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ABSTRACT

Futures market clearinghouses are intermediaries that make large volume trading between
anonymous parties feasible. During the market crash in October 1987 rumors spread that a major
clearinghouse might fail. This paper presents estimates of three measures of the default exposure on
the popular S&P500 futures contract traded on the Chicago Mercantile Exchange. We estimate the
traditional summary statistic for risk exposure: the tail probabilities that the change in the futures
price exceeds the margin. And we estimate two economic measures of the risk--the expected value
of the payoffs in the tails, and expected value of the payoffs in the tails conditional on landing in the
tail. The economic measures of risk reveal exposure from low probability large payoff events--like
a crash--that does not show up tail probabilities. The tail probabilities only capture the likelihood
of a crash, not the expected loss. The estimated measures of risk follow directly from estimates of
the conditional distribution of futures price changes. We infer a jump-diffusion process and a log-
normal process from the prices of traded options and we estimate a jump-diffusion process from
time-series data on futures prices. After the crash the forward-looking jump-diffusion model inferred
from traded options dramatically reflects the fears of another crash voiced by market participants.
The model indicates another jump is unlikely, but if it occurred it would be big and negative. The
tail probabilities are small, less than 2%. But, the day after the crash the model estimates the
expected value of payoffs in the tails conditional on landing in the tail equals of 55% of the S&P500
futures price. According to this estimate roughly $10.5 billion in liquid reserves would be required
to weather another crash. On October 20 the Federal Reserve announced it stood ready to supply the

necessary liquidity.
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Introduction

Futures and forward contracts are agreements between two parties to buy or sell an asset at a future
date at a price set today. Futures contracts, unlike forward contracts, trade on organized exchanges.
Futures market clearinghouses are intermediaries that make large volume trading between anonymous
parties feasible by guaranteeing performance on all trades between clearing members. Nonmembers
execute trades through a clearing member. Clearinghouse intermediation makes futures contracts

liquid and isolates traders from individual counter-party default risk.’

The margin system is the clearinghouse’s first line of defense against default risk. Margin collection
and administration are organized in a pyramid structure described in Edwards (1983). The
clearinghouse, at the top of the pyramid, collects margins from clearing members. The clearinghouse
demands a performance bond (initial margin) when a contract is opened. Thereafter, the
clearinghouse “marks” member accounts “to market” to prevent losses from accumulating. It collects
funds (variation margin) from clearing members who hold contracts that had a capital loss and
distributes funds (also called variation margin) to members who hold contracts that had a capital gain.
Clearing member futures commission merchants (FCMs) collect margins from (and distribute gains
to) nonclearing FCMs who execute their trades through the clearing member. At the base of the
pyramid all FCMs collect margins from and distribute gains to their customers. If the losers don’t
meet the variation margin call, then the clearinghouse must come up with the funds from its own

reserves, or assess the remaining solvent clearing members, or default.

On Monday, October 19, 1987, the S&P 500 futures price declined by 29% -- the largest one day

price change since trading began. On that day the Chicago Mercantile Exchange (CME) clearinghouse

' See Hull (1997) p3. Forward contracts are over the counter instruments traded between
principals with established credit--usually large banks. Forward contracts are not liquid--most forward
contracts terminate in delivery. In contrast, 98% of futures contracts are terminated with an
offsetting position, see Fabozzi, et al (1997), p507.



issued variation margin calls for a record $2.5 billion. The Commodity Futures Trading Commission
(the regulatory board for the futures markets) disclosed that during October fourteen FCMs became
undersegregated (the FCM had less than the required cash in consumer accounts) and three firms
were undercapitalized. In addition eleven firms, including six CME members, had margin calls to a
single customer that exceeded their capital. Traders feared that a default by a large customer would

trigger a cascade collapsing the pyramid. Rumors spread that a major clearinghouse might fail ?

The clearinghouse’s default exposure depends on the probability distribution of changes in the futures
price. The traditional measure of risk is the probability that a future price change will exceed the
margin. Figlewski (1984), Gay, Hunter, and Kolb (1986), Hsieh (1993), and Kupiec (1994) and
others estimate the tail probabilities. However, this measure is somewhat limited in ignoring the
consequences of a futures move that exhausts posted margin. We present two additional methods
of assessing clearinghouse exposure, and use them along with tail probability estimates to examine
the CME’s exposure in late 1987 on the popular S&P 500 futures contract traded on the Chicago

Mercantile Exchange.

The first additional measure of default exposure is the expected value of the additional funds required
to ensure performance on all futures contracts. If evaluated using asset pricing techniques, this
expectation is the premium a clearinghouse would pay for a hypothetical insurance policy that would
cover the additional funds. As in some previous examinations of default risk, pricing this insurance

draws upon option theory >

*See Bernanke (1990) and the Report of the Presidential Task Force on Market Mechanisms
(1988, section VI).

*Merton (1974) represented the default risk on risky debt as a put option, while Merton
(1977) used put option prices to evaluate the fair price of bank deposit insurance. Previous
applications of option pricing to clearinghouse exposure include Craine (1992) and Day and Lewis
(1997).



Second, we estimate the expected additional funds requirement conditional on a futures move
exhausting the posted margin. Conceptually, this would determine the reserves the insurance
provider should hold to cover potential claims. To our knowledge, this measure has not been
previously used in examining clearinghouse exposure. Its magnitude is a key determinant of whether

the clearinghouse is likely to survive a futures price move that exceeds the margin requirement.

We use two methods to estimate the parameters of the conditional distribution, and to evaluate the
three measures of clearinghouse exposure. From time-series data on futures prices we estimate an
EGARCH-jump process whose features include volatility persistence, a negative correlation between
market returns and volatility shocks, and substantial daily excess kurtosis and/or skewness. We
incorporate various informational sources into the conditional variance assessments: lagged shocks,
volatilities implied by the price of traded options and intraday high-low price ranges. Since jumps are
especially important for default risk, we also condition the current jump probability on the
information variables. The model builds upon much previous work in time series econometrics,

although some features (e.g., time-varying jump risk) appear to be new.

Second, prices of options on S&P 500 futures contain substantial information regarding traders’
assessments of future S&P 500 futures returns. As discussed in Bates (1991), the distributions
implicit in S&P 500 futures options exhibited substantial skewness and/or excess kurtosis during the
year preceding the stock market crash of October 19, 1987. We use the implicit jump-diffusion
parameter estimation approach of Bates (1991) to obtain a second estimate of the conditional
distribution of futures price changes from the prices of traded options. We also infer the parameters
of a lognormal distribution (no jumps or fat tails) implied by the classic Black-Scholes (1973) model

for comparison.



The insurance premium and required reserves measures of risk indicate that the tail probability
approach can offer a misleading picture of post-crash CME exposure. Judging only from tail
probabilities, the CME’s aggressive margin requirement increases in October 1987 combined with
shifting conditional distributions reduced clearinghouse exposure to pre-crash levels by or before the
end of November. However, the consequences of a futures price move in excess of margin were
estimated at 1-2 orders of magnitude higher than pre-crash levels, given post-crash time series and
option-based estimates of substantial jump risk. Low-probability large-magnitude jumps do not
especially show up in tail probabilities, but do show up in the other risk measures. According to S&P
500 futures options prices, clearinghouse exposure peaked on October 20, when reserves of roughly
$10.5 billion were required to weather another crash. On October 20 the Federal Reserve announced

it stood ready to supply the necessary liquidity.

The paper is organized as follows: Section 1 presents the measures of risk exposure. Section 2 gives
the specification of the jump-diffusion model and presents the parameters inferred from traded option
prices and estimated from time-series data on the S&P 500 futures contract. Section 3 presents

estimates of the measures of risk exposure for October and November of 1987. Section 4 concludes.

Section 1: Measures of the Exposure

This section presents the three measures of exposure associated with a single futures position. For
concreteness, we focus on the margin system for clearing members of the CME in 1987. At that time,
the CME was one of only two clearinghouses that used a gross margining system, under which
margins were required for each contract. Other clearinghouses used a net margining system in which
offsetting positions (a long and a short) required no margin. In 1988 the CME moved to a system

of margins against a portfolio held by the clearing member; see Kupiec (1994) for details.*

*Margins for customer accounts are much more complicated; see Edwards (1983) and Rutz
(1989).



