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1. Introduction

In a series of studies on monetary policy rules, McCallum (1988, 1990, 1993, 1995) has
utilized and promoted a research strategy that emphasizes operationality and robustness.
The first of these properties intentionally limits consideration to policy rules (i) that are
expressed in terms of instrument variables that could in fact be controlled on a high-frequency
basis by actual central banks and {ii) that require only information that could plausibly be
possessed by these central banks. Thus, for example, hypothetical rules that treat (e.g.)
M2 as an instrument or that feature instrument responses to current-quarter values of real
GDP are ruled out as non-operational. The second property focuses on a candidate rule’s
tendency to produce at least moderately good performance in a variety of macroeconomic
models rather than “optimal” performance in a single model. The idea behind this criterion
is that there exists a great deal of professional disagreement over the appropriate specification
of crucial features of macroeconomic models, and indeed even over the appropriate objective
function to be used by an actual central bank.

Most of the models used in McCallum’s own studies have, however, been non-structural
vector autoregression or single-equation atheoretic constructs that are quite unlikely to be
policy-invariant. Even the so-called “structural” models in McCallum (1988, 1993) are essen-
tially small illustrative systems that are not based on well-motivated theoretical foundations.
Thus these studies have not contributed any proposed models of their own to be used in a
profession-wide exploration of the robustness of candidate rules’ properties.

In the present study, accordingly, we formulate, estimate, and simulate two variants of a



model of the U.S. economy that is intended to have structural properties. The model is quite
small - - following in the line of work previously contributed to by Fuhrer and Moore (1995),
Yun (1996), Ireland {1997), and Rotemberg and Woodford (1997) among others - - but is
based on aggregate demand and supply specifications that are designed to reflect rational
optimizing behavior on the part of the economy’s private actors. Our formulations pertaining
to demand are rather orthodox, but in terms of aggregate supply - - i.e., price adjustment
behavior - - we consider two alternatives, one of which is not standard. In particular, we
begin with the formulation of Roberts (1995), which is based on the well-known models
of Calvo (1983), Rotemberg (1982), and Taylor (1980). In addition, however, we develop
a modification of the Mussa-McCallum-Barro-Grossman “P-bar” model, whose theoretical
properties are arguably more attractive. Although we consider only two simple variants of
our macroeconomic model, we suggest that its design makes it an attractive starting point for
a more extensive robustness study. Our estimation is conducted by instrumental variables
and utilizes quarterly U.S. data for 1955-1996.

With our estimated model we carry out stochastic and counterfactual historical simula-
tions not only with the class of policy rules promoted in McCallum’s previous work, but also
rules that are operational versions of the Taylor (1993) type and others with an interest rate
instrument. Some of the issues that we explore in these simulations are the following:

(i) Is it true that response coefficients in a rule of the Taylor type should be much larger
than recommended by Taylor (1993)7

(ii) Is there any tendency for adoption of a nominal GDP target rule to generate instability



of real GDP and inflation?

(iii) In studying questions such as these, how important is it quantitatively to recognize that

actual central banks do not have complete information when setting instrument values for a

given period?

(iv) How sensitive to measures of “capacity” output are rules that feature responses to output

gaps?

(v) Do interest rates exhibit extreme short-run volatility when base money rules are utilized?
Organizationally, we begin in Section 2 with a discussion of several important background

issues. Then Sections 3 and 4 are devoted to specification of the macroeconomic model to

be utilized, with the former pertaining to the model’s aggregate demand sector and the

latter to aggregate supply. Section 5 describes data and estimation, and reports estimates

of the model’s basic structural parameters. Simulation exercises with various policy rules

are then conducted in Sections 6 and 7 for the two variants of the model, and conclusions

are summarized in Section 8.



2. Monetary Policy Rules: Alternatives and Issues

We begin by discussing various forms of possible monetary policy rules and some issues
raised by the differences among them. In the previous research by McCallum, quarterly data
has been utilized and the principal rule specification has been
(2.1) Ab, = Az* — (L) (@o1 — b1 — Tr7 + beorr) + A(T)_y — Te-1),
with A > 0. Here b, and x; denote logarithms of the (adjusted) monetary base and nominal
GNP (or GDP), respectively, for period t. The variable z7 is the target value of x; for
quarter ¢, with these targets being specified so as to grow smoothly at the rate Az*. This
rate is in turn designed to yield an average inflation rate that equals some desired value--
e.g., a value such as 0.005, which with quarterly data would represent roughly 2 percent
per year.! Whereas a growing-level target path z;! = 2}, + Az* was used in McCallum’s
early work (1988), his more recent studies have emphasized growth-rate targets of the form
x3? = z,_1+Ax* or weighted averages such as ;* = 0.82;°+0.2x;". In (2.1), the rule’s second
term provides a velocity-growth adjustment intended to reflect long-lasting institutional
changes, while the third term features feedback adjustment in Ab; in response to cyclical
departures of &, from the target path z, with A chosen to balance the speed of eliminating
T, — T, gaps against the danger of instrument instability.

More prominent in recent years has been the rule form proposed by Taylor (1993), which

we write as

(2.2) Ry =1 4+ 7%, + (7, — 7*) + pab.

1 Whatever the desired quarterly inflation rate, Az* is set equal to that value plus an estimated long-run
average rate of growth of real output, 8 number assumed to be independent of the policy rule adopted.



Here R, is the quarter-t value of an interest rate instrument, 7§"; is the average inflation
rate over the four quarters prior to f, 7* is the target inflation rate, and 7, = y, — %, is the
difference between the (logs of) real GDP y; and its capacity or natural-rate value ;. The
policy feedback parameters uy and pg are positive - - each of them equals 0.5 in Taylor’s
(1993) example? - - so that the interest rate instrument is raised in response to values of
inflation and output that are high relative to their targets.

There are two major reasons for the greater prominence of Taylor’s rule (2.2) as compared
with (2.1). First, it is specified in terms of an interest-rate instrument variable, which is
much more realistic.® Second, from several studies including Taylor (1993), Stuart (1996),
Clarida, Gali, and Gertler (1997a), among others, it appears to be the case that actual policy
in recent years - - say, after 1986 - - has been rather well described by a formula such as
Taylor’s with coefficients quite close to his for some major countries.

As specified by Taylor (1993), however, rule (2.2) is not fully operational since it assumes
unrealistically that the central bank knows the value of real GDP for quarter ¢ when setting
the instrument value R, for that quarter. In fact, there is considerable uncertainty regarding

the realized value of real GDP even at the end of the quarter in actual economies.® In

2 When annualized values of inflation and the interest rate are used.

3 Virtually all central banks of industrialized countries use some short-term (nominal) interest rate as
their instrument or “operating target” variable. For an extensive recent discussion, see Bank for International
Settlements (1997).

4 In the United States, for example, the recent study of Ingenito and Trehan (1997) indicates that the
“forecast”’ error for real GDP at the end of the quarter is about 1.4 percent, implying that annualized growth
rates for the quarter would have a 95 percent confidence interval of about £2.8 percent, thereby possibly
ranging from boom to deep recession values. This result is based on revised data, so it abstracts from the
problem of data revision.



addition it is far from obvious how %, should be measured - - even in principle - - as is
emphasized in McCallum {1997), and different measures can imply significantly different
instrument settings.’ The first of these objections can be easily overcome by using the value
of y; expected to prevail at the start of period t. Also, in the same spirit, some more rational
representation of expected future inflation could be used in place of m;. Overcoming the
second objection, regarding the measurement of 7, could be more difficult.

Alterations in rule (2.1) could also be considered, such as using the expectation of xj
(or of 2}, ,) rather than actual z; ; as the basis for feedback adjustments. More generally,
the target values in (2.1) and (2.2) could be exchanged, to provide rules with (i) a base
instrument and 7*, § targets and (ii) an interest instrument plus a Az, target. In the work
that follows, we shall explore several such variants of policy rules.

In this regard, some analysts might suggest that the monetary base instrument be dis-
carded, since actual central banks are not inclined even to consider the use of a b instrument.®
Several academics have hypothesized that policy could be made more effective if a base in-
strument were utilized, however,” and there are clearly some disadvantages of the interest
rate scheme. In particular, there is an observable tendency for an interest instrument to be-

come something of a target variable that is thus adjusted too infrequently and too timidly.®

5 These two objections to {2.2) should not be understood s criticisms of Taylor’s (1993) paper, which
was written mainly to encourage interest in monetary rules on the part of practical policymakers - - and was
in that regard extremely successful.

§ Goodhart (1994) has claimed that tight monetary base control is essentially infeasible.

