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1 Introduction

Why do economies exhibit sustained per capita growth? Almost by defi-
nition, a model of long-run growth requires a differential equation that is

“linear” in its state variable, such as

X=_X (1)

Growth models differ according to the way in which they label the X vari-
able and the story they tell in order to fill in the blank.! For example, the
original Solow model without technological progress does not have linearity
because of diminishing returns to capital, so that growth eventually ceases.
To generate sustained growth in that model, one adds exogenous techno-
logical progress in the form of a differential equation that is assumed to be
linear: A = gA.

Much of the work in both new and old growth theory can be read as
the search for the appropriate characterization of equation (1). Early work
with “AK” models sought linearity by eliminating the diminishing returns
to capital accumulation, either in the form of physical capital or with human
capital, or with both.2 Later work by Romer (1990), Grossman and Helpman
(1991), and Aghion and Howitt (1992) returned the linearity to the equa-
tion for technological progress and focused on theories in which intentional
research effort by profit-maximizing firms fills the blank in equation (1).

While the proverbial jury is still out, a strong case can be made that
this search has so far been unsuccessful. First, there is generally very little

empirical support for the first generation AK models.? The case against the

IThis way of summarizing growth models is taken from Romer (1995).

2Gee the well-known work of Romer (1987), Lucas (1988), and Rebelo (1991).

3Geveral types of evidence are relevant. First, cross-country growth regressions such as
Mankiw, Romer and Weil (1992) uniformly find evidence against linearity, suggesting that
the returns to capital are at most 0.7 or 0.8. Second, many AK models rely on learning-
by-doing or externalities. Micro evidence in Lucas (1993) suggests that learning-by-doing
within a product line is bounded, and the literature has failed to produce any evidence of
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second generation “idea-based” growth models of Romer and others is even
more compelling. These models suffer from the well-known problem that
the growth rate is increasing in the size of the economy and should explode
in the presence of population growth.*

In this paper, however, I'd like to draw attention to a more fundamental
problem with existing theories of long-run growth. Exact linearity in these
models — and in any endogenous growth model — is critical: if the model
is slightly more than linear then growth explodes, while if the model is
slightly less than linear then there is no long-run growth.> Since exact
linearity is obviously so important, any plausible explanation of long-run
growth should possess an intuitive and compelling justification for linearity.
On this basis, existing models are clearly deficient. The linearity in existing
models is assumed ad hoc, with no motivation other than that we must
have linearity somewhere to generate endogenous growth. For this reason,
existing explanations of long-run growth are inadequate.

In this paper, I develop a new theory of endogenous growth in which
linearity is motivated from first principles. The first key ingredient of this
model is endogenous fertility. At an intuitive level, the reason why en-
dogenous fertility helps is straightforward. Consider a standard Solow-Swan
model. With the labor force as a factor that cannot be accumulated endoge-
nously, one has to look for a way — typically arbitrary — to eliminate the
diminishing returns to physical capital. In contrast, with an endogenously
accumulated labor force, both capital and labor are accumulable factors,
and a standard constant returns to scale setup can easily generate an en-
dogenously growing economy.

However, endogenous fertility in a model with constant returns to scale

large externalities. Finally, time series evidence like that in Jones (1995b) generally fails
to support the implications of AK models: investment rates in physical or human capital
have risen in a number of countries with no corresponding increase in long-run growth.
“See Jones (1995a).
5The knife-edge nature of linearity has been noted by Solow (1994), among others.
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in all production functions will not generate endogenous growth in per capita
variables. This leads to the second key ingredient of the model, increasing
returns to scale. Endogenous fertility leads to endogenous growth in the scale
of the economy. Increasing returns to scale in the production function for
aggregate output translates the endogenous growth in scale into endogenous
growth in per capita output.

The fertility side of this paper builds on the endogenous fertility litera-
ture associated with Dasgupta (1969), Pitchford (1972), Razin and Ben-Zion
(1975), and Becker and Barro (1988) and provides the compelling justifica-
tion for linearity absent in previous models. Individuals choose to have a
certain number of children, taking into account the costs — such as hospital
bills and foregone labor income — and benefits — such as the utility value
of offspring — of fertility. The number of children per adult, which we’ll
call 7, will (by definition) be constant in steady state. Suppose people live
for one discrete period. With N people in the population, the total number
of offspring is equal to the number of children per adult multiplied by the
size of the population: Ny = 7ilV;. But then, of course, the net increase in
population is given by

