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ABSTRACT

Limit orders incur no price impact, however, their execution time is uncertain. We
develop several econometric models of limit-order execution times using survival analysis, and
estimate them with actual limit-order data. We estimate models for time-to-first-fill and time-to-
completion, and for limit-sells and limit-buys, and incorporate the effects of explanatory variables
such as the limit price, the limit size, the bid/offer spread, and market volatility. We find that
execution times are very sensitive to limit price and several other explanatory variables, but not
sensitive to limit size. We also show that hypothetical limit-order executions, constructed either
theoretically from first-passage times or empirically from transactions data, are very poor proxies

for actual limit-order executions.
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1 Introduction

One of the most important tools for trading equity securities is the limit order, an order to
transact a prespecified number of shares at a prespecified price. Indeed, limit orders comprise
a significant fraction of stock-market trading activity, accounting for approximately 45% of
the total orders on the New York Stock Exchange (NYSE).! The primary advantage of a
limit order is the lack of price risk—a transaction occurs only if the limit price is attained.
However, this advantage does not come without a cost: execution is not guaranteed, and the
time-to-execution is a random function of many factors, e.g., limit price, number of shares,
market conditions, private information. For some trades, the uncertainty in execution time
is unimportant, but for others, the opportunity cost of waiting can be significant.

Of course, if immediacy is desired, the market order is the appropriate instrument to
use. However, market orders can be subject to significant price risk, particularly in volatile
markets. In practice, traders submit both tyvpes of orders, with an eye towards balanc-
ing the opportunity cost of delaying execution against the risks associated with immediate
execution.? A prerequisite for any quantitative approach to making such trade-offs is an
econometric model of limit-order execution times.

In this paper, we propose and estimate several econometric models of limit-order execu-
tion times using actual historical limit-order data from an electronic brokerage firm. Using
survival analysis, a well-known statistical technique for modeling failure times and other
non-negative random variables, we are able to estimate the conditional distribution of limit-
order execution times as a function of economic variables such as limit price, order size, and
current market conditions. Because limit-order execution times can be interpreted quite nat-
urally as failure times—they are non-negative, random, and temporally ordered—survival
analysis is the most appropriate method for modeling their evolution.

Moreover, survival analysis can accommodate an important feature of limit-order execu-
tion times that existing models have ignored: censored observations, i.e., limit orders that

are cancelled before they are executed. There is great temptation to ignore censored ob-

L This figure is reported by Harris and Hasbrouck [1996] for orders submitted using the NYSE’s SuperDOT
system.

2See, for example, Glosten (1989, 1994), Easley and O’Hara (1991), Parlour (1995), Chakravarty and
Holden (1995), Harris and Hasbrouck (1996), Kavajecz (1996), Rock (1996), and Seppi (1996).



servations since they seem to provide little information about execution times. However,
the fact that a limit order is cancelled after, say, 30 minutes does yield one piece of useful
information: the limit order “survived” for at least 30 minutes. Therefore, censored obser-
vations do affect the conditional distribution of execution times despite the fact that they
are not executions. Alternatively, ignoring censored observations can bias the estimator of
the conditional distribution of execution times dramatically.

Using a sample of limit orders for the 100 largest stocks in the S&P 500 Index from August
1994 to August 1995, we construct several econometric models of limit-order execution times
based on survival analysis, and show that they fit the data remarkably well. In particular,
we estimate separate models for limit-buy and limit-sell orders, and separate models for
time-to-first-fill and time-to-completion, hence four models in all. Each of these four models
yields a conditional distribution that closely matches the data’s and passes several diagnostic
measures of goodness-of-fit. The parameter estimates show that execution times can be quite
sensitive to certain explanatory variables, e.g., market depth, spread between limit price
and quote midpoint, market volatility, implying that the kind of strategic order-placement
strategies described by Angel (1994), Foucalt (1996), Harris (1994), Hollifield, Miller, and
Sandas (1996), Kumar and Seppi (1993), and Parlour (1994) may well be feasible in practice.
Limit-order execution times can be accurately modeled, hence controlled.

In Section 2 we review some of the institutional features of limit orders and describe our
limit-order dataset. We present a simple but powerful application of this dataset in Section
3 in which we compare actual limit-order execution times to their hypothetical counterpart,
constructed theoretically (from the first-passage times of Brownian motion) and empirically
(from transactions data). We present a brief review of survival analysis in Section 4 and

turn to our empirical analysis in Section. 5. We conclude in Section 6.

2 Limit-Order Data

Although limit orders differ slightly in their institutional features from one exchange to an-
other, we shall focus on those characteristics that are common across the largest exchanges,

e.g., the New York and American Stock Exchanges. Upon submission to a designated ex-



change, a limit order enters the specialist’s display book, known as the order book or the
queue. The queue gives the first priority to the highest limit-buy price and to the lowest
limit-sell price. Limit orders with the same limit price are prioritized by time of submission,
with the oldest order given the highest priority. A order’s execution often involves several
partial fills before it is completed, but partial fills do not change the time priority. A limit
order is not binding—it can be cancelled or corrected at any time.

When a limit order is submitted a number of parameters must be specified, including: the
limit price, whether the order is to buy or to sell, the order size (in shares), the designated
exchange, and the time-in-force. The time-in-force is the period during which a limit order
can be filled. For example, a day-order is a limit order that can be filled anytime until
the market closes; a good-till-cancelled order is a limit that can be filled anytime prior to
cancellation. The majority of limit orders are day-orders—82% in the sample considered
by Harris and Hasbrouck (1996)—although the number of good-till-cancelled limit orders
is also substantial, about 17% in the same sample.? In addition to the parameters of the
order, we would expect the time-to-execution to depend on current market conditions for the
stock itself as well as the market as a whole. Thus, in modeling the time-to-execution it is
necessary to specify relevant measures to capture the interaction between time-to-execution

and market conditions. We shall return to these issues in Section 5.

2.1 ITG Limit-Order Data

The limit-order data used in this study, provided by Investment Technology Group, Inc., is
unique in several respects. Each limit order is time-stamped and tracked from submission
to termination. After submission, a limit order may be partially or completely filled, may
get cancelled or corrected by its initiator, or may expire if its time-in-force is reached. Every
action relating to the order during its life is time stamped, reported, and recorded in the
data set. The submission time is the time when the order departs electronically from its
submitter, usually an Exchange-member firm, to the designated exchange. For example,
the order may be submitted to the NYSE via the NYSE SuperDot System. The order is

transmitted from the submitter to the exchange almost instantaneously, with a typical delay

3Harris and Hasbrouck (1996) use the Transaction, Orders, and Quotes (TORQ) Database distributed
by the NYSE.



of less than a second. Once the order is received by the specialist, it is placed in the queue,
ready for execution. When the specialist fills the order, a time-stamped report is sent to
the submitter. This time stamp is the report time and considered the time of execution.
When the investor requests cancellation or correction of an order, the submitter informs the
exchange and the exchange sends back a cancellation report and the time of cancellation is
recorded.

The ITG limit-order dataset is comprised of limit orders for the 100 largest stocks (in
market capitalization as of the end of September 1995) in the S&P 500 Index. We present
aggregate results for the entire sample of 100 stocks, but also present detailed results for the

following 16 individual stocks:

Ticker Company Name

ABT Abbott Labs

AXP American Express Co
BUD Anheuser Busch Cos Inc
C Chrysler Corp

CL Colgate Palmolive Co
DWD  Dean Witter Discover
GE General Elec Co

GM General Mtrs Corp

IBM International Business Machine
JPM Morgan J P & Co Inc
MOB Mobil Corp

PAC Pacific Telesis Group
PG Procter & Gamble Co
SLE Sara Lee Corp

VO Seagram Ltd

XRX Xerox Corp

The 16 individuals stocks will be identified by their ticker symbols and we shall refer to the
pooled sample of 100 stocks as POOL in Tables 1-11 below.

When a limit order is submitted to the New York Stock Exchange, a number of things
can happen. The order can be completely filled or partially filled. If partially filled, more fills
may follow. Alternatively, the order may not be executed at all and expire or be cancelled.
To illustrate the dynamics of typical limit orders, Figure 1 provides several examples of paths
a limit order may follow from submission to termination using data for AT&T on December
20th, 1994. In the first panel the path of a buy order is followed. The order is first submitted
at a limit price of $51.250 and then cancelled. It is resubmitted at $51.375, corrected, and



resubmitted again at $51.500. It is executed at this price. In our analysis this sequence is
treated as three observations: limit orders at $51.250 and $51.375 that are not executed, and
a limit order at $51.500 that is executed. In the second panel the path of a sell limit order
is presented. The sell order is submitted at a limit price $54.750, corrected and resubmitted
at $54.625, and then executed. In our analysis this sequence is treated as two observations,
one at $54.750 that is not executed and one at $54.625 that is filled.

These examples illustrate three possible execution times that we shall distinguish in our
subsequent analysis: (1) time-to-cancellation/correction; (2) time-to-first-fill; (3) time-to-
completion. We shall develop separate models for (2) and (3)—they have markedly different

properties—and incorporate (1) into our estimation procedures for both models.

2.2 Summary Statistics

Summary statistics for the limit-order dataset are reported in Table 1. The number of
limit orders per stock ranges from 1,160 (DWD) to 11,298 (GE), and are almost evenly
split between buy orders (52.42%) and sell orders (48.58%) for the pooled sample of 375,998
limit orders. Among the sell orders, shortsales account for the majority (32.83%). Because
shortsale orders are subject to the up-tick rule, we expect their dynamics to differ from
pure sell orders. For this reason, we omit them from our empirical analysis. Hereafter, by
“sell order” we shall mean pure sell orders only.

Once an order is submitted, it can be partially filled, completely filled, or not filled at all
due to cancellation or correction (we do not distinguish between these last two conditions).
The last three columns of Table 1 report the percentage of orders which are partially filled,
completely filled in the first fill, and completely filled, respectively. The orders not included
in the “Partially Filled” category either expired or are cancelled. Approximately half the
orders are at least partially filled and 37% are completely filled. About 30% are completely
filled on the first fill.

Although most of the completed limit orders are completed with the first fill, a number
do require multiple fills. Table 2 reports the percentage of completed limit orders that are

completed with a given number of fills. Over 80% of completed orders are completed with

4Under the up-tick rule, a shortsale can be executed only if it occurs at a price higher than the preceding
transaction at a different price.



the first fill, and only 1% are completed with 7 or more fills.