7 Among these academics are Brunner and Meltzer (1983), Friedman (1982), McCallum (1988), and Poole
(1982).



In any event, the question of the comparative merits of b, and R; instruments is one that
seems to warrant scientific study - - indeed, more than is provided below.

The foregoing paragraphs have been concerned with policy rules from a normative per-
spective. In estimating and evaluating a macroeconomic model, however, it is useful to
consider what policy rule or rules have in fact been utilized during the sample studied. In
that regard, it might be argued that no rule has been in place; that the Federal Reserve
has instead behaved in a discretionary manner. But we believe that there has clearly been
a major component of Fed behavior that is systematic, as opposed to random, and this
component can be expressed in terms of a feedback formula.® Of course there can be little
doubt but that there have been changes during our 1955-1996 sample in the systematic com-
ponent’s specification, with prominent dates for possible changes including October 1979,
late summer 1982, August 1987, and a few others.!® Thus we have experimented with both
slope and constant-term dummy variables. After considerable empirical investigation we
have ended with an estimated rule of the form
(2.3) Ry = po+ 1Rt + o By 1Az + ps By 1T + padye + psdo B 1 ATy + €pe,
where #, is the output gap (the log-deviation of output from its flexible-price level), dy
and dg are dummy variables that take on the value 1.0 in 1979:4-1982:2 and 1979:4-1996:4

respectively, and eg, is a serially independent disturbance. Thus our estimated rule for

8 See Goodhart (1997).
9 On this topic, see Taylor (1993), McCallum (1997}, and Clarida, Gali, and Gertler (19978a).

10 The study by Clarida, Gali, and Gertler (1997a) considers one possible break - - in October 1979 - -
and finds significant differences in estimated policy rule coefficients before and after that date.



1955:1-1996:4 is one that combines the interest rate instrument from (2.2) with a nominal
GDP target as in (2.1), as well as an extra countercyclical term. The rule is operational
because the monetary authority responds to period t — 1 forecasts of Ax, and g, not their
realized values. The inclusion of dummies in equation (2.3) allows for shifts in the policy
rule occurring in late 1979, presumably due to the change in operating procedures and anti-
inflationary emphasis that was announced on October 6. Of these, the dummy d;, captures
a possible intercept shift occurring during the period of nonborrowed reserves targeting,
and the interactive dummy d,,F;_1 Az, reflects a permanent shift in the Federal Reserve’s
objectives after 1979. The empirical results of our investigation are reported below in Section
5 11

Returning to the normative topic of effective rule design, there are several prominent
issuies concerning target variables that will be studied in Sections 6 and 7. One of these
involves the claim, expressed by Ball (1997) and Svensson (1997b), that targeting of nominal
GDP growth rates (or growing levels) will tend to induce undesirable behavior of inflation
and output gap variables. It is not difficult to show that Ball's drastic result of dynamic
instability of m, and #; holds only under some highly special model specifications, but it is
possiblé that much greater volatility would obtain than with alternative target variables, so

a quantitative examination of the issue is needed.

11 As the experiments in this paper are concerned with counterfactual policy rules, we do not use rule
(2.3) in our simulations in Sections 6 and 7. Our reason for nevertheless estimating and reporting (2.3} is
to demonstrate that rule-like behavior is & reasonable characterization of postwar data and to indicate the
importance of the regime dummies dy; and dg;, which we include in our instrument set when estimating our
structural model in Section 5.



3. Aggregate Demand Specification

This section describes the aggregate demand side of our model; what follows is essentially
a condensed presentation of the derivations in McCallum and Nelson (1997). We assume
that there is a large number of infinitely-lived households, each of which maximizes
(3.1) E Y320 8U(Cers, (Mers /P )),
where C, denotes the household’s consumption in period t, and (M,/ P2) denotes its end-
of-period real money holdings, M; being the nominal level of these money balances and P}
the general price level. Real money balances generate utility by facilitating household trans-
actions in period ¢. The instantaneous utility function U(C}, (M./P*)) is of the additively
separable form:

(32) UG, (M/PA) = olo = 1)7'C7 explwn) + (1 =) (M/PA) 7 explxe)
with o > 0, v > 0. Here w; and x; are both preference shocks, whose properties we specify
below.

Each household also acts as a producer of a good, over which it has market power. To this
end, it hires N¢ in labor from the labor market, paying real wage (W:/ PA) for each unit of
labor. With this labor and its own capital stock K; (which depreciates at rate 6) it produces
its output Y; via the technology Y; = A KZ(N{)!~%, where A, is an exogenous shock which
affects all households’ production. The household sells its output at price ;. Each household
consumes many goods, consisting of some of the output produced by other households; the
C, that appears in the household’s utility function is an index of this consumption, and P/

indexes the average price of households’ output.



As is standard in the literature, we assume that the demand function for good 7 is of
the Dixit-Stiglitz form, and that also the producer is obliged to set production equal to this
demand:

(3.3) AKE(NG o = (PP YA,
with # > 1, and Y,* denoting aggregate output.

The household is also endowed with one unit of labor each period, and supplies N of
this to the labor market. The household’s budget constraint each period is then:

(3.4) (Po/PAYYA — C — Koy + (1 — §) Ky + (W /PN

—(W,/PA)NE + TR, — (My/PA) + (M1 /P*) — Beyy(1 + 1)1 + B, = 0.
In (3.4), By is the quantity of government bonds bought by the household in period ¢; each
of these is purchased for (1 + 7,)~! units of output and redeemed for one unit of output in
period t+ 1. T'R; denotes lump-sum government transfers paid to the household in period t.
Letting & denote the Lagrange multiplier on constraint (3.3) and A; the multiplier on (3.4),

the household’s first order conditions with respect to C;, (M;/P?), K¢.1, and By are:

(3.5) e exp(we) = A

(3.6) (M/PA) " exp(xe) = A — BEMa (PP Piia)-

(3.7) A = B(1 = &) Edesr + aBEn A KT (N )
(3.8) A = BEAes1(1 +74).

Because leisure does not enter its utility function, the household’s optimal labor supply
is N° = 1 each period, although, since we assume below that the labor market does not

clear, this desired labor supply will not be the realized value of labor utilized.

10



As an employer of labor, the household’s first order condition with respect to Ng is
(3.9) M(We/PP) = (1 - @) A K (NF)

Equation (3.9) indicates that, as in Ireland (1997), the markup of price over marginal cost is
equal to (\;/&;). The household has one more first order condition, pertaining to its optimal
choice for P;. We defer the analysis of this decision until Section 4.

We now construct a log-linear model of aggregate demand from the above conditions.
While we use (3.7) in our caleulations of the implied steady-state level of investment, 1, we
do not use an approximation of (3.7) to describe quarter-to-quarter fluctuations in capital or
investment. Instead, we treat capital as exogenous and, for tractability, let the movements
of log investment around its steady-state value be a random walk. Thus we have
(3.10) ie = gk + -1 + €,
where g; > 0 is the average growth rate of capital, E¢_ie; = 0, and E(e}) = 02;. In (3.10)
and below, lower-case letters denote logarithms of variables.

It would be standard practice to complete our specification of technology with the usual

log-linear law for capital accumulation,

(3.100)  kear = ke + (o i

along with a law of motion for the (log) technology shock a;. But since we are treating
capital movements as exogenous, and since leisure does not appear in the household’s utility
function, the “fexible-price” or “capacity” level of log output, g, = a; + aky, is exogenous

in our setup. It makes sense therefore to make assumptions directly about the 7, process,

instead of its two components. By doing so we lose the connection between investment and

11



capacity output implied by (3.10a), but this does not seems a serious omission for purposes
of business cycle analysis because of the minor contribution that investment makes to the
existing capital stock during a typical business cycle. We assume that 7, follows an AR(1)
process:
(3.11) Y =¢ + py¥i—1 T €y
where |pg| < 1, and ey, ~ N(0,02,), Er_1e,, = 0.12

Define the nominal interest rate as Ry = 74+ E¢Apry1, where Apyy1 = log(P4,/F*). Then

(3.5), (3.8), (3.11) and the economy’s resource constraint imply (after log-linearization)

(3.12) Y = By — U(S_:%)(Rt — EyApeyy — ) + 0(53)(% — Byweyr).
where the superscript ss denotes steady-state value. We assume that the preference shock
wy is an AR(1) process with AR parameter |p,| < 1. Then if we define v, = o{1 — py)wy, it
is the case that
(3.13) vy = PuUt-1 + €,
and so (3.12) becomes:
(3.14) v = Eeyer1 — 0(Se) (R — Bibpey1 —7) + (5o ),
which is like the optimizing IS functions of Kerr and King (1996), Woodford (1996), and
McCallum and Nelson (1997).

