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ABSTRACT

In this paper, we exploit new sources of cross-sectional data to estimate a detailed product-
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1 Introduction

In Berry, Levinsohn, and Pakes (1995) (BLP) we provide an algorithm for obtaining estimates of
demand parameters for a class of differentiated product models. Demand-side models of product
differentiation date back at least to Lancaster (1971) and McFadden (1973) and motivated much of
the insightful early empirical work on differentiated product markets (see, in particular, Griliches
(1961), Bresnahan (1987) and Feenstra and Levinsohn (1995)). In these models, products are bun-
dles of characteristics, and consumers have preferences defined on this characteristic space. Each
consumer chooses the product that maximizes his utility, and market demand is obtained from
the explicit aggregation of consumers’ choices. The primitive demand parameters to be estimated
are the distribution of consumers’ utility functions. BLP allow the consumer’s preference order-
ing over characteristic bundles to depend on consumer attributes and on product characteristics,
some of which are unobserved by the econometrician. Interactions between consumer and product
characteristics seem necessary to generate reasonable cross price elasticities, while the unobserved
product characteristics seem necessary to generate reasonable own price elasticities.

In the tradition of most previous empirical work on characteristics based models of aggregate
demand, the only data required by BLP’s estimation method are product-level data on quantities,
prices, and product characteristics.! The advantage of product level data is that they are available
for a wide variety of markets.? The disadvantage is that one must estimate many parameters from
a small amount of data.

Empirically, our goal is to produce estimates of a detailed demand system for new passenger
vehicles. Along the way, we hope to discover the gain from using alternative data sources in
estimating differentiated product demand systems.

To highlight the limitations of product-level data, remember that despite BLP’s use of a 20 year
panel of publicly available auto data, they could not extract precise estimates of the distribution
of consumer utilities from the aggregate demand system alone. Their solution was to add an equi-
librium assumption that relates the price-setting process to the demand parameters. However, any
equilibrium assumption is questionable and the demand system parameters are useful independent
of the relevance of alternative equilibrium assumptions.

An alternative strategy for increasing precision is to add data. Unfortunately, consumer level
data are not widely available.® In our case, the General Motors Corporation graciously provided us
with proprietary data that they collect for their internal marketing and product quality programs.
These data, called the CAMIP data, include variables that measure

e vehicle characteristics and sales

¢ household characteristics by vehicle purchased and

!Notable exceptions to the use of product level data are McFadden, Talvitie, and Associates (1977) and Goldberg
(1995). BLP, and some similar studies use information on the population distribution of consumer characteristics,
such as the joint distribution of income and family size from the CPS.

%See, for example (Berry, Carnall, and Spiller 1996) for the airline industry, Himmelberg and Olley (1996) for
hard disks, (Bresnahan, Stern, and Trajtenberg 1996) for PCs, Das, Pakes, and Olley (1995) for TVs, Davis (1997)
for movie theaters, Benkard (1997) for commercial aircraft, and Nevo (1997).

3Most disaggregate data comes from surveys, or more recently from check-out scanners. Survey and scanner
data sets are expensive to construct, and most of those that have been put together have been constructed either
by government offices under confidentiality requirements, or by for profit institutions for marketing purposes. As a
result the number of markets for which micro data exists is not large, and the extent to which researchers can gain
access to the micro data that does exists varies.



e second choice vehicles.

The vehicle characteristics and sales data are similar to the product level data that are more
generally available (although the product level data in CAMIP are of exceptional quality). The
new information is the match of consuming units to vehicle choices. That is, we now have measures
of household characteristics (age, income, family size, etc.) by vehicle purchased. Even more
unusually, the CAMIP data include a second choice question: “if you did not purchase this vehicle,
what vehicle would you purchase?” The answers to this second choice question provide direct
evidence on substitution patterns.

Section 2 describes a random coeflicients discrete choice model of demand. The distribution of
consumer utilities depends on both observed and unobserved (by us) household attributes. These
determine preferences for product characteristics (one of which is unobserved by us) and hence
determine demand. We then discuss, in an informal way, how the model and the various data
sources might identify the importance of the observed and unobserved household attributes.

Section 3 provides a nested method of moments algorithm for estimating the model. There
are three sets of parameters to estimate. The first set parameterizes the effect of observed house-
hold attributes on tastes for product characteristics. The second set measures the importance of
unobserved household attributes in determining preferences for product characteristics. The third
allows us to estimate the effect of product characteristics on the mean utility of a product.

A simplified explanation of the method is that it fits the first two sets of parameters to mo-
ment conditions defined by (i) the observed covariance between the first- and second-choice vehicle
characteristics and (ii) the observed covariance between the the first-choice vehicle characteristics
and the observed household attributes. Intuitively, the first set of moment conditions gives di-
rect evidence on substitution patterns, while the second set gives direct evidence on the extent to
which those patterns can be explained by observed household attributes. The aggregate data are
then used to estimate the additional parameters that determine the relationship between product
characteristics and the mean utility levels of the products.

Section 4 describes the data while section 5 reports our results. We find that adding the
household level data does not, in itself, solve the traditional problems of demand estimation. In
particular, there is a subset of the demand parameters that the household data do not identify and
there is another subset that requires richer data than are found in the usual household demand
survey. When we use all of our data sources, we obtain very precise estimates of most parameters,
with the exception of those measuring the effect of product characteristics on the mean utility of
a product. While these latter parameters are necessary for a full discussion of elasticities, we are
still able to describe many features of automobile demand in great detail.

The paper concludes with a short summary and a brief discussion of related results.

2 The Model

The model is designed to use three data sources:

(i). The product level data contains the sales and characteristics of the models sold in a given
model year. In particular, for each vehicle we observe the market share, the price and a
partial list of the vehicle’s other characteristics (size, power and so forth.)



(ii). The consumer level CAMIP data set is a choice based sample drawn from new vehicle regis-
trations. Each household sampled is asked to list both certain household attributes and the
vehicle it would have purchased if its observed choice were not available.

(iii). The Current Population Survey (CPS) provides information on the distribution of consumer
attributes in the population at large. These data are necessary because the CAMIP sample
is choice-based and includes only households that purchased vehicles, whereas we would like
to make inferences about the demand patterns of the population at large. Questions in the
CPS are matched, as best as possible, to similar questions in the CAMIP survey.

The model in BLP is a model of household utility and demand, which is then explicitly aggre-
gated to obtain product level demands. It therefore already contains a framework for analyzing
all three of our information sources. We now review that framework, changing notation slightly to
facilitate the use of the richer data set at our disposal.

Largely for simplicity, we use a linear version of the utility, u;;, that consumer 7 obtains from
the choice of product j.* Specifically, we extend the traditional discrete choice random coefficients
model (e.g. Hausman and Wise (1978).) Let j = 0,...,J index the products competing in the
market, where product 57 = 0 is the "outside” good (so that u;g is the utility the consumer derives if
she does not purchase any of the J goods competing in this market and instead allocates all income
to other purchases). Let k index the observed (by us) product characteristics, including price, and
r index the observed household attributes.

Our model is then

ui; = LpTixlix + &5 + €55, (1)
with 3
Bik = B+ Y _ 2irBiy + Bivik, (2)
T
where:
e the z;; and ¢; are, respectively, observed and unobserved product characteristics,
e the B,-k are the “tastes” of consumer i for product characteristic k.

e the z; and v; are vectors of observed and unobserved consumer attributes, and

e the ¢;; represent idiosyncratic individual preferences (these are assumed to be independent of
the product attributes and of each other).

Note that the consumer tastes, ﬁ, for product characteristics, , are decomposed in equation (2) to
depend on consumer attributes, both those observed and those not observed by the econometrician.
(The o superscript in 3° is for “observed” and the u superscript in 8% is for “unobserved”).?

In our auto example the z; are auto characteristics that we measure (e.g. price, size, and
horsepower), the £ represent the unmeasured aspects of the quality of the car, the z vectors contain

4 As will become clear, most of the points made here apply equally to models with nonlinear utilities.

5Equations (1) and (2) make several simplifying assumptions, including that there is only one unobserved auto
characteristic, and consumers do not differ in their preferences for it. These simplifications are not necessary to the
arguments that follow, though they simplify both the exposition and the subsequent computations. Note that we
are in effect assuming a factor-analytic structure for unobserved tastes, with one factor associated with each z. For
another approach to high-dimensional factor-analytic discrete choice models, see Heckman and Snyder (1997).



observed consumer attributes (e.g. income, family size, and age of head), and the v vectors allow
for the consumer’s attributes on which we do not have information (e.g. time spent in the vehicle,
availability of other forms of transportation, or desire for speed).

The consumer level choice model is found by substituting equation (2) into (1) to obtain

uij =6+ > TikzirBe + Y TikVikBy + €ij, (3)
kr k
where .
& = Dzl + &, (4)
%

for j=0,1,...,J. We will refer to the J; as the mean utility levels, though strictly speaking this will
not be the case unless the mean of the consumer characteristics are zero. The important point
is that unless the relationship between preference intensities and consumer characteristics goes
through the origin (i.e. unless 3 in (2) is zero), the §; are a function of product characteristics.

The random coefficients allow the deviation from mean utility to depend both on product
characteristics and on household attributes. We can think of the parameters of the model as being
6 = (6, 5°,8*). However, economic predictions about the effect of changes in product characteristics
will depend in part on the 8 that enter the definition of §. Therefore, to answer some questions we
will have to know the coefficients 5 and not just é.

The aggregate demand system is obtained by summing the choices implied by the individual
utility model over the distribution of consumer attributes in the population of interest. To derive
aggregate demand, let w; be the vector of observed (z;) and unobserved individual attributes
(v, €)),

w; = (24, v, €),

and denote its distribution in the population of interest by P,. Since it is assumed that each
household chooses the good that maximizes its utility, aggregate demand for good j is given by the
integral of the density of consumer attributes over the set of attributes that imply a preference for
good j:

5(6,6% 8% 2,Pu) = [ Pu(dw) (5)

Aj(6,8°,0%;x)
where
A]((Sv 8%, 8% .’L') = {w : r—mlax J [uir(w; é,8°, 8", IL‘)] = u‘ir}-

The basic form of equation (1) is familiar from the econometric discrete choice literature (see,
for e.g. McFadden (1981)), while the notion of aggregating discrete choices to market demand has
been used extensively in the product differentiation literature (see for example Hotelling (1929),
or more recently Anderson, DePalma, and Thisse (1992)). We want to stress two features of the
framework: the interaction terms and the product specific constant terms.

2.1 The Interaction Terms

As stressed in BLP, a demand system obtained by aggregating characteristics based micro models
(such as ours) will only generate reasonable own- or cross-price elasticities if the underlying micro
framework allows for sufficient interactions between individual attributes and product character-
istics. If there were no such interactions, then products with the same market shares would have



both the same own-price semi-elasticities and the same cross-price semi-elasticity with every other
good (where the semi-elasticity is the percentage change in demand for a given price change.) This
implies that a subcompact (whose market share is high because it offers reasonable quality at a
very low price) will have the same predicted substitution patterns as a luxury car (whose identical
market share is high because it offers excellent quality at a high price). The interaction terms
ensure that households who substitute out of one car will substitute to another car with similar
characteristics and that differently priced cars will be bought by consumers with different respon-
siveness to price. This occurs because households who purchase a car have preference intensities
that correspond to the characteristics of that car, and so would substitute to cars with similar
characteristics.

Because of the importance of the interaction terms in determining demand patterns, we allow
for both observed and unobserved household attributes to determine the preference intensities for
the characteristics. A substantive issue is whether the observed attribute data explain the observed
substitution patterns or whether households with the same observed attributes have substantial
differences in preferences for characteristics (i.e. we require the v;). Since the v add considerable
computational complexity to the analysis, deleting them would greatly simplify the analysis.