Summary statistics for time-to-execution and time-to-censoring are reported in Tables 3a-
b. The buy orders are separated from the sell orders. Table 3a reports the mean and standard
deviation for time-to-first-fill and time-to-completion and Table 3b reports the mean and
standard deviation for time-to-censoring. The mean time-to-execution varies considerably
across stocks. The average time-to-first-fill and time-to-completion of PG buy orders is 36.54
minutes and 37.88 minutes, respectively.’ For PG sell orders the average times are 10.51
and 10.75 minutes. The PG numbers are representative, although there is some variability.
The mean time-to-first-fill for the entire sample of buy orders is 29.22 minutes and for sell
orders is 11.37 minutes. The corresponding completion averages are 30.40 minutes and 12.37
minutes.

The means and standard deviations for time until expiration or cancellation in Table 3b
are presented for the orders not included in the time-to-execution statistics. The “No Fills”
columns consists of the orders not executed at all and the “Partial Fills” columns consists
of orders that are partially but not completely filled. As would be expected, the time-to-
expiration or time-to-cancellation of the non-executed orders is longer than the fill times.
For example, for PG, the average time-to-expiration or time-to-cancellation is 61.2 minutes
for the buy orders versus an average time of 36.54 minutes to first fill. One consistent trend
is that the average time for a buy limit order to be executed (first fill or completion) is longer
than that for a sell order. This result is consistent with sellers being more concerned about

immediacy than buyers.

2.3 Literature Review

There is a large and growing theoretical literature that considers the economic role of limit
orders in the price discovery process. Foucault (1993), Glosten (1989, 1994), Easley and
O’Hara (1991), Parlour (1995), Chakravarty and Holden (1995), Kavajecz (1996), Rock
(1996), Sandas (1996), and Seppi (1996) are just a few recent examples. The general focus
of these papers is the effect of limit orders on the market, the interaction between limit

and market orders, and the role of the market maker. None of these studies are set in

5Note that more observations are used to calculate the first fill numbers since it includes partially filled
orders. Thus one should be cautious comparing the two times.



a continuous-trading environment, hence they provide little direct guidance for modeling
limit-order execution times.

However, several studies do explore the probability of limit-order execution. For example,
under a number of rather strong assumptions, Angel (1994) derives an analytical expression
for the conditional probability of limit-order execution, conditional upon an investor’s infor-
mation set. His result applies to batch trading of one round-lot of the stock for informed
traders, assuming that traders know the entire limit-order book. Within his analytical frame-
work, Angel also conducts some simulations for continuous-trading environments.

Hollifield, Miller, and Sandas (1996) build a structural model of a pure limit-order market.
The model captures the trade-off between order price and probability of execution. They
estimate their model nonparametrically and derive implications for traders’ order-submission
strategies.

A number of studies have compared the use of market orders to limit orders empirically.
In particular, Harris and Hasbrouck (1996) compare the profitability of order-submission
strategies using limit orders versus market orders. They find that in some cases the use of
limit orders can reduce execution costs. Handa and Schwartz (1996) also provide a compar-
ison, assessing the profitability of limit-order trading by comparing unconditional expected
returns of market orders versus limit orders. Their analysis is based on hypothetical limit-
order executions, fictitious executions constructed from transactions data (see Section 3 for
fﬁrther discussion and an empirical critique). Biais, Hillion, and Spatt (1995) present an
empirical analysis of the order flow of the Paris Bourse which is a pure limit-order mar-
ket. They find that traders strategies vary with market conditions, using more limit orders
at times when spreads are wide and using more market orders at times when spreads are
narrow.

In all of these studies, limit-order execution times have not been studied explicitly. How-
ever, the time between transactions has been considered by several authors. For exam-
ple, Hausman, Lo, and MacKinlay (1992) construct an econometric model of transaction
prices which relates the time between trades to the distribution of price changes. They find
that time between trade is an important determinant of the variability in transaction-price
changes. More recently, Engle and Russell (1995) model the time between trades as a marked

point process with a conditional mean driven by lagged time-between-trades, which they call
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an autoregressive conditional duration model.

3 Hypothetical Limit Orders

Before turning to our econometric analysis of limit-order data in Sections 4 and 5, we explore
the prospect of studying limit-order execution times indirectly via theoretical and empirical
methods of constructing hypothetical limit-order executions. In our theoretical approach,
described in Section 3.1, we model stock prices as a geometric Brownian motion and capture
limit-order execution times as the first-passage time to the limit-price “boundary”. Our
empirical approach, described in Section 3.2, is based on the same principle but uses trans-
actions data to determine when the limit-price boundary is hit. Although both methods
have the virtue of simplicity, a comparison with actual limit-order data reveals some severe
biases that make hypothetical limit-order executions unreliable indicators of actual execution

times.

3.1 A Theoretical Approach: First-Passage Times

Suppose that the stock price P(t) follows a geometric Brownian motion with drift:
dP(1) = aP(t)dt + oP(t)dW(t) (3.1)

where o and o are constants. Let ¢, denote the current time and P, denote the current stock
price. Let Py, denote the lowest price observed in the time interval [to, to + ] (so that ¢ is
the length of the interval).

We assume that a limit-buy order with limit price P, will be executed in the interval
[to, to + t] if and only if Py is less than or equal to P;. Thus the probability of a limit-order
execution is simply the probability that P, is less than or equal to P, in [to, to + t], 1.e.,
the probability that the first passage of P(t) to P, occurs within [to, to + t]. By modifying a
formula given in Harrison (1990, p. 14) this probability can be derived exactly under (3.1)



and is given by:

log(Po/Py) + pt
Pr(Puin < BIP(t) = P)) = 1 - @(Og Uﬂ) ”) +

(%)2“/”2 ® (bg(ﬂil\}g + ut>

(3.2)

where 1 = o — 1o? and ®(-) is the standard normal cumulative distribution function (CDF).
A similar expression can be obtained for limit-sell orders in the same manner.

Now if we denote by T the limit-order execution time—a non-negative real-valued random
variable—then (3.2) yields the CDF, F(t), for T', i.e.,

F(t) Pr(T < t|P(to) = Po, P p,0) = Pr(Pumin < F)  (Limit Buys)

Il

F(t) = Pr(T < t|P(to) = Po, Popt,0) = Pr(Pmax>P)  (Limit Sells) .

The performance of the first-passage-time (FPT) model of limit-order executions can then
be evaluated by comparing the theoretical CDF, F (t), with the empirical distribution of
actual limit-order execution times from our limit-order dataset.

In particular, if actual limit-order execution times T; are distributed according to (3.2)
with CDF F(-), then the random variables F'(T;) must be uniformly distributed on the unit
interval [0,1]. Therefore, by tabulating the frequency counts of F(T;) within, say, each of
the deciles of the uniform distribution on [0,1], i.e., [0,.10), [.10, .20),..., [.90,1], we can
see how closely the empirical behavior of limit-order execution times matches the theoretical
predictions of the FPT model.

To do this, we require estimates of the parameters of F° (t), i.e., p and 0. These parameters

can be easily estimated from historical data via maximum likelihood:

N ~\2
- ' ) (r; — i)
PENR T o C N (33)

where N is the number of observations in the sample, r; = log P;—log P, is the continuously
compounded stock return over a time interval of 7 units, and 7 is a fixed sampling interval.

Over the estimation period from August 1, 1994 to August 31, 1995, and for each of the



16 stocks in our individual-stock sample (see Table 1), we divide each trading day into 13
half-hour trading intervals, and calculate the continuously compounded return 7; = log P; —
log P;_; over each interval 5, j = 1,...,13, where P; is the average of bid and ask prices at

the end of jth interval. Then for each stock we calculate

I N
O I ﬁﬁg(m — 307
which are the maximum likelihood estimators of i and o2, scaled by 30 to yield per-minute
parameter estimates.

By inserting /2 and &7 into (3.2), we obtain an estimate of the first-passage time CDF
F(t) as a function of ¢, Py, and P. Therefore, for each limit order in our dataset that is
executed,® we insert its parameters T;, Py, and P, into F to obtain a random variable u;
which contributes towards the frequency count of one of the ten deciles of the Uniform[0, 1].

But what about the many limit orders that are not executed, i.e., those that are cancelled
or corrected (see Table 3b)? Eliminating them from our frequency count would clearly bias
the empirical distribution towards shorter execution times (because we are discarding limit
orders that have “survived”), but since they are unexecuted, we cannot evaluate the CDF
for these censored observations. Fortunately, a well known technique for handling censored
observations has been developed by Kaplan and Meier (1958), now known as the Kaplan-
Meier estimator, and we use this procedure to incorporate limit-order cancellation/correction
times into our decile counts.’

Table 4 reports the percentage frequency counts of each of the ten uniform deciles for

the limit orders of the 16 individual stocks in our sample. It is apparent from the entries in

6We use time-to-first-fill only for the FPT model since this most closely matches the notion of a first-
passage time. This underscores an important shortcoming of the FPT model: the inability to distinguish
among time-to-first-fill, time-to-completion, and time-to-censoring.

7The Kaplan-Meier estimator is a nonparametric method of redistributing the probability mass of censored
observations. Specifically, a censored observation indicates that the corresponding uncensored observation
must lie to its right, but how far to the right is unknown due to the censoring. The Kaplan-Meier estimator
redistributes the probability mass of the censored observation evenly over the portion of the empirical
distribution function to the right of the censored observation. In the case of no censoring, the Kaplan-Meier
estimator coincides with the conventional empirical distribution function, which assigns a mass of 1/n to each
observation. To compute the frequency count for a censored sample, we first calculate the Kaplan-Meier
estimator, F,(z), of the true CDF using the transformed data u;,us,...,un and the censoring indicators
81,...,0,. The percentage frequency count for the i-th decile is given by ; = F(3/10) — Fn((i — 1)/10).
See Kaplan and Meier (1958) and Miller (1981) for further discussion.
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the last column—the 10th decile—that the limit-order data fits the FPT model very poorly.
For example, 41.0% of the limit-order execution times of ABT fall into the 10th decile of
the FPT model; if the FPT model were correct, this value should be close to 10%. For PG,
the empirical value of the 10th decile is even higher: 74.6%! Even the smallest entry in this
column—26.4% for GE—is still over twice the theoretical value of 10%, and all of the entries
are statistically significantly different from 10%.8

The fact that there is a far higher proportion of execution times in the 10-th decile than
predicted by the FPT distribution (and a correspondingly lower proportion of execution
times in the lower deciles) implies that the FPT model vastly underestimates limit-order
execution times. In fact, observe that what the FPT model predicts as the 90-th percentile
of execution times is less than the empirical median execution time for DWD, PAC, PG, and
SLE limit orders!