Nip1 — Ny = niVy,

where n = 7 — 1. Or, in continous time, N = nN. By choosing the number
of children to have, individuals choose the proportional rate of increase of
the population. The law of motion for population exhibits linearity because
people reproduce in proportion to their number. This is very different from
the production process for physical capital or human capital or even ideas.
There is no reason why, for example, individuals who spend a constant
fraction of their time endowment accumulating skills should increase their
human capital by a constant proportion over time. And there is no reason
why a constant research effort should increase the stock of ideas or the level

of productivity by a constant proportion every period. But it is a biological
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fact of nature that people reproduce in proportion to their number.®

Research on idea-based growth models provides a justification for in-
creasing returns, the second key ingredient of the model, that is based on
first principles. At least since Phelps (1966) and Shell (1967), economists
have recognized that the nonrivalry of knowledge implies that aggregate
production is characterized by increasing returns to scale. This argument
is made very clearly by Romer (1990). Ideas are nonrivalrous; they can be
used at any scale of production after being produced only once. For exam-
ple, consider the production of any new product, say the digital videodisc
player or the latest world wide web browser. Producing the very first unit
may require considerable resources — the product must be invented or de-
signed. However, once the product is invented, it never needs to be invented
again, and the standard replication argument implies that subsequent pro-
duction occurs with constant returns to scale. Including the production
of the “idea,” or the design of the product, production is characterized
by increasing returns. This property, rather than the assumption that the
differential equation governing technological progress is linear, is the key
contribution we need from the idea-based growth literature.”

According to this paper, the story underlying sustained, long-run per
capita growth is more complicated than previously thought. The inherent
nonrivalry of ideas means that the economy is characterized by increasing
returns to scale. Economic growth occurs because the economy is repeatedly

discovering newer and better ways to transform labor into valuable goods

57t is important to note that the linearity of the production technology for offspring
does not guarantee positive growth. For example, people may, subject to their economic
environment, choose to have one child per adult in steady state, generating a stable pop-
ulation. This can be the case if the production technology for output exhibits decreasing
returns to scale due to a fixed factor such as land. Linearity is not sufficient for growth,
but it is necessary.

7 Alternative methods for introducing increasing returns to scale in the model, such as a
Marshallian externality associated with capital accumulation, will also lead to endogenous
growth. I focus on the idea-based theory of increasing returns because it can be motivated
from first principles.
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and services. However, the creation of new ideas by itself is not sufficient to
generate sustained growth. For example, suppose an economy invents 100
new ideas every year. As a fraction of the (ever evolving) existing stock of
ideas, these 100 new ideas become smaller and smaller. Sustained growth
requires that the number of new ideas itself grow exponentially over time.
This in turn requires that the number of inventors of new ideas grows over
time, which requires population growth. Endogenous fertility, combined
with the increasing returns to scale associated with ideas, delivers sustained
long-run growth.®

This paper builds on a number of earlier insights. Jones (1995a) modified
the Romer (1990) model to eliminate the counterfactual prediction that the
growth rate of the economy depends on the size of the population. In the
modified model, the growth rate of the economy depends on the growth rate
of the population. In Jones (1995a), however, the population growth rate
was assumed to be exogenously given, and it turned out that the long-run
growth rate of the economy was invariant to policy changes. Here, the popu-
lation growth rate is endogenized, and policy changes can affect the long-run
growth rate of the economy through their effects on fertility. Because the
channel through which policy affects growth is fertility, however, the nature
of the effects of policy on long-run growth is often counter to conventional
wisdom. For example, subsidies to R&D and capital accumulation, even
though they may be welfare improving, will reduce long-run growth in the
model.

Kremer (1993) is also closely related and provides the most compelling
supporting evidence for the model developed here. This evidence will be

reviewed later in the paper. Young (1995) is related in two ways. First, it

80ne of the cases considered by Raut and Srinivasan (1994) also delivers this result.
They consider a model of endogenous fertility in which the productivity level of firms
depends, through an externality, on the stock of labor in the economy. The emphasis in
their paper, however, is that the model can exhibit faster than exponential growth and
even chaotic dynamics depending on the nature of the external effect.
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represents an alternative theory of economic growth that does not appear
to be inconsistent with any well-accepted empirical evidence. With no pop-
ulation growth, positive per capita growth in the long run in Young’s model
exists because of quality upgrading, but the long-run growth rate is invari-
ant to policy. Second, if one adds population growth to Young’s model,
per capita growth is increased by an additive term that is proportional to
population growth. In this sense, the properties of the endogenous fertility
model developed here are directly relevant to Young’s model.