The availability of new data allows us to investigate these issues in a more detailed way. Since
the household first choice data set matches household attributes to choices, it should contain a
great deal of information on 3° (the parameters that measure the interactions between observed
household attributes and product characteristics).

The combination of first and second choice data should allow us to also get precise estimates of
the B* parameters. Too see this, note that we could predict the correlation in the characteristics
of the first and second choice vehicles using only the observed attribute data. On the other hand
we have the actual correlations. The importance of the unobserved attributes is extracted from the
difference between the data and the predictions based on the observable attributes.®

There are two extreme cases and they are both of some interest. In the first, 8 = 0 in which
case unobservable attributes are unimportant and we revert to a standard logit model for household
choice. In the second, 3° = 0, in which case the observed attributes are not important and the
aggregate purchase proportions are sufficient statistics for the micro first choice data. That is,
in this special case, if we had only first choice data we would necessarily revert to the original
BLP problem of obtaining estimates of the whole distribution of consumer utilities from aggregate
purchase proportions.

2.2 The Choice Specific Constant Terms.

To analyze any economic question that involves a change in product characteristics (including price)
it is not enough to know 8 = (8°,4") and § (the choice specific constant terms). This is because
the derivative of demand with respect to a characteristic zx; will include the term

9s; 99;
35]' al‘kj,

SWe note here that, at least under appropriate stability assumptions, product-level panel (or repeated cross-
section) data that follows market outcomes over time might play a role similar to the role played by second choice
data in our analysis. That is, the fact that the choice set differs for different years generates observable implications
for distributions of unobservable preference parameters which can be matched to the data.



which accounts for the fact that changes in product characteristics change mean utility levels and
not just the distribution of utility about the mean.

As a result we need assumptions that allow us to decompose {4;} into z;xf% and ¢;. Because the
number of observations for the estimation of 3 is the number of products, whatever the assumptions
we make, we effectively have to estimate 3 from the product level data.

The simplest assumption that would allow us to estimate 3 is &; = 0. However, as stressed by
BLP, the {;’s seem necessary to produce a model with both realistic own-price elasticities and with
a realistic chance of fitting the data. These unobserved product characteristics are a concession
to the reality that we do not observe (or at least cannot be expected to effectively use) all the
product characteristics valued by any consumer. That is, they play the role that product-level
demand disturbances play in traditional homogeneous product demand systems: they explain why
the measured variables will not perfectly predict market shares and they introduce a simultaneity
problem in estimation (i.e. in most equilibrium models product prices will be related to the ;).

Different assumptions on the joint distribution of the observable characteristics and the ¢;
would allow us to estimate the (i, but these assumptions are no different than those necessary
when household data are unavailable. Since one of the z; variables is typically price and the
simultaneity problem implies that price will be determined in part by £, the standard assumption
that the covariance between £; and z; is zero will not do. BLP assume that the {; are mean
independent of the other (non-price) characteristics of all of the products, and then use moments
based on that assumption to estimate the parameters of the model.

To summarize, recall that when only aggregate data are available, none of the parameters of
the model are identified without some such additional identifying assumption. Once we have, in
addition, household choice data we can estimate both the vector § and the taste parameters
without assuming anything about the relationship between the {; and the z;. As in traditional
micro discrete-choice analysis, this is the same as estimating a separate constant term, §;, in the
utility of each choice. For some applications determining (3, é) is enough. For example with multiple
cross sections this is enough to calculate (the entire distribution of) the auto component of the ideal
cost of living index.” However, any time we want to find the response of demand to a change in
a characteristic, as for example in the determination of price elasticities, we will also need the Gg.
This reintroduces the two major problems of product level analysis: the simultaneity problem and
the fact that we only have a small number of observations to determine these parameters.

3 Estimation

We first sketch the estimation algorithm and then turn to a more detailed analysis of problems in
estimation and computation. (For a discussion of related problems, see Manski and Lerman (1977),
Cosslett (1981), and Imbens and Lancaster (1994).)

3.1 Outline of the Estimation Procedure.

We face a choice in estimation strategy. We could attempt to estimate (3, §) pointwise, or we could
add further assumptions on the £ (e.g. E(€ | £) = 0 as in BLP) and estimate (5,3). The trade-off

"This because the answer to the price index involves only the actual characteristics and prices. Other examples
where (3,8) is enough occur when the primary question of interest is the response of demand to a change in the
distribution of z holding prices and characteristics constant.



is the traditional one that we gain efficiency if the assumption on £ is right, but lose consistency if
it is wrong.
Since our dataset is large, we choose to estimate (3, d).

- Maximum likelihood would be a natural estimator to choose, but for reasons we discuss in the
next section it is computationally burdensome. Instead we choose to minimize an objective function
defined by a set of moment conditions that are generated by the model and should be informative
about the properties of the specification.

We fit three sets of predicted moments to their data analogs:

(i). The market shares of the J products,

(i1). The covariances of the observed first-choice product characteristics, the x, with the observed
consumer attributes, the z (for example, the covariance of family size and first choice vehicle
size) and

(iii). The covariances between the first choice product characteristics and the second choice product
characteristics (for example, the covariance of the size of the first choice vehicle with the size
of the second choice vehicle.)

To minimize an objective function based on these moments we have to search over the param-
eters (,08). In our case, the § vector by itself has over 200 elements and an unconstrained search
would be extremely computationally demanding. An alternative is to use the nested algorithm
suggested in BLP. For each guess of g, the algorithm uses a quick contraction mapping to find the
unique value of § that makes the model’s predicted market shares exactly equal to the data, thus
zeroing the first set of moments. Then, we substitute the resulting §(3) for § when we calculate the
model’s predictions for the other moments. This reduces the problem to searching over § rather
than over (3, §) couples.

Since the second set of moments match observed consumer attributes to the characteristics of
the vehicles those consumers choose, we think of them as being particularly useful in estimating
the coefficients, 3°, on the utility function interaction between z and z. The third set of moments
are driven by the total variance in preference intensities for the vehicle characteristics. For a given
3° they determine the importance of the unobserved consumer attributes as measured by g¥.

This procedure is very similar to the original BLP algorithm that used only product level data.
That algorithm fits the §’s exactly to the market shares and then plugs the resulting §(53) into a set
of covariance restrictions on §;, the unobserved portion of the mean utility levels. The algorithm of
the current paper does not need these restrictions to estimate 8 because the CAMIP data allows
us to control for arbitrary §; via the product specific constants. As noted, however, to obtain the
mean utility parameters 3 we will need some additional restrictions on the data. These restrictions
could be in the form of BLP-style covariance restrictions on the joint distribution of (z, &) or could
consist of alternative restrictions on the parameters, such as a restriction that the model match
some known product level elasticity.

In the remainder of this section, we introduce some additional notation for the data and then
discuss the calculation of the predicted moments more carefully. This is followed by more formal
discussions of efficiency, of the sources of variance in the data, and of computational details and
complexity. The casual or first-time reader could go straight to the data section.



3.2 The Fitted Moments

A formal exposition of the fitted moments requires some additional notation. We observe the num-
ber of households, N, in the population of interest and treat the attributes of those N households
as a random sample from the distribution of household attributes, say P,,. The product level data
provides us with J couples, (sj-v ,T;), where s;-V is the share of the population that purchased vehicle
J, and z; is a vector of the vehicle’s characteristics (one of which is price, p;). We let sty = 1-32; sf’
be the fraction of the population that does not purchase one of our J vehicles.

As described in detail in section (4), the consumer level CAMIP data set is a choice based
sample drawn from new vehicle registrations. The number of households in our extract from the
CAMIP data set is denoted n, while the number of households sampled for vehicle j is n;. The
n; were set exogenously by GM and tend to (slightly) oversample less-popular cars (relative to
their share in total car sales). The estimation procedure will correct for the choice based sampling
scheme. We index the households in the CAMIP sample by i; = 1,...,n;, and let y} = j symbolize
the event that the first choice of household i is vehicle j, while y? = k is the event that the second
choice is vehicle k.

To complete the model, we have to specify a distribution for the observed and unobserved
consumer attributes, the z;, and the (v;,¢;) couples. We assume that the CPS is drawn from the
population distribution of z (so we can use it to sample from P,), and that (v, €) couples distribute
independently of z according to a known family. Our specification allows for one unobserved house-
hold attribute (one v)for each vehicle characteristic. We then assume that each element of these v,
except for the coeflicient on price, is i.i.d. normal. The parameter 8} can then be interpreted as
the standard deviation of the unobserved distribution of tastes for vehicle characteristic k. Because
we think no one prefers that the price of their favorite car be raised, we assume that minus the
taste parameter on price has a log-normal distribution. The mean of that log normal is then shifted
by observed z’s. These specific assumptions give us the distribution of v, denoted P,. Finally, we
assume for computational simplicity that the idiosyncratic errors, the ¢;;, have an i.i.d. extreme
value or “double exponential” distribution, P,(z) = e~¢". This final distributional assumption
yields the familiar logit functional form for the model’s choice probabilities conditional on a (z,v)
couple.

Further details on our functional form (including which elements of z interact with which z’s)
are discussed after we introduce the data below. For now all that matters is that the choice
probabilities are an easy to calculate function of z, v and €, and that we know how to draw from
the distribution of z and v.

As noted, our estimation algorithm evaluates a method of moments objective function, which
depends on the parameters 8 = (8%, 3*). Given B, we first fit the mean utility levels § to the
observed market share data s;y . Ideally, we would define the vector 6" () implicitly as the solution
to

G3/(0)= s ~ Byt =3} 18,8V (B) = s} = [ [ Pr(n = ilz,,8,6" (8)P-(d2)Pu(av) =0.

Though the individual choice probabilities given (z,v, 3,6 (8)) and the integrand in this formula
are easy to calculate, the integral needed for the model’s predicted aggregate share has many
dimensions and is not analytic. As a result we use simulation to approximate it (as in (Pakes 1986)).

Specifically, let (z;,v,) for r = 1,...,ns, index ns random draws on a couple whose first
component, 2, is taken from the CPS and whose second component, v;, is taken from the assumed



distribution of . We then define 6"V () implicitly as the value of this vector that sets

1 ns ) n
Grsn(0) =5 = =3 Pr(y = jlzr, vr, 8,81 (B)) (6)
r=1

exactly equal to zero 8. Thus our model’s prediction for total sales always exactly matches the

observed data for each value of 5. The existence and uniqueness of such a § is guaranteed by
Berry (1994). To actually compute 6™, we use the contraction-mapping algorithm provided in
BLP. Note that we draw the (z,, ;) couples once at the beginning of the algorithm and hold them
constant thereafter. Thus the limit theorems in (Pakes and Pollard 1989) apply to our estimators.

G? in (6) depends only on the observed market shares and our draws on z and v. The rest of the
moments use the micro data in CAMIP. The first set of these compare the covariances between the
first choice car characteristics and household attributes in CAMIP to those predicted by our model.
In particular if we let the first choice car characteristics be denoted by z! and 2 denote household
attributes, then we fit the models predictions for the uncentered covariances,i.e. for E(z!z’), and
for the means, E(z!) and E(z), to those in the CAMIP data. We include in E(z'z') a separate
moment condition for each interaction term in our utility specification. Since we fit the §'s exactly
to the market shares our specification already ensures that we get a perfect fit to E(z!), and there
is no need to add this condition. Given the way the CAMIP sample is drawn E(z) is pretty close
to the expected value of the attributes of households who chose to buy a car. Hence they should
be particularly useful in determining the reduced form relationship between household attributes
and the utility of the “outside alternative” (the utility when the household does not buy a car).
We now provide details on how we calculate these moments.