Let m; — p, denote the logarithm of (M,/P;*). Then log-linearizing (3.6), we have (up to

a constant)

}rl!

(315) my — Pt = (U'T)_l(cu )yt - (07)‘1(5:! )zt - (’YR”)_](Rt o Rss) + W_I(Xt - wt)a

12 Iy our empirical work we use a measure of 7, (described in Section 4) that grows over time, but in
stochastic simulations we adopt the standard practice of abstracting from this growth.

12



where R* = r* 4+ (Ap)*. This money demand function has scale (consumption) elasticity

(o) ! and (annualized) interest semi-elasticity —0.25(vR*)™".

We permit the shocks w;
and Y, to be arbitrarily correlated; hence, it is simpler to define the composite disturbance

ne = ¥ xt — w;), and make assumptions directly about 7;. Then (3.15) may be written:

(3.16) me — pe = (07) 7 (G )ye — (o) (&)t — (7R*) 1 (Re — R*) + e,

and we assume 7, is AR(1):

(3.17) Nt = PpTe-1 + U,

where |p,| < 1, and w, ~ N(0,02), E,_ju; = 0. Since we have allowed u, and e, to be
correlated, we may write the latter as

(3.18) €t = Yylly + Eut,

where ey ~ N(0,02), E;_184 = 0, and FE,(ue,) = 0. Thus the aggregate demand block of

our model consists of the behavioral equations (3.14) and (3.16), together with (3.10) and

the laws of motion (3.11), (3.13), (3.17), and (3.18).

13



4. Price Level Adjustment

In this section we develop the particular model of individual and aggregate price adjust-
ments that will be utilized below. For a typical producer, let P, represent the value of p; - -
its output price in log terms - - that would be optimal in period ¢ if there were no nominal
frictions, and let 7, be the corresponding level of (log) output y;, which we will for shorthand
refer to as “capacity” output. The producer faces a demand curve of the form
(4.1) v =yt — 0(pe — 1),
where y and p{' are indices of aggregate values of y; and p,, these being appropriate averages
of the values relevant for the individual producers.’* From (4.1) we note that
(4.2) ye — Gp = 6B, — po).-

Perhaps the most widely used model of gradual price adjustment at present is the Calvo-
Rotemberg model, which is justified by Rotemberg (1987) as follows. Although P, would be
charged in t by the typical firm if there were no adjustment costs, in the presence of such
costs (assumed quadratic) the producer will instead choose p; to minimize
(4.3) E, Y20 B(Peas — Brys)? + e1(Pees — Pevi-1)’],
where ¢; > 0 reflects the cost of price changes in relation to the opportunity cost of setting
a price different from B,. From (4.3) one can find the first-order optimality condition and

rearrange to obtain the relation

(4.4) Apy = BEAD iy — (1/e1)(pe — Pe)-

13 Thys pp = U-oi (i)} 2]/ =8 and y = [fol yy (1) 1/034]9/0-1) with 8 > 1, where p,(i} and y,(¢)
pertain to producer i, as in Dixit and Stiglitz (1977). In the text, the indices are suppressed for the sake of
notational simplicity.

14



Then using (4.2), we have for the typical producer

(4.5) Apy = BEApra + (0/c1)(ve — Ty)-

Assuming symmetry across firms, (4.5) can be used for aggregative analysis. Both Rotemberg
(1987) and Roberts (1995) show that an indistinguishable relation is implied by Calvo’s
(1983) model that emphasizes staggered setting of “contract” prices to prevail until a new
price-change opportunity arrives, with probabilities of these arrivals being constant and
exogenous. Also, Roberts (1995) shows that the two-period version of Taylor’s (1980) well-
known model of staggered wage contracts gives a relation that is basically similar.

In what follows, consequently, we shall utilize a quarterly version of Roberts’ formulation
of the Calvo-Rotemberg model in one variant of our macroeconomic system. There are,
however, two theoretical drawbacks to this model. First, the assumed quadratic cost of
changing prices is rather unattractive theoretically. One reason is that one might expect the
magnitude of price-change costs to be independent of the size of the change, especially if
these are to be interpreted as literal resource costs of preparing new price lists, etc. More
basically, however, it seems somewhat undesirable to emphasize costs of changing prices,
which are rather nebulous, while neglecting the costs of changes in output rates, which are
more concrete and arguably quite substantial.!* Second, as is shown below, the Calvo-
Rotemberg model does not satisfy the natural-rate hypothesis.'®

Accordingly, let us consider a reformulated setup in which the producer chooses p; to

14 Onp this topic see Gordon (1990, p. 1146).

15 Empirically, it has been suggested that the model does not imply as much persistence of inflation rates
as exists in the U.S. data. On this see Ball (1994), Fuhrer and Moore (1995), and Nelson (1998).

15



minimize (4.6) rather than (4.3):

(4.6) By Y0 8 (prss — Ber ;) + cafers — i)’

Here §j; = i — T,, S0 we are assuming that it is costly for a producer to alter his output rate,
relative to capacity, from its previous value. The reason for using (Yo4j — Trj—1)° rather than
(Yerj — Ye+j—1)° is that changes in capacity stem primarily from technological improvements
or capital installations,'® neither of which give rise to changes in the labor force needed
to produce F, - - but it is labor-force changes that provide the primary rationale for the
presumption that output changes are costly.”” Neither (§iry; — Jet-1)" nor (ge+; — Yesj1)°
is entirely appropriate, perhaps, but the former seems somewhat preferable theoretically - -
and it gives rise to a tidy, tractable model, as will be seen shortly. Another feature of (4.6)
to be noted is that the presence of E,_, before the summation sign implies that p, is chosen
before the producer knows about demand conditions during ¢, i.e., pe s predetermined in
each period.’® Then on the basis of the prevailing p;, output in 1 is taken to be demand
determined. Labor-leisure trade-offs are assumed relevant for the determination of %,, but
not for temporary departures of g from %, This is in accordance with the “installment
payment” nature of current wages, as emphasized by Hall (1980).

Next we can define fi = p; — P, and, in light of relation (4.2), can rewrite (4.6) as

(4.7) Ei 1332, B[B7y; + c(Devs — Pe+i-1)7],

16 There may in actuality be installation costs for new capital goods but if so this can in principle be
taken account of in the IS portion of the model, not the price-setting portion.

17 Models with quadratic costs of changing employment appear frequently in Sargent (1979).

18 This is our assumption regarding price stickiness per se. Implicitly, it embodies the assumption that
sellers’ costs of changing prices are prohibitive within periods but negligible between periods.

16



where now ¢ > 0 is the cost of output “gap” changes in relation to departures of p, from ,.
It might appear that c8? should appear in (4.7) where ¢ does, but §? can be absorbed into
¢ (and indeed this is entirely consistent with a symmetric treatment of the two terms). To

minimize (4.7), the relevant first order condition is

(4.8) Ey [Py + (Pt — Pr—1) — BB — )] =0
or
(4.9) Ei1pr = a1 + ofEi_ 1P,

where a = ¢/(1+c+cf3). Then since this relation in effect involves only the single variable f,
we can see that its MSV1? solution will be of the simple form E;_15; = ¢f;_1, with Fy_ 141 =
E,_16P, = ¢*P;_1. Substitution into equation (4.9) gives ¢pr—1 = afe—1+aF¢* i1, so ¢ must
satisfy

(4.10) afp? —d+a=0.

Thus the MSV solution for ¢ is

(4.11) ¢ = [l —1—4a28]/2a8.

From the definition of @, we know that 40?8 < 1 so ¢ in (4.11) is real. With 0 < 8 <1, we
have ¢ > «, so the forward-looking objective increases the inertia of Py . Also, it is the case

that ¢ lies in the interval (0,1).%0

19 MSV stands for minimal-state-variable. Thus we are adopting the bubble-free solution, in the manner
outlined by McCallum (1983).

20 Ty show that 4028 < 1, it suffices to show that (14+3)2 > 43. But that is equivalent to 1+28+ 3% > 483.
Then subtracting 43 from each side we have 1 — 23+ 3% > 0 which is certainly true since the left hand side
is (1 — B)2. Next, that ¢ > 0 is clear from inspection of (4.11), given that 0 < 40283 < 1. To see that ¢ < 1,
note that this is the same as 1 — /1 — 4a?3 < 2a/3 which reduces to a(1+3) < 1. Since 1/a = (1/¢)+1+3,
the last inequality holds.
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In any event, we have developed a price adjustment rule of the form p, — Fy_1p, =
¢{pt-1 — P;-1)- Thus by simple rearrangement we can write
(4.12) P — -1 = (1 = ) Beo1 — Pr—1) + Ero1(Be — Pr1)s
which can be seen to be equivalent to the price-adjustment formula that was termed the
“P_bar model” by McCallum (1994). This model was developed and utilized by Herschel
Grossman, Robert Barro, Michael Mussa, and McCallum in the 1970s and early 1980s; for
references, see McCallum (1994, pp. 251-252).