Section 2 of this paper develops the decentralized model of endogenous
growth in the context of “basic science.” That is, the model is based on the
assumption that the ideas underlying growth are not only nonrivalrous, they
are pure public goods. This assumption is employed because it simplifies
the analysis considerably, but it may also be of independent interest. First,
the fundamental discoveries of basic research may be an important driving
force underlying growth. Second, it is sometimes conjectured that basic
science should be modeled as an exogenous process, like exogenous technical
progress in a Solow model. The analysis here suggests that insight is gained
by moving beyond this view. For example, even if the ideas of basic science
fall from above like apples from trees, the fertility channel and increasing
returns are crucial: the number of Isaac Newtons depends on the the size of
the population that is available to sit under trees.

Section 3 explores the welfare properties of the model. Section 4 contains

a general discussion of the model’s predictions, and Section 5 concludes.

2 The Decentralized Model

Models of endogenous fertility are typically somewhat difficult to solve. In
what follows, I have chosen a particular theory and made particular as-
sumptions to minimize the effort required to get to the basic results. I will

indicate in the appropriate places how the results generalize.
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2.1 Preferences

One of the key insights of Barro (1974) was to think about utility-maximizing
individuals who care not only about their own consumption but also about
their children’s consumption. This reasoning was extended by Razin and
Ben-Zion (1975) and Becker and Barro (1988) to model endogenous fertility:
parents also care about the number of children that they have, and there
may be costs to increasing the number of offspring.

The time s utility of a representative agent born at time 0 is given by

oo -
Uoo= [ e u(cs, Noy) @

s
Individuals live for only an instant, during which time they work, consume,
and reproduce. However, they also leave bequests and care about the con-
sumption and number of their offspring. This is a continuous time version of
a dynastic utility function like that considered by Becker and Barro (1988).
¢ is the consumption of a representative member of the population at time
t, N; is the number of people in generation ¢, and p > 0 is the rate of time
preference that applies across generations. N(),t = N;/Np represents the
number of offspring of a member of generation 0 that are alive at time ¢.
With respect to the kernel of the utility function, it turns out to be

convenient to assume
u(ce, N) =logc+elog N, (3)

where ¢ > 0. Both the marginal utility of consumption and the marginal
utility of progeny are positive but diminishing. The elasticity of substitution
between consumption and progeny is one, as in Barro and Becker (1989).
Within the class of utility functions with a constant elasticity of substitu-
tion between consumption and progeny, this unit elasticity is required for

the existence of a balanced growth path, as we will see shortly.® It also

®This restriction is closely related to the restriction in dynamic general equilibrium
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guarantees that the dynastic approach is time consistent — choices made
by the dynastic head of generation 0 will be implemented by subsequent
generations.

Finally, characterizing the equilibrium of the model is much easier under
the stronger assumption that € = 1, so that per capita consumption and
offspring receive equal weights in the utility function. In the presentation
of the model, we will make this assumption and indicate at the appropriate

time what happens when € # 1.

2.2 Technology

The consumption-capital good in the economy, final output Y, is produced
according to
Y = A°K®Ly°, (4)

where A is the stock of ideas in the economy, K is capital, Ly is labor, and
the parameters satisfy o > 0 and 0 < o < 1. While this kind of produc-
tion function is commonly used in economics, it incorporates a fundamental
insight into the process of economic growth. Specifically, the production
function exhibits increasing returns to scale because of the nonrivalry of
ideas. Nonrivalry means that ideas only need to be discovered once: after
an idea is discovered, it can be used at any scale of production. For example,
the production process for light bulbs presumably is well-characterized to-
day by constant returns to scale: doubling the number of factories, workers,
and materials will double the number of light bulbs produced. However,
this was not always the case. Edison expended a great deal of perspiration
and inspiration to produce the first light bulb. But once the design was
perfected, the same amount of labor and factory time that was needed to

produce the first light bulb could presumably produce thousands of light

business cycle models that consumption must enter in log form if consumption and leisure
are additively separable (leisure per person does not need to enter in log form because it
is not growing over time).
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bulbs. That is, including the effort required to produce the idea underlying
the light bulb, production is characterized by increasing returns.

Similarly, holding the stock of ideas A constant, the production function
in equation (4) exhibits constant returns to capital and labor, according
to the usual replication argument. However, production exhibits increas-
ing returns once the stock of ideas is taken into account. The strength of
increasing returns is measured by o.