Recall that the CAMIP data provides random samples of households who chose different vehicles
and records their attributes. Our first choice moments are obtained from the difference between the
CAMIP sample’s average value of the attributes of households who choose car j and the average
value for those attributes predicted by the model. We interact this difference with the characteristics
of the vehicle, and then average over the different vehicles (using the CAMIP sampling weights).
Recall that y! = j denotes the event that the first choice was vehicle j. Then our first choice
moments are :

1 ~ .01 ~1ym;j 1_ .
Grnen(60) ~ 222k {(n)) ' Bly5, — Elly' = 5,61}, (7)
where, at the risk of some misunderstanding, now it is understood that 8 = (3, 8" (3)).

We use an approximation sign in equation (7) to indicate that we cannot calculate E[z|y! = j, 6]
exactly and have to use a simulated approximation to its value. More precisely, use Bayes rule to
transform, i.e.

Blsly' = 3,6 = [ 2P(daly’ = 5,60)
into an expression that depends on the model’s predicted choice probabilities Pr(y! = j|z,v,6)

[, 2Pr(y1 = jlz,0)P(dz)

E[z|y1 =7, 0] = Pr(y, = j,6) (8)
. fz fu ZPT(yl =j|z, v, G)P(dz,du) (9)
B PT(y1 =7, 9) .

8In practice, we don't just take random draws from the distributions of z and v, but rather use importance
sampling techniques to reduce the variance of our estimated integrals.



Note that for each value of 3, our model’s prediction for the denominator of (9) will, by virtue
of the choice of 4, exactly equal sf’ , the sales of vehicle J as a fraction of the U.S. population.
However we have to simulate the integral in the numerator. Using the same draws on (z,,v,) we
used in equation (6) we obtain our approximation as

(ns) 1S,z Pr (y1 = jlzr, vp, B, 87 N(ﬂ))

E[zlyl =],0] SJ

(10)

The first choice moments we use are formed by substituting (10) into (7).

An analogous procedure is used to form the second set of moments (the covariances between the
characteristics of the first and second choice vehicles), say Gn ns, ~(8). Consider only the households
whose first choice was vehicle j. For those households, the difference between the the average value
of characteristic & of the second choice vehicle they list in their responses, and the average value of
characteristic k for the second choice vehicles predicted by our model is

( - Z > zke{yl = q}) (E[Z zr{v? =} | ¥' =1, 9]) : (11)

i1 45 g#j

where {y? = ¢} is the indicator function for the event that vehicle ¢ is the second-choice. We
interact this difference with x,lcj and use the CAMIP sample weights to average over first choices
and obtain the moment

Gn ns, N(e) =

> ks 2o [(—Z{yz =~ [ [ Pret = a1y =42, 16)P.(@)P, (@)

j q#j " i=1

(12)

To calculate the expectation needed for these moments we note that the second choice proba-
bilities conditional on (y! = j, z,1,6), ie., Pr(y? = k | y! = j,2,v,6), are given by the standard
“logit” form. After substituting this into the integrand we approximate the needed integral by
simulation (as in 7; note that this explains the approximation sign in 3.2).

Our estimator is a two step generalized method of moments (GMM) estimator (see (Hansen
1982)) with moments given by Gpns,n(0)' = [Gy, s n(0)', GE 1, N(0)']

Using the first choice moments as an example, we now sketch out how our approximations affect
the limit properties of our estimator. Throughout we will ignore terms of order O,(1/4/N) as in
our case N, the number of households in the US population, is large relative to both n, the number
of households in the CAMIP sample, and ns the number of simulation draws. Rewrite (10) as

5;(6*) " (ns) T Brze Pr(yy = jlzr, v, B,8(B)) + prs (67 (B) — 6(B8)] + Op[67 (B) — 8(B))?

where 8* is the true value of 8, and
i = 5077 [ [20Pr (= jler, vy, 5,8(8)) /6] Pldz, dv)

Substituting this into 7 we have
Gn ns,N ( ) ~ 2 zk;
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{(n) IS8z, — 55(6%)7 () Srz Priys = 2, vr B,8(8)) + g 57 (B) — 6(8)] + O,([5™(8) - 6(B)) ).

)

The rationale for choosing a value of § that minimizes a distance in G1lz,n s,v(0) is seen by noting

that [6™*(8) —d(B)] — 0 in probability as ns grows large (uniformly in 8). Thus for ns large enough
Gl (6) is approximately

n.ns,N

By ~Lan; { () S, — (55(0%)/55(0) Blely' = 5,8,6(8)]} ,

which, at 6 = %, the true value of 8, converges to zero with the size of the CAMIP sample (n).

For the variance of our estimator, we need the variance-covariance of the moment conditions
and the derivative of the expectation of the moment conditions with respect to 3, both evaluated
at @ = (%, the true value of that parameter (see for e.g. (Hansen 1982) for the formula). The
expansion above shows that the variance in our moments when evaluated at any particular 6, say
0 = 8, will be functions of three terms

¢ aterm resulting from the variance in the CAMIP means (e.g. from the variance in (nj)“lﬁz,j:lz,-j )

¢ a term resulting from simulation error in our prediction of the model’s moments (e.g. from
the variance in (ns)~'Z, 2. Pr(y; = j|zr, vr, B%,6*(8*))), and

e a term resulting from simulation error in our predictions for §*(3*) (from the variance in
prs[67°(B*) — 6*(B%)]).

Since we use the same simulation draws to calculate the model’s predictions conditional on @ as
we do to calculate §, the last two terms distribute independently of the first term, but not of each
other.

The derivative matrix is found in the usual way remembering that, since we use a two step
estimator, the needed derivative is the sum of two terms: one accounting for the direct effect of 3
and one accounting for the effect of 3 on § (see, for example, Pakes and Olley (1995)).°

3.3 Efficiency and The Form of the Likelihood.

Although it is intuitive and relatively easy to implement, our method of moments estimator does
not have the distribution of the maximum likelihood estimator and is therefore not efficient. To
discuss efficiency, it is useful to start with the likelihood function that, if computationally feasible,
would yield the efficient method of estimation. In fact a “near” maximum likelihood estimator is
feasible for special cases of our model and we will report some of these results below.

Our model conditions on both the product characteristics, the z, and the distribution of indi-
vidual attributes P,,. Thus, what we require is the form of the likelihood for the combined data
sources conditional on (z,P,,), and the model in equations (3), (4) and (5). Once again, this model
generates a likelihood conditional on the vector 8§ = (6, 3°,8%), and, does not (at least without
further assumptions), allow us to analyze the relationship between the §; and the z;.

® Another way to derive the variance matrix would be to think of stacking the three sets of moment conditions G°,
G! and G*. We require the first set, the market share equations, to hold exactly, which is approximately the same as
weighting these moment conditions very heavily. Thus, we could think of deriving the standard errors from the usual
GMM formula, but with a weighting matrix that places a relative weight on G° that is tending to infinity. The third
source of error above, the variance in §*(3"), would show up as the simulation error in the market share equation.
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The likelihood function is the product of the probability of the CAMIP sample and the observed
aggregate shares. More precisely, the likelihood is the probability of the CAMIP sample conditional
on the aggregate shares times the likelihood of the observed aggregate shares. Conditioning the
likelihood of the CAMIP sample on the observed aggregate shares is technically necessary because
the households in the CAMIP sample also contribute to total US sales of vehicles. However

Pr(Camip, sV | z,8) = Pr(Camip | sN,z,0)Pr(s" | z,0) (13)
= [Pr(Camip | z,6) + Op(n/N)|Pr(s" | z,6)
~ Pr(Camip | z,0)Pr(s" | z,9),

where we use the approximation because n/N =~ .0003 in our problem. That is, since the error
from failing to condition the likelihood of the CAMIP data on the aggregate shares is of order n/N
(this follows from a standard, though tedious, argument), and since that ratio is small, we ignore
the approximation error and consider only the likelihood of the CAMIP sample unconditional on
aggregate shares.

The first term in (13) is the likelihood of a single household in the CAMIP sample; i.e. it is
the likelihood that a randomly sampled purchaser of vehicle J would have the attributes and the
second choice observed in the data. Since our model does not condition on the vehicle purchased
and then predict z; and second choices, but rather, it conditions on consumer attributes and then
predicts first and second choices, we need to use Bayes’ rule to derive this term. Letting [] be the
product operator we have

1
Pr(Camip | z,60) = H H Pr(y?, 2 |y = 3,2, 6) (14)
7 =1
1 ﬁ Pr(y?| z;,y} = j,z,6)Pr(y} | zi,z,0)Pr(z) (15)
L Pr(y} | z,0) ’

As in the discussion of GMM, Pr(y? | z;,y},,6), Pr(y} | zi,z,0) and Pr(y} | z,6) can be derived
from the model and Pr(z;) is taken from the CPS.

We still need the likelihood of the observed aggregate shares (the second term in (13)). This
is just a multinomial likelihood with a sample size equal to the number of households in the US
and with expected shares given by the model. That is, if we let {N; }Jle denote the sales of good
Hhfor,j=1,...,J,and Ny = N — Ej Nj, the likelihood of the observed market shares is

J
Pr(sV | ,0) H 5;5(0 | z)Ni (16)
j=1
where s;(0 | z,P,) is again taken from (5).

Note that since we have product specific constant terms, this multinomial will be maximized
by setting the observed shares exactly equal to the predicted shares!®. Consequently by choosing
N large enough we can ensure that the maximum likelihood estimates of 8 will set the predicted
shares arbitrarily close to the actual shares. For our data N (the number of households in the

19This because the number of parameters in 6 is greater than the number of products, and the unrestricted maximum
likelihood estimate of the predicted shares are the actual shares,
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U.S. population) is quite large relative to n (the CAMIP sample size), so the maximum likelihood
estimates of the entire likelihood will come extremely close to equating the predicted and observed
aggregate shares.

Indeed, another likelihood based procedure which would produce a “near” maximum likelihood
estimator would maximize the likelihood of the CAMIP sample conditional on the restriction that
the observed sV equal the predicted shares from the model. This would generate a two-step method
similar to our two-step GMM method. First, 6" (83) is chosen to maximize (16), by equating
observed and predicted shares. Then, this value of § is plugged into the CAMIP likelihood (15).
The near MLE estimate of 8 = (3%, 8“) is then the value of 4 that maximizes the CAMIP likelihood
evaluated at (3,0"(B)). Further simplifications along the line used in our GMM procedure are also
possible. Since the two-step procedure holds the denominator of (15) constant, only the numerator

£(B,88)) =[] l_J[P?"('yi2 | 2y} = 4,2, 8,6V () Pr(y} | zi,z,B,6" (8)) (17)

i i=1

needs to be evaluated. For given 8,4, this is the likelihood of an unstratified sample of vehicle
purchases; i.e. the method of choosing §(3) corrects for the fact that the sample is choice based.

In practice, the two-step near MLE runs into several problems. First, as with GMM, it is not
feasible to solve the integral defining 6" exactly and so we must use simulation to derive 6™V ( as
in our procedure for setting G° in (6)to zero.) This introduces a non-linear simulation error into
the likelihood in (17). However, for large N, the error in our estimate §™**" will converge to zero as
ns grows large, so it will not effect the consistency of our estimator. We can analyze the impact of
the simulation draws on the variance of the estimator by noting that our two-step simulated near
MLE is computationally identical to the one-step method that chooses 8 and § to exactly zero; [i]
the J moment conditions in (6), and [ii] the moment conditions defined by the first-order conditions
of the CAMIP likelihood in (17)!! . These latter conditions are

oL oLos _
a8 0508

The problem which deterred us from using the near maximum likelihood estimator for our
general model is that the probabilities in (17) cannot be computed exactly. For example, the

integral in
Pr(y! | =2, 6,67 (8)) = / Pr(y} | z,v,2, B, 6" (8))Py(dv)

has no analytic form and thus has to be simulated. We also simulate these probabilities in our GMM
procedure, but, unlike in our GMM procedure, the simulation error does not enter the near MLE
first-order conditions in a linear fashion (and hence does not average out over observations). Thus
for consistency we would need a large number of simulation draws for each individual probability.
Since we have over thirty thousand individuals, even a moderate number of simulation draws per
individual would be computationally prohibitive. Moreover many of our probabilities are very small
(even the average is only about .005) and the log function is very sensitive to measurement error
near zero, and so we would need a large number of simulation draws per individual. Our early trials

"This is because the number of moment conditions in [i] and [ii] exactly equals the number of parameters in # and
so the requirement that the aggregate market shares fit exactly will be met by the estimated parameters.
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with this procedure indicated that it was too sensitive to simulation error for it to be practically
useful.