It should be emphasized that the measures of exposure presented here do not depend on the particular
margining system, nor upon the particular position held. They are general measures that could be used
to characterize the risk associated with any position, or portfolio of positions, that is partially secured
by a margin requirement. The principles used in assessing the clearinghouse’s guarantee of futures

positions could equally be used in assessing the clearinghouse’s guarantee of written options.

Margins

The exchange clearinghouse demands that clearing members post a performance bond (initial margin)
of M, when they enter a futures contract® on behalf of customers or on their own account. To
prevent losses from accumulating the clearinghouse “marks” members' accounts “to market” at
intervals 7° and forces them to realize the capital loss, or gain, on their position. The clearinghouse
demands “variation margin” equal to the change in the market value of the contract,
AF = F - F,, where F, denotes the price of the contract at time 7. If the price of the futures
contract goes up the short seller must add variation margin equal to the loss in market value of the
contract. Ifthe price of the futures contract goes down the clearinghouse credits the variation margin
to the short seller’s account and he can withdraw the funds. The variation margin for a long position

is the negative of the variation margin for a short position.

Exposure
The clearinghouse credits the accounts of positions with a gain and debits the accounts of positions

with a loss. If the losers don’t come up with the variation margin, the clearinghouse must draw down

3In 1987 clearing members actually posted initial margin on any new positions taken during
the day (and still open when the exchange closed) before the next business day. When the
clearinghouse raises the initial margin requirement, as it did four times in October, the clearing
member must post additional initial margin for all open contracts.

6 In 1987 the normal interval for the CME was daily. On March 1, 1988, the CME began
realizing capital gains or losses on positions twice a day: at noon and at the close. Since June 26,
1992, the noon settlement has been accompanied by a variation margin call.



reserves, or assess solvent clearing members, or default. The clearinghouse holds initial margin
against each contract, so the net exposure ex post equals the absolute value of the futures price

change minus the margin, or zero,

VIAF, M) = max[0, |AF| - M] 1)

In this article we focus on the uncollateralized additional funds requirement }” that must be raised in
some fashion to ensure performance on futures positions. The funds may come from customers, or
the capital or reserves of FCMs or the clearinghouse. Who pays is not addressed here; our focus is

on how much someone will need to stump up in additional resources.

Figure 1 plots the funds that must be raised as a function of the futures price. For futures price
changes smaller (in absolute value) than the margin no additional funds have to be raised. The

clearinghouse credits the account of the member with a capital gain. If the member with the capital

max(F, - Fl- M,0)

}

F-M F F+ M ter

Figure 1. Uncollateralized additional funds requirement per futures

contract, as a function of the end-of-period futures price F, .



loss fails to make the variation margin payment the clearinghouse takes the payment out of the initial
margin and liquidates the position. For futures price changes greater than the margin additional funds

must be raised, or the clearinghouse defaults.

Measures of Exposure
L.p=Prob(|AF| > M)
The tail probability g is the conditional probability that additional funds must be raised. This is the
typical measure used to evaluate risk exposure in the futures market. See, e.g., the excellent post-

crash survey by Warshawsky (1989).

2. S(F,, M) = E,[V(AF, M)]

The conditional expected value of the additional funds that must be raised. If evaluated using a “risk-
neutral” expectation operator £, this is the daily premium on an insurance policy that would cover
the funds if they were needed. To see this, note that equation (1) and Figure 1 are the gross payoff
function on a portfolio of options: an “out-of-the-money” put option with strike price X, = F, - M
below the current futures price, and an out-of-the-money call option with strike price X, = F, + M
above the current futures price This option portfolio is known as a strangle (Hull, 1997); the market

price of the strangle is the insurance premium.

Options have been used to price default risk in finance for some time. Merton (1974) represented
the default premium on risky debt as a put option. In 1977 he showed that the fair price of bank
deposit insurance was the value of the put option. In this paper we use the option price to assign an
economic measure to the funds that must be raised if the change in the futures price exceeds the

margin.”

"The strangle price S is a summary statistic that measures the economic significance of the
exposure just as the tail probability, o, is a summary statistic measuring the likelihood of the



3. & = E[(AF, M) | V> 0]

The expected value of the additional required funds conditional on additional funds being needed.
R is the estimated value of liquid reserves that are required to make the payment of additional funds.
In insurance markets, these would be the reserves the insurance company holds to assure the buyers
they could pay any claims. Similarly, option writers might be obligated to post a comparably

computed amount to ensure against default.

This measure is not commonly used to assess default risk in finance or in the futures market. It is
arguably the most appropriate measure. Since futures contracts are not limited liability contracts, if
the losers have access to liquid reserves they will meet the margin calls. If liquid assets are not

available a large price change triggers a liquidity crisis and clearinghouse default.

Where these liquid reserves come from is irrelevant to the issue of default risk. Obviously, the
clearinghouse would prefer that customers meet additional funds requirements. But from a default
risk perspective, the relevant reserves for ensuring performance on futures contracts include
customers’ liquid reserves (lines of credit and assets), the reserves of the FCMs’ and clearinghouse,

and potentially even the readiness of the Federal Reserve to intervene.

The above three measures of exposure are interrelated. Since V'is either positive or zero, the strangle

price can be written as

%]
|

= E'[V | V> 0] Prob [V > 0]
()

§R* p*,

exposure. Neither implies default will actually occur when the change in the futures price exceeds the
margin.



where " and p” are variants of R and p evaluated under the risk-neutral probability measure used
in asset pricing, rather than under the conditional probability measure from a time series model. Thus,
any two measures suffice to identify the third. As discussed below, it is reasonable to assume that
actual and risk-neutral conditional distributions do not deviate substantially at the 1-day horizon

considered here.

Section 2: Estimates of the Conditional Distribution

This section presents estimates of the conditional distribution of the price of the S&P 500 futures
contract. The S&P 500 futures contract is a high volume contract that was popular with index
arbitragers and portfolio insurers. At the beginning of October open interest was roughly 115,000

with a notional value of almost $20 billion.® Daily volume ran at approximately 80,000 contracts.

The three measures of exposure depend critically on the conditional distribution of the change in the
futures price. Estimating the conditional distribution can be difficult even under normal circumstances.
Such estimation is especially difficult during the period following the stock market crash of October
19, 1987, given that the 1987 crash registered by far the largest daily percentage movements in U.S.
stock prices since the beginning of accurate record keeping.” But even pre-crash data exhibit
substantial abnormalities. As shown in Figure 2, the empirical distribution of daily futures returns on
the S&P 500 contract (difference of the log of prices) over January 2, 1985 through September 30,

1987 were substantially negatively skewed and leptokurtic, with a Shapiro-Wilks test rejecting

® The actual price of an S&P futures contract is $500 times the quote: Price, = $500* F.

? Shiller (1994) notes that the S&P 500 index fell 20.46% on October 19, 1987 from the
preceding Friday’s close. The next largest daily movements, of 10-13% in magnitude, occurred in
1929-32; e.g., the -12.34%, -10.16%, and +12.53% moves on October 28-30, 1929 and the 12.36%
increase on October 6, 1931.
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Figure 2. Distribution of daily returns on S&P 500 futures: Jan. 2, 1985
through Sept. 30, 1987. Observed frequencies, and theoretical normal.
normality at a P-value of .0001. The 5.7% decline on September 11, 1986 was partially but not fully

responsible for the observed negative skewness and excess kurtosis.

We consequently employ two approaches for assessing futures return distributions conditional upon
contemporaneous information, each with particular strengths and weaknesses. We infer conditional
distributions from options on S&P 500 index futures. Traded options are forward-looking assets that
reflect the market information set. The prices are sensitive to salient distributional characteristics:
conditional volatility, skewness, and excess kurtosis. Furthermore, observed option prices
incorporate the relevant required compensation for assorted untraded risks (jump risk, volatility risk),
and therefore in principle could be used to directly price the exposure, ie, the price of the strangle

option portfolio. The major difficulty is the mismatch between the monthly/quarterly maturities of



11

traded options' and the standard one-day interval for marking accounts to market and collecting

variation margin.

