today must depend on future surpluses, i.e. debt today
is not in the information set today. Therefore, we must impose the constraint that
B is a non-explosive process, in the time-t information set, and we must expect that
constraint to bind. It does; the formulas for variance continue to decline if one allows
A > 1, so the solution has one root at the constrained value A = 1. We proved above
that it is not possible to use debt policy alone to achieve a constant price level with
fluctuating surpluses, and this discussion is another instance of that fact.

11.6 General price solution, (32)

To simplify notation, let ¢ = 0. Define
V=D s
Jj=0

and define a sequence {X,} by
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B_y(1)

X; =

 Bo(1)
_ B_1(2) + X1By(2)
Xo = 50
Y. — B_1(3) + X1By(3) + X2B1(3)
5 B,(3)
& Bl
Y= T LB

I start with the present value identity (4), which implies

BAO) {UO 4 (i) B(1) - (i) B_.(2) }

4! D2

at time 0 and

1 1 1 o (L _
Pl mEl {Ul - <p_2> By(2) — <p3> By(3) }

at time 1. Use time 1 to substitute in time 0,

Bp;o(()) _ B, {UO _ 5%0;((11)) lvl - ﬁpizBo(z) - ] -3 <p—2> B_1(2) - }

Recognizing the definition of X;

B_1(0)
Po

_ £ {UO + BX v, + 3 [— (B-1(2) + X1 By(2)) piJ +

i [— (B1(3) + X1Bo(3)) i] T } |

Ps3

Substitute now for 1/p,.

piz = %@Ez lw - 52%331(3) — ﬁ2pi4B1(4)...]
B.(0) _ . | Ba@+XiB2) [ 1 -
P = Eo{ o+ BXiv1 + 8 [ Bi(2) lz ﬁp331(3) H +
+73? l— (B_1(3) + X1By(3)) pi] - } .

Recognizing the definition of X,

B_1(0)

0 = E[) {’U[) + ﬂXl’Ul + 62X2’02 — ﬂS ([B—l(?)) + XlBO(?)) + XQBl(?))] i) + } .

b3
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Continuing in this way, we have

B_1(0) g
_— = EO ZBJX]'U]’.
Po j=0
This expression is already a solution. However, it is more elegant to collect terms in
s; on the right hand side, resulting in

Eiﬂ@czﬁb{1+(1+xaﬂ%1+(L+X1+A&ﬂ¢®-%m}
Po
B1(0) = Fy iﬂj (i Xk) s; = iﬂjﬂ/jsj'
Po §=0 k=0 J=0

This is the price solution (32). The last equality defines W,;. We can find a more
direct definition for W; rather than via X;. Proceeding through time,

W():XO:].
_ _ B(1) = B4(1) _
Wi=1+ X = = = Ao(1)

W1B1(2) — X1Bo(2) — B_1(2
1+ Xy 4+ Xy = Wy 4 X, — A1) = X1 Bo(@) 1) _

Bi(2)
. WiBi(2) - (Wi —1)Bo(2) — B4(2)

W

B  WhBs(3) — X5Ba(3) — X1 By(3) — Bo(3)
Wy = Wyt X;= 5 -

WoBs(3) + (W1 — Wa)B1(3) + (1 — W1)By(3) — B_1(3)

B»(3)

and so forth.

11.7 Approximate solution with a non-geometric steady state
(38)

We can differentiate the general solution (32) with respect to debt at the steady state
to find that the approximation for the s terms is

ﬁt ~ —f Zﬁjo Et§t+j-
=0

J
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where, again £ = ps/B. The hard part is to unravel the W, ; terms to find the effects of
dBy1j(t + k). We could proceed directly by differentiating W, ;, or perform the same
sort of nonlinear forward iteration on the approximated present value identity. It
turns out to be easiest to track the effects on p; of a single debt operation dB,;(t+k).

We want to evaluate the effect of a small change in By(j). This is a sale of a little
extra date j debt at time 0, followed by a repurchase of that debt at time 1. We start
with the real time ¢ flow identity, (3), which I repeat here for convenience.

Sy +ZﬂjEt (i) [Bt(t+j> . Bt—l(t+j)] _ Btp1<t).

By(j) does not enter this identity, or the general solution, for ¢ > 2, so prices at
and past date 2 are not affected. Prices are forward-looking and so are affected only
by current and future debt policy.

At time 1, the flow identity is
1 1

s1+ BE; <p—2> [B1(2) — Bo(2)] + .. + B, (p—j) [B1(j) — Bo(j)] + ... =

By(1)
P

We take the derivative of this identity with respect to By(j), evaluated at the steady
state. The result is
_ pB d(/p) _

LT B dBo()

The time 0 constraint is

s0-+ 980 () 1Ba(1) = a0+ 9 o) [Boli) = Ba)] + . = L,
Taking the derivative with respect to By(j) again,
(1/p1) jL_ pd(1/po)
B agGy e T anG)
DOZ (1—¢1)D1+1:¢
At a generic time —k, the flow identity is
skt BE < ! ) [B_p(=k +1i) — B_jp_1(—k+1)] = L [=B_k1(—k)] .
i=1 P—k+i D—k

Taking derivatives with respect to By(j) again,

S Gl g ) - )

CdBo(j) dBy(j)
k+1
D_j = Z D*kJriAz
=1

Plugging these derivatives in, we obtain the linearization (38).
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