However when v has no effect, that is for the special case where 8% = 0, we can evaluate (17)
directly. Note that in this case, 6% still has simulation error; we still have to simulate over the
CPS distribution of z to approximate the model’s prediction for aggregate market shares. Thus we
have to correct the near MLE standard errors for this error, but our initial trials indicated that the
two-step simulated near MLE method seems to produce good results for this case. Therefore, in
the results section we report the near MLE estimates for those special cases with 8% = 0, that is
when unobserved individual attributes are not important, and GMM estimates for both our general
case, and for the case where 3° = 0, i.e. where observed consumer attributes are not important 12.

3.4 Notes on the Choice of Estimator

In the process of choosing an estimator we have made several choices which impact on the efficiency
of the estimator we use. We conclude this section by reviewing those choices and pointing out what
efficiency gains might be attainable from alternative estimators.

Note first that we chose not to use any assumption on the relationship between the z; and the
¢; in obtaining our estimate of 8. This makes the assumptions used thus far weaker than those
used in BLP. However it also implies that we need to estimate an additional set of approximately
J parameters, with a loss in potential efficiency that should be expected to be large when J is
large. Of course the advantage of our procedure is that, in direct contrast to the estimator used in
BLP, the consistency of our estimator of 8 does not depend on any assumption on the relationship
between the observed and the unobserved product characteristics.

Second, the integrals defining model probabilities become hard to compute in the presence of
the unobserved »’s. Thus, we use simulation techniques to compute the unknown expectations.
The simulation error, however, enters the MLE first-order conditions in a non-linear way and so
we substitute intuitive moments that are linear in simulation error for some of the MLE first-order
conditions. Note that we attempt to control the amount of simulation error via an importance
sampling technique that is very similar to the importance sampling method used and describe in
BLP. A formula for the correct standard errors is given in an appendix. If we could, in fact, decrease
the simulation error enough to make use of MLE, we would have an efficiency gain. Looking ahead
to the results section, however, our current standard errors are not objectionably large.

Finally, adding the J parameters §; might be computationally prohibitive, except that both our
GMM and MLE techniques are two-stage methods that use the aggregate market shares to find &
as a function of the 3’s, reducing our non-linear parameter searches to the much smaller number of
f’s. Because of the simulation error, some efficiency may be lost by requiring the predicted market
shares to fit the data exactly, but the computational gain is large.

’Note also that one way of thinking about the GMM method is that it uses the first-order conditions from the
aggregate portion of the likelihood, (16), while replacing the first-order conditions from (17), which are nonlinear
functions of the simulation error, with an intuitive set of moments based on the difference between observed and
predicted cross-products in the data, that are linear in the simulation error.
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4 Data

In this section, we outline our three sources of data: the CAMIP sample of households, the CPS
and our product level dataset.

4.1 The CAMIP Data and the CPS

The CAMIP data contain the results of a propriety survey conducted on behalf of the General
Motors Corporation (GM). This survey is a sample from the set of vehicle registrations in the 1993
model year. For each vehicle, a given number of purchasers is sampled. The intent is to create
a random sample conditional on purchased vehicle. The sampled vehicles consist of almost all
vehicles sold in the U.S. in 1993, not just GM products.

The original 1993 sample is very large (about 57,000 observations). We deleted observations
with missing values for any of the consumer attributes we used, and were left with about 37,500
observations.!® Almost all (actually about 34,500) respondents also report their second choice
vehicle.14

The ratio of sampled purchasers to vehicle sales, a number set by GM, tends to decrease slightly
in sales. That is, GM oversamples the buyers of less popular vehicles (these tend to be higher priced
vehicles), so the overall distribution of characteristics in the CAMIP sample is not (at least not
quite) representative of the attributes of vehicle buying households.!®

The CAMIP questionnaire asks about a limited number of household attributes, including
income, age of the household head, family size and place of residence (urban, rural, etc.). There is
no question asked about the education of the household head.'® We match each of the household
attribute questions to a question in the CPS. The match is generally good, although the CPS
questions are usually less ambiguously worded than the CAMIP questions. Tables 1 and 2 compare
the distribution of household characteristics in the CAMIP sample to those in the CPS.

Table 1 provides the fraction of the respective samples in each of five different income groups
and the within group mean incomes. Not surprisingly CAMIP samples disproportionately from
higher income groups. Households who buy new vehicles, especially high priced ones, tend to have
disproportionately high incomes.

Table 2 compares the household attributes other than income. Perhaps the most striking differ-
ence between the two samples is that the CAMIP sample is significantly less urban and more rural
than the overall U.S. population. Apparently, the rural population purchases a disproportionate
number of vehicles, which helps explain the high share of trucks in total vehicle sales. Interestingly

13We treat the missing data as if they were randomly missing. Though there were a significant number of missing
values for all of our variables, data on income, and to a lesser extent on age, were missing disproportionately. We
did compare means of observed variables conditional on income being present to the means when income was absent,
and there were some differences (most notably the average age of a household which did not report income was 46.2,
while the average age of those who did was 52). Though there is room for a deeper analysis of the impact of this
selection criteria, such an analysis is beyond the scope of this paper.

14The first choices of the 2877 individuals who had no missing data except for second choice data are used in the
estimation. About 800 of these individuals had second choices that were deleted because they were identical to their
first choices.

'50ne goal of the survey is to calculate consumer demographics by vehicle and this sampling procedure ensures
adequate sample sizes for vehicles with small sales (which are frequently high priced cars).

16There is a question about the education of the driver of the car, but that is hard to match to a question in the
CPS.
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Table 1: Comparison of Consumer Samples
by Income Group

Income % in % in | CPS Group | CAMIP
Range CPS | CAMIP Mean Mean
0-36.5 64.17 25.00 16.90 25.96
36.5—55 16.97 23.16 44.89 45.43
55—85 12.34 26.71 66.93 67.46
85— 6.52 25.13 114.25 148.19
all 100.00 | 100.00 34.17 72.27

income in $1,000s

the CAMIP sample also has somewhat more adults, but fewer children, per household than the
CPS.

Table 2: Comparison of Consumer
Samples by Other Demographics

Variable CPS Mean | CAMIP Mean
Fam Size 02.36 02.65
Age of Head 46.80 46.18
# Kids 00.66 00.58
Urban 00.46 00.35
Rural 00.25 00.35
Suburban 00.29 00.30

4.2 The Choice Set.

In our framework vehicles are defined by their characteristics and consumer preferences are defined
on the underlying characteristics space. Thus, to define the choice set we need to classify cars and
light trucks into a list of distinct vehicle models and associate characteristics with those models.

We begin with a list of total vehicle sales by model compiled by the Polk company and made
available to us by General Motors. These data list somewhat more than 200 distinct models with
total sales to households plus total leasing by household. We sum sales and leasing into our quantity
measure. We do not include any sales or leases to businesses, as the CAMIP data also do not include
sales to businesses or fleets. Market share of a model is then quantity divided by the number of
households in the U.S. Note that this implicitly gives the share of the outside good: the share of
households who did not purchase a new vehicle in 1993.

We turn now to our measures of characteristics. Previous empirical studies of this sort (including
our own) have largely relied on published data from Automotive News and similar publications for
both the model classification and the characteristics of the cars classified. Automotive News, for
example, gives the base model characteristics of cars together with the list price of those cars. In
contrast, we would like to have a measure of the typical characteristics of vehicle models, together

16



with the average transaction (as opposed to list) price.

We use the CAMIP data to construct both the characteristics and the transaction prices. For
each vehicle purchased, the CAMIP data give a very detailed list of vehicle characteristics and the
transaction price of the car (including sales taxes but excluding trade-in allowances.) Some of the
characteristics (make, model, body style, and engine type) are known from the vehicle identification
number of the car, but most are self-reported by the consumer. The transaction prices are also
self-reported. We informally compared the reported transaction prices to industry publications
that give suggested transaction prices and the CAMIP prices look quite reasonable. Since vehicles
are very expensive relative to income, we expect consumers to pay attention to purchase price.

We then faced the task of creating a somewhat artificial list of discrete choices, one for each
of our vehicle models. Such a list obscures the optional equipment (and, in some cases, the range
of body styles and engines) that are available to the consumer. However, even in a very “micro”
study such as ours, some aggregation of the choice set is necessary. Still, we have a substantially
longer and more detailed list of vehicles than earlier studies.

To construct our choice set, we find the modal vehicle for each CAMIP vehicle sample cell. That
is, we find the combination of options that was most commonly purchased. The characteristics of
this vehicle then become our z;, while the average price of the modal vehicle becomes our pj.” Car
characteristics that were not in the CAMIP survey (such as exterior size or fuel efficiency) were
obtained from industry and/or government publications. For example, for fuel efficiency (miles per
gallon of gasoline), we matched the engine of the modal vehicle to EPA test data.

Without denying the compromises inherent in this procedure, we would like to emphasize the
improvement that our data provide over earlier studies, our own and others, that use list prices of
base model cars (or, worse, the average characteristics of cars together with the list price of the
base model). Another advantage of our data over many previous studies of automobile demand is
that we include light trucks — minivans, sport utility vehicles and pickup trucks - in our analysis.
Light trucks in 1993 accounted for about 40% of sales, so it is hard to get a complete picture of
demand patterns without them.

The result is a choice set of 203 vehicles, with 147 cars, 25 sport utility vehicles, 17 vans, and
14 pickup trucks. Definitions of the vehicle characteristics used in our analysis are given in Table
3.

Table 4 provides vehicle characteristics by type of vehicle. There were about 10.6 million vehicles
sold in 1993, and they were sold at an average price of 18.5 thousand dollars. Total sales in this
market were, therefore, about 196 billion dollars. The light truck market alone had sales of 81.2
billion dollars.

Table 5 provides the characteristics of a selected set of vehicles. They were selected because
they all have sales that are large relative to the sales of vehicles of their type and because, between
them, they cover the major types of vehicles sold.!® Many of the interesting implications of our
estimates are best evaluated at a vehicle level of aggregation (examples include own and cross-

'"In some cases the Polk sales data is more aggregated than the CAMIP data and in this case we aggregate the
CAMIP to the Polk model definitions by taking the best-selling car within the Polk vehicle definition. Also, in
the later runs (reported below) we aggregated 15 very expensive — an average price of $74,000 - vehicles into one
composite “super-luxury” model. Because of the very small shares of these luxury cars, this cut computational time
considerable without changing the nature of the result. The 15 cars together accounted for about 0.3% of U.S. vehicle
sales.

8The list includes: ten cars (three of them luxury cars), a relatively low and a high priced minivan, a relatively
low and a high priced jeep, a compact and a full sized pickup, and a full sized van.
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Table 3: Definitions
of Vehicle Characteristics

Q US Sales and leases to consumers (from Polk)
n CAMIP sample size for this car
Price Average price for modal car
HP Horsepower /weight for engine of modal car (“acceleration”)
Pass Number of Passengers (“size”)
MPG City Miles per Gallon from EPA for modal engine/bodystyle
Acc Number of power accessories of modal car
(e.g. power windows, power doors)
Safe Safety features: sum of ABS plus Airbags
Payl Payload in thousands of pounds, for light trucks

(from Wards and Automotive News.)
Dummy Variables: Equal one if

Miniv Minivan

SU Sport Utility

PU Pickup

Van Full Size Van

Sport Sport Car

(as defined by consumer publications)
OutG “QOutside Good”

Allw 4-wheel or all-wheel drive type
“Firm” | vehicle is produced by “firm”
Multiples

PUPayl | PU x Payl
SUPayl | SU x Payl

price elasticities, markups, etc.). To give some idea of these implications without overwhelming the
reader with details, we display such implications only for this illustrative sample of sixteen vehicles.