The technology for producing offspring is straightforward. Individuals
are endowed with one unit of labor, and generating a fertility rate of n
requires B(n) units of time, with #’(n) > 0. The time that individuals have
left over to supply to the labor market is 1 — 8(n). We assume that (0) =0
and lim,_,o, 3(n) > 1 so that there is an upper bound to the fertility rate
of an individual. To generate an interior solution in the decentralized model,
we also require 8”(n) > 0, but this assumption can be relaxed in alternative
formulations of fertility theory.

Reproduction occurs through asexual budding; there is no distinction be-
tween male and female agents. With N identical agents in the economy, the
total number of offspring produced in an economy with individual fertility
n is given by

N =nN. (5)

Capital accumulates in this economy in the form of assets owned by
households. Letting v denote the per capita stock of assets (K = Nu is

imposed later),

b= (r—njv+w(l-pB(n)—c-/, (6)
where 7 is the market return on assets, w is the wage rate per unit of labor,
and f represents per capita lump sum taxes collected by the government
(f = F/N).

The final component of the technology of the economy is the production
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of ideas. New ideas are produced by researchers according to
A = SLA, (7)

where L 4 denotes labor engaged in research, and A represents the measure

of new ideas created at a point in time. The resource constraint on labor is
La+Ly=Q1-p(n)N = L. (8)

While individual researchers who are small relative to the total number
of researchers take § as given, in fact it may depend on features of the
aggregate economy. The true relationship between new ideas and research

is assumed to be given by
A=06L)A%, 9)

where § > 0, 0 < A < 1 and ¢ < 1 are parameters. This formulation
allows for both positive and negative externalities in research. At a point
in time, congestion or duplication in research may reduce the social value
of a marginal unit of research, associated with A < 1. In addition, the
productivity of research today may depend on the stock of ideas discovered in
the past. The case ¢ > 0 corresponds to a situation in which the productivity
of research increases with past discoveries (knowledge spillovers). The case
of ¢ < 0 suggests that research gets harder as more ideas are discovered.
Finally, with ¢ = 0, these two effects offset and the productivity of research
is independent of the number of ideas discovered in the past. Note that
equation (9) allows for increasing, constant, or decreasing returns to scale

in the production of new ideas.

2.3 Market Structure

Romer (1990) and others have emphasized that ideas are nonrivalrous but
partially excludable. The assumption that ideas are at least partially exclud-

able allows inventors to capture some of the social value that they create.
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This feature, together with the increasing returns to scale implied by non-
rivalry, leads Romer, Grossman and Helpman, and Aghion and Howitt to
favor models with profit-maximizing entrepreneurs and imperfect competi-
tion — what we might call “Silicon Valley” models.

Here, we will make an alternative assumption which will have the flavor
of growth through basic science. In particular, we assume that ideas are
nonrivalrous and nonexcludable; that is, they are pure public goods. This
means that inventors cannot use the market mechanism to capture any of the
social value they create. In the absence of some non-market intervention, no
one would become a researcher because of the fundamental ineffectiveness
of property rights over basic science, and no growth would occur.

This alternative assumption serves two purposes. First, in terms of the
modeling, this assumption greatly simplifies the analysis of the decentral-
ized model. We assume that all markets are perfectly competitive, and then
introduce a government to collect lump-sum taxes and use the revenues to
fund research publicly. Second, this case may be of independent interest.
Basic research is to a large extent publicly-funded and can be character-
ized as a pure public good.!® Previous “Silicon Valley” style models have
analyzed the case in which research is undertaken by private entrepreneurs
who are compensated through imperfectly competitive markets. This paper
explores the alternative extreme in which growth is associated with basic
science undertaken by publicly-funded scientists.!!

The government collects lump-sum taxes F' from individuals and uses
this revenue to hire research scientists at the market wage w. We assume
that the government collects as much revenue as needed so that a constant

fraction of the labor force, 0 < § < 1, is hired as researchers: i.e. L4 = 5L.