Of course, the FPT model (3.2) is predicated on the geometric Brownian motion spec-
ification (3.1) for stock prices, and if this specification is not appropriate, this can lead to
the kind of inconsistencies documented in Table 4. If, for example, stock prices exhibited
short-term mean reversion, e.g., an Ornstein-Uhlenbeck process (see Lo and Wang (1995]),
this can lead to longer execution times than geometric Brownian motion. Unfortunately,
explicit expressions for the distribution of first-passage times are unavailable for these more
interesting stochastic processes.

The FPT model suffers from several other important limitations. It allows no role for
limit-order size, makes no distinction between time-to-first-fill, time-to-completion, and time-
to-censoring, and cannot easily incorporate the effects of explanatory variables such as price
volatility, spreads, and market conditions. Therefore, although the FPT model may be a
natural theoretical framework in which to model limit-order executions, it leaves much to be

desired from a practical point of view.

8The asymptotic z-statistics in Table 4 are calculated under the null hypothesis that the FPT model
correctly describes the data. In that case, each of the percentage frequency counts 7#; is a consistent estimator
of the value 10%, and N x #; is a binomial random variable with mean N x 10% and variance N x 10% x 90%
where N is the sample size. Therefore, the z-statistic V/N(#;—10%)/v10% x 90% is asymptotically standard
normal.
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3.2 An Empirical Approach: Transactions Data

An alternative to the FPT model of Section 3.1 that is empirically more plausible is a
transactions-data version in which first-passage times are determined by the historical time
series of transactions data (see, for example, Handa and Schwartz [1995]). In particular,
consider a stock XYZ that trades at $50.875 at 10:37am on April 19th, 1995, and suppose
that a limit-buy order for XYZ is submitted at that time at a limit price of $50.500. The
first time after 10:37am that a transaction is observed at a price of $50.500 or lower, the
limit order is considered executed, and the time between this transaction and 10:37am is
considered the limit-order execution time.

The primary advantage of such hypothetical limit-order executions over the FPT model
is the fact that executions are determined by the historical time series of transactions data,
not by geometric Brownian motion. Therefore, if the stochastic process for stock prices
exhibits mean reversion or more complex forms of temporal dependence and heterogeneity,
this will be incorporated into the empirical FPT model.

To compare actual limit orders with hypothetical ones generated by the empirical FPT
model, we apply the following procedure to the limit orders of the 16 individual stocks from
August 1994 to August 1995. For every limit-buy order in our limit-order database that
had at least one fill, we create a matching hypothetical limit, i.e., the submission time and

limit price are set to equal to those of the actual limit order. The time—to-execution. of
the hypothetical order is determined by the Transaction and Quotation (TAQ) database
distributed by the New York Stock Exchange, and involves searching for the first time after
submission when the transaction price is less than or equal to the limit-buy price. The
difference between this time and the submission time is recorded as the time-to-execution
for the hypothetical limit order. This time-to-execution will obviously be a lower bound for
the actual time-to-execution, hence we shall refer to it as the lower-bound execution time. It
‘will equal the actual execution time only if the actual limit order is at the top of the queue
or close enough to the top so that it is filled with the first incoming sell order. However,

Handa and Schwartz (1995) treat this lower bound as the execution time itself.
If we continue to track the stock price after its first-passage time, we can obtain an upper

bound to the execution time. The upper-bound ezecution time is either the first time during

12



the day when the transaction price falls below the limit-buy price or the last time of the day
the market price is equal to the limit buy price. If neither of these two conditions is met, we
treat the observation as missing.

Table 5 reports the means and standard deviations of the lower-bound and upper-bound
execution times, as well as those of the actual limit-order execution times (time-to-first-fill).
In Figure 2 histograms of the times are presented. Together, they provide conclusive evidence
that lower-bound and upper-bound execution times are poor proxies for actual limit-order
execution times. In particular, the mean lower-bound execution time understates the mean
actual execution time and the upper-bound execution time overstates it. For example, ABT’s
lower-bound mean is 15.58 minutes, its upper-bound mean is 60.12 minutes, yet its actual
mean is 25.39 minutes. The standard deviations also disagree: ABT’s lower-bound standard
deviation is 50.61 minutes, its upper-bound standard deviation is 83.37 minutes, and the
actual standard deviation is 55.84 minutes. Even for a very liquid stock such as IBM, the
differences between the moments of hypothetical and actual execution times are substantial:
its lower-bound mean is 16.80 minutes, its upper-bound mean is 43.26 minutes, and its actual
mean is 23.41 minutes.

Table 5 also reports more formal statistical inferences in the last three columns in which
the significance of the difference between the actual-time and lower-bound means are evalu-
ated. The differences are strongly significant for all 16 stocks as the asymptotically standard
normal z-statistics show—they range from 5.93 (VO) to 18.18 (GE). A similar test using dif-
ferences between the upper-bound and actual-time means also yields strong rejections hence
we omit them to conserve space.

Figure 2 plots the entire distributions of the lower-bound, upper-bound, and actual ex-
ecution times, and a comparison of these three distributions for the 16 stocks reveals that
they differ not only in one or two moments, but over their entire support. In fact, we have
attempted to “shift” the distributions of the hypothetical execution times by using “n-th-
passage” times in place of first-passage times® (as n increases, the mean of the hypothetical

execution time increases also). But even selecting an n that minimizes the difference be-

9That is, instead of determining the execution time as the first time the transaction price reaches the
limit price, let it be the n-th time that the transaction price reaches the limit price. This is tantamount to
assuming a lower position in the queue, and yields intermediate executions to the lower-bound (top of the
queue) and upper-bound (bottom of the queue) cases.
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tween the mean hypothetical execution time and the mean actual time does not yield similar
distributions.

These results underscore several important weaknesses of the empirical FPT model, the
most obvious being the assumption that the hypothetical limit order is executed when the
limit price is first attained. Such an assumption implicitly presumes that there are no other
limit orders with the same limit price and higher time priority, i.e., the hypothetical limit
order is assumed to be at the “top of the queue”. However, even intermediate hypothetical
execution times such as the n-th-passage-time and lower-bound models cannot match the
empirical distribution of actual limit-order execution times. Moreover, as in the theoret-
ical FPT model, the empirical FPT model cannot easily handle varying limit-order sizes,
explanatory variables, and the distinction between time-to-first-fill, time-to-completion, and
time-to-censoring.

In summary, hypothetical limit-order executions are very poor substitutes for actual

limit-order data.

4 Survival Analysis

In developing an econometric model of limit-order execution times, it is important to dis-
tinguish between the various execution possibilities, to incorporate all the characteristics of
the order, and to capture the influence of market conditions. We are able to incorporate all
of these aspects through the application of a well-known statistical technique called survival
analysis, which we shall review in Sections 4.1-4.4.

Since a limit order may require multiple fills to complete it (see Section 2), we must
distinguish between time-to-first-fill and time-to-completion. Recognizing this distinction,
we estimate two separate models, one for first fills and one for completions. Moreover, since
market conditions may affect execution times differently for limit-buy orders and limit-sell
orders, we also estimate separate models for buy orders and sell orders. Thus, we estimate
four separate models in all.

For each model, we seek to estimate the following conditional probability, essentially the

14



CDF of the execution time 7} of the k* limit order:
Pr(Ty <t | Xk, P, Sk, Ix) (4.1)

where Xy is a vector of “explanatory” variables that captures market conditions and other
conditioning information at the time of submission for the £** limit order, and Py, Sk, and
I} are the limit-order price, size (in shares), and side indicator (buy or sell), respectively, of

the k** limit order.

4.1 A Brief Review of Survival Analysis

Survival analysis is a statistical technique for analyzing positive-valued random variables
such as lifetimes, failure times, or, in our case, time-to-execution. It is particularly useful
for modeling the time-to-execution of limit orders because censored observations (orders
terminated prior to execution) can be easily and correctly accommodated. In this section we
present a brief review of survival analysis; readers interested in a more detailed exposition
should consult Cox and Oakes (1984), Kalbfleisch and Prentice (1980), and Miller (1981).
Let T denote a non-negative random variable which represents the lifetime of an item,
also known as the failure time—in our application, it is a limit-order execution time. Let
f(t) and F(t) denote the probability density function (PDF) and CDF, respectively, of. T

The instantaneous failure rate or hazard rate of T at time t, denoted by h(t), is defined as

t

since h(t)dt is the probability that an item that has survived through time ¢ will fail in the
interval [t, ¢+ dt). Alternatively, we can define the survivor function, S(t) = 1 — F(t), which
is the probability that an item’s lifetime will be at least £. Any one of these four quantities—
the PDF, the CDF, the hazard rate, and the survival function—uniquely determines the
other three, and all are the focus of survival analysis.

In particular, there are two general approaches to estimating these functions: paramet-
ric and nonparametric. Parametric survival analysis, described in Section 4.2, assumes a

specific parametric family for the distribution of failure times, e.g., the generalized gamma,
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distribution, for which maximum likelihood estimation can be performed. Nonparametric
survival analysis, described in Section 4.3, involves estimating the survival function nonpara-

metrically, i.e., without resorting to any parametric assumptions.

4.2 Parametric Methods

The parametric approach to survival analysis begins with the specification of the distribution
of the random variable T, from which the likelihood function is obtained. Let (¢y,...,%,)
denote a sequence of n realizations of T, possibly with censoring. We assume that we
know which observations have been censored (limit-order cancellations and corrections are

reported) and let (41, ..., d,,) denote censoring indicators:

1 if observation 4 is censored
(4.2)

0 if observation 7 is not censored

The joint likelihood function for the data is then

n

L r@)%S) - = l;[f(ti)HS(ti) (4.3)

i=1 C

where U and C denote the indexes of the uncensored and censored observations, respectively.
Given the likelihood function (4.3), the parameters of the distribution of 7" can be estimated
" via maximum likelihood.

There are several widely used distributions for failure times such as the exponential,
gamma, Weibull, lognormal, and inverse Gaussian (see, for example, Cox and Oakes [1984,
Table 2.1]). We choose the generalized gamma distribution, which nests a number of other
distributions as special cases. Given this nesting, we can test the restrictions imposed on
the generalized gamma specification by the simpler cases to see if the other specifications
_are adequate.