4.3 Observed Household Characteristics and Vehicle Choice.

Table 6 provides the mean household characteristics by type of vehicle chosen, while Table 7
provides the mean characteristics of vehicles chosen by the different demographic groups in the
CAMIP sample. We used the data in these tables to guide us in choosing the utility functions
interactions between household attributes and car characteristics.

Several relationships between household and car characteristics stand out from this table; some
more expected than others. Among the expected, high income households choose higher priced
vehicles, households with children (kids) tend to choose minivans, and rural households tend to
choose pickups and all wheel drive. Somewhat more surprising is the fact that age seems to be so
important a determinant of vehicle choice. Older households tend to purchase larger (and therefore
heavier) cars with both more safety features and more accessories. They also tend to stay away
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Table 4: Vehicle Characteristics by
Size/Type of Vehicle*

Vehicle Total | Mean |Mean |Mean |Mean[Mean | Mean | Mean| Mean Mean # of

Type Q+ |Price+| Pass | HP | Safe | Acc |MPG/| Allw PUPayl | SUPayl | Vehicles
Car, pass = 2| 57.5 28.5 2 7.1 2 4 20 0 0 0 6
Car, pass =4 951.3 | 15.7 4 4.8 1 3 26 | .004 0 0 35
Car, pass = 5| 3829.7 | 17.5 5 4.7 1 3 23 | .005 0 0 84
Car, pass > 6| 1374.1 | 21.5 6 4.8 1 4 19 0 0 0 22
Minivan 858.3 | 19.4 7 4.2 1 3 18 0 0 0 13
Sports Utility | 1163.9 | 23.3 5 44 1 3 15 0.9 0 1.3 25
Pickup 2049.2 | 15.0 3 4.2 1 2 18 | .003 2.0 0 14
Full Size Van | 269.8 | 25.0 7 4.1 1 3 14 0 0 0 04
Total 10553.7| 184 | 4.9 | 4.6 1 2.9 20 | 0.11 | 0.39 0.14 203

*All means are sales weighted.

+ In thousands.
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Table 5: Characteristics of Selected Vehicles

Model Q* | Price* | Pass | HP | Safe | Acc [ MPG | Allw | Miniv [ SU [ PU [ Van | PUPayl | Spay
Geo Metro 837 7.8 4 [3.0] 0 0 46 0 0 010 0 0.00 | 0.00
Cavalier 184.8| 11.5 5 |44] 1 2 23 0 0 010 0 0 0
Escort 207.7| 11.5 5 |36] 0O 1 25 0 0 0:0 0 0 0
Corolla 140.0} 14.5 5 150 1 1 26 0 0 0|0 0 0 0
Sentra 1340 11.8 4 147 0 2 29 0 0 0|0 0 0 0
Accord 321.2 173 5 (45| 1 4 22 0 0 00 0 0 0
Taurus 221.7| 17.7 6 [45] 1 4 21 0 0 0] 0 0 0 0
Legend 425 | 324 5 |97 2 4 19 0 0 0|0 0 0 0
Seville 33.7 | 43.8 5 [79] 2 5 16 0 0 00 0 0 0
Lex LS400 21.9 | 51.3 5 |6.5] 2 ) 18 0 0 0] 0 0 0 0
Caravan 216.9| 17.6 7 (43| 1 2 19 0 1 010 0 0 0
Quest 38.2 | 20.5 7 139] 0 4 17 0 1 ;0] 0 0 0
G Cherokee |160.3( 25.9 5 154 2 4 15 1 0 1,0 0 0 1.15
Trooper 18.7 | 22.8 5 |45 1 4 15 1 0 1,0 0 0 1.21
GMCFSPU | 141.2| 16.8 3 |42] 1 3 17 0 0 01 0 2.2 0
Toyota PU |175.1] 13.8 3 [44] 0 0 23 0 0 01 0 1.64 0
Econovan 116.3| 24.5 7 |34 1 3 14 0 0 010 1 0 0

* In thousands.
Table 6: Mean Consumer Demographics by
Size/Type of Vehicle

Type Income | FamSize | Adults | Kids | Age | Suburb | Rural
Car 2pass 107 2.37 2.03 0.34 | 43 0.39 0.25
Car 4pass 66 2.56 209 | 047 | 42 0.31 0.33
Car 5Spass 77 2.61 205 | 0.55 | 46 0.32 0.31
Car 6pass 69 2.85 2.08 | 0.77 | 53 0.28 0.38
Miniv 67 3.56 2.10 146 | 44 0.31 0.37
SU 79 2.79 207 | 072 40 0.30 0.36
PU 53 2.64 210 | 054 | 44 0.16 0.57
Van 64 3.41 2.19 1.21 | 49 0.22 0.41
Mean 72 2.65 2.07 | 0.58 | 46 0.30 0.35
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Table 7: Vehicle Characteristics of Different
Demographic Groups*

Group | Price |HP | Pass | Acc | Safe | Sport | MPG [ Allw [ Miniv [SU| Van | PU | SU
Payl | Payl

a <30 16.6 | 4.7 45 |26 | .8 20 (220 .13 | .03 [.15|.001 .24 | .18
a €(30,50] | 20.1 14849 [31]|11] .15 [ 204 | .13 | .08 [|.13].009] .18 | .18
a > 50 224 149(51 (34|13 .07 | 198 | .06 | .04 [.04].011] .19 | .07
Okids 209 (49|48 |32 | 11| .14 {204 | .10 | .03 |.09/.006] .20 | .12
1kids 19.2 {4748 30|10 | .13 [ 21.0 | .12 | .06 [.11].006] .20 | .15
24-kids 201 |46| 53 (31|10| .08 {199 | .12 | .18 |.13].020] .16 | .18
1fam 19.8 149|147 (3111} .20 [21.2 | .09 .01 [.08].003] .20 | .12
2fam 21.5 (49|49 |33 |12 .11 [ 201 (.10 | .04 [.09{.007[ .20 | .12
3+fam 19.7 {47 5.0 {31 (1.0 .12 | 205 | .11 10 |.12(.012] .19 | .16
urban 206 14849 (32|11 .13 {207 .10 | .05 [.10[.009( .14 | .14
subrb 21715049 |34 |12| .15 {203 .10 | .06 |.10].006] .10 | .14
rural 19.2 14749 {3010 | .11 (202 | .12 { .06 [.11].010] .31 | .14
y <37 16.6 |46 | 48 |26 | .88 | .12 ;219 | .08 | .04 |.07[.008] .25 | .08
y € (37,55)| 18.5 |4.7| 49 [ 3.0 1.0 [ .12 [ 207 | .10 | .07 |.10|.011| 24 | .13
y € (55,85] | 20.3 |48 49 (3.2 11| .14 [ 200 | .13 | .07 |.13].000( .19 | .17
y > 85 263 152|149 (37114} .14 [19.1] .11 ] .05 [.12].006] .08 | .17

*a = age and y = income.

from sports utility vehicles and pickups. Finally the relationship between either kids or adults
(which is family size minus kids) is only mildly positive.

4.4 The Second Choice Data

One of the very useful features of the CAMIP data is the presence of second choice information.
Consumers were explicitly asked for the make, model, and body style (e.g. 2-door, convertible,
pickup) of the second choice.

Remember that the surveyed consumers are not asked whether they would have purchased a.
vehicle at all if their first choice had not been available. As a result, we cannot provide any descrip-
tive evidence on how many consumers might substitute out of the new vehicle market altogether if
their first choice was unavailable.!®

Table 8 provides information on second choices for our “representative” sample of vehicles. The
first column gives the first choice car, while the second column gives the CAMIP sample size n. The
next columns, in order, give: the modal second choice, the number of sampled consumers making
that choice, the second choice with the second highest number of consumers, the fraction of n that
chose one of the two second choices listed, and the number of different second choices made. For
example the sample contains 199 purchasers of the Ford Escort. Their modal second choice was
the Ford Tempo, while the second choice with the next highest number of consumers was the Ford

'Y As a result, we use an econometric model that does not allow for the outside good to be a second choice. Also,
some households listed a second choice that was broader than our first choice cells (e.g. a Ford pickup). The empirical
analysis explicitly aggregates the respective cell probabilities for the second choices of these consumers.
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Taurus. Together these two second choices accounted for 39, or 18%, of the consumers who chose
the Escort. There were 51 other second choices registered among Escort purchasers.

Table 8: Examples of Second Choices

Modal 2nd # Next 2nd (Modal | # Different
Model n; Choice Choosing Choice + Next)/n| Choices
Metro 188 | Escort 22 Geo Storm 0.22 49
Cavalier 238 | Escort 16 Lebaron 0.12 59
Escort 166 | Tempo 16 Taurus 0.18 53
Corolla 250 | Civic 42 Camry 0.33 55
Sentra 203 | Corolla 34 Civic 0.31 60
Accord 223 | Camry 58 Taurus 035 61
Taurus 147 | Camry 18 Sable ) 0.22 45
Legend 119 { Lex ES300 19 Lex SC300 0.24 40
Seville 243 | Deville 38 Lin MK8 0.26 49
Lex LS400 148 | Deville 33 Inf Q45 0.39 27
Caravan 166 | Voyager 31 Aerostar 0.32 36
Quest 232 | Caravan 50 Villager 0.43 31
G Cherokee | 137 | Explorer 75 Blazer 0.59 34
Trooper 137 | Explorer 43 Rodeo 0.41 27
GMC FS PU | 469 | Chv FS PU 222 Ford FS PU 0.55 29
Toyota PU | 113 | Ford Ranger 29 Nissan PU 0.43 25
Econovan 90 | Chv FS Van 20 Suburban 0.44 23

There are a large number of different second choices for the same first choice car, and the top
two second choices account for under a third of the data for about a half of the vehicles. This
fraction does, however, vary significantly across vehicle types; it is higher for light trucks and for
higher priced cars. It is also interesting to note that the second choice is often produced by the
same company as the first choice car (as in the Ford Escort sample above); a fact which argues
strongly for pricing policies that maximize the joint profits of the firm across all the products it
produces.

As expected, the second choice vehicles generally have characteristics that are similar to those
of the first choices. This fact is brought out more clearly in Table 9 which provides the correlations
of the different vehicle characteristics across the first and second choices of the households in the
CAMIP sample. Note that all of these are positive and highly significant (though the correlations for
price, and some of the vehicle type dummy variables, are larger than for the other characteristics).
This table reinforces the importance of allowing household attributes to interact with product
characteristics to produce correlations in the characteristics of substitute products.

5 The Estimates of 8° and S“.

This section presents parameter estimates for our model and for some comparison models. Having
presented the data, we begin with some details on the exact variables used in our specifications
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Table 9: Correlation of Vehicle
Characteristics Across 1st and 2nd Choices.

| Variable | Correlation |

Price 0.69
Pass 0.57
HP 0.34
Safe 0.37
Acc 0.48
MPG 0.59
Miniv 0.68
SU 0.57
PU 0.74
Payl 0.60
Van 0.42

Recall that our utility interaction terms take the form )~ B,-ka:jk, where £ indexes characteristics,
i indexes household and j indexes products. We must choose [i] a functional form for the relationship
between the preference intensities 8; and the attributes (both observed and unobserved) of the
household and [ii] a parametric family of distributions for the unobserved attributes, v;.