00y at least approximately so. Successful researchers do seem to capture some fraction
of the value they create through prestige.
118ee Shell (1967) for an early application of this approach.
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2.4 Equilibrium

A competitive equilibrium in this model is a collection of quantities {c;, Y3,
K, A¢, vg, Lyt, Lat, Ny, ni}, prices {wy, 7}, and lump-sum taxes {F;} such
that

e Individuals choose {c¢, n:} to maximize dynastic utility in equation (2)
subject to the laws of motion for asset accumulation (6) and popula-

tion (5), taking {r¢,wt, F1} as given.

e Firms producing output rent capital K and labor Ly to maximize
profits, taking the rental prices r and w and the stock of ideas A as

given.

e Markets clear at the prices {w¢,r:} and the taxes {F;}. In particular,
the stock of assets held by consumers V is equal to the total capital
stock K, and the number of researchers is a constant fraction 3 of the

labor force.

We now characterize the competitive equilibrium along a balanced growth

path, i.e. when all variables are growing at constant (exponential) rates.
The first-order conditions from the utility maximization problem for in-

dividuals, evaluated along a balanced growth path, imply that the fertility

rate chosen by the household satisfies:

=~ g )0+ wp(m) _ug 1)
N Uc
This equation is the dynamic equivalent of the condition that the marginal
rate of transformation (the left-hand side) equals the marginal rate of substi-
tution (the right-hand side) between people and consumption. The marginal
rate of transformation is based on the cost to the individual of increasing
fertility, which involves two terms. First, there is a capital-narrowing effect:

adding to the population dilutes the stock of assets per person. Second,
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there is the direct cost of wages that are foregone in order to increase the
population growth rate. The total cost is scaled by the size of the popula-
tion so that it is measured in terms of people rather than as a rate, and it
is multiplied by the effective discount rate r — gy to put it on a flow basis.
This marginal rate of transformation is equal to the static marginal rate of
substitution ug /u. along the optimal balanced growth path.

This relationship makes it clear why a unit elasticity of substitution
between people and consumption is required. The marginal rate of transfor-
mation on the left-hand side of equation (10) will end up being proportional
to y/N , where y is per capita output, Y/N. Therefore, the marginal rate
of substitution must be proportional to ¢/ N for a balanced growth path to
exist; otherwise, the cost and the benefit of fertility will grow at different
rates and the economy will be pushed to a corner. The equation also makes
clear why the curvature 3”(n) > 0 is required: with g(n) = 1 — @n, for
example, equation (10) doesn’t directly depend on n, and households will
move to a corner solution.

Other first-order conditions characterizing the balanced growth path
equilibrium are more familiar. For example, consumption growth satisfies

the following Euler equation:
¢
Z—r—n—op 11
S=ron—p (11)

Also, the first-order conditions from the firm’s profit-maximization problem,

assuming no depreciation, are
r=aoY/K

and
1 1

"1-8(n) 1-5

With these first-order conditions in mind, we are ready to characterize

w=(1-a)Y/Ly =(1—a)y (12)

the steady-state growth rate of the economy. Along the balanced growth
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path, the key growth rates of the model are all given by the growth rate of

the stock of ideas:
o

ga, (13)

where g, denotes growth rate of some variable z along the balanced growth

gy=9k=gc=1_a

path, y is per capita income Y/N, and k is capital per person K/N.12
The growth rate of ideas, g4, is found by dividing both sides of equa-
tion (9) by A: _
A_5La
A Al-¢
Along a balanced growth path, the numerator and the denominator of the

right-hand side of this expression must grow at the same rate, and this

requirement pins down the growth rate of A as

A
gA_ 1_¢gLA'

Finally, along a balanced growth path, L 4 must grow at the rate of growth
of the population. Therefore,

An
= . 14
94=1_5 (14)

Combining this result with equation (13),
gy = 7”) (15)

where v = ﬁﬁ

As in Jones (1995a), the per capita growth rate of the economy is pro-

portional to the population growth rate.!3 This is a direct consequence of

12This relationship is derived as follows. First, the constancy of consumption growth
requires a constant interest rate and therefore a constant capital-output ratio, yielding
the first equality. Second, the asset accumulation equation in (6) is simply a standard
capital accumulation equation. For the capital stock to grow at a constant rate, the
capital-consumption ratio must be constant, yielding the second equality. Finally, log-
differentiating the production function in (4) yields the last equality.

3Phelps (1966), Nordhaus (1969), and Judd (1985) are early idea-based models that
contain the result that the per capita growth rate of the economy is proportional to the
population growth rate. Arrow (1962) and Sheshinski (1967) generate this result in models
in which the increasing returns to scale is due to external learning by doing. All of these
models, however, take the population growth rate as exogenous.
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increasing returns to scale: with o = 0, there is no per capita growth in
the long-run. Notice that balanced growth in the presence of population
growth in this model requires o < 1 and ¢ < 1. That is, the capital accu-
mulation equation and the law of motion for ideas must both be less than
linear in their own state variables; otherwise, growth explodes and the level

of consumption and income is infinite in a finite amount of time.