The generalized gamma distribution has three parameters: two shape parameters x and

p, and one scale parameter A. Its PDF is

Alp|r*(At)P*~! exp(=(At)Pk)
I'(k)

f(t) (4.4)
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and the corresponding survival function is

[(k, (At)Pk) /T (k) ifp<0
Sit) = (4.5)
1 —T(k, (At)Pk)/T(k) ifp>0
where I'(a, b) denotes the incomplete gamma function and I'(a) denotes the complete gamma

function.

When « = 1, the generalized gamma distribution reduces to a Weibull distribution, which

has PDF

F(£) = Alpl(At)"~  exp(—~(At)?) . (4.6)

When « = 1 and p = 1, the generalized gamma reduces to an exponential distribution, and

when x = 0, it reduces to a lognormal distribution.

4.3 Nonparametric Methods

In the nonparametric approach to survival analysis, the functional form of the survival distri-
bution is not specified—the survival distribution is approximated by its empirical distribution
function which is estimated nonparametrically. When there are no censored observations,
the empirical survival function is simply a step function:

A n—1

s = 11 (7557)
where the failure times f(;) are ordered (hence the parenthetical subscripts) such that ta) <
t@2) < -+ <{tn). The function S (t) is simply equal to the proportion of observations greater
than ¢.

When there are censored observations, Kaplan and Meier’s (1958) method is used to

calculate the empirical distribution. Suppose, for simplicity, there are no “ties”. Then the
Kaplan-Meier estimator is given by

s = 1II (nﬁz—'il)a(i)

L)<t
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where d;) is defined as in (4.2). In the presence of ties, further adjustments are necessary

(see, for example, Miller [1981, p. 46-51)).

4.4 Incorporating Explanatory Variables

There are two approaches for allowing failure times to depend on explanatory variables. One
approach assumes that the effect of explanatory variables on failure times can be captured by
rescaling time. The other assumes that the effect of explanatory variables can be captured
by rescaling the hazard rate. The former is commonly called the accelerated failure time
specification and the latter the proportional hazard rate specification. An exponential factor
is often used to rescale time or the hazard rate.

Specifically, an accelerated failure time model has the form
T = &P,

where T is the time-to-execution, X is a vector of explanatory variables, 3 is a parameter
vector, and Ty is called the baseline failure time and its distribution the baseline distribution.
The time-to-execution T is then a scaled transformation of the baseline time Ty, where the
explanatory variables and coefficients determine the scaling. Because the baseline distribu-
tion is typically specified parametrically, the accelerated failure time approach falls within
the parametric framework.

In the second approach, the hazard rate h(t) is assumed to satisfy
WEX) = ho(t)e XP (4.7)

where ho(t) is called the baseline hazard rate. For obvious reasons, this is known as the
proportional hazard rate specification. In most applications, the functional form of ho(t) can
be estimated nonparametrically, hence the proportional hazard rate specification falls within
the nonparametric framework.

We shall investigate both of these specifications empirically in Section 5.
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5 Empirical Analysis

In this section we turn to the empirical analysis of the limit-order data described in Section
2 using the econometric models of Section 4. We focus on two specifications in particular:
the generalized gamma model for the accelerated failure time specification, and the Cox
proportional hazard model for the proportional hazard rate specification. In Section 5.1
we define the explanatory variables, and present the parameter estimates of the models in
Section 5.2. To compare the two specifications, we consider several measures of goodness-
of-fit in Section 5.3, and we discuss the economic significance of our estimates in Section

5.4.

5.1 Explanatory Variables

The dependence of time-to-execution on the limit order’s characteristics and on current
market conditions is captured through the inclusion of explanatory variables. The included
variables are measures of the limit order’s price relative to the market price and quotes,
the size of the limit order, measures of the market depth, and other stock specific measures

relating to volatility and liquidity. In particular, let:

P = Market Price
P, = Limit Price
P, = Bid Price
P, = Offer Price
, = Mid-Quote Price
S, = Offer Size
Sy = Bid Size
S; = Limit-Order Size

Then the following are the explanatory variables included in the limit-buy models (all vari-

ables are measured at the time of submission):
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Explanatory Variables for Limit-Buy Models

MQLP = F,—-F

if prior trade occurred above P,
if prior trade occurred at F;
if prior trade occurred below P,

BSID =

(1+Pb Pl XlOng lfHSPb
ifPl>Pb

(P - P)x MKD1 if P> P

MKD1X = HP <P

logS,/(1+P,—P) ifP,> P

MKDZ = 9 1og5, if P, < P,

&
MKDl = {
{5
{

log(Sl) X (1+Po_])l) if P, > P
SZSD = log(S; — S,) if P,=P and S; > S,
0 otherwise
STKV = # trades last half hour / # trades last one hour
TURN = log(# trades last one hour)
LSO = log(previous month-end shares outstanding, in thousands)
LPR = log(previous month’s average daily closing price)
LVO = log(previous month’s average daily share volume)

The first eight variables are designed to accommodate the dynamic nature of the market
place by capturing current market conditions. These are updated on a real-time basis. In
contrast the last three variables are designed to facilitate differences across stocks and are
updated monthly.

The variable MQLP measures the distance the limit-buy price is away from the current
quote midpoint. BSID is an indicator to measure whether the prior transaction was buyer-

initiated or seller-initiated (see, for example, Hausman, Lo, and MacKinlay [1992]). MKD1 is
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a measure of the minimum number of shares that have higher priority for execution scaled by
the distance the limit-buy price is below the bid price. The variable MKD1X is an interactive
term to capture nonlinearities between the market depth and market price relative to the
limit-buy price. MKD?2 is a measure of the liquidity available from the selling side of the
market. The measure is constructed to decline as the limit-buy price decreases below the
offer price. SZSD is a measure of liquidity demanded by the limit order scaled by the
distance the limit-buy price is from the offer price. STKV is a short term measure capturing
shifts in trading activity. It is designed to proxy for high frequency changes in volatility.
TURN is a trading activity measure providing an absolute measure of volatility. LSO is the
logarithm of the number of shares outstanding, LPR is the logarithm of share price, and
LVO is the logarithm of average daily volume. These are primitive variables included to
capture differences across stocks. They can be combined to form a number of measures one
might consider including. For example, the log of price plus the log of shares outstanding
is the log of market value, the log of volume minus the log of shares outstanding is the log
of turnover, and the log of price plus the log of volume is approximately the log of dollar
volume.

Five of the explanatory variables are redefined for the limit-sell order models. The defini-
tions are altered so that the underlying economic interpretation of these variables is retained
(although the direction of the effect may be reversed). The redefined variables are listed

below.
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Redefined Explanatory Variables for Limit-Sell Models

MQLP = P,-P,

(1+P—-P,) xlogS, ifP>PF,
if P, < P,

MKD1 =

(P—P)xMKD1 ifP <P

MKD1X = fP>P

log Sy/(1+ P — P,) if P, <P
log S if P, > P,

1 + P — Pb) if > P,
Og(Sl if P = P, and Sl > Sy
0 otherwise

log
SZSD = 1

{0
{0
MKD2 = {
[

Summary statistics for the explanatory variables are reported in Tables 6a—b and sample
correlations for the explanatory variables are presented in Table 7. From Tables 6a-b, for
the 100 stocks in aggregate, we observe considerable variation in the explanatory variables as
well as differences across buy and sell orders. For example, consider the variable MQLP from
Table 6a. On average the limit-buy price is almost one quarter below the quote midpoint.
However, there is substantial variation: the standard deviation for this variable is over one
quarter. In contrast, from Table 6b, the mean of MQLP is —0.0373 indicating that the limit
price is only slightly above the quote midpoint on average for limit-sell orders. There is
much less variation for the sell orders: this variable has a standard deviation of only 0.0847.
Similar observations can made from the other explanatory variables.

The cross-correlations of the explanatory variables generally are relatively small, with
most being less than 30% in magnitude. For example, the highest correlation between the
variable STKV which captures changing volatility and the variables relating to the limit
order is 8.6%. A similar observation holds for TURN, the other volatility related variable.
The exceptions to the low correlation tend to be the variables relating to market depth which

are more highly correlated with each other. For example, the correlation between MKD1
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and MKD? is 59.1% for limit-sell orders. Most of the results are similar across limit-buy
and limit-sell orders. One exception is the correlation of BSID with the other market depth
variables. These correlations are much higher in magnitude for the limit-sell orders than the
limit-buys.

We next consider the empirical results for the time-to-execution models using these pro-
posed explanatory variables. Initially we consider the accelerated failure time specification

and then the proportional hazard rate specification.

5.2 Parameter Estimates

In this section, we present estimation results for an accelerated failure time specification
and for a proportional hazard rate specification, using the limit-order data described in
Section 2. The generalized gamma distribution is used for the baseline distribution in the
accelerated failure time approach and Cox’s nonparametric method is used for estimation of
the proportional hazard specification.

Recall that we estimate four different models for each specification: time-to-first-fill for
limit-buy orders, time-to-first-fill for limit-sell orders, time-to-completion for limit-buy or-
ders, and time-to-completion for limit-sell orders. We estimate each specification using the
pooled sample of 100 stocks, and we perform specification checks for both the pooled sample
as well as for 16 individual stocks (see Section 5.3 for further discussion). The specification
checks using the individual stocks facilitate an assessment of the models’ abilities to capture

the cross-sectional differences in execution times.

Accelerated Failure Time Specification

As discussed in Section 4.4, the accelerated failure time specification assumes that the effect
of explanatory variables on the time-to-execution is to rescale the failure time itself. The sign
of the coefficient of an individual explanatory variable indicates the direction of the (partial)
effect of that variable on the conditional probability of executing the limit order and on the
expected time-to-execution. With this specification, the time-to-execution has a generalized
gamma distribution and the maximum likelihood approach is used for estimation.

To complete the accelerated failure time specification, we must choose a baseline dis-
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tribution. Using the generalized gamma distribution, we obtain f (¢; X), S(t; X), and the
likelihood function by replacing A by exp(—X'@) in (4.4), (4.5), and (4.3). The density
function is given by:

exp(—X'B)|p|x"(exp(—X'B)t)P*~" exp(—(exp(—X'B)t)?k)

[t = T (k) : (5.8)

Under this specification the model has two parameters in addition to the parameter vector
B: x and p. In our estimation procedure, we reparametrize the model with x = 1/ v? and
p=v/0,'" and estimate it by maximizing the likelihood in (4.3).