An important feature of the model, not noted in previous work, is that (4.2) permits the
MSV solution E;_1D: = @11 to be alternatively expressible as
(4.13) By 19 = PYe-1-
Thus in analytical or numerical solutions of a macro model that includes the P-bar price
adjustment theory, (4.13) can be included as the relation that governs price adjustment be-
havior. From the perspective of an undetermined-coefficients solution procedure, (4.13) fails
to provide conditions relating to the coefficients on current shocks in the solution expression
for i, (or for y; given 7,). But these are compensated by the restriction that p; is prede-
termined and thus the shock coefficients in its solution equation are zeros. Thus, with this
approach, the variable P, need not be included in the analysis at all!

To illustrate the solution approach, suppose only for this paragraph that monetary policy
was conducted in a manner that leads nominal income, x; in log terms, to behave as follows:
(4.14) Az = YvAT 1+ &,

where 0 < % < 1, and & is white noise. Then one could consider the system consisting
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of (4.13), (4.14), and the identity Az, = Ap; + y: — Y11, Where we temporarily adopt the
assumption that AF, = 0. How does inflation Ap; behave in this system? By construction,
the MSV solution will be of the form

(4.15) Apy = 1Az 1 + Gr1aye-1 + P13&e

(4.186) Y = Pl 1 + Pootie-1 + P3&y,

in which we know a priori that ¢13 = ¢ = 0 and ¢gz = ¢. Substitution into (4.14) gives
(4.17) P11ATi-1 + PYi-1 + P23t — Ye-1 = LATi-1 + &1

Thus ¢11 = ¥, p1a+¢d—1 =0, and ¢p3 = 1 are implied by undetermined-coefficient reasoning,
which completes the solution.

It may also be noted that (4.13) provides the basis for an extremely simple proof that the
P-bar model satisfies the strict version of the natural rate hypothesis. This version states that
E7. = 0, for any monetary policy, even one with accelerating inflation. But the application
of the unconditional expectation operator to each side of (4.13) yields Eg; = ¢£7, which
with ¢ > 0 implies that E£F, = 0. With the Calvo-Rotemberg model (4.5), by contrast,
we have E(y, — 7,) = (c1/0)E(Ape — BEApry). Using Roberts’ (1995) approximation of
B = 1, we have E(y, — §,) = (&1/0)E(Ap, — EApyy), so any policy that yields on average
an increasing or decreasing inflation rate will keep £ # 0.2! Indeed, if 8 < 1 is retained,
then even a constant EAp;, # 0 will keep B, # 0.

In implementing our model - - indeed, any model with gradual price adjustment - - a very

21 1t is interesting to note that the Calvo-Rotemberg-Taylor model implies that an increasing inflation
rate will reduce J; whereas a typical NAIRU model implies that an increasing inflation rate will raise ¥;
- - permanently. Both implications seem theoretically unattractive, although the former is perhaps less
implausible (and certainly less dangerous from a policy perspective).
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important issue is how to measure g, and therefore ;. Much of the policy-rule literature,
including Taylor (1983) and Rotemberg and Woodford (1997), simply uses deviations from
a fitted linear time trend for , thereby implicitly estimating %, as the fitted trend. This
seems unsatisfactory both practically and in principle. Practically, one major difficulty is
that the resulting measure can be excessively sensitive to the sample period used in fitting
the trend. To illustrate this sensitivity, Figure 1 plots §; values for the U.S. over 1980-1996
based on trends fitted (i) to a 1980-1996 sample period and (ii) to the 1955-1996 period that
we use below. Clearly, they give markedly different pictures of the behavior of §; over the
period 1990-1996. And neither of them reflects the widely-held belief that output has been
unusually high relative to capacity in 1995 and 1996.

In principle, the fitted trend method - - even if the detrending is done by a polynomial
trend or the Hodrick-Prescott filter - - seems inappropriate because it does not properly
reflect the influence of technology shocks. Suppose that the production function is
(4.18) ¥ = og + oyt + ek, + (1 — a)ng + ay,
where k, and n, are logs of capital and labor input, while a, is a technology shock. Then if 77
is the value of n, under flexible prices, J, equals ag+ ot +ak; + (1 — @) + a; and so reflects
the realization of a;. But the fitted-trend methods do so either not at all or inadequately.

The approach that we use below relies on the observation that (4.18) implies
(4.19) Je =y~ G = (1 - a)(ne — 7).

Of course this requires that we have some measure of 7;. In general, it will depend upon

households’ labor supply behavior as well as producers’ demand, but for the present study
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Figure 1

Measures of Detrended Output, 1980-1996
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we are adopting the simplifying assumption that labor supply is inelastic - - i.e., that 7, is
a constant. Then variations in ; will be proportional to variations in n;, the hours worked
per household under sticky prices. We assume that this actual employment level is demand-
determined in each period.?? The measure that we use for n; is total manhours employed
in nonagricultural private industry divided by the civilian labor force. A plot of the implied

%, using & = 0.3, is shown in Figure 2, together with the fitted trend value based on the

1955-1996 sample period.

22 Thys, as stated above, we are assuming that current-period wages are irrelevant for determination of
current-period employment.
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Figure 2

Output Gap Measures
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5. Model Estimation
We estimate our model by instrumental variables. Some of the system’s equations are

estimated on a single-equation basis, but the two aggregate demand relations are estimated

jointly:
(5.1) Yt = bo + Byer1 — 0(8)(Re — EeApiir) + (552)w
(5.2) My — Py = Co + (U’Y)_l(%’-%)yt - (0’7)'](%’:)% — (YR*) Y(Re) + e

Here (5.1) and (5.2) are the IS and LM equations (3.14) and (3.16), allowing for constant
terms. We estimate these equations jointly to take into account the cross-equation restriction
(the appearance of the parameter o in both equations), as well as possible cross-correlation
between v; and 7, via (3.18).

One advantage of the instrumental variables procedure is that, if the orthogonality con-
ditions involving the instruments and the model errors are valid, parameter estimation is
consistent under quite general assumptions about the serial correlation of the disturbances,
and the precise form of the serial correlation does not have to be specified in estimation.
To benefit from this advantage, we do not impose, in our estimation of (3.1) and (5.2), the
AR(1) assumptions about the v, and 7, processes that we make in our general equilibrium
model (in (3.13) and (3.17)).

Equations (5.1) and (5.2) contain the expectational variables Eyyr41 and ExApyy;. We
proceed with estimation of the system by replacing these expected values with their corre-
sponding realized values, thereby introducing expectational errors such as (Y41 — Feyes1)

into the equations’ composite disturbances. To obtain consistent estimates, we instrument
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for all the variables in (5.1) and (5.2). Because of the likely serial correlation in the error
terms of the first two equations, lagged endogenous variables are not admissible instruments;
only strictly exogenous variables are legitimate candidates. We therefore use as instruments
a constant, a time trend, lags one and two of Agdef; (i.e. the log-change in quarterly defense
spending), plus the dummy variables di; and dy;, which take the value unity in 1979:4-1982:2
and 1979:4-1996:4 respectively.

Money is measured by the St. Louis monetary base, new definition, K; is the Treasury
bill rate (measured in quarterly fractional units) and p, is the log GDP deflator, defined as
z, — ;. The income variables x; and y; are logs of nominal and real GDP, with values of
GNP spliced on for observations prior to 1959:1. Also, i is gross private fixed investment.

All data except interest rates are seasonally adjusted. We fix f,,,: at 0.81, —){’T’, at 0.19, and

R*¢ at 0.014. The estimates of equations (5.1) and (5.2) are then:

(5.3) ;ij} = —0.973 -+ Etyt+1 - 0203(10,::)(Rt — EtApt+1).
(0.129) (0.017)

R’ = 0.999, SEE = 0.0098, DW = 1.35.

(5.4) m — p, = —0.007 + 0.753( X5 ) (v — (£5)ie) — 0.152(R**) "1 (Ry).
(0.001) (0.015)

R = 0.942, SEE = 0.0617, DW = 0.14.