2.5 Fertility in the Decentralized Economy

The rate of population growth is determined by consumer optimization, as
in equation (10). Using the fact that e = 1 and r — gy = p along a balanced
growth path, and substituting for the wage from equation (12), equation (10)

can be written as

B 11
VT 8m T-5 »° (16)

Some algebra then shows that along a balanced growth path, the rate of

E+(1-a)

fertility satisfies'4
(. DC 1—3
Fln™) _1-5 (17)
1 — B(nPC) p
The solution to this equation exists and is unique under the assumption

that 3'(0) < (1 —3)/p, as shown in Figure 1. Recall that the relationship in

equation (15) that g, = yn then determines the growth rate of the economy
along the balanced growth path.

The steady state growth rate of the economy is directly proportional to
the fertility rate. This rate is smaller the higher is the rate of time preference
p or the higher is the cost of fertility 3(-). Interestingly, the growth rate of
the economy is decreasing rather than increasing in the fraction of the labor
force devoted to research. This is very different from the results in previous

idea-based growth models and reflects the fact that growth is driven by

gpecifically, divide both sides of the equation by k and use the fact that y/k = r/a
and ¢/k = y/k — gy = (1 — a)/a* v + p along a balanced growth path.
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Figure 1: Solving for nPC

B’(n)/(1- B(n))

B'(0)

(1-s)/p T

DC n

a different mechanism. Here, changes in research intensity affect long-run
growth only through their effect on fertility. A larger research sector raises
the marginal product of labor in the output sector and therefore raises the
wage. This means that the opportunity cost of fertility is higher, which
reduces population growth and therefore reduces steady-state per capita

growth.

3 Welfare and a Planner Problem

With more than one generation of agents, it is not obvious how to define
social welfare: it depends on how one weights the utility of different gener-
ations. We focus on a narrower question: does the allocation of resources
achieved in the market economy maximize the utility of each generation
given the initial conditions that constrain their choices?

To maximize the welfare of a representative generation (the generation
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alive at time zero here), the social planner solves

max Up = / e~Ptu(cs, Noy) dt, (18)
{¢,s,n} 0
subject to
k= Akl — 5)17%(1 — B(n))'"* — c — nk, (19)
A =651 - B(n)) N A?, (20)
and

N =nN. (21)

The first order conditions from this maximization problem can be com-

bined to yield several equations of interest. First, optimal consumption
satisfies a standard Euler equation

c Y
c_JY ., 22
L= TnTe (22)

Second, the first order conditions together with the equations governing
the law of motion for capital and ideas can be solved along a balanced growth
path to yield optimal research intensity:

1
SP
s =—— 23
1+ SP (23)

where

WS = 1;001 (P(l)\; $) +1- ¢) ‘

To solve for the steady state rate of population growth, we follow the
steps used for the decentralized model. The first order conditions from
the planner’s problem can be combined to yield a condition analogous to

equation (10):

B (n) 1 p U A
(hr0-ap 20 ) £ = g, @)

where p is the shadow value of an idea (the co-state variable corresponding

to equation (20)).
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The distortion that affects fertility choice can be seen by comparing this
equation to the corresponding condition in the decentralized model, either
equation (10) or (16). Individual agents ignore the extra benefit associated
with increasing returns to scale provided by additional population. This
distortion is reflected by the presence of the second term on the right-hand
side of equation (24), which corresponds to the utility value of the extra
ideas created by an additional person.

Some additional algebra reveals that, along the balanced growth path,
the optimal fertility rate satisfies!®

g 1

1= 8(m%P) o (25)

Finally, the optimal steady-state growth rate of per capita income is given
by gySP = ynSF.

A comparison of equations (17) and (25) indicates that steady-state fer-
tility and growth are inefficiently too slow in the decentralized economy, as
shown in Figure 2. This results from the fact that, as noted above, indi-
viduals ignore the economy-wide benefit of fertility that is associated with
increasing returns to scale: a larger population generates more ideas that
benefit all agents in the economy.