Given the parameter values, we can easily calculate implications of the model for the

time-to-execution. For example, the conditional mean of time-to-execution is

wmlw >+ ov™h)

_ 2
E[T|X] - GXP(X’ﬁ)(V ) F(V_Q) (59)
and the 7-th conditional quantile g, is given by
¢ = ep(X8)EA) (G (rr ) (510)

for v > 0 (for v < 0, replace 7 by 1 — 7 on the right side of 5.10), where G (r,v7?) is the
r-th quantile of a gamma-distributed random variable with parameter v~2. We shall make
use of these formulas below.

The estimated parameters, along with their corresponding standard errors, are reported
in Table 8. The estimates of the parameters associated with the conditioning variables, with
only one exception, have the expected signs and are generally are statistically significant for
all four of the models.

The coefficient on the variable of MQLP is positive with z-statistics of 197 and 190 for the

“buy models. This indicates that the larger of the gap between the quote-mid-price and the
limit-buy price the longer the expected time-to-execution. The positive sign on the variable of
BSID for buy orders indicates that if the prior transaction has been seller initiated a shorter

time-to-execution is expected. The positive sign of the estimated coefficient of MKDL1 is

10This reparametrization entails no loss of generality and is purely an artifact of the SAS procedure
LIFEREG.
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consistent with the expected time-to-execution increasing with the order size and decreasing
with the limit order price. The negative sign on the variable of MKD?2, on the other hand,
indicates that the greater the depth of the opposite side of the market and the closer the
limit-buy price is to the offer the shorter of the expected time. The variable of MKD1X
captures a nonlinear between time-to-execution and the market price and its depth. The
coefficient of SZSD is positive and statistically significance in three of the four models. In
the first-fill buy model the coefficient is negative, but not large in magnitude. This is not
surprising, since in the case of first fills, we would expect the order size to be less important.
The negative signs for the variables STKV and TURN imply that shorter time-to-execution
is expected when market conditions are more active and volatile.

The importance of the three variables included to capture cross-sectional differences is
not consistent. This is not of concern, however, since these primitive variables are included
to capture a number of composite cross-sectional effects including market value, turnover,
and dollar volume. As far as the primitive variables are concerned, the log of share price is
the most important. Its coefficient is consistently strongly negative. This is to be expected
since higher price stocks tend to be more liquid. We go beyond the statistical significance of
the estimates in Section 5.4 where we consider the economic significance.

Simplifications of the generalized gamma to the Weibull or exponential distribution are
strongly rejected. In Table 8 the estimated shape parameter for all models is more than two
standard errors from one, the value consistent with the simpler distributions. For example,
with the first fill buy model, the estimate for the shape parameter is —0.404 with a standard
error of 0.012. Thus the estimate is more than 117 standard errors from one. Given the
strength of this result, we proceed using the generalized gamma.

The survival function can be easily estimated given the parameters of the model. For the

generalized gamma, the estimate of the survival function is:

S(t: X) = 1-T(&, (At)P&)/T(k)  if the estimated p is positive (5.11)
St X) = T(& (A)P&)/T(R) if the estimated p is negative (5.12)

where A = exp(—X’B) for a given X. We shall present diagnostics for each of these specifi-

cations in Section 5.3.
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Proportional Hazard Rate Specification

We also consider Cox’s proportional hazard model for the proportional hazard rate specifi-
cation (see Cox and Oakes [1984]). Under this nonparametric approach, the distribution of
the time-to-execution need not be specified, but instead the hazard function is assumed to
be the product of a function of the explanatory variables and the baseline hazard function

ho(t), as given in (4.7). The underlying conditional density is
F6X) = ho(t)e XBexp (- e XP / ho(s)ds) . (5.13)

Since hg(t) is not assumed to be known, the usual maximum likelihood method is not appli-
cable. However, a partial likelihood method can be used.

Suppose t(1) < tg < - <l are the non-censored ordered times-to-execution, and let
X(;y denote the explanatory variables associated with (). Let R denote the set of obser-
vations still “alive” at time Gy called the risk set at time t(;—it includes all observations
with times-to-execution equal to or larger than ¢(;. The partial likelihood function is given

by

1_’“[ exp( X’i)ﬁ)
i1 jere) exp(=X}8)

(5.14)

Observe that the baseline hazard function ho(t) does not appear in the partial likelihood
(5.14). This is why it is possible to estimate the parameters 3 without specifying the
baseline hazard function.

There are a number of methods which make use of the estimate of 8 to construct a
nonparametric estimate of the baseline survival function So(t), e.g., Kalbfleisch and Prentice
(1981, pp. 85-86). Omnce the baseline survival function is obtained, the survival function
incorporating the explanatory variables X can be estimated using S(t; X) = So (t)exP(= -X'B)

We see from (5.14) that the intercept cannot be identified, since it appears in both the
numerator and the denominator and cancels out. This expression assumes no ties among the
observed times. When there are ties, a modification is necessary (see Cox and Oakes (1984,
pp. 102-103)).

The results for the Cox proportional hazard model are reported in Table 9. Under this
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specification the signs of the coefficients for the explanatory variables can be interpreted as
the direction of the effect of the given variable on the expected time-to-execution of a limit
order. It is worth noting that the magnitude of the estimated parameters for the accelerated
failure time and proportional hazard specifications are not directly comparable. However, the
signs of the parameters for the two models do have the same interpretations for the expected
execution time. For the gamma model, the conditioning variables affect the execution time
through the distribution of the execution time itself whereas for the Cox model, the effect is
through the hazard rate of the execution time.

In Table 9, the signs of the coefficients associated with the explanatory variables are
generally consistent with economic intuition but there are exceptions. For example, the
coefficients for variable MQLP are consistent. The positive sign for buys and the negative
sign for sells indicates the lower the limit-buy price and the higher the limit sell price the
longer the expected time-to-execution. An example of an inconsistency is the sign of the
estimate of the coefficient for STKV in the first fill models. The estimates are .107 and .117
for the buy and sell models respectively, indicating that expected time-to-execution is longer
when the stock has had increasing trading activity the past hour.

Overall, the estimates for the accelerated failure time model are more in line with our
expectations than those for the proportional hazard specification. In the next section, we

provide a more detailed comparison of the specifications using model diagnostics.

5.3 Assessing Goodness of Fit

To check the goodness of fit of the two specifications estimated in Section 5.2, we use two
diagnostic measures: a graphical diagnostic (Q-Q plot), and a numerical diagnostic (deciles

statistics). Both suggest that the generalized gamma model fits the limit-order data best.

Q-Q Plots For Pooled Data

If S(t;X) is the true survival function of the random variable T, then S (T;X) (S as a
function of the random variable T) must be uniformly distributed on [0,1]. This implies
that — log S(T; X) has an exponential distribution with density et for t > 0, hence we can

regard {n; = — log S(t;; X;)} as a sequence of realizations (with censoring) of an exponential
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random variable. Therefore, testing whether {7;} is drawn from an exponential distribution
is equivalent to testing whether S(¢; X) is the true survival function.

In practice, the true survival function is unknown. For parametric models like the gamma,
the survival function depends on unknown parameters, and for the Cox proportional hazard
model, even the functional form is unspecified. However, we can use the estimated survival
function in its place. If the model is correctly specified, the estimated survival function S
will be close to the true survival function, and the sequence {7; = — log S(ti,X;)} should
have properties similar to {7;}. That is, we can consider {7;} as a (censored) sample from an
exponential distribution, provided that the model is correctly specified. The sequence {7;}
is called generalized residuals (see Cox and Oakes [1985]).

To check this hypothesis, we use Q-Q plots in which the negative logarithm of the em-
pirical survival function of the sample {#;} is plotted against the negative logarithm of
the theoretical survival function (—loge™ = ¢). If the model is correctly specified, the plot
should be a straight line with a unit slope. Because the generalized residuals can be censored
(in particular, whenever the original survival time is censored), we use the Kaplan-Meier esti-
mator. For the gamma model, 7; = — log S(t;, X;) for S given in (5.11). For the proportional
hazard model, 7, = — exp(—X.3)log So(t:).

Since the empirical survival function is subject to sampling variation, we do not expect
to see an exact straight line, however, if the model is correctly specified, the plot should show
points closely clustered about the 45-degree line. Q-Q plots that deviate from the 45-degree
line are an indication of model misspecification.

Figure 3 contains the Q-Q plots for the generalized gamma model and for the Cox pro-
portional hazard model using the pooled sample of 100 stocks. It is apparent that the
proportional hazard model does not fit as well as the gamma. In contrast to the relatively
straight Q-Q plots for all four of the gamma models, the plots for the proportional hazards
‘models all curve away from the 45-degree line. The fact that they all fall below the 45-degree
line at the upper range of the plots indicates that it is the right tail of the distribution that
is the main source of misspecification in the proportional hazard model.

It may seem surprising that the parametric approach yields a better fit than the nonpara-
metric approach, after all, the nonparametric approach should be consistent with virtually

any underlying distribution. The answer lies in the fact that the Cox specification assumes a
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proportional hazard rate, and our analysis suggests that limit-order execution times do not

satisfy this restriction.

Q-Q Plots For Individual Stock Data

The Q-Q plots of Figure 3 suggest that the generalized gamma model fits the pooled data
quite well, but this says little about the performance of the model from stock to stock. To
address this issue, Figures 4a~d contain Q-Q plots of the four generalized gamma models
(time-to-first-fill/time-to completion and limit-buy /limit-sell) using limit-order data from
the 16 individual stocks listed in Table 1.!! Figure 4a contains Q-Q plots for the limit-buy
time-to-first-fill model, Figure 4b the limit-buy time-to-completion model, Figure 4c the
limit-sell time-to-first-fill model, and Figure 4d the limit-sell time-to-completion model.
These Q-Q plots show that although there is some variation in the goodness-of-fit of
the generalized gamma model across stocks, the pooled model fits individual limit-order
data quite well. The only stock to exhibit a consistently poor fit across the four models
is GE—for practical purposes it may be worthwhile to estimate a separate model for this
one stock. Nevertheless, when compared to the Q-Q plots in Figure 3 for the proportional

hazard model, the generalized gamma model performs admirably stock by stock.

The First Passage Time Model Revisited

For comparison, Figure 5 contains the estimated survival functions of the theoretical first-
passage model (see Section 3.1) for the first four of the 16 individual stocks listed in Table
1—ABT, AXP, BUD, and (.12 These functions are evaluated at two randomly selected limit
orders for each of the four stocks, yielding the eight panels in Figure 5.comparison, the
estimated survival function of the generalized gamma model (evaluated for the same two
randomly selected limit orders) for the time-to-first-fill of limit-buy orders is also plotted.