For all of the product characteristics except price, we assume that the B;’s have a normal
distribution whose mean is shifted by the observed household attributes. That is, from (2),

Bik = B + Y 2irBgy + Bivik, (18)

The f’s are subsumed for now in the product specific constants, §, while the v’s are assumed to be
i.i.d. standard normal. This gives us one 8 to estimate for every product characteristic.

In principle, one could estimate one parameter g, for every combination of product charac-
teristic k¥ and every household attribute . However, in practice this is too many parameters. We
therefore let the descriptive results in the prior section, together with a number of preliminary runs
of the model, guide our choice of which interactions to include. Observed interactions were dropped
from our early runs if we found them to be consistently unimportant.2?

We treat the coefficient on price differently. The coefficient on price is assumed to be minus a
log-normal.2! Observed household attributes then shift the mean of the log of the coefficient. To
motivate the role of household attributes, we might think of those attributes as determining the
effective “wealth”, W, of the household. The disutility of a price increase should decline in W and
so we assume that the coefficient on price is —e~". Indexing price as the first characteristic, we
then define the “wealth” of the household as

W, = Z zirﬁfr + ﬁi‘l/ﬂ. (19)
r

200Qur use of preliminary runs gives us some confidence that our results are reasonably robust to the inclusion of
further interactions. However, it makes our standard errors suspect in the usual way.

2If we instead had assumed a normally distributed coefficient, we would have guaranteed that some consumers
prefer to pay high prices, all else equal.
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Here, W is equal to a linear function of z and a random normal deviate (which represents deter-
minants of wealth not contained in our data). In practice we allow the mean of the log-coefficient
on price to depend on a constant, family size and a spline in income. We started with a relatively
unconstrained price income interaction, allowing the spline to change derivatives at each of the
quartiles of the CAMIP income distribution, but found that all we really required was a shift in
the derivative at the 75th percentile.

Finally, the utility from the outside good is also assumed to be a linear function of household
attributes, a random normal disturbance, and the “logit” error. (Effectively, we treat the outside
good identically to all the other choices, except with a price of zero and with a constant as its only
observed product characteristic.) Again, we started by allowing for many household attributes
but found all that mattered was income, family size, and, possibly, the number of adults in the
household.

The observed vehicle characteristics used in the analysis are those listed in Table 3. Table 10
provides the list of consumer attributes.

Table 10: Household attributes used in estimation

Variable | Description Comment
Tot Inc total household income
Incomel | (Tot Inc)*((Tot Inc) < 75" percentile) | used in spline
Income2 | (Tot Inc)*((Tot Inc) > 75" percentile) | used in spline
Fam Size | family size

Adults number of adults > 16

Age age of household head

Age? age (squared) of household head
Kids number of kids < 16

Rural dummy for rural residence

Table 11 (broken down into 1la and 11b) provides the estimates from our full model (the first
result column), and compares them to those from models that have been used to analyze similar
problems in the past. Table 1la presents the estimates of the coefficients of the interactions of
the observed household attributes with the vehicle characteristics, the £°, while 11b provides the
estimates of the interactions with the unobserved household attributes, the 5“.

There are three comparison models. The first two are models that do not allow interactions
between unobserved household attributes and vehicle characteristics. They can be obtained from
our specification by setting 8* = 0. Note that the result is just a logit model for micro data
with choice specific intercepts, though our two stage maximum likelihood procedure does have to
account for the fact that the sample is choice based (see above). The column labelled “Logit 15t”
in Table 1la, provides the estimates obtained when we use only first choice data to estimate this
logit model, while the column labelled “Logit 1%t & 2" provides the estimates when we use both
first and second choice data. The implicit estimates of §* are all zero in these models, so they do
not appear in Table 11b. '

The third comparison model is a model in which all the coefficients of the observed interaction
terms, the 3°, are set to zero. This “no observed attribute” model is roughly the same model as
Berry, Levinsohn, and Pakes (1995), except they had only aggregate data and we have, in addition,
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first and second choice micro data (though they did have twenty years of aggregate data, while we
suffice with a single cross-section). Since 4° = 0 in this model, it appears only in Table 11b.

There are two other comparison models that we had thought of including. First, our original
intention was to estimate our full model but, like the “Logit 1" results, use only the first choice
data. However, after substantial experimentation we found we could not obtain precise or robust
estimates of the full model from these data alone. This is consistent with the intuitive notion that
the second choice data provide much of the information on the 8" parameters.

Second, the nested logit model has been used frequently in related contexts, and we could also
have estimated it. The nested logit is a version of our model in which the interactions between
unobserved consumer attributes and product characteristics are restricted to have a very special
form. The only product characteristics that can interact with unobserved consumer attributes are
dummy variables arranged in a “nested” pattern, and the distribution of the unobserved attributes
takes a special nonnormal form (see Cardell (1992)). These restrictions allow one to obtain a closed
form for the household purchase probabilities conditional on the household’s attributes, thus in
many contexts eliminating the need for numerical integration or simulation. However using our
framework one also needs to integrate over these household choice probabilities to obtain aggregate
market shares, and the nested logit restrictions do not make this computational problem any
easier (i.e. they do not eliminate the need for simulation or numerical integration). Therefore
the restrictions embodied in the nested logit are not as usefull in our context as they are in other
contexts.

Since each choice has a separate constant term, the full model estimates about 245 parameters:
over two hundred separate constant terms, over twenty interactions between observed consumer
and car characteristics, and over twenty interactions between observed car characteristics and un-
observed consumer characteristics. The comparison models also include product-specific constants
and therefore also have more than 200 parameters to estimate.

We first examine the estimated parameters determining the taste coefficient on price. In Table
11a we find that price has significant interactions with both family size and income in all three
specifications. As expected, “wealth” declines in family size and increases in income. (Recall
that the positive coefficient on income indicates that the marginal disutility of a price increase is
decreasing in income.) We can distinguish a significant change in curvature for the top quartile
of the income distribution, with the marginal disutility of a price increase changing at the 75'h
percentile.

The remaining interactions in Table 1la are also generally of the expected sign, and quite
precisely estimated, again in all three specifications.?? Thus the interactions between Minivans and
Kids (+), Age and number of passengers (+), Age and Safety (+), HP and Age (-), and SU and Age
(-) were all significant in all specifications. The interaction between adults and Pass was positive
and significant in our model (where it was quite large) and in the first choice logit, but it was
negative in the second choice logit. As the earlier tables suggested the relationship between kids
(Family Size minus Adults) and Pass was relatively small and negative (though recall the strong
positive Minivan/Kids interaction.)

Given our priors, there were only three anomalies in our results, each in the logit specifications,

22Remember though that our priors here were partly formed by examining the univariate correlations reported
carlier and that in early runs we dropped variables that seemed unimportant. Calculation of the standard errors is
discussed in the appendix. About half of the variance in the estimated standard errors is due to simulation, with the
remainder due to variance in the CAMIP data.
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i) the negative interaction between Rural and PUPayl in the first choice logit, ii) the negative
interaction between between Rural and SU in the first choice logit, and iii) the lack of a significant
negative relationship between Age and PUPayl in both logits. The logits also have a pattern of
outside good coefficients which is somewhat counterintuitive. While estimates from our full model
imply that households with more income and smaller families tend to have larger values for the
outside option, the logits predict the opposite.?? We should keep in mind, however, that it is more
difficult to interpret the outside good’s coefficients.

Despite these problems, on the whole the logits performed quite well. Having one or two
coefficients of the “wrong” sign among twenty coefficients would not disqualify the logits from
being used in many practical settings and the increased computational burden of the full model is
not obviously justified by the pattern of estimated interactions between z and z.

Though the demographic interaction terms both seem to make sense and are sharply estimated,
Table 11b indicates that they apparently do not explain the full pattern of substitution in the data,
for the estimated (3* coefficients are typically important and very precisely estimated. Nineteen
out of twenty two are significant at traditional significance levels, and over half of these have t-
values over twenty. The observables do seem to pick up much of whatever information we have
about the variance in the outside good: the estimate of the coefficient of the unobserved component
of preferences for the outside good is one of the few insignificant 3* coefficients.?* Interestingly,
there seems to be a wider dispersion of preferences for the cars of U.S. companies than for foreign
companies. '

We might expect the estimates of the 8 coefficients to be particularly precisely estimated in the
no observed attributes (3° = 0) column, for the model is not burdened with the job of predicting
the covariances between z and z. Indeed, in this specification all the estimated coefficients are
significant and several of the t-values are over fifty.

What is clear from this table is that though we allowed for many observed interactions, we need,
in addition, numerous unobserved interactions to explain the data. We stress here that we tried
a large number of specifications, some with a significantly larger number of observed interactions,
and all of them were clear on the need for the unobserved components of consumer tastes. Of
course if we had richer consumer data we would hope to capture more with household observables,
but the CAMIP data does have most (if not all) of the household attributes generally available in
large consumer choice data sets.

Measures of fit for the various specifications are given in Tables 12 and 13. One subset of the
moment conditions is the uncentered covariance of the value of the first and second choice vehicle
characteristics. Table 12 provides the values of these moments in the data as well as the percent
difference between the data moments and the predictions of the various models.

Table 12 shows that the full model comes to within a few percentage points of the data cross-
products in some cases, but in other cases misses by quite a bit. The largest percentage deviations
are associated with dummy variables for vehicle types that have few purchasers (Sporty and Van.)
Apparently, these moment conditions are not estimated very precisely by the CAMIP data and so
our estimation procedure does not weight these moments very heavily.

23Note that though our full model predicts a higher value of the outside good for higher income people, it also
predicts a higher probability of purchasing a vehicle for higher income people, since the negative price interactions
with income more than offsets the positive interactions with the outside good.

24Part of the problem here is likely to be the nature of the question which provides the second choice data. Recall
that it did not allow the consumer to list that their second choice would have been not to purchase a vehicle at all.
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Table 11a: Estimates of Interaction Terms, (3°

Vehicle Household Full Logit Logit
Characteristic | Attribute Model 15t 15t & ond
Price Constant —0.805 0.092 0.139

(0.047) (0.0001) (0.0003)
Price Incomel 0.074 0.299 0.344
(0.008) (0.002) (0.001)
Price Income2 0.608 0.466 0.603
(0.020) (0.091) (0.007)
Price Fam Size | —0.212 —0.144 —0.143
(0.010) (0.001) (0.006)
Miniv Kids 2.546 0.765 0.771
(0.169) (0.098) (0.323)
Pass Adults 0.564 0.018 -0.067
(0.107) (0.0004) (0.009)
Pass Fam Size —0.104 —0.055 —0.006
(0.032) (0.003) (0.0002)
Pass Age 0.009 0.002 0.005
(0.002) (0.00001) (0.00001)
HP Age —-0.012 -0.010 —0.012
(0.001) (0.0004) (0.0001)
Acc Age —0.004 0.001 —0.002
(0.001) (0.00001) (0.0001)
Acc Age? 0.0001 0.000 0.000
(0.00001)| (0.00001) (0.00001)
PUPayl Age —0.127 0.512 0.000
(0.010) (0.005) (0.00001)
PUPayl Rural 0.843 —0.043 0.376
(0.121) (0.003) (0.008)
Safe Age 0.017 0.403 0.016
(0.0004) | (0.007) (0.0004)
SU Age -0.100 —0.043 —0.043
(0.005) (0.003) (0.004)
SU Rural 0.192 0.403 —-0.016
(0.029) (0.007) (0.002)
Allw Rural 0.206 0.142 0.734
(0.176) (0.005) (0.246)
OutG Tot Inc —2.372 0.228 0.305
(0.177) (0.096) (0.063)
OutG Fam Size 0.428 —-0.532 0.346
(0.078) (0.057) (0.004)
OutG Adults 0.041 —0.851 —1.953
(0.134) (0.112) (0.148)
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Table 12: Predicted Cross-Products
of First and Second Choice X’s