In more general models that I have explored, this result can be over-
turned. For example, when the kernel of the utility function is generalized
to place a higher weight on offspring, i.e. when € > 1, it is possible for the
decentralized economy to have a fertility rate and therefore a growth rate
that is inefficiently too high. This occurs if § is sufficiently smaller than
sS5P 18 Second, fertility and growth can be inefficiently high in a model in

which the Romer (1990) market structure is used instead of the perfectly

150nce again, divide both sides of the equation by k and use the fact that y/k=r/a
and ¢/k = y/k — gv = (1 — @)/a *r + p along a balanced growth path.

16Ty see part of the intuition, recall that from the standpoint of the decentralized
economy, a lower research intensity increases fertility.
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Figure 2: Comparing n”C and nSF
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competitive/basic science market structure. With the imperfectly competi-
tive market structure of Romer, capital is underpaid relative to its marginal
product so that some resources are available to compensate entrepreneurs.
However, recall that part of the opportunity cost of fertility is the additional
capital that must be provided to offspring. Imperfect competition reduces

this cost and can lead to inefficiently high fertility and growth.

4 Discussion

The model contains many novel predictions about the source of long-run
growth. In particular, the “scale effects” prediction that has been a key
problem in many endogenous growth models turns out to be a key feature
in this model. Increasing returns to scale implies that the scale of the econ-
omy will matter. Instead of affecting (counterfactually) the long-run growth

rate, however, scale affects the long-run level of per capita income. Large
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populations generate more ideas than small populations, and because ideas
are nonrivalrous, the larger number of ideas translates into higher per capita
income. Endogenous growth in the scale of the economy through fertility
causes endogenous growth in per capita income.

Changes in government policies can affect the long-run growth rate by
affecting the rate of fertility. For example, suppose that for each child,
parents have to pay a fraction of their wages in taxes. Such a tax will
reduce fertility and therefore reduce per capita growth.

Other policies can also affect population growth and per capita growth in
the model, but the effects are often counterintuitive on the surface. Specif-
ically, the imposition of many taxes in the model will increase rather than
decrease growth. For example, a tax on labor income creates a wedge be-
tween working and child-rearing, the untaxed activity, and will increase fer-
tility and per capita growth. A tax on capital reduces the opportunity cost
of fertility by reducing the capital stock and wages and therefore will also
increase growth. Finally, as we have already seen, an increase in an existing
government subsidy to research will reduce long-run growth in the model.
Notice that increasing the research subsidy may easily be welfare improving
here, but not, as is often argued, because it increases the long-run growth
rate.

What policies should the government follow in this model to obtain the
socially optimal allocation of resources? It turns out that the policy is very
simple and can be implemented without the use of lump-sum taxes. Suppose
the government taxes labor income at rate 7, and uses the revenue to fund
research. In this case, it is easy to show that steady-state fertility in the
decentralized economy satisfies

gmPo) _1-5 1
1-8(nP%) " 1-7 p
Moreover, the share of labor employed in research, 5, is equal to the tax

rate 7. Therefore, by choosing a labor income tax rate of 77, = s°F, both
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the fraction of labor working in research and the steady-state fertility and
growth rate match the social optimum.!?

How seriously should we take these general policy predictions? The clear
prediction of the model, evident from equation (15), is that policies affect
long-run growth only through their effects on fertility. This means that the
standard intuitions taken from many other endogenous growth models do
not apply. The intuition in this model is that the key wedge is between
child-rearing and work in the market economy. Any policy that changes the
relative price of these activities will affect fertility, and it is easy to see that
the effects need not work in the conventional directions.

How should we test this model to judge its success? First, notice that, as
with many idea-based growth models, this is a model of growth for the world
economy as a whole. Therefore, testing the model as it stands with cross-
sectional evidence is difficult. The Belgian economy does not grow solely
or even primarily because of ideas invented by Belgians, so that the model
does not predict that Belgium’s per capita growth rate should be related
to its population growth rate. Evidence that population growth rates and
per capita income growth rates are negatively correlated in a cross section
does not invalidate the model. Notice that this fact makes it difficult —
though not impossible, as we will see momentarily — to test the model with
cross-section evidence. Ideally, one needs a cross-section of economies that
cannot share ideas.