We also directly estimate the parameters of the conditional distribution of daily S&P 500 futures
returns from the time series of returns. Such estimates are tailored to daily frequencies, and there are
many statistical techniques that can be employed in estimating conditional distributions. On the other
hand, time series-based estimates are intrinsically backward-looking, are conditioned on an
information set which is smaller than the market information set, and have difficulties when an

“outlier” of the magnitude of October 19, 1987 is included in the data base.

The time series analysis proceeds in two steps. First, we analyze pre-crash daily futures
returns over January 2, 1985 through September 30, 1987, and identify those informational variables
most useful in forecasting return distributions. Second, we update conditional distribution estimates
on a daily basis over October and November 1987, using a nonlinear “rolling regression”

methodology.

Assumed Distribution

We assume the data generating process is well approximated by the jump diffusion process,
dinF = (u, - A,y)dt + o, dW + ydgq A3)
where

w, -AY is the drift in the Brownian motion;

W is a Weiner process;

1°Options on the S&P 500 futures contract traded on the CME span the succeeding six
months and expire on the third Friday of the month. The October 1987 S&P 500 futures options
expired on October 16 -- the Friday before the crash.
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o, is the instantaneous volatility conditional upon no jumps;
q is a Poisson counter with instantaneous intensity A : Prob(dg = 1) = Adt;

and the jump size y is normally distributed with meany and variance 2.

The jump-diffusion process is a flexible specification that can accommodate most of the features
observed in the data. If there are no jumps and the parameters are not time-varying, then the process
collapses to the popular geometric Brownian motion specification assumed by Black and Scholes
(1973). Jumps produce a distribution with fatter tails, and an asymmetric jump process (y # 0)
introduces skewness. Time-varying volatility also generates a fat-tailed unconditional distribution, but

has little impact on the higher moments of 1-day conditional distributions.

Options-based Implicit Distributions
Bates (1991, 1996) develops formulas for pricing options on jump-diffusion processes with constant
parameters 6 = <o, A", k", 8>. Following Bates (1991), we infer daily implicit jump-diffusion
parameters from all observed intradaily call and put transaction prices for December 1987 S&P 500
futures options, using nonlinear least squares:

A [0, - O, T, X, 0)

N
8, = argminy. "
: afgmmz, il - @)

!

where O, is the ith observed call or put price on date £, O(*) is the corresponding value from Bates’
option pricing formulas (Section II, equations (13) and (16)) given the underlying futures price F,
maturity 7, strike price X, and parameters 0; and N, is the number of options data on date ¢ .
Starred parameters indicate parameters of the “risk neutral” process. The divergence of the “risk-

neutral” parameters A" and y' from the parameters A and y of the true jump-diffusion process of
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equation (3) reflect required compensation for systematic jump risk. Calibrations in Bates (1991, p.
1034) suggest little divergence between actual and risk-neutral parameters under plausible measures

of risk aversion.

Time Series-Based Conditional Distributions: Model Selection
We also estimate the conditional distribution of daily returns using time series data. The discrete time
analogue to the jump-diffusion process in equation (3) is a stochastic mixture of normals, randomized

over the number of jumps # occurring within a given time interval:

In(F, ,/F,) | njumps ~ N[(a) + a,0; - AY)Thy + 1Y, 0,5, + nd’]

e "N
Prob(n jumps) = ' (5)
n!
A = ATl = Ay + A0 TG Ay Ay 2 O

1 >

0> 1
where

N(m, s*)is a Normal distribution with mean m and variance s?;

of is a conditional variance state variable;

v and &? are the mean and variance of the normally distributed jump sizes; and

T,,, is the time interval between futures observations on dates 7 and 7 +1, in days.
We assume the conditional variance 0,2 affects the drift as in GARCH-in-mean models. Following
Engle, Kane, and Noh (1993), ‘cil is a variable time scale that parsimoniously captures the impact
of weekends and holidays upon the conditional distribution of returns. A d equal to zero implies

weekdays and weekends are equivalent, while 4 = 1 implies that 3-day weekends have three times the

variance and roughly three times the jump risk of weekdays.
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In the spirit of Day and Lewis (1992) and Lamoureux and Lastrapes (1993), the conditional variance
state variable 0,2 is modeled as an augmented EGARCH process that nests various informational

SOuUrces:

2 2
Ino, = a; +a,DUM, +a5[]zt| \/; +agz,

6

+ a,In of‘l + aginfL, + a, lnBSlV,2

where
DUM, is a dummy variable indicating a maturity switch in the S&P 500 futures contract used,
z, = In(F,/F, )/ otZA1 'cf{ is the previous day’s normalized residual;

HL, is the ratio of the day’s high to the day’s low; and

BSIV is the per day volatility inferred from pooled intradaily 1-4 month quarterly S&P 500

futures options using a Black-Scholes American option pricing formula."

Day and Lewis (1992) found that the Black-Scholes implicit volatilities inferred from the S&P 100
index options were almost unbiased estimates of subsequent weekly index volatility over 1983-89,
but that GARCH and EGARCH volatility estimates provided additional information. We include the
Black-Scholes implicit volatility BSIV inferred from S&P 500 futures options as a simple summary
measure to incorporate information from the option market. Parkinson (1980) and Garman and Klass
(1980) argue that the informational content of an asset’s open, high, low, and close considerably
exceeds that of the squared daily return. And Chen (1995) shows that the high-low range provides
useful additional information within an EGARCH framework. We include the log of the high-low

ratio, In HL, to capture that information.

""More precisely, we used the Barone-Adesi and Whaley (1987) formulas for pricing
American options on futures. Those formulas maintain the Black-Scholes (1973) and Black (1976)
assumption of geometric Brownian motion for the underlying asset price.
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The conditional variance state variable 0,2 is also allowed to affect conditional distributions through
the jump frequency A, = A, + A of -- a specification Bates (1997) found useful in describing the
evolution of distributions implicit in post-’87 S&P 500 futures options. Positive values for A, imply
that periods with high conditional volatility are also periods with high jump risk. Because of
nonnegativity constraints on jump risk, negative values for A, and A, were precluded through

exponential transformations in the estimation procedure.

We tested on various specifications on pre-crash daily log-differenced S&P 500 futures settlement
prices over January 2, 1985 through September 30, 1987. We selected the shortest futures maturity
available with at least one week to expiration, that being typically the contract with greatest open
interest. The model and various submodels were estimated by a maximum likelihood methodology

described in the appendix of Jorion (1988)."

Tables 1 and 2 summarize the precrash model selection results. Using only the Black-Scholes implicit
volatility from traded options to assess conditional volatility and jump risk was unambiguously the
best of the models considered in terms of parsimony and informational content. Somewhat
unexpectedly, the implicit volatility appears to be a sufficient statistic for pre-crash conditional
distributions. Although the high-low range does contribute additional information to an EGARCH
specification, as in Chen (1995), neither high-low nor EGARCH provided statistically significant
additional information after conditioning on the Black-Scholes implicit volatility from 1-4 month

quarterly S&P 500 futures options.

12 For models with EGARCH terms, the log of the initial conditional variance, In 03, was also
estimated. Following Ball and Torous (1985) and Jorion (1988), we chose 10 as the maximum
feasible number of jumps in any day.
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High-frequency low-amplitude jump processes were estimated for all models, with typical pre-crash
mean jump size y ~ 0 and jump standard deviation & ~ 1%. While it is not easy to test formally for
an absence of jump risk given nonlinear identification issues discussed in Hansen (1992), allowing for
conditionally leptokurtic distributions through non-zero jump frequencies strongly increased log
likelihoods for all models during the pre-crash period. This, plus the asymmetry of equally out of the
money put and call prices presented in Bates (1991) and the estimate of a negatively skewed and
leptokurtic unconditional distribution strongly suggest a jump component is present even in pre-crash
data. Furthermore, likelihood ratio test comparisons of the last two columns of Table 1 indicate that
time-varying jump risk (A, > 0) was statistically significant for 4 out of 6 models. A, converged to
its near-zero constraint whenever A, >0 was permitted. The estimates imply that periods of high
volatility were historically also periods with higher jump risk -- i.e., with a higher proportion of

outliers.