The estimates imply an intertemporal elasticity of substitution of ¢ = 0.20 (standard

error 0.018) and an interest elasticity of money demand of —v~1 = —0.15 (s.e. 0.015). In
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turn, these estimates imply a consumption elasticity of money demand of (cy)™! = 0.75. The
reported standard errors need to be interpreted with caution both because of the residual
autocorrelation and because of the trending behavior of the y, and (m, — p;) series.”®

For the variant of our model that uses the P-bar price-setting specification, aggregate
supply behavior is represented compactly by equation (4.13). As in Section 4, we measure
% by (1 — a) times (n, — ), where 7 is the mean of log hours, and o = 0.3. Equation (4.13)
implies that the expectational error (J: — @g- 1) should be white noise, but in preliminary
estimation of ¢ we found substantial serial correlation in the estimated residuals. We there-
fore decided to correct for first-order serjal correlation in our estimation of ¢, although such
serial correlation is ignored both in our theoretical model and in the stochastic simulations of
that model in Section 7 below.?* Estimation by instrumental variables, with the instruments
being those used for (5.1)-(5.2) plus lags two to four of %, produces:
(5.5) Ey 1jir = 0.891F:1

(0.063)

& = 0.956, SEE = 0.0047, DW = 1.95, estimated AR(1) correction parameter = 0.59.%%

23 We assume that (m,—p;—(07)! (- #zt)) is a stationary process. It is common in the empirical
literature instead to estimate money demand functions such as (3.16) using cointegration methods, with
m; — Py, Ys, and R, modelled as 1{1) series. We do not do so because treating H; as I(1) is incompatible with
our theoretical model unless Ap; is I(1). It is also inconsistent with most estimated policy rules, including
our own specification (5.10) below, which model nominal interest rates as stationary within each policy
regime.

We also experimented with a first-differenced money demand function, finding it produced a poorer fit
and less plausible parameter estimates than (5.4).

24 Our need to correct for serial correlation indicates that the first-order dynamics of the output gap
implied by (4.13) are rejected by the data. In future work we hope to generalize the P-bar specification to
allow for more realistic dynamics.
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Our measure of (log) potential output 7, is obtained by adding our estimated y; measure
to y;. We found that 7, is well described as a random walk (py = 1.0 in equation (3.11)).%
Subject to that restriction, the constant (or “drift”) term in equation (3.11) becomes inter-
pretable as the long-run growth rate of capacity output.?” For the investment-output ratio
to be a mean-reverting series, the drift terms in (3.10) and (3.11) must be identical, and we
therefore estimate those equations jointly subject to that restriction:
(5.6) Ay = 0.0073
(0.0052)
SEE = 0.0250, DW = 0.99,
(5.7) Ay, = 0.0073
(0.0052)
SEE = 0.0070, DW = 2.00,
implying g, = ¢ = 0.0073, ¢%= (0.0250)2, and o2,= (0.0070). The Durbin Watson statistic
for equation (5.6) indicates strong serial correlation in the estimated residuals, contrary to

the assumptions of our model, and suggests some deficiencies in the dynamic specification

of the latter.

25 Equation (5.5) is based on the assumption that §; = ¢f;-1 + &, with €, following €y = pe€yr—1 + €1,
with €, white noise. By substitution, §; = (@ + pe)Je—1 — ¢pe¥ii—2 + €. The parameters ¢ and p. appear
symmetrically in this expression and thus cannot be individually identified without further information; to
identify them, we assume that ¢ is the larger of the two parameters.

26 The behavior of our empirical measure of capacity output therefore supports the analytical model of
Clarida, Gali, and Gertler {1997b), in which it is assumed that 7, follows a random walk.

27 And also as the long-run growth rate of actual output, since the output gap is assumed to average zero
over our sample period.
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To simulate cur model, we need to have values for the AR parameters and innovation

variances in equations (3.13) and (3.17). Fitting an AR(1) model by least squares to the
+

estimated residuals, 7;, of equations (5.3) and (5.4) produces

(5.8) 5, = 0.32335,_,, SEE = 0.0114,
(0.073)

(5.9) , = 0.93467,_1, SEE = 0.0225,
(0.028)

so that p, = 0.3233, p, = 0.9346, o2, = (0.0114)% and o2 = (0.0225)>. The residuals of
equation (5.9) are virtually uncorrelated with those of (5.10), leading us to set ¥, = 0 and
o2 = (0.0114)? in (3.18).

Finally, we turn to the policy rule. To describe actual policy behavior, we use equation
(2.3), although our simulations in the next section will consider alternative, counterfactual
policy rules. Since we specify the error term in (2.3) as an innovation, lagged endogenous
variables are legitimate instruments in the estimation of the equation. Our instrument list
for this equation consists of a constant, a time trend, dy, dos, ATy 1, ATy g, dae-1 - ATy 1,
dos_2 - ATy_g, Api_1, Aps.g, and ny_ 1.2 The resulting estimated rule is:

(5.10) R, = 0.103 + 0.866R_; + 0.023E; 13 + 0.117E, 1Az,
(0.035) (0.049) (0.005) (0.034)
+0.002dy; + 0.064dy, - By 142,

(0.001)  (0.031)

8 As before, we use 0.7n, to measure (up to a constant) the output gap ¥
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R’ = 0.939, SEE = 0.0017, DW = 1.99.

The large coefficient on the lagged dependent variable suggests a high degree of interest
rate smoothing. The coefficient on the interactive dummy dy - £y 1Az, indicates a substan-
tial permanent increase in the restrictiveness of monetary policy from 1979. After 1979, a
1 percent increase in expected nominal income growth leads to a steady-state increase in
the nominal interest rate of 1.35 percentage points, compared to only 0.87 points prior to
1979. This result is similar to the post-1979 increase in the coefficient on expected inflation
in Clarida, Gali and Gertler’s (1997a) estimates of the Taylor rule. The estimated intercept
shift in the 1979-82 period is statistically significant and amounts to an upward shift‘ of 0.8
percentage points when the interest rate is measured in annualized percentage units.

In the variant of our model that includes the Calvo-Rotemberg price-setting specification,
the aggregate supply equation (4.5) appears. As is conventional, we set J = 0.99. The
remaining coefficient in the equation is the ratio (#/c;). Using annual data, Roberts (1995)
estimates this coefficient to be about 0.08. His version of equation (4.5), however, contained
an additive disturbance term. Our equation (4.5), by contrast, has no explicit shock term;
the randomness in inflation comes only from the stochastic behavior of the right hand side
variables E;Ap;,; and ;. As a result, a much higher value of (8/c;) than Roberts’ estimate,
such as 0.30, is required to produce plausible inflation variability, for any of the policy
rules that we consider. Thus, 0.30 is the value of (#/c;) that we employ. With 8, which is
interpretable as the inverse of the aggregate markup under the aggregation scheme that we

have used, set to 6, a value of (f/c;) = 0.30 implies ¢; = 20.
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6. Simulation Results: 1

In this section we report simulation results for the variant of our macroeconomic model
that uses the Calvo-Rotemberg specification of price adjustment behavior. In calculating
these results, as well as those in the next section, we have made one change in the aggregate
demand portion of our model, replacing Eyy;41 with E;_13:1 on the right-hand side of the
expectational IS function (5.3). This change, which represents a modification of the same
basic type as those employed by Rotemberg and Woodford (1997), but less severe, produces
more plausible values for the variability of inflation in all our simulations (for both the
specifications of aggregate supply that we contemplate).?®

We begin with simulations involving versions of the Taylor rule, some of them suggested
by the conference organizer to facilitate comparison across papers by different researchers.
In particular, Table 1 includes results for various values of the policy parameters 1, u9, and
ti3 in a rule of the form
(6.1) R, = po + 1 Apy + pafe + pa By,
where g is in principle set so as to deliver the chosen average inflation rate and where policy
responses are unrealistically assumed to reflect contemporaneous responses to the state of
the economy. In the original Taylor rule gz = 0 but we have also considered cases with

ps = 1 (to reflect interest rate smoothing by the Fed) and p3 = 1.2 (to investigate a case

recommended by Rotemberg and Woodford [1998]). The simulation results reported are

29 This is particularly important in the context of the P-bar variant, where the two forward-looking
components of the model interact in an overly sensitive way. In subsequent work, we plan to explore
different modifications of our IS function, as suggested by the results of Campbell and Mankiw (1989) and
Fuhrer (1997).
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standard deviations (in annualized percentage units) of inflation Ap,, the output gap #;, and
the interest rate ;.20 In these simulations constant terms are not included, so the standard
deviation of Ap, is interpretable as the root-mean-square deviation from the inflation target
value 7%, as is also the case for ;. The values reported are mean values over 100 replications,
with each simulation being for a sample period of 200 quarters.?! In solving the model, we
use the algorithm of Paul Klein (1997), which builds upon that in King and Watson (1995).