Data

Percentage Deviation of Model from Data

Var | Cross-Product | = Full | Logit 1#* | Logit 15t & 24 | pg° =
Price 482.542 5.003%| 18.759% 19.251% 1.699%
HP 23.427 1.843 5.825 5.861 0.184
Pass 25.093 0.324 3.683 3.816 0.079
Sport 0.062 57.618 87.757 87.618 —-10.747
Acc 11.392 4.357 16.999 17.646 2.695
Safe 1.452 5.436 20.768 21.448 —0.121
MPG 414.044 —3.902 0.938 " 0.935 —2.648
Allw 0.062 15.806 79.947 79.224 29.174
Miniv 0.041 8.222 80.525 72.273 —8.713
SU 0.073 11.689 82.153 81.769 29.073
Van 0.004 25.395 94.712 94.655 —49.442
PUPayl 0.314 2.490 72.670 75.150 —1.402
SUPayl 0.125 9.099 82.287 82.217 21.364
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Table 11b
Estimates of Interaction Terms, 5%

Parm Name | Full Model | 8°=0

Price 0.192 0.170
(0.009) (0.009)

HP 0.088 1.101
(0.020) (0.022)

Pass 1.578 2.560
(0.070) (0.099)

Sport 0.247 5.880
(0.033) (0.118)

Acc 0.697 0.495
(0.049) {0.064)

Safe 0.102 0.489
(0.054) (0.105)

MPGY 0.467 0.355
(0.008) (0.016)

Allw 0.672 0.733
(0.073) (0.083)

Miniv 3.373 6.538
{0.156) (0.230)

SU 3.654 1.763
{0.223) (0.142)

Van 1.135 7.029
(0.171) (0.239)

PUPayl 1.416 3.470
(0.059) (0.164)

SUPayl 1.162 0.934
(0.051) (0.046)

Chrysl 1.309 1.978
(0.036) (0.073)

Ford 0.956 0.797
(0.053) (0.084)

GM 1.846 1.749
(0.055) (0.072)

Honda 0.199 0.197
(0.069) (0.093)

Nissan 0.327 1.597
(0.249) (0.074)

Toyota 0.119 0.930
(0.311) (0.089)

Sm Asia* 1.842 2.529
(0.076) (0.043)

Europe* 0.292 2.293
(0.054) (0.046)

OutG 15.108 21.567
(17.591) (1.248)

*We constrained the coefficients on the dummies for the different European firms to be the same, and we
did the same for the smaller Asian producers.
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It is clear that both logit models understate the first and second choice cross-products. Consider,
for example, the results for minivans. Consumers who choose a minivan as a first-choice often choose
a minivan as a second choice. Both the full model and the 8° = 0 model fit this fairly well, but the
interaction between kids and minivan in the logit estimates (while highly significant) is simply not
rich enough to capture the interaction between the first and second choices in the observed data.

Both our model and the “no observed attributes” model do better on almost all of the moments,
and neither has a clear bias toward understating the correlation between first and second choice
vehicle characteristics. Indeed in Table 12 there is not much to choose between the full model and
the no observed attribute model (a choice based on the results in this table would depend on the
form of the matrix used to calculate the objective function).

Table 13 provides the uncentered data covariance of first choice vehicle characteristics and house-
hold attributes, together with the percentage differences between the various models’ predictions
for these moments and the data. Here the full model is not obviously superior to the logit speci-
fications. The full model does do much better in predicting the interactions between income and
price and between sport utility and age, but does worse than at least one of the logit specifications
on the rest of the moments. Given that the logit specifications focus entirely on the interactions
between the observed household and vehicle characteristic interactions, this result might have been
expected. (Remember that the 8° = 0 model has an implicit prediction of zero for all of these
moments and thus does not appear in Table 13 at all.)

Table 13: Predicted Mean Cross-Products
of First Choice z’s and Consumer z2’s

Vehicle Household Data Percentage Deviation of Model from Data
Characteristic | Attribute | Cross-Product Full Logit 1% Logit 1¢ & 2n¢
Price Tot Y 1729.684 2.801%| 13.451% 16.347%
Price Fam Size 53.730 13.115 —2.306 —4.233
Miniv Kids 0.086 26.025 2.632 —27.574
Pass Adults 10.148 9.980 —1.266 —1.157
Pass Fam Size 13.141 15.570 —1.065 —2.922
Pass Age 228.698 —5.646 —1.102 —0.0993
HP Age 223.786 —4.858 —-1.373 -0.934
Acc Age 149.413 —4.331 —1.466 —0.532
Acc Age? 7747.089 =8.777 -3.311 —1.585
PUPayl Age 8.477 27.546 —0.059 -3.678
PUPayl Rural 0.111 43.100 15.684 25.959
Safety Age 52.915 —4.109 —1.663 —0.855
SU Age 4.137 -1.241 —2.347 —1.861
SU Rural 0.048 42.960 8.485 14.664
Allw Rural 0.040 45.619 17.019 11.386

The lesson from these tables is that the logits provide an adequate fit for the correlations between
observed household and vehicle characteristics, but do very poorly in matching the characteristics
of the first and second choice car. This might lead us to believe that the logits will predict the
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demographics of consumers well, but will do a poor job of predicting substitution patterns. The no
observed attribute model provides an adequate fit for the correlations of the characteristics of the
first and second choice car, but has no prediction at all for the correlations between the observed
household and the observed vehicle characteristics. Our full model generalizes the other models
and therefore it is not surprising that it does about as well as the best of the alternatives in both
these dimensions.

6 [ and Substitution Patterns.

The only demand parameters left to estimate are the 3, the effects of the characteristics on the
mean utility from a choice. Breaking price out as a special characteristic, the mean utility of
product j is:

8 = piBr + EfozinBr + &5 (20)

As noted, there is only one observation associated with each é;. Therefore, the estimation
problems we face here are analogous to those discussed in regards to product-level data in BLP.
In particular, reasonable pricing rules would generally imply that p; is correlated with &; in this
equation, so instrumental variable techniques are needed before we can obtain consistent estimates
of 8.

Recall, however, that BLP had twenty cross-sections with which to estimate their coefficients,
while we only have the data for 1993. This suggests a precision problem even more severe than
BLP’s; but this time only for a subset of the parameters of interest, the 5.

There are a number of additional sources of information that can be used to increase the
precision of our estimates of 3. First, we could mimic BLP. They assumed: [i] a functional form
for marginal costs and [ii] that the equilibrium is Nash in prices. This generates a pricing equation
that can be used in conjunction with the d equation to increase the precision of our estimates of
these parameters.

To implement this suggestion, assume that marginal costs are given by

mec; = Exkj')’k + wj, (21)
k
where w; is an unobserved productivity term which is mean independent of z, and the v are a set
of parameters to be estimated. This, together with the equilibrium assumption, implies that price
is equal to marginal cost plus a markup:

P = E.’L‘kj’)’k + b(-'L'ap, 4 Blaﬂoaﬂu)j + wj, (22)

where b(z,p,d, 51, 3°, 6%) is the markup implied by the demand-side parameters and the Nash
pricing assumption. With single product firms, the markup would be the (familiar) inverse of the
semi-elasticity of demand with respect to price. However, we have multiproduct firms and the well-
known markup formula for that case is reviewed in BLP and elsewhere. Given our assumptions,

the equilibrium markugés and price elasticities depend only on the coeflicients estimated in the first

stage analysis and on a—p-;-. Equation (20) implies that
0d; -
=+ = 1.
Op;
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Thus, we can analyze all of the effects of price changes from the parameters 3°, % and §,.2°
The equilibrium markup term is determined, in part, by the (£,w) couples, and hence both the
markup and price will have to be instrumented. In addition to z;, the instrument we use is

by = bz, 5,6, Br, B, B4); (%)

where (3 ,P) are obtained by projecting our estimate of § and the observed p onto the z's, while 3
is obtained from an initial IV estimate of the § equation. Thus, the predicted markup, 5, used as
an instrument is only a function of the z’s and consistent parameter estimates.26

When we use the ¢ equation (20) alone our instrumental variable estimates of the 3 coefficients
are very imprecise. In particular, our single-equation IV estimate of §; has a standard error ten
times the point estimate (25 vs.2.5). This seems too imprecise to be of much use. The instrumental
variable estimate of 3; from the two equation model (which uses the pricing and ¢ equations) is
—1.94 and has a standard error of .09. In examining implications of the model, we will therefore
use —~1.94 as one plausible value for 3.

This method relies on an equilibrium assumption, which might be more questionable in the
current context than in BLP. For example, our transaction prices depend on the pricing decisions of
both manufacturers and dealers, which complicates any discussion of appropriate pricing equilibria.
In addition, the notion of identifying the level of price elasticities from a single cross-section with
no price variation relies heavily on functional form restrictions. This suggests looking for other
ways of identifying 5. ’

Luckily, this one parameter is identified from almost any a prior: restriction on elasticities. For
example, based on their experience, the staff at the General Motors Corporation suggested that
the aggregate (market) price elasticity in the market for new vehicles was near one. An alternative
estimate of B; is then the value that sets the 1993 market elasticity equal to one. This elasticity
implies a 3, of approximately —8.

To check robustness of our implications, we use three values of 5;. The first is the two-equation
IV estimate of —1.94. The second is the “calibrated” value —8. The last is ,51 = 0, which corre-
sponds to the effective assumption of those earlier authors who ignored the correlation of product-
specific constants and prices.

The mean (across products) of the semi-elasticities and the total market elasticity generated by
each of these three values of () are provided in Table 14. Clearly the level of the price elasticities
vary significantly with the value of the estimate of B;; they increase (in absolute value) with the
(absolute value) of that parameter. We conclude that the levels of own-price elasticities are not at
all robust to our various “plausible” values of B;. Given our single cross-section of products, it may
not be possible to pin down the levels of elasticities.

However, it still may be that the pattern of elasticities may be robust to alternative values of
B1. Table 15 provides the coefficients we obtained when we projected the own price elasticities
onto the vehicle characteristics. The coefficients from these projections do not vary much with

?5Similarly, if we were interested in elasticities with respect to any other characteristic, say MPG or HP, we would
require only the 3 associated with the characteristic of interest.

26 Actually here we iterate on this procedure several times. That is we use an initial simple IV estimate from the
& equation alone to produce our first estimate of b. Then, we construct our instrument and use it in a method of
moments routine based on the orthogonality conditions from both equations. This produces a new estimate for 3.
This is, in turn, used to produce another estimate of b which was used in another method of moments routine and
we continued in this way until we converged.
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Table 14:
Elasticities at Alterriate
Values of 8§/9p = 31

Mean Total Market
Value | Semi-Elas Elas
0 -1.4 —-0.2
-1.94 -3.1 -0.4
-8 —8.5 -1.0

the estimate of B, indicating that though the levels of the semi-elasticities do vary considerably
with that parameter, the differences between them do not. Moreover the general pattern of semi
-elasticities we obtain accords with industry reports; in particular vans (both mini and full sized),
pickups, sport utilities and, to a lesser extent, sport cars, have noticeably smaller elasticities than
other vehicles, as do higher priced vehicles.

Next we look at patterns of substitution across cars. We consider two types of substitution
patterns. The first is substitution induced by price changes. The second is substitution induced
by changes in the choice set. Here we analyze what the consumers of our selected sample of cars
would substitute to were that car deleted from the choice set. The two sets of substitution patterns
are potentially different because when price increases it is a selected sample of consumers who
substitute out of the vehicle. In particular, it is the more price-sensitive consumers who substitute.
However, when a vehicle is deleted from the choice set, all consumers must make an alternative
choice.