Table 1: Performance (log likelihood) of alternate models

log likelihood

Number of

parameters conditionally jumps jumps
Model (Gaussian)  Gayssian (2,=0) A,20,4,=0 Ags 2,20
11.d. 4 2,232.45 2,263.65
HL 6 2,236.45 2,264.07 2,265.52
BSIV 6 2,262.30 2,275.66 2,279.00
EGARCH 9 2.244.63 2,268.26 2,269.33
HL-EGARCH 10 2,252.14 2,273.93 2,276.69
BSIV-EGARCH 10 2.262.79 2,278.91 2,281.87
HL-BSIV 7 2,262.71 2,275.68 227944

HL: a,#0; BSIV: a,#0; EGARCH: a., a,, a,, In 0(2) # 0. The first fat-tailed distribution adds
three more parameters to the Gaussian specification; the second adds a fourth parameter.

5% significance levels for InL - - InL.: 1.92 (1 restriction), 3.00 (2), 3.90 (3), 4.74 (4).
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Table 2: Distribution estimation conditional upon the Black-Scholes implicit volatility (BSIV).
Log-differenced S&P 500 futures settlement prices, January 2, 1985 through September 30, 1987.
See equations (5) and (6) for definitions of parameters. Standard errors are in parentheses.

Model a a d a, a 5 Al v ) In L

BSIV 001  -69 224 -105 -1527 911 0 0 0 226230
(000) (5.35) (.118) (430) (445) (114)

a

1 2 4

JD- 000 1385 218 -1.599 -931 705 11434 -001 .010 2279.00
BSIV  (.001) (22.07) (.130) (.624) (443) (.134) (10862) (.001) (.002)

The initial conditionally Gaussian estimates in Table 2 (a, ~ 0, a, = 1) show the Black-Scholes
implicit volatility was close to an unbiased predictor of future volatility. This was also true for jump-
diffusion conditional distributions, with the average pre-crash implicit standard deviation of 16.7%
implying an annualized conditional volatility forecast of 13.6%." Typical estimates of d = .20 - .25
indicate that three-day weekends had roughly 25-30% higher variance than a typical weekday. Inno

case was the conditional mean of log-differenced futures prices significantly different from zero.

Estimates for October and November of 1987

The specification using only the Black-Scholes implicit volatility from traded options to assess
conditional volatility and jump risk was unambiguously the best of the models considered in terms
of parsimony and informational content. We selected the JD-BSIV model for assessing conditional
distributions over October and November of 1987, with A set to zero. To fully exploit all available
information, the relationship between BSIV and conditional distributions was re-estimated daily via

nonlinear “rolling regressions” (JD-RR), using a 692-day (34-month) moving data window.

BThe annualized weekday conditional variance is 365 0? [1 + A, (-\?2 +8%)], including jump
risk.
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In addition, 1-day conditional distributions were inferred from December 1987 S&P 500 futures
option prices under two specifications for the underlying driving process: the Black-Scholes option
pricing model, which assumes geometric Brownian motion, and the Bates (1991) model, which

assumes a jump-diffusion process.

Table 3 shows the daily parameter estimates from the three approaches:

1) Black-Scholes implicit volatility (BSIV’s) inferred from option prices assuming lognormality;
2) implicit jump-diffusion parameters (JD-options) inferred assuming a jump-diffusion; and

3) jump-diffusion parameters (JD-RR) estimated from daily futures returns conditional upon
observed BSIV’s, using the model and rolling-regression methodology described above.™

“For the JD-RR specification, the 1-day assessed jump frequency is A, = XIBSI V?, where 11
is re-estimated daily via rolling regressions.
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Table 3: One-day conditional distribution forecasts. All parameters are in daily units.

Implicit jump-diffusion (JD-options) Rolling-regression (JD-RR)

BSIV| o© A x v’ ) v 0 A v d ve  Seb
870930 1.06%| 1.06% 0.000 -80.7% 48% 1.07%|076% 0664 -0.1% 1.0% 1.10% 0.06%
871001 1.05%| 1.02% 0.000 -20.0% 57% 1.06%] 0.77% 0.665 -0.1% 1.0% 1.10% 0.06%
871002 1.04%] 1.00% 0.001 -94% 58% 1.05%]0.76% 0650 -0.1% 10% 109% 005%
871005 1.04%] 0.94% 0.017 -3.0% 19% 1.04%|0.75% 0636 -0.1% 10% 1.08% 0.05%
871006 1.04%] 1.02% 0.000 -34.6% 23.2% 1.09%]0.76% 0593 -0.1% 1.0% 1.09% 0.05%
871007 1.09%] 0.25% 0.112 -04% 32% 1.11%|077% 0552 -02% 1.0% 1.09% 0.05%
871008 1.07%| 1.01% 0.003 -57% 3.4% 1.08%| 0.80% 0618 -02% 1.0% 1.14% 0.06%
871009 1.09%| 0.09% 0.231 -02% 23% 1.10%|0.78% 0620 -0.1% 1.0% 1.12% 0.06%
871012 1.12%] 0.04% 0.165 -02% 28% 1.13%]0.79% 0636 -0.1% 1.0% 1.14% 0.06%
871013 1.11%{ 0.02% 0.123 -02% 32% 1.12%|082% 0636 -02% 1.0% 1.16% 0.06%
871014 1.12%] 0.05% 0.177 -0.1% 2.7% 1.13%|083% 0577 -02% 1.1% 1.16% 0.06%
871015 1.16%j) 0.16% 009 -02% 38% 1.18%|084% 0618 -02% 10% 1.18% 0.06%
871016 1.34%] 1.29% 0.000 4014% 2.1% 130%[093% 0430 -03% 12% 125% 007%
871019 2.21%]| 1.30% 0.002 -203% 56.4% 3.03%| 1.41% 0016 -97% 11.8% 240% 0.58%
871020 5.58%| 1.72% 0.009 -1004% 0.0% 9.71%]|2.47% 0.050 -9.1% 12.0% 4.18% 1.05%
871021 3.23%| 2.27% 0.004 -52.4% 25.0% 4.48%| 728% 0411 -84% 12.4% 12.05% 3.08%
871022 3.66%]| 1.56% 0.008 -55.0% 0.0% 5.08%|4.06% 0.129 -7.9% 12.5% 6.68% 1.70%
871023 3.29%]| 1.74% 0.005 -62.0% 0.0% 485%]|4.56% 0.164 -7.6% 12.6% 749% 1.92%
871026 4.24%| 1.64% 0.010 -323% 7.0% 5.54%|4.17% 0.144 -7.1% 124% 6.85% 1.62%
871027 3.80%] 2.05% 0.010 -433% 222% 5.19%} 5.46% 0240 -7.3% 122% 8.86% 2.14%
871028 3.37%| 2.11% 0.006 -48.6% 0.0% 420%)]4.75% 0.180 -72% 122% 7.67% 1.82%
871029 2.86%]| 1.81% 0.004 -496% 0.0% 3.61%|4.22% 0136 -7.7% 12.0% 6.74% [1.51%
871030 2.46%]| 1.60% 0.003 -51.1% 55% 3.19%| 3.56% 0.094 -8.0% 11.8% 5.64% 1.21%
871102 2.52%] 1.65% 0.004 -44.1% 21.2% 3.33%]2.99% 0.066 -79% 11.9% 4.73% 0.94%
871103 2.66%| 1.55% 0.007 -29.7% 21.3% 3.35%]| 3.08% 0.069 -7.7% 12.0% 4.85% 1.00%
871104 2.66%| 1.54% 0.004 -452% 11.5% 3.39%| 3.23% 0.077 -7.6% 12.0% 5.09% 1.09%
871105 2.49%1 1.37% 0.007 -243% 23.8% 3.16%| 3.20% 0.075 -7.7% 119% 5.03% 1.05%
871106 2.31%]| 1.17% 0.008 -209% 23.1% 2.99%| 2.98% 0.065 -7.53% 12.0% 4.68% 0.98%
871109 2.67%| 1.56% 0.007 -27.9% 22.9% 3.30%| 2.73% 0054 -74% 12.1% 4.28% 0.92%
871110 2.65%| 1.72% 0.006 -30.5% 19.6% 3.26%]| 3.17% 0.074 -7.1% 122% 4.98% 1.08%
871111 2.44%)| 1.56% 0.008 -194% 19.2% 295%]| 3.13% 0.072 -7.1% 122% 491% [.02%
871112 2.29%1{ 1.51% 0.008 -17.5% 16.8% 2.69%]| 2.86% 0059 -73% 12.1% 4.48% 0.89%
871113 2.21%| 1.65% 0.003 -38.0% 39% 2.65%|265% 0.031 -7.1% 122% 4.15% 0.84%
871116 2.21%| 1.28% 0.016 -113% 13.6% 2.55%]|2.53% 0047 -7.1% 122% 3.97% 0.95%
871117 2.31%]| 1.32% 0.016 -12.4% 13.2% 2.64%| 2.53% 0.047 -6.9% 12.3% 3.96% 0.84%
871118 2.19%] 1.24% 0.016 -122% 12.5% 2.55%| 2.63% 0.051 -69% 12.3% 4.13% 0.83%
871119 2.14%| 1.41% 0.008 -21.8% 7.4% 251%|249% 0.045 -67% 124% 3.89% 0.83%
871120 2.28%| 1.32% 0.017 -12.1% 12.0% 2.59%|2.42% 0.042 -6.8% 12.4% 3.77% 0.88%
871123 2.09%| 1.54% 0.005 -25.0% 3.7% 2.40%|2.57% 0048 -6.7% 12.4% 4.02% 0.85%
871124 1.83%]| 1.41% 0.004 -25.1% 3.7% 2.09%| 2.02% 0.030 -6.7% 12.3% 3.16% 0.90%
871125 1.66%| 126% 0.004 -232% 3.0% 195%| 1.87% 0.026 -6.6% 12.4% 2.93% 0.57%
871127 1.78% 1.34% 0.005 -21.7% 0.0% 2.03%]| 1.80% 0.024 -65% 12.5% 2.81% 0.58%
871130 2.30%]| 1.36% 0.025 -10.0% 10.5% 2.64%]| 1.83% 0.025 -63% 12.6% 2.87% 0.57%
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Comparing the Estimated Distributions
For the measures of default risk exposure the conditional volatility v and the fraction f of conditional