Figure 5 shows that when the limit-buy price is close to or at the market price, the

11Note that the generalized gamma models are estimated with the pooled data, not with individual stock
data. The Q-Q plots are constructed stock by stock by calculating generalized residuals for each stock using
the pooled model and stock-specific limit-order data.

12The results for the other 12 stocks are similar hence we omit them to conserve space. In contrast to the
generalized gamma model which was estimated on the entire pooled sample, the FPT survival function was
estimated individually based on each of the four stocks’ estimated drift and diffusion coefficients.
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theoretical model underpredicts the time-to-execution. The FPT model predicts that such an
order is executed almost immediately and this manifests itself in Figure 5 as a horizontal line
along the horizontal axis. In practice, such an order is typically not executed immediately.
For example, transactions occurring at the market price may have been trades on the other
side of the market, i.e., sells.

Moreover, because the generalized gamma model incorporates market information into
its model of survival probabilities, it yields more realistic execution times than the FPT
model. Interestingly, the two methods have similar predictions when the limit-buy price is
one tick below the market. But the predictions from the two models diverge again as the
limit price moves away from the market price. The assumption of a geometric Brownian
motion tends to imply smaller price changes over short intervals than are observed in the

data.

Assessing Statistical Significance

Although the Q-Q plots in Figures 3 and 4a-d suggest that the generalized gamma model
fits best, graphical diagnostics are, of course, meant to be indicative, not conclusive. To
gauge the performance of the generalized gamma model quantitatively, we follow the same
procedure outlined in Section 3.1 in constructing decile statistics. In particular, we tabulate
the frequency counts of the estimated CDF (evaluated at each of the failure times in our
sample) for each of the deciles of the uniform distribution on [0, 1], i.e., [0,.1),..., [9,1]. If
the specification is correct, these frequency counts should be close to their theoretical value
of 10%.

We report decile statistics for the 16 individual stocks in Tables 10a—d for the limit-buy
time-to-first-fill model (Table 10a), the limit-buy time-to-completion model (Table 10b), the
limit-sell time-to-first-fill model (Table 10c), and the limit-sell time-to-completion model (Ta-
ble 10d). Despite the large sample sizes, there are few decile statistics significantly different
from 10% (asymptotic z-statistics are reported in parentheses). For example, in Table 10a
the decile statistics range from 9.1% (decile 10) to 12.0% (decile 2) for ABT and although
the decile 2 statistic is statistically significant (with a z-statistic of 2.6), the difference be-

tween 10% and 12% is not very meaningful from an economic standpoint. Moreover, when
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compared to the decile statistics of Table 4 for the FPT model, the statistics in Table 10

show that the generalized gamma model fits very well indeed.

Summary

In summary, using the pooled limit-order data for the 100 largest stocks in the S&P 500
universe, we find that the generalized gamma model is a much better specification for limit-
order execution times than the Cox proportional hazard model. The estimated coefficients
3 are quite similar across the two models, indicating that these coefficients are stable and
robust, and not easily influenced by model specification. Nevertheless, the Q-Q plots in
Figures 3 and 4 show that the generalized gamma model does provide a better fit, particularly

in the right tail of the distribution.

5.4 Implications of the Generalized Gamma Model

Since the empirical analysis of Section 5.2 points to the generalized gamma model as the
best specification for limit-order execution times, we focus exclusively on this specification
in presenting some of the empirical properties of the parameter estimates.

To see if there is much variation in the estimated survival function from one limit order to
another and as the X’s change, we plot in Figure 6 the estimated survival function S (t) of the
limit-buy/time-to-completion model for three randomly selected limit-buy orders for each of
four stocks: ABT, AXP, BUD, and C. Each plot also contains the survival function evaluated
at the average X (averaged across the X’s for the three randomly chosen limit orders). From
these plots, it is apparent that the estimated survival functions vary considerably from one
observation to the next, implying that the conditional distribution of execution times are
quite sensitive to conditioning information represented by the explanatory variables.

Figures 7 and 8 illustrate the sensitivity of the estimated survival function to the limit
price and limit shares, respectively, and Table 11 documents the sensitivity of the forecast
median execution time to the limit price. In Figure 7, the estimated survival function is
plotted for a single randomly selected limit order for each stock, and the limit price is varied
from —2 ticks to +2 ticks, holding all other explanatory variables fixed. Figure 7 shows
that, as expected, the higher limit-buy price the higher the probability of execution over any
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given time interval. Moreover, the plots show that the survival time is quite sensitive to the
limit price, with survival-time probabilities doubling or tripling with just a one- or two-tick
change in the limit price. For example, the probability of an ABT limit-buy order surviving
20 minutes drops from about 95% to just over 20% when the limit price changes from one
tick below to one tick above the original limit price. This limit-price sensitivity is common
to most of the limit orders we have examined.

Table 11 contains related results, reporting the sensitivity of the forecast median exe-
cution time to the limit price. This table is based on an actual limit order for each stock.
The median time is reported for the actual limit order price and for prices within two ticks
in each direction. There can be substantial price sensitivity. For example, the median time
for a limit-buy order for ABT submitted at the offer price of 31 4-3/8 is 0.128 minutes. In-
contrast, if the buy order is submitted with a limit price of 30 + 1/8 the median time 1s
100.557 minutes, dramatically longer. Similar sensitivities exist across the other orders.

A similar experiment is conducted with limit shares in Figure 8: the estimated survival
function is plotted for a single randomly selected limit order for each stock, and the limit
shares is varied from its original value to 10 times the original value, holding all other
explanatory variables fixed. In contrast to the limit-price graphs of Figure 7, Figure 8 shows
that the estimated survival functions are much less sensitive to the limit-shares variable.

This somewhat surprising finding is even more striking in view of the fact that Figure 8
is based on the time-to-completion model—common intuition suggests (and the empirical
evidence confirms) that the time-to-first-fill model is even less sensitive to the magnitude of
limit shares. This may have important practical implications, for it implies that the size of a
limit order has relatively little impact on its time-to-completion (holding other explanatory
variables constant). Therefore, adjusting the size of a limit order is a relatively inefficient
means for controlling execution times.

Alternatively, the insensitivity of execution times to limit size may be a symptom of a
selection bias in our sample: traders may avoid submitting very large limit orders that they
judge to be difficult to complete in a timely manner, choosing instead to break up large
blocks into smaller orders to be submitted sequentially. Since we are conditioning on limit
shares as a regressor, we have no simple way of accounting for this type of censoring in our

dataset. We hope to obtain more refined data in the near future to be able to distinguish
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this possible explanation from others.

6 Conclusion

The behavior of limit-order execution times is critical to the price-discovery process of most
market microstructure models, and we have shown that it can be quantified to a large extent
by econometric models based on survival analysis and estimated with actual limit-order
data. Survival analysis is designed to model lifetime data and incorporates many of the
subtleties that characterize such data, e.g., skewness and censoring. In particular, we find
that the generalized gamma model with an accelerated failure time specification fits the data
remarkably well, and that execution times are quite sensitive to some explanatory variables,
e.g., limit price, but not to others, e.g., limit shares. Despite the fact that we pool the limit
orders of 100 stocks to estimate an aggregate model of execution times, our diagnostics show
that such aggregate models fit reasonably well stock by stock.

We also explore the properties of hypothetical limit-order executions, constructed the-
oretically from the first-passage times of geometric Brownian motion and empirically from
transactions data. Although such models have a certain elegance due to their parsimony,
they perform very poorly when confronted with actual limit-order data.

Our findings support the practical feasibility of sophisticated dynamic order-submlssmn
strategies, strategies that trade off the price impact of market orders against the opportunity

costs inherent in limit orders. We hope to explore such strategies in future research.
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Table 1

Summary statistics for limit-order data from August 1994 to August 1995 for a pooled sample
of 100 stocks (POOL), and for 16 individual stocks.

Number of % Buy % Sell % Short % Partially % Completed % Completed

Stock Observations  Orders  Orders Sales Filled One Fill Multiple Fills
POOL 375,998 52.42 14.75 32.83 53.85 30.51 37.47
ABT 4,208 52.23 17.21 30.56 55.44 34.74 41.24
AXP 3,600 49.44 16.31 34.25 51.08 31.81 37.98
BUD 2,640 50.98 16.93 32.08 49.97 31.62 38.32
C 5,606 48.59 12.67 38.74 46.83 23.01 29.32
CL 4,544 51.74 8.19 40.07 43.74 29.38 34.67
DWD 1,160 56.98 32.16 10.86 73.60 35.20 45.84
GE 11,298 50.24 10.28 39.48 48.25 22.44 27.98
GM 6,284 51.00 13.88 35.12 55.70 27.15 34.04
IBM 8,331 55.80 10.89 33.31 52.00 28.29 35.78
JPM 5,485 43.92 20.42 35.66 62.26 35.59 44.15
MOB 6,524 54.52 10.06 35.42 48.94 34.18 39.09
PAC 1,457 56.62 33.70 9.68 70.06 38.60 47.80
PG 6,619 52.97 9.13 37.91 47.74 26.76 33.09
SLE 2,207 60.13 17.90 21.98 58.30 28.16 34.79
VO 1,618 49.94 11.25 38.81 48.69 30.20 36.46

XRX 8,646 54.73 319 42.08 33.83 23.92 27.66




Table 2

Percentage breakdown of the total number of completed orders by the number of fills required
for completion, for a pooled sample of 100 stocks (POOL) and for 16 individual stocks. The
sample period of the data is August 1994 to August 1995.

Number of Fills to Completion
Stock

1 2 3 4 5 6 >7

POOL 8142 10.79 364 166 092 051 1.05

ABT 84.23 896 3.15 166 066 033 1.00
AXP 83.76 8.68 334 189 100 0.89 0.44
BUD 82.53 11.79 3.20 1.02 058 0.58 0.29

C 7845 1092 427 238 139 089 1.69
CL 84.75 1028 2.75 138 021 021 0.42
DWD 76.79 13.08 506 190 063 105 148
GE 80.19 951 366 1.78 1.05 120 261

GM 79.76 1037 3.53 151 1.51 094 238
IBM 79.07 11.72 448 221 1.11 040 1.01
JPM 80.62 11.17 3.98 212 083 0.64 0.64
MOB 87.43 814 249 103 036 024 0.30
PAC 80.76 1033 3.18 238 175 095 0.64

PG 80.88 10.00 3.38 250 1.18 0.81 1.25
SLE 80.97 851 3.67 100 200 050 3.34
VO 82.83 1080 3.60 1.66 055 0.28 0.28

XRX 86.50 10.25 2.02 0.79 0.14 014 0.14




Table 3a

Summary statistics for limit-order execution times for a pooled sample of 100 stocks (POOL)
and for 16 individual stocks, for the sample period from August 1994 to August 1995.
Columns labeled ‘First Fill’ report statistics for the time-to-first-fill (in minutes) for limit
orders with at least one fill. Columns labeled ‘Completions’ report statistics for the time-to-
completion (in minutes) for completed limit orders.