Table 16a presents our model’s predictions for the substitution patterns that would result from
a small increase in price of the vehicle in the first column. The table provides the name of the
vehicle chosen by the largest fraction of the substituting consumers, the price of that vehicle, and
the fraction of those who substitute out of the first choice vehicle who move to that best substitute.
It then provides the same information for the vehicle chosen by the second highest fraction of the
substituting consumers. Finally, the last column of the table provides the fraction of the substituting
consumers who substitute to the outside alternative. For example, the best (price) substitute for
the Toyota Corolla is the Ford Escort and the second best is the Honda Civic. Together these two
cars account for just over fifteen percent of those who substitute out of the Corolla when its price
rises. About six percent of those who substitute out do not purchase a car at all.

The substitution patterns we see in this table are quite intuitive; both the best and second best
substitutes tend to be the same type of vehicle as the vehicle whose price rose (minivans substitute
to minivans, pickups to pickups, cars to cars and so forth). Among vehicles of the same type,
the substitutes tend to be vehicles with similar prices and of similar size as the car whose price
increased. Moreover, at least within vehicle type, the extent of substitution to the outside good is
almost monotonically decreasing in the price of the vehicle.?’

Table 16b compares price substitutes from our model to those from our comparison models. To
conserve space it only shows the name of the best substitute vehicle. It is clear that the intuitive

*7This was also true in BLP, but they predicted quite a bit more substitution to the outside good at all prices.
Thus BLP predicted almost thirty percent substitution to the outside good for low priced cars and about ten percent
substitution to the outside good for luxury cars (see their Table 7).

33



Table 15: Projections of Semi-Elasiiicities onz
with Differing Values of 5;

Value of £}
Parm Name | -1.94 0 -8
Price —0.042 | —0.029 | —0.081
(0.005)| (0.004)| (0.011)
HP —0.019 | —0.000 | —0.079
(0.035)| (0.026)| (0.078)
Pass 0.016 0.010 0.033
(0.042)| (0.031)| (0.094)
Sport —0.193 | —0.200 | —0.171
(0.095)| (0.069)| (0.211)
Acc —0.082 | —0.092 | —0.052
(0.032)] (0.023)| (0.071)
Safe —0.156 | —0.182 | —0.075
(0.054)| (0.040)| (0.121)
MPG —0.039 | —0.009 | —0.132
(0.010){ (0.007)| (0.023)
Allw 0.263 0.119 0.712
(0.147)| (0.107)| (0.327)
Miniv —0.577 | —0.300 | —1.443
(0.141)| (0.103)| (0.313)
SU —0.665 | —0.484 | ~1.231
(0.254)] (0.185)| (0.564)
Van —0.932 | —0.541 | —2.153
(0.220)| (0.160)| (0.487)
PUPayl —0.501 | —0.255 | —1.269
(0.071)| (0.052)| (0.157)
SUPayl —0.212 | —0.030 | —0.782
(0.144); (0.105)| (0.320)
R-sq 0.68 0.68 0.68

*Firm dummies suppressed.
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Table 16a: Price Substitutes for Selected Vehicles:
Estimates from the Full Model

Semi- Best % of % of % to

Vehicle Price | -Elas Sub Price | Movers® | 2" Best | Price | Movers? | Outside®
Metro 7.83 | —1.40 | Tercel 9.70| 16.03 |Festiva 741 14.47 14.44
Cavalier 11.46 | —3.54 | Escort 11.49 7.60 | Tempo 10.78 6.56 11.63
Escort 11.49 | —3.51 | Tempo 10.78 7.50 | Cavalier 11.46 6.81 9.02
Corolla 14.51 | —3.25 | Escort 11.49 8.56 | Civic 14.00 6.89 6.17
Sentra 11.78 | —3.32 | Civic 14.00} 11.89 |Escort 11.49 5.90 7.18
Accord 17.25 | —3.15 | Camry 18.20 8.73 | Taurus 17.65 5.00 6.93
Taurus 17.65 | —3.08 | Accord 17.25 7.41 | Camry 18.20 5.51 5.86
Legend 32.42| —-2.67 | Town Car |35.68 4.47 |BMW 325 31.44 3.22 4.79
Seville 43.83 | —2.15 | Deville 34.40| 12.73 |El Dorado |[35.74 7.19 6.08
Lex LS400 |[51.29|—2.22 | MB 300 47.71| 12.20 |Seville 43.83 7.95 4.07
Caravan 17.56 | —2.72 | Voyager 17.59| 30.82 | Aerostar 18.13 8.10 9.41
Quest 20.55 | —3.15 | Aerostar 18.13| 11.57 |Caravan 17.56 | 10.90 5.55
G Cherokee |25.84 | —2.29 | Explorer 24.27| 19.11 |Cherokee 20.10 9.97 6.38
Trooper 22.78 | —2.92 | Explorer 24.271 20.13 |Rodeo 19.22 8.86 4.22
GMC FS PU |16.76 | —3.11 | Chv FS PU [16.78 | 39.38 |Ford FS PU |16.68| 11.94 9.09
Toyota PU | 13.77 | —2.69 | Ranger 11.74| 17.17 |Nissan PU [11.10( 10.28 9.85
Econovan 24.54 | —2.30 | Dodge Van [23.71| 10.18 |Chv Van 25.95 9.97 6.52

2 Of those who substitute away from the given good in response to the price change, the fraction who substitute to this good.
bOf those who substitute away from the given good in response to the price change, the fraction who substitute to the outside good.

features of the predictions of our model are not shared by the results from the logit models, but
are shared by the results from the no observed attributes model. The first choice logit predicts the
Dodge Caravan, a minivan, to be the “best substitute” for nine of the ten first choice cars, and
predicts the Ford Econovan to be the best substitute for the tenth car (a 400 series Lexus). It also
predicts the Dodge Caravan to be the best substitute for both pickups, both sport utility vehicles,
and the full size van. The first and second choice logit has the Ford full sized pickup as the best
substitute for all ten cars.

These results are yet another reflection of the fact that the observed characteristics of households
do not capture enough of the variation in individual tastes to produce reasonable substitution
patterns (a problem that does not go away when we allow for choice specific constant terms).
Given our earlier results, this may not be terribly surprising. What was a bit more surprising to us
was that the no observed attribute model produces almost the same substitutes as our full model
does. Indeed ten out of the fifteen best price substitutes that result from the 8° = 0 model are
tdentical to those predicted by our model. One interpretation of these results is that allowing for
interactions between unobserved consumer and product characteristics is far more important than
allowing for the interactions between the observed consumer and product characteristics in our
data. Again we emphasize that the consumer level data that we have contains most (though not
all) the variables that are generally available in large micro data sets of this sort.

Table 17 provides the most popular second choice as predicted by the four models. These are
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Table 16b: Price Substitutes for Selected Vehicles:
A Comparison Among Models.

Vehicle Full Model | Logit 1°* | Logit 1°¢ & 2"¢ | Sigma Only
Metro Tercel Caravan | Ford FS PU Festiva
Cavalier Escort Caravan | Ford FS PU Escort
Escort Tempo Caravan | Ford FS PU Tempo
Corolla Escort Caravan | Ford FS PU Civic
Sentra Civic Caravan | Ford FS PU Civic
Accord Camry Caravan | Ford FS PU Camry
Taurus Accord Caravan | Ford FS PU Accord
Legend Town Car Caravan | Ford FS PU Lex ES300
Seville Deville Caravan | Ford FS PU Deville
Lex L5400 MB 300 Econovan | Ford FS PU Lex SC400
Caravan Voyager Voyager Voyager Voyager
Quest Aerostar Caravan | Caravan Aerostar
G Cherokee | Explorer Caravan | Chv FS PU Cherokee
Trooper Explorer Caravan | Chv FS PU Rodeo
GMC FS PU | Chv FS PU | Caravan | Chv FS PU Chv FS PU
Toyota PU Ranger Caravan | Chv FS PU Ranger
Econovan Dodge Van | Caravan | Ford FS PU Chevy Van
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Table 17: Most Popular Second Choices:
A Comparison Among Models and to the Data

Vehicle Full Model [Rank| Logit 1°* [Rank]|Logit 15?&2"?|Rank] 3°=0 [Rank
Metro Festiva > 25 |Ford FS PU|{ > 25 |Ford FS PU | > 25 | Toyota PU | 23
Cavalier Sun Bird 3 |{Ford FS PU| > 25 |Ford FS PU | > 25 | Sun Bird 3
Escort Tempo 1 |Ford FS PU| > 25 |Ford FS PU | > 25 | Tempo 1
Corolla Escort 6 |Ford FS PU| > 25 |Ford FS PU | > 25 | Escort 6
Sentra, Civic 2 |Ford FS PU| > 25 |Ford FS PU | > 25 | Civic 2
Accord Camry 1 |Ford FS PU| > 25 |Ford FS PU | > 25 | Camry 1
Taurus Accord 4 |Ford FS PU| > 25 |Ford FS PU | > 25 | Accord 4
Legend Explorer > 25 |Ford FS PU| > 25 |Ford FS PU | > 25 [BMW 325 5
Seville Deville 1 |Ford FS PU| > 25 {Ford FS PU | > 25 | Deville 1
Lex LS400 |MB 300 3 |Ford FS PU| > 25 |Ford FS PU | > 25 |MB 300 3
Caravan Voyager 1 |Ford FS PU| > 25 | Voyager 1 | Voyager 1
Quest Aerostar 8 |Ford FS PU | > 25 | Caravan 1 | Villager 2
G Cherokee |Cherokee 7 |Chv FSPU | 17 |Chv FSPU 17 |Explorer 1
Trooper G Cherokee| 3 |ChvFSPU | 21 |Chv FSPU 21 |Rodeo 2
GMCFSPU|Chv FSPU| 1 [ChvFSPU| 1 |Ford FSPU 2 [ChvFSPU| 1
Toyota PU |Ranger 1 |ChvFSPU| 4 |ChvFSPU 4 |Ranger 1
Econovan Chevy Van 1 |Ford FSPU| 6 |Ford FSPU 6 |[Chevy Van | 1

the “best substitutes” when the first-column good is taken off the market. We also ranked the
actual data on the second choices of the households and placed the data rank of the model’s best
substitute next to the name of the predicted substitute. Thus, if the Toyota Corolla were taken
off the market, both our model and the no attribute model predict that the biggest beneficiary
would be the Ford Escort, whereas the data indicate that the Ford Escort is in fact the sixth most
popular second choice among Corolla purchasers. Our full model predicts exactly the same best
substitute as the data six out of fifteen times, and predicts one of the top three best substitutes
eleven out of fifteen times. There are a couple of anomalies in the predictions of the full model and,
if anything, the 8° = 0 model does even better than the full model. Meanwhile, the logit models
without unobserved attributes perform as poorly here as they did in Table 16b. Note also that the
best price substitutes and the best second choices are similar, but not identical (and when they
differ the second choices in table 17 tended to be slightly higher priced vehicles).

7 Conclusion

This paper investigates how adding two sources of household data to market level data help esti-
mate differentiated product models. We adapt the framework in BLP to use household first and
second choice data. The match between first choice product characteristics and observed household
attributes generate estimates of the parameters describing how preferences for products vary with
those attributes, while the match between first and second choice product characteristics uncovers
the role of unobserved household attributes in forming preferences. The market level data allow us
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to control for the consequences of the simultanaeity problem without making strong assumptions.

The estimates from our model produce substitution patterns that are reasonable and provide a
good fit to the data. We find that though observed household attributes are important determinants
of preferences, in order to fit the observed substitution patterns we needed to use a large number of
unobserved attributes. To determine the total response of demand to changes in prices, or in other
characteristics, we would require more information in the form of stronger restrictions and/or more
data (particularly data on the effects of price changes as might be found in panels). However just
given our parameters that are estimated precisely we can still address several important questions.
These include identifying best substitutes and the computation of “ideal” price indices.
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