variance due to jump risk are two important statistics of conditional distributions:

<
1"

Jo? « A(E - )

A(Y? + 8% /vt

<
1!

For the Black-Scholes model, which has no jump component, the conditional volatility is the implicit

volatility BSIV , and f = 0.

As the conditional volatility increases, ceteris paribus, all risk measures increase: the probability of
a futures move in excess of margin, the expected value of additional required funds, the liquid
reserves needed to cover potential margin calls. However, this statistic alone is insufficient to
summarize the risks facing the clearinghouse. The allocation of risk between “normal” market moves
and jumps affects tail probability estimates, and has especially strong implications for the
consequences of a margin-exhausting futures price move. Low-probability, large-magnitude jumps
generate realizations far out in the tails, which dramatically increases the reserves required to defend

against default risk.

As shown in Figure 3, the three different estimates of conditional distributions show extraordinary
unanimity prior to the crash regarding conditional variance. All three assess variance in the 1.04% -
1.34% range in the first half of October 1987, with the maximum deviation across forecasts less than
1%. The crash on October 19 and the accompanying sharp increase in implicit volatilities generated
substantially higher post-crash assessments of conditional volatilities, with the time series model (JD-
RR) generating the highest of the three volatility estimates. Owing to considerable difficulty in

estimating jump-related variance over a 692-day sample that includes the crash, the deviation between
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Figure 3. Conditional volatility estimates: alternate models.
the JD-RR and JD-options volatility estimates is not generally statistically significant at the 5% level
on any given day. (The shaded area in Figure 3 is the 95% confidence band for the JD-RR model,
estimated using the delta method approach described in Lo (1986).) The three volatility estimates

roughly re-converge by the end of November.

Figure 4 shows the fraction of the conditional variance due to jump risk. Prior to the crash, the JD-
RR estimates in Table 3 attribute roughly 50% of the conditional variance to high-frequency, low-
amplitude jumps: .4 - .6 jumps per day, with a slightly negative mean and a standard deviation about
1%. Such low-amplitude jump risk is virtually indistinguishable from Brownian motion at the 2-
month horizon of the contemporaneous December 1987 S&P 500 futures options. As noted in Bates

(1991, Figure 11), prices of these options did in fact deviate very little from Black-Scholes prices
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Figure 4. Fraction of conditional variance attributed to jumps.
during the two months immediately preceding the crash -- in contrast to more substantial deviations

observed earlier in the year.®

Following the crash, time series-based estimates and option prices rapidly incorporated a jump
component into the conditional distributions. However, the two approaches fundamentally differ in
the form of estimated jump risk. The average post-crash implicit parameter estimates for the JD-
options model indicated jumps of mean -26.1% and standard deviation 12.6% occurring with a
frequency of .009 jumps per day (3 jumps/year). Implicit parameters changed substantially over late

October and November -- especially the jump distribution parameters y ' and 2.

“While implicit jump risk from the JD-options estimates typically accounts for almost all of
the implicit variance over October 7-15, excluding October 8, the relatively high implicit jump
frequency (.1 - .2 jumps/day) and low implicit jump magnitudes (mean roughly 0; standard deviation
less than 5%) imply near-lognormal distributions at the 2-month horizon.
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By contrast, the average post-crash time series estimates (JD-RR) were of more frequent (.087
jumps/day, or 32 jumps/year) but smaller jumps: mean size -7.3% and standard deviation 12.2%.
The estimated jump distribution parameters were relatively stable post-crash, but the assessed daily
jump frequency A, = )11 6,2 = il exp(d, + dg In BSI V,z) changed considerably over time. This jump
frequency was substantially affected not only by the extreme 28.6% market decline on October 19,
1987, but also by the 7.3% and 19.4% rebounds on October 20 and 21; see Table 4. These moves,
which were far larger than the daily moves observed during the preceding 34 months, led to
substantial upward revisions in 5‘1 . By the end of November, however, declining implicit volatilities

reduced jump risk assessments, and parameter estimates from both approaches were substantially in

agreement.
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Table 4: S&P 500 futures settlement prices, margins, volume, and open interest. Settlement
prices are for December 1987 futures contracts; volume and open interest are for all S&P 500 future
contracts.

Open
Date F %change  Margin (%) Volume Interest
870930 325.85 $5,000 3.1% 82,444 114,182
871001 331.70 1.8% $5,000 3.0% 85,128 113,808
871002 331.35 -0.1% $5,000 3.0% 67,427 113,788
871005 330.80 -0.2% $5,000 3.0% 69,085 115,312
871006 319.85 -3.3% $5,000 3.1% 96,869 114,286
871007 320.65 0.3% $5,000 3.1% 99,673 116,664
871008 315.80 -1.5%% $5,000 3.2% 99,191 119,176
871009 312.20 -1.1% $5,000 3.2% 76,186 120,728
871012 311.60 -0.2% $5,000 3.2% 79,907 123,064
871013 315.65 1.3% 85,000 3.2% 82,040 119,880
871014 305.00 -=3.4% $5,000 3.3% 109,740 127,582
871015 298.25 -2.2% $5,000 3.4% 124,810 133,686
871016 282.25 -5.4% $5,000 3.5% 135,344 146,653
871019 201.50 -28.6% §7,500 7.4%2 162,022 172,178
871020 216.25 7.3% $7,500 6.9% 126,562 174,184
871021 258.25 19.4% $7,500 5.8% 91,802 169,934
871022 244.50 -5.3% $10,000 8.2% 57,726 158,774
871023 241.00 -1.4% 510,000 8.3% 41,945 156, 650
871026 220.25 -8.6% $10,000 9.1% 35,170 158,715
871027 228.60 3.8% $10,000 8.7% 32,241 157,071
871028 231.25 1.2% $12,500 10.8% 38,517 156,374
871029 245.70 6.2% $15,000 12.2% 38,670 153,449
871030 259.35 5. $15,000 11.6% 35,249 152,340
871102 257.75 -0.6% $15,000 11.6% 33,551 148, 1c4

871103 250.15 -=2.
871104 250.15 0.