Examination of the results in Table 1 shows that they suggest that, for a given value of
the smoothing parameter u3, stronger responses to Ap, or §; - - i.e., higher values of y; or
iz - - lead invariably to lower standard deviations of that variable. Indeed, higher values
of uy or pg lead in most cases to lower standard deviations of both Ap; and 7 (basically
because of the nature of the price adjustment equation). This suggests that if there were
no concern for variability of the interest rate, the central bank could achieve extremely
good macroeconomic performance merely by responding very strongly to current departures
of inflation and output from their target values. In our opinion, however, that would be
a highly unrealistic conclusion to draw; the conduct of monetary policy by actual central
banks is much more difficult than that. But such a conclusion tends to be obtained from
exercises in which the central bank is assumed to possess knowledge of Ap, and §; when
setting its instrument value (#,; in this case) for period t. In other words, the policy rule

(6.1) does not represent an operational specification.

30 For the purpose of comparison, the actual historical values over 1955-1996 are 2.41, 2.23, and 2.80.

31 We ran simulations of 253 periods and ignored the initial 53, so as to abstract from start-up departures
from stochastic steady-state conditions.
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Table 1
Simulation Results with Calvo-Rotemberg variant
Taylor Rule, Contemporaneous Response
Reported figures are standard deviations of
Aps, ¥ R, respectively (percent per annum)

Values of Value of i,
M1, M3

0.0 0.5 1.0 3.0 10.0
1.5,0.0 2.01 1.96 1.93 1.78 1.40
1.15 1.12 1.10 1.03 0.82
3.02 3.94 3.98 5.72 10.31
3.0, 0.0 1.78 1.78 1.72 1.60 1.29
1.03 1.03 1.00 0.94 0.77
5.34 5.84 6.13 7.59 11.53
10.0, 0.0 1.24 1.20 1.19 1.14 0.98
0.75 0.73 0.72 0.69 0.60
12.35 12.33 12.63 13.49 15.74
1.2,1.0 1.32 1.25 1.19 1.10 0.97
1.13 1.11 1.08 1.02 0.85
2.38 2.94 3.41 5.42 10.63
3.0, 1.0 1.14 1.11 1.09" 0.98 0.82
1.04 1.03 1.03' 0.97 0.81
4,51 4.95 5.14" 6.80 10.00
10.0, 1.0 0.85 0.83 0.83 0.78 0.65
0.86 0.85 0.85 0.82 0.71
9.32 951 9.90 10.71 13.40
1.2, 1.3 1.31° 1.32 1.36 1.54 1.64
1.12° 1.11 1.11 1.05 0.94
2.10% 1.64 2.03 5.01 10.51

1. u; = 0.8, not 1.0

2. 1w =10.06, not 0.0
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Because of this type of concern, the conference organizer suggested that results also
be obtained for a specification like {6.1) but with inflation and the output gap lagged one
quarter. Thus we next conduct simulations with
(6.2) Ry = po + p1Api—1 + pote 1 + paBRe
as the policy rule, and report results in Table 2.

For the cases where u; = 1.5 and there is no interest rate smoothing (uz = 0), the
standard deviation of inflation is virtually identical in Table 2 to the corresponding rules
in Table 1. As in Table 1, rules with smoothing (13 = 1.0) deliver better results with
respect to both inflation and output gap variability than the corresponding rules without
smoothing. However, while Table 1 indicated that, with smoothing, the standard deviation
of inflation could be reduced to values as low as 0.65, the lowest standard deviation of
inflation in Table 2 is 1.00. It is also clear from Table 2 that responding to lagged instead
of contemporaneous data reduces the policy-makers’ ability to stabilize output: the output
gap standard deviation ranges from 0.60 to 1.15 in Table 1, while in Table 2 it ranges from
1.16 to 1.34.

Table 1 suggested that there were benefits in terms of both inflation and output gap
variability from high values of gy or gy, such as 10.0. In Table 2, on the other hand, these
benefits are less clear. Whereas in Table 1, changing the output gap response coefficient p
from 3.0 to 10.0 unambiguously improved performance with respect to both inflation and
the output gap, in Table 2 this increase in po delivers poorer performance on output gap

variability and, in most cases with interest rate smoothing, on inflation variability too. Rai-
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Table 2
Simulation Results with Calvo-Rotemberg variant
Taylor Rule, Lagged Response
Reported figures are standard deviations of

Aps, ¥, R, respectively (percent per annum)

Values of Value of p;
K1, U3

0.0 0.5 1.0 3.0 10.0
1.5, 0.0 1.91 1.88 1.84 1.68 1.37
1.21 1.22 1.21 1.19 1.19
2.87 3.43 3.94 6.06 13.86
3.0, 0.0 1.71 1.68 1.66 1.54 131
1.19 1.19 1.19 1.17 1.19
5.14 5.62 6.17 8.12 15.79
10.0, 0.0 1.33 1.31 1.29 1.26 1.18
1.19 1.18 1.18 1.20 1.26
13.26 13.66 14.10 16.20 24.28
1.2, 1.0 1.33 1.27 1.23 1.20 1.25
1.18 1.18 1.17 1.18 1.26
2.27 2.78 3.29 5.51 12.76
3.0, 1.0 1.19 1.17 1.15" 1.10 1.11
1.16 1.17 1.17" 1.17 1.25
4.24 4.65 4.96' 6.95 13.50
10.0, 1.0 1.03 1.04 1.03 1.01 1.00
1.17 1.18 1.19 1.20 1.27
9.50 9.98 10.23 11.78 17.53
1.2, 1.3 1.34° 1.34 1.40 1.62 1.88
1.18° 1.16 1.18 1.19 1.34
2.03% 2.49 3.04 5.19 12.61

1. 1, =0.8, not 1.0

2. up =0.06, not 0.0
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sing i1 from 3.0 to 10.0 does improve inflation performance, just as it did in Table 1, but,
in contrast to Table 1, it fails to improve output gap performance appreciably.

While the results in Table 2 indicate that there is some deterioration in policy perfor-
mance with rule (6.2) instead of (6.1), the deterioration is not particularly drastic, and the
rules still deliver dynamically stable results with large values of p; and/or ps. That finding
comes as a surprise to us, but having obtained it we believe that it can be understood as
follows. There are two properties of the model at hand that defuse the tendency, mentioned
in McCallum (1997, Section 6), for explosive instrument instability to arise when strong
feedback responses are based on lagged variables. First, the values of two parameters crucial
for the transmission of policy actions to Ap; are quite small; these are the slope of the “IS

function” with respect to the real interest rate (o« £ in (3.12))3? and the slope of the price

2| [r3]

adjustment relation (#/c, in (4.5)). The smallness of the former implies that aggregate de-
mand responses to changes in R; are small, and the latter makes aggregate demand changes
have small effects on inflation. Second, the Calvo-Rotemberg version of our model is one in
which there is no autoregressive structure apart from what is contained in the disturbance
terms and the policy rule. The model, that is, is entirely forward looking. We conjecture
that models with backward looking IS and price adjustment specifications would possess

much more of a tendency to generate dynamic instability for large values of gy and py.*

32 Our estimated value is less than 21—0 of the value used by Rotemberg and Woodford (1997, 1998), for
example.

33 Even in the present model we found instability to prevail if 4, was raised to 1000 (!) and to prevail at
lower values of u; if o is increased sharply. With contemporaneous feedback, there is no instability even in
these cases.
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Another operationality concern expressed by McCallum (1997) involves a lack of knowl-
edge about 7,, the market-clearing value of ;. Suppose, then, that the central bank believes
that a fitted linear trend line represents 7,, while in fact our measure is correct. Then the
central bank would use detrended y; instead of §; in its policy rule and would measure output
gap fluctuations in relation to this fitted trend. To get an idea of the implications, we redo
the Table 1 case with u; = 1.2, uy = 1.0, and pz = 1.0 under this assumption. Then the
standard deviation of Ap; turns out to be 3.41 instead of 1.19, according to our model, and
the central bank would believe that the standard deviation of §; was 3.91 (although it would
actually be 1.09 - - almost the same as in Table 1). Also, the standard deviation of R; would
rise from 3.41 to 4.77.3