First Fills Completions

Stock Buv Orders Sell Orders Buy Orders Sell Orders

Mean S.D. Mean S.D. Mean S.D. Mean S.D.

POOL 27.92 5491 11.30 26.84 29.07 55.59  12.29 28.10

ABT 25.39  55.84 866 16.11 2579 56.18 998 21.00
AXP 29.61 61.58 1547 37.20 31.42 62.09 16.57 3858
BUD 08.48 49.02 1121  23.39 29.38 49.20 1276  24.78

C 27.99 5401 13.66 33.76 99.52 55.06 14.50  35.88
CL 31.84 56.42 925 17.81 32.8¢  56.97 10.81  21.17
DWD 9.71 1629 1379 27.24 11.27 1878 15.71  30.64
GE 39.41  65.75 9.47 20.87 40.31  65.72 10.93  22.80
GM 32.98 56.17 12.01  27.56 3458 57.29 12.69 2826

IBM 23.41  50.43 6.205 17.00 24.27 51.07 6.51 17.35
JPM 27.11  54.86 751 18.56 2852  55.67 899 2239
MOB 3450 64.32 795 17.23 34.79  63.97 792 17.90
PAC 12.95 30.62 11.69 24.65 14.33 31.28 1222 25.58

PG 36.42 59.94 10.10 28.51 37.64 60.00 10.33 24.74
SLE 21.14 37.32 16.83 34.51 9328 38.39 2042 42.34
VO 40.88 7397 1428 3221 42.84 75.00 16.85 36.24

XRX 51.90 67.23 6.43 1394 53.10 67.37 7.23 1572




Table 3b

Summary statistics for limit-order time-to-censoring for a pooled sample of 100 stocks
(POOL) and for 16 individual stocks, for the sample period from August 1994 to August
1995. Columns labeled ‘No Fills’ report statistics for the time-to-censoring (in minutes)
for limit orders without any fills. Columns labeled ‘Partial Fills’ report statistics for the
time-to-censoring (in minutes) for limit orders partially but not completely filled.

No Fills Partial Fills

Stock Buy Orders Sell Orders Buy Orders Sell Orders

Mean S.D. Mean S.D. Mean S.D. Mean S.D.

POOL 4692 7231 3415 53.94 41.14 5565 49.16 65.71

ABT 4450 71.33 35.43 48.06 63.57 7554 17.92 24.93
AXP 32.34 5271 4792 66.82 2819 2225 36.63 37.00
BUD 62.04 8326 39.93 6361 57.65 86.04 29.38  26.21

C 60.29 80.34 41.13 60.46 3327 60.83 2433 21.23
CL 4557 7020 2145 3843 1931 1343 54.10 60.58
DWD 30.78 38.71 40.07 59.78 3385 24.82 72.06 63.79
GE 31.55 6227 22.13  36.27 39.46 54.88 49.64 79.32

GM 63.99 88.62 3993 59.49 4936 63.33 99.54 65.14
IBM 4888 77.51 16.82 27.72 3267 50.93 6.23 9.56
JPM 36.40 62.89 2961 47.86 31.74 44.38 51.01  53.56
MOB 52.80 77.26 23.10 37.11 80.55 103.36 3855  39.72
PAC 36.13 46.44 49.70 65.21 23.82 20.55 64.18 73.19

PG 71.41 9391 37.76 65.70 4252 7044 48.90 100.54
SLE 41.92 70.81 36.66 50.77 47.55 38.69 43.04 10.43
VO 48.45 65.97 45.00 57.74 2933 22.09 65.14 77.39

XRX 51.48 78.14 3231 5571 4382 7124 3595 40.12




Table 4

Goodness-of-fit diagnostics for the first-passage-time (FPT) model for a sample of 16 indi-
vidual stocks, for the sample period from August 1994 to August 1995. For each stock, the
percentage of execution times that fall within each of the 10 theoretical deciles of the FPT
model are tabulated. If the FPT model is correct, the expected percentage falling in each
decile is 10%. Test statistics that are asymptotically standard normal under the FPT model
are given in parentheses.

Decile:
Stock
1 2 3 4 5 6 7 8 9 10
ABT 10.0 5.6 5.9 6.5 6.2 6.5 6.1 6.1 5.7 41.0
(0.1) (-8.2) (-7.3) (-6.1) (-6.7) (—-6.1) (—6.9) (—6.9) (-7.9) (26.9)
AXP 11.1 6.0 7.0 6.0 6.2 6.0 6.0 5.8 5.6 40.3
(1.3) (—6.6) (—4.7) (—6.6) (—6.1) (—86.5) (—6.6) (—=7.0) (~7.4) (24.0)
BUD 10.6 7.7 6.0 6.3 5.6 6.4 6.5 5.2 5.4 394
(0.7) (—2.8) (—5.4) (—4.9) (—6.1) (—4.8) (—4.6) (—6.9) (—6.5) (19.2)
C 5.6 4.6 4.7 5.3 5.4 7.0 8.3 8.7 7.5 42.9
(—6.9) (-9.2) (-9.1) (—7.6) (=7.3) (—4.3) (-2.3) (-1.8) (—3.4) (24.0)
CL 5.0 5.2 5.7 7.1 74 8.5 9.1 9.3 9.4 33.3
(—10.2) (—-9.6) (—8.2) (—5.0) (—4.5) (-2.3) (-1.4) (-1.1) (-0.9) (21.9)
DWD 5.9 1.8 3.0 3.3 4.1 4.8 3.5 3.3 2.9 66.9
(-3.8) (—-13.0) (-8.9) (-8.1) (—6.4) (—5.2) (—=7.5) (-8.0) (—9.0) (25.9)
GE 12.1 7.9 8.4 7.7 8.0 8.2 7.2 7.1 7.0 26.4
(4.0) (—4.7) (—3.6) (—5.3) (—4.6) (—4.0) (-6.7) (-7.0) (-7.4) (23.1)
GM 11.2 6.5 6.1 6.5 5.7 6.6 6.9 6.5 6.0 38.2
(1.6) (-6.1) (-7.0) (-6.2) (-8.1) (—6.0) (—5.2) (—6.0) (-7.2) (24.8)
IBM 8.6 5.8 5.9 6.5 6.8 6.9 6.8 6.2 6.4 40.2
(-2.6) (—9.6) (-9.3) (—7.5) (—6.8) (—-6.4) (—6.7) (-8.3) (-=7.9) (32.5)
JPM 9.0 6.0 6.6 6.3 5.4 5.4 5.6 5.5 5.1 45.1
(-1.5) (—-7.3) (-5.9) (—6.6) (—8.8) (—8.8) (—8.2) (-8.4) (—9.6) (30.4)
MOB 10.3 6.7 7.1 6.3 6.9 6.3 7.1 7.2 7.3 34.8
(0.6) (—6.6) (—5.7) (—7.5) (-6.2) (=7.5) (—5.6) (-5.3) (-5.2) (25.9)
PAC 7.0 2.3 2.2 2.1 3.2 3.2 2.6 2.9 2.5 71.9
(~2.9) (-12.7) (—12.8) (-13.4) (—9.3) (-9.3) (-11.5) (-10.3) (-11.9) (33.5)
PG 0.0 0.0 0.3 0.5 1.1 1.6 2.4 4.6 13.8 74.6
(—) (—) (—82.1) (-66.6) (—42.2) (-333) (-25. 0) (-12.8) (5.4) (73.4)
SLE 7.6 6.4 5.5 5.4 5.6 5.5 4.9 4.7 5.0 49.1
(—-2.9) (—4.7) (—6.4) (—6.6) (-6.1) (—6.3) (-7.6) (-8.0) (—7.4) (25.0)
VO 9.2 7.7 6.0 8.5 5.4 6.7 6.7 6.0 6.3 36.9
(-0.8) (-2.2) (—4.4) (-1.4) (-5.3) (-3.5) (-3.4) (—4.4) (—4.0) (14.6)
XRX 7.2 6.1 6.7 7.6 9.1 9.3 10.3 10.3 11.1 22.3

(-5.7) (=8.7) (=7.0) (—~4.8) (-1.6) (-1.2) (0.6) (0.4) (1.8)  (15.6)




Table 5

Comparison of hypothetical time-to-first-fill (lower and upper bounds, in minutes) for limit
orders simulated using TAQ data with actual time-to-first-fill for limit orders for 16 stocks,
for the sample period from August 1994 to August 1995. The ‘Actual Minus TAQ’ column
reports the difference between the actual time-to-first-fill and the TAQ lower bound. The
z-statistics are asymptotically standard normal under the null hypothesis that the expected
difference is zero.

TAQ Hypothetical

Stock Lower Bound Upper Bound Actual Actual Minus TAQ
Mean S.D. Mean S.D. Mean S.D. Mean S.D. z

ABT 15.58 50.61 60.12 83.37 25.39 55.84 9.81 22.88 12.18
AXP 18.21 57.34 66.12 89.05 29.61 61.58 11.41 23.42 13.21
BUD 18.04 41.34 67.69 85.99 28.48 49.02 10.44 23.68 9.34
C 18.44 48.59 56.48 82.54 27.99 54.01 9.55 24.90 9.94
CL 25.88 51.51 66.71 77.51 31.84 56.42 5.96 19.31 8.44
DWD 5.05 10.49 44.33 61.65 9.71 16.29 4.66 12.35 6.52
GE 24.27 57.46 65.08 82.44 39.41 65.75 15.14 31.93 18.18
GM 19.97 49.47 55.56 74.76 32.98 56.17 13.02 26.95 14.95
IBM 16.80 44.57 43.26 72.17 23.41 50.48 6.61 20.37 12.52
JPM 20.27 49.31 55.41 77.27 27.11 54.86 6.84 22.35 9.67
MOB 28.49 61.53 61.38 83.18 34.50 64.32 6.01 21.94 9.40
PAC 1.82 4.82 57.09 81.41 12.25 30.62 10.43 28.64 7.83
PG 27.65 55.10 66.32 81.25 36.42 59.94 8.77 24.80 11.35
SLE 6.21 24.02 67.25 86.86 21.14 37.32 14.94 27.22 12.25
VO 32.64 70.98 89.32 100.99 40.88 73.97 8.24 23.29 5.93

XRX 44.47 66.47 70.81 80.69 51.90 67.23 7.43 13.46 8.84




Table 6a

Summary statistics for the explanatory variables of the limit-buy model (see the text for
definitions) for a pooled sample of 100 stocks (POOL) and for 8 individual stocks, for the
sample period from August 1994 to August 1995.