$15,000 12.0% 50,335 146,820
$15,000 12.0% 44,268 145,688

0 o

871105 255.40 2.1% $15,000 11.7% 44,978 141,077
871106 249.10 -2.5% $15,000 12.0% 37,989 140,944
871109 245.60 -1.4% $15,000 12.2% 43,351 140,388
871110 239.40 -2.5% $15,000 12.5% 51,590 139,832
871111 242.20 1.2% $15,000 12.4% 31,745 139,138
871112 249.60 3.1% $15,000 12.0% 41,769 137,599
871113 247.60 -0.8% $15,000 12.1% 24,369 138,116
8§7111¢ 248.20 0.2% $15,000 12.1% 38,727 139,276
871117 242.70 -2.2% $15,000 12.4% 48,333 138,508
871118 246.55 l.6% $15,000 12.2% 56,262 140,462
871119 238.80 -3.1% $15,000 12.6% 61,291 139,711
871120 241.90 1.3% 515,000 12.4% 60,725 141,133
871123 244.10 0.9% $15,000 12.3% 41,218 140,643
871124 246.15 0.8% $15,000 12.2% 56,396 141,528
871125 244.30 -0. $15,000 12.3% 27,371 141,819

871127 237.00 -3.
871130 232.00 -2.

$15,000 12.7% 17,804 140,352
$15,000 12.9% 79,552 139,887
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Section 3: Estimates of the Clearinghouse Exposure

The Chicago Mercantile Exchange responded aggressively to perceptions of increased default risk
on October 19 and in the days that followed. As discussed in Fenn and Kupiec (1993), extraordinary
intradaily margin calls occurred three times on October 19, and 10 more times in the remainder of
October. Furthermore, margin requirements were rapidly raised. Whereas the margin requirement
per futures contract stood at $5000 on October 18, it was raised to $7500 on October 19, to $10,000
on October 22, to $12,500 on October 28, to $15,000 on October 28; see Table 4. Combined with
lower futures prices following the crash, the margin requirements effectively went from 3.5% of the
futures settlement price on October 16 to 12.2% on October 29. The margin requirements were not

lowered again until December 18, to $10,000.

This section applies the three measures of exposure, and the three methods considered above for
estimating that exposure, to the S&P 500 futures contract during October and November of 1987.
Judging only from the traditional tail probability estimates, the CME’s aggressive response was
entirely successful in reducing the daily post-crash probability of further margin-exhausting futures
price moves to a level comparable to or lower than pre-crash levels. However, conditional
distributions that incorporate jump risk indicate substantially higher levels of exposure (price of the
options, and the level of reserves required to meet margin calls) following the crash. The difference
in risk assessments is attributable to the failure of the tail probability approach to assess the likely

consequences of a futures move in excess of posted margin.

1. The Probability that Additional Funds will be Required: o = Prob(|AF| > M)
The probability that the absolute change in the futures prices exceeds the margin is the probability that
additional funds will be required. The jump-diffusion processes postulated in Section 2 model the

conditional distribution of 1-day log-differenced futures prices as a probability-weighted mixture of
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normal distributions, with the weights reflecting assessed probabilities of # jumps occurring within

a single day. The upper tail probability is:

o

P, = ProblF, . >X] =3

e Ay
A2 — 2, 8)

where
®(¢) is the standard normal distribution function,
b(n) = -Ae? ' 4 p(y + 18 /r,
d, = [In(F/X,) + b(m)t - (0t + nd2)]/\Jolt + n&?,
X, =F + M, and t =1 day.

Similarly, the lower tail probability is P =1 - Prob[F,,. > X ], where X = F - M.

down 1+t

Relevant daily parameter inputs for the time series-based JD-RR model and the options-based JD-
options and BSIV are reported above in Table 3. The JD-options model uses the risk-neutral implicit
parameter estimates A and v instead of A and y . The lognormal Black-Scholes model has no jump
risk (A = 0); the infinite sum (8) collapses to the first term®(d,,) for this model, with # and b(n)
equal to zero.

Figure 5 shows the tail probability estimatesp = P, + P, from the three models, and the 95%

down
confidence interval (shaded area) for JD-RR estimates. Table A in the appendix gives the values. For
expositional clarity, we compute all tail probabilities using the standard settlement interval of one day:

T=11

'The appropriate computations for weekends and holidays involves replacing t by t¢ in the
above formulas.
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Figure S. Probability of a margin-exhausting futures move: alternate estimates.

The three tail probability estimates diverge, painting a conflicting picture of the risk. Pre-crash, all
models agreed on conditional standard deviation estimates of around 1% per day. However,
diverging estimates of the extent of the jump risk generated divergent estimates of the probability of
a futures move in excess of the 3 - 3% margin requirement. JD-RR time series estimates indicated
roughly 1% tail probabilities, which may reflect the histogram-based tail probability orientation of the
CME margin committee (Kupiec, 1994). JD-options daily tail probability estimates inferred from 3-
month December options were more volatile, getting as high as 3-4% in the week preceding the

crash. The BSIV lognormal estimates perforce assigned a low probability to observing a 3-3%

standard deviation move.
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Post-crash divergences in estimated jump risk created sharp divergences between the JD-RR and JD-
options tail probability estimates. Immediately following the crash, S&P 500 futures options prices
implicitly attributed most futures price risk to low-frequency large movements; see Figure 4 and Table
3. Consequently, post-crash JD-options tail probability estimates were quite low. By contrast, the
rolling-regression estimates were affected by the large moves in futures prices on October 19, 20, and
21, and consequently estimated a higher-frequency but lower-magnitude jump component. The JD-
RR estimates of another margin-exhausting futures move peaks at 55% on October 21 and exceeds
10% until October 29. By the end of November, the estimates from the jump-diffusion option model
and the jump-diffusion rolling-regression converge at roughly a 1% daily chance of another margin-

exhausting futures move.

The Black-Scholes tail probability estimates peaked the day after the crash, when daily implicit
volatilities of 5.58% (107% annualized!) implied a 21% probability that the price change will exceed
the margin the following day. Subsequent declines in daily implied volatilities to around 2% plus
margin increases to a 12% effective level reduced the lognormal tail probability estimates to negligible

levels by the end of October.

2. Expected Value of Additional Funds: S(F,, M) = E*[max(0, |AF] - M)]

The expected value of price changes that exceed the margin is the price of an option written on the
absolute value of the change in the futures price with a strike price equal to the margin. The price of
the option gives the current market value of an insurance contract that provides the additional funds

if needed.

Option valuations for the jump diffusion processes in Section 2 are a probability-weighted average

of Black-Scholes prices, as discussed in Merton (1976) and Bates (1991):
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oF, 1, X) = i Prob(n jumps) E"[max(F,,. - X, 0) | n jumps]
n=0
- X% el—’g'“_)_ [Fer™ 0(d,,) - X,0(d,,)] ©)
PF, T X,) = e(F, 5 X)) + (X, - F)
here d,, =d, + m ,and 7= 1 day. The relevant strangle price is S = ¢ + p.

Figure 6 shows the price of the option portfolio as a percentage of the futures price for the three
models, and the 95% confidence interval for the JD-RR model. Table B in the Appendix contains the

values.