One issue mentioned in our introduction is the stability and desirability of nominal income
targeting. To determine whether effects on Ap; and §; would be much different if targets
were set for Az, = Ap; + Ay, we have conducted simulations using the rule
(6-3) Ry = po + 1Az + pa Ry,
and also with Ax;_; replacing Az, for g3 = 0 and g3 = 1.0. These results are reported in
Table 3. There we see that nominal income targeting with an interest instrument performs
reasonably well. It permits considerably more variability of inflation than does the Taylor
rule, but tends to stabilize output (in relation to g,) almost as well. It should be noted that
the good performance in terms of §; occurs despite the absence of that variable or 7, in the

policy rule. An advantage of nominal income (growth rate) targeting is that it does not

31 These results are generated by replacing §; with y, in (6.1), re-solving the model, and then looking at
simulation results for Apy, y:, and R,.
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Table 3

Simulation Results with Calvo-Rotemberg variant
Nominal Income Target, Interest Rate Instrument
Reported figures are standard deviations of
Ap:., ¥, Ax,, R, respectively (percent per annum)

Contemporaneous Response Lagged Response
Value of L, Value of s

Value of 0.0 1.0 0.0 1.0
0.10 1.96 1.96
1.22 1.23

6.18 6.29

0.65 0.63

0.50 1.85 1.84
1.13 1.19

5.60 6.22

2.80 2.78

1.00 1.76 1.79
1.05 1.18

5.11 6.35

5.11 5.17

1.50 2.44 1.71 2.48 1.75
1.11 0.99 1.25 1.18

5.14 4.70 5.23 6.60

7.71 7.06 10.13 7.55

3.00 2.50 1.63 2.53 1.70
1.00 0.87 1.31 1.19

4.17 3.82 7.69 7.17
12,52 10.18 23.07 14.33

10.00 1.92 1.49 all 2.00
0.69 0.65 variables 2.25
2.00 2.05 explosive 18.16
19.96 17.33 93.84
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require the central bank to measure capacity output. More interest rate variability occurs
for most parameter values, but such variability is quite low (and the Ap, and §; standard
deviations are reasonably small) when p; is assigned the small value of 0.1 with p3 = 1.0.

As in Table 2, for moderate values of the feedback coefficient there is a deterioration in
performance with respect to 7, variability, but little deterioration in Ap, variability, when
feedback is applied with a one-period lag, i.e. to the value of Az, rather than Az;. Another
similarity with Tables 1 and 2 is that making the feedback coefficient large (in this case,
increasing y; in (6.3) from 3.0 to 10.0) delivers an improvement in performance with respect
to §;, Ap:, and Az, variability (at the cost of increased R, volatility) when policy responds
to contemporaneous data, but not when policy responds to lagged information. In the latter
case, raising p; from 3.0 to 10.0 actually delivers instrument instability when there is no
interest rate smoothing. With smoothing, dynamic stability prevails for all variables, but the
standard deviations of %, Ap;, Az, and R, are all decidedly increased. Thus, Tables 2 and
3 are both supportive of the notion that assigning very high values to response coefficients
is counterproductive when policy can only respond to lagged information.

Next we retain nominal income as the target variable, but consider the use of Ab; - -
the growth rate of the monetary base - - as the instrument. In particular, we consider two
versions of McCallum’s rule (2.1), one with a “levels” target path zj' = z;!; + Az* and the
other with a “growth rate” target z;% = z,_; + Az*. Stochastic simulation results analogous
to those discussed above are presented in Table 4. There it will be seen that performance is

quite close to that in Table 3, where nominal income targeting is attempted with R, as the
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Table 4

Simulation Results with Calvo-Rotemberg variant
Nominal Income Target, Monetary Base Instrument
Reported figures are standard deviations of
Ap,, ¥+, AX,, R, respectively (percent per annum)

Value of A Levels target, x*! Growth-rate target, x*
in rule (2.1)
0.25 1.05 1.05
1.29 1.30
5.25 5.27
1.88 1.80
0.50 1.07 1.00
1.29 1.27
5.25 5.19
1.96 1.72
1.00 1.03 1.01
1.27 1.28
5.25 5.20
1.02 1.78
3.00 1.04 1.01
1.28 1.26
5.39 5.16
3.06 2.11
10.00 1.04 0.99
1.28 1.25
5.89 5.31
3.73 4.30
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instrument variable. Throughout Table 4, the variability of nominal income growth is about
the same as it is with the best of the lagged-response rules in Table 3; moreover, the vari-
ability of inflation is lower than it is Table 3, and is comparable to the values obtained in
Table 2 with the operational Taylor rule (6.2). In addition, there is no apparent tendency
for interest rate variability to increase sharply when the base is used.

A comparison of the levels-target and growth-rate target rule performances in Table 4
shows, somewhat surprisingly, that the results are little different, and, in particular, that
7, variability is not lower with the growth-rate specification. For both rule types, another
striking feature is how insensitive the variability of the nominal income growth rate is to
changes in the value of the response coefficient A.3% Presumably this is the case because
the parameter values estimated in Section 5 imply an extremely small response of aggregate
demand to real money balances (b; — p:).

It should be emphasized that the stochastic simulation exercises underlying Tables 1-
4 do not serve to bring out one aspect of operationality claimed by McCallum (1988) for
(2.1), namely, its non-dependence on the long-run average growth rate of base velocity.
That non-dependence, which is not possessed by most rules with base or reserve aggregate
instruments, is basically irrelevant for the stochastic simulations in which constant terms are

omitted. Thus the velocity-correction term in (2.1) could be omitted without any appreciable

35 The levels target results suggest that nominal income growth Az, variability is increasing in A; this
reflects the fact that, in the simulations, the levels target is a constant, so successful nominal income targeting
implies that x; is I(0). Az, is therefore I(—1), and hence will tend to be highly variable, the more so when
nominal income targeting is pursued vigorously (i.e., with high values of A). The standard deviation of the
level of nominal income in the simulations underlying the first column of Table 1 is decreasing in A, taking
the values 1.44, 1.35, 1.26, 1.15, and 1.10 for A\ = 0.25,0.50, 1.00,3.00, and 10.00 respectively.
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effect on the results of Table 4, which is most definitely not the case for the counterfactual
historical simulations reported in (e.g.) McCallum (1988, 1993). Accordingly, we plan to
include some simulations of this latter type in subsequent work.

7. Simulation Results: 11

In this section we report stochastic simulation results analogous to those of Tables 1-4
but now using the P-bar price adjustment relation. Table 5 gives standard deviations of
Apy, Uy, and R, for the same values of py, p2, and pj as those considered in Table 1, under
the assumption of contemporaneous feedback responses to Ap, and ;. Again it is the case
that an increase in u; (u3) reduces the variability of Ap, (#;), but it is not now the case that
increasing either p; or o tends to reduce the variability of both Ap, and #;. Instead, there
is & variability trade-off at work, with increases in pq often increasing the variability of Ap;.
The existence of interest rate smoothing, with u3z = 1, is helpful in most cases and is so to
a greater extent than in Table 1. Overall, the variability of Ap;, #:, and R, is considerably
greater than in Table 1. For #, its magnitude is much more realistic but for Ap, and Jor R,
it is somewhat excessive.

Table 6 is partly but not entirely analogous to Table 2, in which lagged values of Ap,
and 7; are used in rule {6.2). When such values are utilized, dynamically explosive results
are obtained for most parameter configurations. Consequently, Table 6 reports values for
feedback responses to the lagged value of §; but to the current value of Ap;. This modification
seems justifiable from an operationality perspective because Apy is a predetermined variable

in the P-bar variant of our model, so Ap; is in principle observable at the end of period £ —1.
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Table 5
Simulation Results with P-bar variant
Taylor Rule, Contemporaneous Response
Reported figures are standard deviations of
Ap,, ¥+, R, respectively (percent per annum)

Values of Value of i,
K1, M3

0.0 0.5 1.0 3.0 10.0
1.5,0.0 8.53 9.67 10.68 14.20 31.38
2.48 2.39 2.31 1.98 0.55

12.80 13.70 14.42 16.93 30.24

3.0, 0.0 2.88 3.13 3.37 4.51 12.74
251 2.43 2.34 2.15 0.78

8.64 8.83 9.01 10.01 19.75

10.0, 0.0 0.76 0.81 1.18 2.00 3.39
2.49 2.43 2.04 1.57 0.89

7.63 7.63 8.34 11.78 18.46

1.2, 1.0 3.61 3.71 4.14 6.72 19.00
2.51 2.42 2.24 1.88 0.44

5.32 5.68 5.86 7.17 13.86

3.0, 1.0 1.95 1.96 1.98 2.97 6.11
2.53 2.42 236 2.06 1.49

6.26 6.33 6.27' 7.14 10.10

10.0, 1.0 0.70 0.69 0.71 0.95 1.99
2.42 2.32 2.34 2.12 1.66

6.88 6.83 6.95 7.52 10.44

12,13 3.76° 3.74 4.10 6.51 12.61
2.51° 2.35 2.27 1.82 1.15

4.49? 4.65 4.98 6.02 8.72

1. u,=0.8, not 1.0

2. 1y = 0.06, not 0.0
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Table 6
Simulation Results with P-bar variant
Taylor Rule, Lagged Response to 5, Contemporaneous to Ap
Reported figures are standard deviations of
Ap,, ¥, R, respectively (percent per annum)