One useful laboratory for testing the model is the very long-run histori-
cal experience of the world economy, and this evidence has been explored in
detail by Kremer (1993). Kremer collates population data going back one
million years and documents that population growth was extremely slow
prior to the Industrial Revolution, at which point it increased dramatically,

as did the rate of growth of per capita income. These basic facts are con-

17 A similar argument applies for a capital tax. However, more complicated policies are
required when € # 1.
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sistent with the model. A second and intriguing piece of evidence from
Kremer is the natural experiment related to the last ice age. Five regions
of the world — Flinders Island, Tasmania, Australia, the Americas, and the
Eurasian continent — were completely isolated from one another at the end
of the most recent ice age, about 10,000 years ago. These regions varied con-
siderably in area and population from the tiny Flinders Island to the large,
populous Eurasian continent. Still, 10,000 years ago, all populations were
essentially hunters and gatherers, presumably at near-subsistence income
levels. In contrast, by the year 1500, when large ocean-worthy ships made
possible the integration of the world economy, large differences in technology
levels existed among these regions. Kremer shows that the initial popula-
tions of these regions 10,000 years earlier (rank) correlate exactly with their
technology levels in the year 1500. This is direct evidence of a scale effect
in levels.

A final issue worth considering is the plausibility of the fertility model
developed here. While it may be possible to generate something like a
demographic transition using transistion dynamics, a clear prediction of the
model is positive steady state population growth, at least for the parameter
values considered here.!® In contrast, demographic projections by the U.S.
Bureau of the Census and the World Bank suggest that world population
may stablize at some point far into the future like the 23rd century (Doyle
1997).

While the model does not necessariliy predict this behavior (and given
the history of demographic projections it is not obvious how seriously one
should take this prediction), the implications of a stable population are
easily explored. In particular, the analysis of the production function for
new ideas that leads up to equation (15) implies that the growth rates of

the stock of knowledge and per capita income would asymptotically go to

181t would be interesting to incorporate the more detailed modeling of fertility and the
demographic transition by Galor and Weil (1996) and others into this setup.
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zero with a stable population. Notice that the creation of new ideas would
not cease — in the simplest case with A = ¢ = 0, a constant number of
researchers would create a constant number of new ideas. However, this
constant number of new ideas as a fraction of the total stock of knowledge
would gradually go to zero. Some readers may find this prediction to be
unreasonable, but it seems difficult to judge its accuracy without actually

running the experiment.!®

5 Conclusion

Why do modern economies like the United States and Japan exhibit sus-
tained growth in per capita income? This is one of the fundamental ques-
tions underlying research in the endogenous growth literature. At a technical
level, this question can be reduced to What is the best way to characterize
the linear differential equation that is a necessary element of any model that
exhibits long-run growth?

To date, the endogenous growth literature has focused on two different
locations for the linearity: the accumulation equations for traditional inputs
like physical and human capital, and the equation governing technological
progress. Neither location has proved satisfactory, both for empirical rea-
sons and more fundamentally because at some level the linearity is simply
assumed ad hoc rather than motivated from first principles.

This paper proposes a new source for the linearity responsible for en-
dogenous growth, the fertility equation. A representative agent chooses to
have a certain number of children, 1. With N such agents in the economy,
the net increase in population is given by N =nN, wheren=f—1. In

other words, by picking the number of children to have, individuals choose

19Guch readers may then be interested in adding endogenous fertility to Young’s (1995)
model. While growth in his model would fall as fertility declined, it would asymptote to
a positive rate rather than to zero.
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the proportional rate of increase in the population. The linearity of the
law of motion for population results from the biological fact of nature that
people reproduce in proportion to their number. By itself, however, this
linearity is not sufficient to generate per capita growth.

The second key ingredient of the model is increasing returns to scale.
Following the reasoning of Romer (1990) and others, increasing returns also
seems to be a fact of nature. Ideas are a central feature of the world we live
in. Ideas are nonrivalrous. Nonrivalry implies increasing returns to scale.
This line of reasoning, rather than placing the key linearity in the equation
of motion for technological progress, is the fundamental insight of the idea-
based growth models, according to the view in this paper. Endogenous
fertility and increasing returns, both motivated from first principles, are the
key ingredients in an explanation of sustained and endogenous per capita
growth.

It is common to ask of endogenous growth models if policies can affect
the long-run growth rate. The view of the mechanism underlying endoge-
nous growth presented in this paper puts sharp limits on the channel through
which such changes can occur. In the model, policies such as subsidies or
taxes on research, capital accumulation, and fertility can affect the long-run
growth rate. However, these effects operate through fertility: only by al-
tering the long-run rate of population growth can standard policies affect
long-run per capita growth. Because of this restriction, many policies have
long-run growth effects that are counter to conventional wisdom. For exam-
ple, a research subsidy will reduce long-run growth in the model, even if it is
welfare-improving. In this sense, the model emphasizes that the appropriate

focus of policy should be on welfare and not on long-run growth.
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