The substantial post-crash increase in hypothetical insurance premia indicate the fundamentally higher
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Figure 6. Daily insurance premium, as a percentage of the futures price.
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levels of risk faced by the clearinghouse following the crash. While pre-crash estimates put this value
at less than 0.1% of the futures price, crash-related revisions in conditional distributions raised these
estimates by two to three orders of magnitude. Subsequent declines of JD-RR and JD-options
estimates to only an order of magnitude greater than pre-crash values were attributable to two
factors: the four CME margin increases in October, and declining assessments of jump risk. Had the
CME left the margin requirement at the $5000 level of October 16, JD-RR estimates of insurance

premia at the end of November would have been over three times larger.

The degree of unanimity across post-crash jump-based estimates of insurance premia is quite
striking. The options-based JD-options model and the time series-based JD-RR model estimate quite
different jump processes, with lower frequency jumps of substantially larger magnitudes estimated
for the former. Yet the two premia estimates behave quite similarly over the post-crash period, and
typically do not diverge significantly in November. This comparable behavior reflects the relative
insensitivity of insurance premia to the frequency/magnitude tradeoff in jump risk. As indicated in
equation (2), the insurance premia depend upon the product of the tail probabilities and the expected
consequences of futures price moves in excess of margin. Varying the frequency and jump risk
magnitudes while keeping the conditional variance roughly constant across models (see Figure 3) has

roughly offsetting effects on these two terms, leaving insurance premia comparable across models.

Black-Scholes estimates of daily insurance premia are negligible following the four margin increases
in October. Under the hypothesized (and implausible) lognormal distribution, the combination of a
minuscule probability of exceeding the margin and the negligible expected consequences of such a

futures move yield small estimated insurance premia.
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3. Liquid Assets Required to Cover Additional Funds: & = E*(|AF| - M | |AF| > M)

The expected value of the additional funds conditional on the fact that additional funds will be
needed, R = S/p, is arguably the best measure of the risk exposure. It is the reserves the writer of
the strangle option portfolio (or the insurer) would have to hold to pay the option if it expired in the

money. If the reserves are adequate, there is no default risk.

A dollar value to these required reserves can be assigned by multiplying & by the total open interest
on all S&P 500 futures contracts. Under the gross margining system used by the CME in 1987, this
is the expected magnitude of additional funds that the losing side of the futures positions will have
to post with the clearinghouse if the futures price move exceeds the margin, in order to ensure

performance.

Figure 7 shows estimates from the three specifications of the reserves required to insure against
default risk, while Table B in the appendix contains the values. The JD-options estimates clearly
reflects the crash fears that haunted the options market on and following the crash. The fears of
infrequent but large further crashes necessary to match observed transactions prices for S&P 500
futures options on October 20 imply $10.5 billion in reserves (or 55% of the futures price) would be
needed to weather another futures price move in excess of margin. The estimates remained in the $5-
7 billion range for the remainder of October, and gradually declined to about $1 billion by the end of

November.

The time series JD-RR model éstimated jumps of somewhat lower magnitudes based essentially upon
observed price movements over October 19-21. The resulting estimate of required reserves
consequently remained relatively stable at approximately $1.2 billion throughout October and
November. In contrast, the lognormal BSIV model predicts that any futures price move in excess

of margin is not likely to exceed it by very much.
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Whether $1 billion or $10 billion represents a substantial risk of clearinghouse default cannot be
determined without some knowledge of the remaining liquid assets of the losing customers as well
as knowledge of the assets of the FCM’s and clearinghouse. However, some perspective comes from
considering the margin already posted. The CME’s tripling of margin requirements over October
implied that the longs and the shorts at end-November had each posted $15,000/contract x 139,887
open interest = $2.1 billion in margin. Both the JD-options and JD-RR approaches consequently
estimate that at end-November, roughly 50% in additional margin would be required above and
beyond what is already posted, conditional upon another margin-exhausting S&P 500 futures move

occurring.
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Figure 7. Expected additional funds requirement conditional upon a margin-
exhausting futures move: alternate estimates.
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Section 4: Summary and Conclusions

This article presented two new measures for assessing the clearinghouse exposure associated with
any given margin policy. An application to CME margin policy during October and November 1987
using two alternate estimates of jump-diffusion processes reveals that the earlier focus on the
probability of a margin-exhausting futures price move can generate a quite misleading assessment of
a clearinghouse’s exposure. While post-crash declining risk assessments and the CME’s margin
requirement increases had reduced tail probabilities to pre-crash levels by the end of November,
estimated clearinghouse exposure remained an order of magnitude higher than pre-crash levels. The
difference is our approaches also take into account how much in additional funds will be required
conditional upon a large move occurring, and end-November estimates of conditionally required

funds were an order of magnitude higher than pre-crash levels.

The Chicago Mercantile Exchange’s margin policy has changed substantially from the system that was
in place in 1987. In March 1, 1988 and June 26, 1992, the CME implemented steps to make
settlement and variation margin calls at noon as well as at end of day, in contrast to the daily
frequency characteristic of pre-1988. Furthermore, the SPAN system introduced in 1988 more
explicitly addresses the issue of appropriate margins on potentially offsetting portfolios of positions,
such as options positions hedged by futures positions. Kupiec (1994, p. 793) notes that “margins on
S&P 500 products have been set more conservatively than on other CME products since the October

1987 stock market crash.”

Yet it is striking the degree to which CME margin policy is still based upon tail probability estimates.
As described in Kupiec (1994), margins are set at levels sufficient to cover the consequences of the
sort of futures price moves observed 95-99% of the time. Those critical futures moves are estimated

by the CME margin committee based upon histograms of price changes over the preceding 60-day,



34

120-day, and 1-year window. Kupiec finds that S&P 500 futures price moves exceeded posted

margin less than 0.5% of the time between December 16, 1988 and December 10, 1992.

It may be that current CME margin policy is perfectly adequate. The CME did, after all, survive the
crash of 1987 (with some help from the Federal Reserve), as well as substantially smaller drops on
January 8, 1988 and October 13, 1989. But focussing on tail probabilities alone is an inadequate
criterion for survival, and for clearinghouse regulation. The consequences of a substantial futures

price move in excess of margin must also be considered.