Values of Value of 1,
M1, H3

0.0 0.5 1.0 3.0 10.0
1.5, 0.0 8.53 9.92 11.23 16.15 29.51
2.48 2.42 2.35 2.09 1.59
12.80 13.92 14.88 18.52 28.78
3.0,00 2.88 3.25 3.54 5.23 11.08
2.51 2.53 2.44 2.35 2.08
8.64 9.04 9.13 10.18 13.78
10.0, 0.0 0.76 0.80 0.88 1.24 2.86
2.49 2.42 2.45 2.39 2.32
7.63 7.57 7.55 7.67 8.33
1.2,1.0 3.60 3.79 4.19 7.00 15.30
2.56 2.43 2.39 2.19 1.62
532 5.74 6.12 7.99 12.75
3.0, 1.0 1.95 1.95 2.07" 3.17 7.50
2.47 2.48 247" 2.39 2.09
6.16 6.31 6.43! 7.17 9.51
10.0, 1.0 0.69 0.69 0.75 1.01 2.45
2.44 2.44 2.51 2.39 2.30
6.83 6.80 7.01 6.95 7.50
12,13 all variables 3.75 all variables { all vaniables 13.68
explosive’ 2.50 explosive | explosive 1.68
4.81 10.79

1.1, =0.8, not 1.0

2. 1w = 0.06, not 0.0
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The resulting standard deviations are quite close to those of Table 5 for small and moderate
values of ¢y and pa, but are larger for high values of these feedback parameters. There is no
evident tendency toward dynamic instability, however, except in the “Rotemberg-Woodford”
cases with pu3 = 1.3.

Next we consider the effect of an incorrect belief by the central bank that a fitted trend
line represents 7, when in fact our measure is correct. With the P-bar price adjustment rela-
tion included, rather than the Calvo-Rotemberg version, this effect is considerably smaller.
Thus in the particular case mentioned in Section 6 - - i.e., with gy = 1.2, yy = 1.0 and
gz = 1.0 - - the Ap; and §, standard deviations increase only from 4.14 and 2.24 (respec-
tively) to 4.80 and 2.35. The reduction in this effect obtains, clearly, because the P-bar
specification makes g, very strongly related to §;_;. If the central bank responds more vig-
orously to its (incorrect) beliefs about i, however, the deleterious effect will be somewhat
larger. With ps = 3.0, for example,®® the standard deviations increase from 6.72 and 1.88
to 10.50 and 2.15.

With nominal income targeting and an interest instrument, the results with the P-bar
variant of our model are given in Table 7. There the results are much more favorable with p;
equal to 1.0 rather than zero, i.e., with interest smoothing. The ability of rule (6.3) to keep
Az, close to its target value is about the same as with the Calvo-Rotemberg variant, but
results in terms of the variability of Ap, (and to a lesser extent §;) are much less desirable.

Clearly, the dynamic relationship between Ap, and 4, is very different with these two price-

36 With u; and p3 as before,



Table 7

Simulation Results with P-bar variant

Nominal Income Target, Interest Rate Instrument

Reported figures are standard deviations of

Ap,, ¥ 1, AX, R, respectively (percent per annum)

Contemporaneous Response Lagged Response
Value of p3 Value of i3
Value of 0.0 1.0 0.0 1.0
0.10 7.46 7.51
2.07 2.10
8.50 8.56
1.77 1.72
0.50 4.36 4.67
2.27 2.19
5.85 6.13
4.07 3.72
1.00 27.65 2.97 38.87 3.56
1.77 2.24 1.73 2.21
28.62 4.58 3942 5.16
28.62 5.67 39.28 5.12
1.50 6.82 2.25 341
2.31 2.09 all variables 2.17
8.22 3.90 explosive 4.96
12.33 6.78 6.26
3.00 2.70 1.47
2.06 1.97 all variables all vanables
3.91 2,95 explosive explosive
11.75 9.54
10.00 0.98 0.96
1.67 1.64 all variables all variables
1.67 1.67 explosive explosive
16.71 15.77
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Table 8

Simulation Results with P-bar variant
Nominal Income Target, Monetary Base Instrument
Reported figures are standard deviations of
Ap,, ¥, AX,, R, respectively (percent per annum)

Value of A
in rule (2.1) Levels target, x*! Growth-rate target, x*2
0.25 6.67 7.17
2.24 2.20
7.70 8.26
2.47 2.29
0.50 6.38 6.88
2.27 2.27
7.51 7.95
2.61 2.40
1.00 6.08 6.38
2.28 2.27
7.20 7.49
2.83 2.56
3.00 5.48 5.28
2.18 2.30
6.61 6.62
3.55 3.23
10.00 5.00 3.62
2.19 2.26
6.09 5.14
5.50 5.02
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adjustment specifications.

Finally, in the Table 8 case with rule (2.1), in which Ab, is the instrument variable (and
x¢ or Az, the target variable), the performance is about the same as in Table 7. For a given
level of R, variability, that is, the standard deviations of Az, Ap;, and 7; are about the
same. Furthermore, the figures indicate a low degree of responsiveness of nominal income
variability to the feedback parameter A, although the responsiveness is considerably greater
than it was with the Calvo-Rotemberg variant of our model (in Table 4). Again, this low
responsiveness is largely a result of the optimizing IS specification that we employ, which
implies that aggregate demand is quite insensitive to the quantity of real money balances.
8. Conclusions

There are some conclusions from the simulation results that hold for both variants of our
model - - i.e., with both price adjustment relations. The first of these is that the inclusion of
the R;_; interest-smoothing term in the Taylor rule is helpful in reducing the variability of
Ap,; and 7; for given values of the policy-response parameters p; and p,, while also reducing
R variability. Second, for moderate values of response coefficients, the use of lagged rather
than contemporaneous values of §j; does not bring about any major deterioration in results
and does not generate any severe danger of instrument instability.?” Third, nominal income
targeting with an R, instrument is only mildly effective but shows no noticeable tendency to

generate dynamic instability, provided that interest rate smoothing is employed.®® Fourth,

37 T'his is not true, as mentioned, for lagged Ap, values in the P-bar variant, in which case Ap, is itself a
predetermined variable.

38 With strong feedback or with gz = 0 in the lagged response cases, dynamic instability obtains. It is
not, however, of the type mentioned by Ball (1997), which involves instability of Ap, and ¥, even though
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nominal income targeting with a monetary base instrument does not imply drastically greater
R, variability than with an interest instrument. It is, however, only weakly effective - - the
standard deviation of Az, is not very responsive to the feedback parameter X.3°

Other conclusions are more sensitive to the model variant. For example, pure inflation
targeting (1 > 0, pp = 0) is quite effective in the Calvo-Rotemberg specification but sig-
nificantly less so with the P-bar relation. More generally, increasing p; or ps tends (for
moderate ranges of those parameters) to reduce both inflation and output gap variability
with the Calvo-Rotemberg variant; by contrast, the P-bar specification generates a trade-
off between inflation and output gap variability, so that raising ps for a given p; yields
improved output gap performance at the expense of more variable inflation. Furthermore,
performance deteriorates sharply if the central bank responds to an incorrect measure of ca-
pacity output (7,) when the Calvo-Rotemberg relation is used, but does so only moderately
with the P-bar specification. And nominal income targeting holds down inflation variability
much better with the Calvo-Rotemberg version of the model. Finally, when policy responds
to lagged rather than contemporaneous output gap data, increasing the value of the Taylor
rule response coefficient on the output gap to a very high level (say, 10) tends to be coun-
terproductive - - in the sense of increasing rather than decreasing output gap variability - -
when the Calvo-Rotemberg specification of aggregate supply is used. This result does not

carry over when the P-bar specification is employed.

Ax, is stabilized.

3% This conclusion might be changed by alternative specifications of relations analogous to our (3.14) and
(3.16).
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These last-mentioned conclusions illustrate the importance, mentioned in our introduc-
tion, of the robustness of proposed rules to model specification. In future work, we hope to
conduct a small robustness study of our own while also investigating several issues that we

have not yet been able to explore.
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