Appendix: Values of exposure estimates

Table A. Estimated probabilities of a margin-exhausting price move, and option prices.
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2-sided tail probabilities Option prices: (¢ +p)/F
Date frargin BS JD-options JD-RR  s.e. BS  JD-options JD-RR s.e.
870930 3.1% 0.4% 04% 13% 04% | 0.001% 0.001% 0.008% 0.003%
871001 3.0% 0.4% 03% 15% 04% | 0.001%  0.004% 0.009% 0.004%
871002 3.0% 0.4% 03% 14% 04% | 0.001% 0.006% 0.008% 0.003%
871005 3.0% 0.4% 09% 13% 04% | 0.001% 0.013% 0.008% 0.003%
871006 3.1% 0.3% 02% 12% 04% | 0.001%  0.003% 0.007% 0.003%
871007 3.1% 0.4% 36% 13% 04% | 0.001%  0.065% 0.007% 0.003%
871008 3.2% 0.3% 04% 13% 04% | 0.001% 0.010% 0.008% 0.003%
871009 3.2% 0.3% 37%  12% 04% | 0.001%  0.043% 0.007% 0.003%
871012 3.2% 0.4% 40% 12% 04% | 0.001% 0.059% 0.007% 0.003%
871013 3.2% 0.4% 38% 15% 04% | 0.001%  0.068% 0.009% 0.004%
871014 3.3% 0.3% 38% 13% 04% | 0.001%  0.055% 0.008% 0.003%
871015 3.4% 0.4% 35% 12% 04% | 0.001%  0.074% 0.008% 0.003%
871016 3.5% 0.8% 06% 12% 04% | 0.003% 0.003% 0.009% 0.004%
871019 7.4% 0.1% 02% 1.0% 05% | 0.000% 0.076% 0.087% 0.058%
871020 6.9% 1 21.3% 09% 38% 19% | 0.573% 0508% 0.285% 0.182%
871021 5.8% 7.2% 1.6% 551% 99% | 0.093%  0.156% 4.149% 1.786%
871022 8.2% 2.6% 08% 11.7% 53% | 0.033% 0.262% 0.700% 0.447%
871023 8.3% 1.2% 05% 15.7% 68% | 0.013% 0202% 0.922% 0.576%
871026 9.1% 3.2% 1.0% 10.4% 4.7% | 0.050% 0.314% 0.653% 0.414%
871027 8.7% 22% 09% 220% 83% | 0.029% 0242% 1325% 0.758%
871028  10.8% 0.1% 0.6% 102% 49% | 0001% 0.154% 0.653% 0.445%
871029 12.2% 0.0% 04% 57% 29% | 0.000% 0.106% 0.376% 0.278%
871030 11.6% 0.0% 03% 4.0% 2.0% | 0.000% 0.082% 0271% 0.198%
871102 11.6% 0.0% 03% 27% 13% | 0.000% 0.081% 0.185% 0.131%
871103  12.0% 0.0% 05% 2.7% 14% | 0.000% 0.097% 0.186% 0.139%
871104  12.0% 0.0% 04% 3.0% 1.6% | 0.000% 0.100% 0.206% 0.158%
871105 11.7% 0.0% 05% 3.0% 15% | 0.000% 0.092% 0.207% 0.153%
871106  12.0% 0.0% 06% 25% 13% | 0.000% 0.089% 0.171% 0.132%
871109  12.2% 0.0% 05% 21% 1.1% | 0.000%  0.092% 0.139% 0.112%
871110  12.5% 0.0% 0353% 2.7% 15% | 0.000% 0.084% 0.183% 0.149%
871111 12.4% 0.0% 06% 2.7% 1.4% | 0.000% 0.076% 0.181% 0.140%
871112 12.0% 0.0% 0.5% 23% 12% | 0.000% 0.065% 0.156% 0.116%
871113 12.1% 0.0% 03% 19% 1.0% | 0.000% 0.057% 0.132% 0.102%
871116  12.1% 0.0% 08% 1.8% 1.1% | 0.000% 0.064% 0.121% 0.109%
871117  12.4% 0.0% 08% 1.7% 1.0% | 0.000% 0.067% 0.116% 0.096%
871118  12.2% 0.0% 08% 19% 1.0% | 0.000% 0.064% 0.130% 0.100%
871119  12.6% 0.0% 07% 1.6% 09% | 0.000% 0.058% 0.109% 0.093%
871120 12.4% 0.0% 08% 1.6% 1.0% | 0.000% 0.061% 0.104% 0.095%
871123 12.3% 0.0% 05% 18% 1.0% | 0.000% 0.052% 0.121% 0.099%
871124  12.2% 0.0% 04% 1.1% 09% | 0.000% 0.037% 0.075% 0.082%
871125 12.3% 0.0% 04% 1.0% 0.5% | 0.000% 0.034% 0.063% 0.051%
871127  12.7% 0.0% 05% 08% 05% | 0.000% 0.033% 0.055% 0.047%
871130 12.9% 0.0% 09% 09% 05% | 0.000% 0.053% 0.056% 0.047%
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Table B. Expected additional funds requirement conditional upon a margin-exhausting futures price
move. As a percentage of notional futures value, and dollar value given total open interest in all S&P 500 futures

contracts.
Exposure (%) Exposure ($ billion)

Date  Margin BS  JD-options JD-RR s.e. BS JD-options JD-RR  se.
870930 3.1% 0.3% 04% 0.6% 0.1% $0.06 $0.07  $0.11 $0.01
871001 3.0% 0.3% 1.0% 0.6% 0.1% $0.06 $0.19  $0.11 $0.01
871002 3.0% 0.3% 1.9% 0.6% 0.1% $0.06 $036  $0.11 $0.01
871005 3.0% 0.3% 1.4% 0.6% 0.1% $0.06 $027  $0.11 $0.01
871006 3.1% 0.3% 1.3% 0.6% 0.1% $0.05 $0.23  $0.11 $0.01
871007 3.1% 0.3% 1.8% 0.6% 0.1% $0.06 $033  30.11 $0.01
871008 3.2% 0.3% 2.3% 0.6% 0.1% $0.06 $043  $0.11 $0.01
871009 3.2% 0.3% 1.2% 0.6% 0.1% $0.06 $022  $0.11 $0.01
871012 3.2% 0.3% 1.5% 0.6% 0.1% $0.06 $0.29  $0.11 $0.01
871013 3.2% 0.3% 1.8% 0.6% 0.1% $0.06 $033  $0.12 $0.01
871014 3.3% 0.3% 1.4% 0.6% 0.1% $0.06 $0.28  $0.12 $0.02
871015 3.4% 0.3% 2.1% 0.6% 0.1% $0.07 $043  $0.12 $0.02
871016 3.5% 0.4% 05% 0.7% 0.1% $0.09 $0.11  $0.14 $0.02
871019 7.4% 0.6% 40.5% 8.5% 3.1% $0.10 $7.03  $1.47 $054
871020 6.9% 2.7% 553% 7.5% 2.6% $0.51 $1041  $1.40 $049
871021 5.8% 1.3% 10.0% 7.5% 2.0% $0.28 $220  $1.65 $0.44
871022 8.2% 1.3% 340% 6.0% 2.1% $0.25 $6.61 $1.16 $0.40
871023 8.3% 1.1% 378% 5.9% 2.0% $0.21 $7.14  $1.11 $0.38
871026 9.1% 1.6% 314% 6.3% 2.3% $0.27 $349  $1.10 $0.40
871027 8.7% 1.3% 267% 6.0% 1.8% $0.24 $4.79  $1.08 $0.32
871028 10.8% 1.0% 27.6% 6.4% 2.3% $0.18 $4.99  $1.16 $0.41
871029 12.2% 0.7% 268% 6.6% 2.4% $0.13 $5.06  $1.25 $045
871030 11.6% 0.6% 283% 6.8% 2.5% $0.11 $560  $1.35 $049
871102 11.6% 0.6% 247% 6.9% 2.5% $0.11 $472  $131 $048
871103  12.0% 0.6% 182% 6.8% 2.6% $0.12 $3.34  $1.26 $0.47
871104 12.0% 0.6% 240% 6.8% 2.6% $0.11 $436  $1.25 %047
871105 11.7% 0.6% 17.5% 6.9% 2.5% $0.10 $3.15  $1.24 $%046
871106 12.0% 0.5% 16.0% 6.8% 2.6% $0.08 $2.80  $1.20 $046
871109 12.2% 0.6% 18.0% 6.8% 2.6% $0.11 $3.11  $1.16 $0.45
871110 12.5% 0.6% 17.6% 6.8% 2.6% $0.10 $295 S$1.14 $0.44
871111  12.4% 0.5% 13.4% 6.8% 2.6% $0.09 $227 $1.15 $0.44
871112 12.0% 0.5% 11.8% 6.8% 2.6% $0.08 $2.03  $1.17 $0.44
871113  12.1% 0.4% 194% 6.8% 2.6% $0.08 $3.32  $1.16 $0.45
871116  12.1% 0.4% 82% 6.8% 2.7% $0.08 $142  $1.17 $047
871117 12.4% 0.5% 82% 6.7% 2.7% $0.08 $1.38  $1.13 $045
871118 12.2% 0.4% 78% 6.8% 2.6% $0.08 $136 $1.17 $0.46
871119  12.6% 0.4% 8.4% 6.7% 2.7% $0.07 $1.40 $1.12 $0.45
871120 12.4% 0.5% 75% 6.7% 2.8% $0.08 $1.27  $1.15 $047
871123  12.3% 0.4% 9.8% 6.8% 2.7% $0.07 $1.68 $1.16 $0.46
871124 122% 0.3% 10.0% 6.7% 2.9% $0.05 $1.74 $1.16 $0.51
871125 12.3% 0.3% 83% 6.6% 2.7% $0.04 $1.44  $1.15 $0.46
871127 12.7% 0.3% 6.8% 6.6% 2.7% $0.05 $1.13  $1.09 $0.45
871130 12.9% 0.5% 59% 6.5% 2.7% $0.07 $096  $1.06 $044
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