Variable ~ POOL  ABT AXP BUD C CL DWD GE GM
MQLP

Mean 0.245 0.239 0.253 0.260 0.239 0.334 0.050 0.398 0.231

S.D. 0.297 0.284 0.291 0.306 0.202 0.318 0.081 0.363 0.265
BSID

Mean ~ —0.008  —0.002 0.000  —0.007  ~0.009  —0.006 0011  —0.011  —0.011

S.D. 0.095 0.072 0.080 0.072 0.089 0.088 0.072 0.078 0.096
MKD1

Mean 2.143 2.713 2.226 2.094 2.599 1.951 0.405 3.974 2.678

S.D. 2.646 2.704 2.727 2.607 2.511 2.419 0.986 3.439 2.395
MKD1X

Mean 0.891 1.049 0.869 0.865 0.945 0.984 0.036 2.275 0.878

S.D. 1.833 1.816 1.751 1.855 1.683 1.663 0.117 3.139 1.423
MKD?2

Mean 1.752 2.183 1.817 1.605 2.383 1.208 0.789 2.242 2.278

S.D. 1.596 1.516 1.681 1.520 1.533 1.264 0.979 1.578 1.484
SZSD

Mean 2.253 2.426 2.489 1.880 2.186 2.005 2.292 2.475 2.680

S.D. 1.488 1.443 1.399 1.185 1.373 1.343 1.254 1.621 1.728
STKV

Mean 0.516 0.506 0.514 0.515 0.532 0.514 0.493 0.507 0.525

S.D. 0.123 0.101 0.109 0.135 0.119 0.122 0.135 0.080 0.114
TURN

Mean 4.288 4.521 4.478 3.522 5.270 3.659 3.466 5.415 5.470

S.D. 0.868 0.463 0.469 0.398 0.605 0.420 0.425 0.312 0.739
LSO

Mean 12791  13.603  13.116 12472  12.786  11.893 12043 14352  13.526

S.D. 0.806 0.008 0.008 0.013 0.016 0.006 0.005 0.003 0.005
LPR

Mean 3.941 3.515 3.447 3.995 3.844 4.106 3.793 3.936 3.821

S.D. 0.376 0.128 0.123 0.058 0.050 0.112 0.115 0.066 0.085
LVO

Mean 13.544 13.951 14.185 12.893 14.623 13.036 12.921 14.570 14.765
S.D. 0.784 0.175 0.237 0.211 0.287 0.235 0.246 0.221 0.305




Table 6b

Summary statistics for the explanatory variables of the limit-sell model (see the text for
definitions) for a pooled sample of 100 stocks (POOL) and for 8 individual stocks, for the
sample period from August 1994 to August 1995.

Variable ~ POOL  ABT AXP BUD C CL DWD GE GM
MQLP

Mean  —0.040 —0.032  —0051  —0038 —0052 —0.038  —0.053 —0.043  —0.051

S.D. 0.087 0.070 0.073 0.072 0.103 0.086 0.086 0.069 0.087
BSID

Mean  —0.003 0.000  —0.006 0004  —0.004 —0.013 —0.004 —0.011 0.003

S.D. 0.077 0.068 0.070 0.065 0.073 0.077 0.072 0.070 0.069
MKD1

Mean 1.327 1.720 1.779 1.107 1.939 0.629 0.433 2.157 1.931

S.D. 2.003 2.172 2.239 1.821 2.135 1.318 0.949 2.431 2.169
MKDIX

Mean  —0105 —0.118  —0.145  —0.091  —0.178  —0041  —0.042  —0.120  —0.186

S.D. 0.253 0.242 0.273 0.205 0.323 0.125 0.111 0.260 0.366
MKD?2

Mean 2.031 2.700 2.231 1.867 2.779 1.463 0.879 2.718 2.758

S.D. 1.782 1.712 1.858 1.719 1.594 1.464 1.127 1.935 1.546
SZSD

Mean 2.333 2.328 2.519 2.380 2.753 2.259 2.639 2.318 2.713

S.D. 1.475 1.452 1.435 1.433 1.652 1.493 1.482 1.723 1.698
STKV

Mean 0.498 0.496 0.501 0.491 0.508 0.496 0.508 0.504 0.514

S.D. 0.119 0.098 0.120 0.125 0.116 0.126 0.131 0.070 0.116
TURN

Mean 4.197 4.500 4.469 3.462 5.362 3.606 3.633 5.442 5.156

S.D. 0.869 0.409 0.493 0.383 0.616 0.342 0.517 0.318 0.626
LSO

Mean  12.750  13.599  13.122 12464  12.786  11.887  12.044  14.350  13.529

S.D. 0.782 0.007 0.011 0.009 0.015 0.005 0.005 0.004 0.004
LPR

Mean 3.935 3.577 3.507 4.012 3.813 4.190 3.775 4.006 3.787

S.D. 0.396 0.114 0.079 0.066 0.060 0.091 0.124 0.064 0.085
LVO

Mean 13.533 14.017 14.253 12.930 14.856 13.040 12.974 14.545 14.755
S.D. 0.795 0.190 0.239 0.275 0.365 0.327 0.275 0.183 0.284
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Table 8

Parameter estimates of the accelerated-failure-time specification of limit-order executions
under the generalized gamma distribution for limit orders of a pooled sample of 100 stocks
from August 1994 to August 1995. The variable INTCP’ denotes the intercept and the
definitions of the remaining explanatory variables are given in the text. z-statistics are
asymptotically standard normal under the null hypothesis that the corresponding coefficient
is 0.

Buy-Limit-Order Model Sell-Limit-Order-Model
Variable
Estimate S.E. z . Estimate S.E. z
Time-to-First-Fill
INTCP 6.507  0.207 31.365 4.979 0.308 16.181
MQLP 8.989  0.046 197.180 —-13.674 0.161 —85.034
BSID —5.613 0.076 —74.168 6.852 0.154 44.543
MKD1 0.641  0.005 127.608 0.476 0.008 59.106
MKD1X -0.920 0.012 —79.882 0.903 0.058 15.464
MKD2 —0.3563 0.006 —66.409 -0.171 0.008 -22.617
SZSD -0.015 0.005 -3.250 0.091 0.007 13.308
STKV -0.414  0.052 -7.984 —0.563 0.080 —7.048
TURN —0.252 0.012 -21.217 -0.331 0.018 —18.757
LSO 0.278 0.014 19.969 0.187 0.021 8.939
LPR -0.529 0.019 —-28.101 -0.272 0.028 —9.872
LVO —-0.082 0.015 —5.563 —0.000 0.021 -0.022
SCALE 1.927 0.006 344.736 1.804 0.008 224.781
SHAPE -0.404 0.012 -33.781 —0.526 0.018 —29.574
Time-to-Completion

INTCP 6.468  0.212 30.560 5.052 0.317 15.959
MQLP 8.744  0.046 189.979 —-13.307 0.163 —81.713
BSID -5.517 0.077 —71.582 6.766 0.158 42.892
MKD1 0.620  0.005 121.052 0.457 0.008 55.189
MKDI1X —0.895 0.012 -76.409 0.943 0.060 15.708
MKD2 -0.334 0.006 —61.798 —0.148 0.008 —-19.122
SZSD 0.069  0.005 14.581 0.186  0.007 25.974
STKV —0.394 0.053 —7.451 —0.568 0.082 —-6.911
TURN —0.259  0.012 —21.409 -0.327 0.018 -—18.045
LSO 0.281 0.014 19.787 0.181 0.022 8.427
LPR —-0.498 0.019 —25.950 —0.229 0.028 —8.069
LVO -0.092 0.015 -6.139 —-0.021 0.022 —-0.940
SCALE 1.960  0.006 338.053 1.854 0.008 221.060

SHAPE —0.410 0.012 -32.965 —-0.566 0.018 —30.901




Table 9

Parameter estimates of the Cox proportional-hazard model of limit-order executions for limit
orders of a pooled sample of 100 stocks from August 1994 to August 1995. The definitions
of the explanatory variables arc given in the text. z-statistics are asymptotically standard
normal under the null hypothesis that the corresponding coefficient is 0.

Buy-Limit-Order Model Sell-Limit-Order-Model
Variable
Estimate S.E. z Estimate S.E. z
Time-to-First-Fill
MQLP 5.312 0.032 164.153 —5.349 0.0568 —92.184
BSID —2.980 0.041 —72.266 2.213 0.078 28.434
MKD1 0.324 0.003 95.811 0.283 0.005 51.872
MKD1X —-0.451 0.009 —50.591 0.082 0.045 1.824
MKD?2 —0.216 0.003 —-64.034 -0.172 0.005 —36.805
SZSD 0.017  0.003 5.712 0.083 0.004 18.966
STKV 0.104 0.032 3.253 —-0.009 0.050 —-0.185
TURN —-0.024  0.007 -3.316 -0.117 0.011 -10.916
LSO 0.119 0.009 13.418 0.078 0.013 5.851
LPR —0.355 0.012 —29.942 —-0.168 0.018 —9.410
LVO -0.143 0.009 -—-15.806 -0.019 0.014 —1.380
Time-to-Completion

MQLP 5.178 0.033 155.638 —-5.208 0.063 —82.936
BSID -2.925 0.042 —-69.522 2.146  0.079 27.101
MKD1 0.304 0.003 89.433 0.259 0.006 46.956
MKD1X —0.426 0.009 —46.763 0.085 0.046 1.875
MKD2 -0.198 0.003 -—58.344 -0.149 0.005 —31.536
SZSD 0.078  0.003 25.847 0.150 0.004 33.331
STKV 0.117  0.032 3.611 —0.048 0.051 —0.942
TURN —-0.037  0.007 —5.087 -0.106 0.011 —-9.720
LSO 0.128 0.009 14.253 0.056 0.014 4.127
LPR —-0.334 0.012 -27.776 —0.146 0.018 —8.088

LVO —0.155 0.009 -—16.782 —0.033 0.014 —2.343




Table 10a

Goodness-of-fit diagnostics for the accelerated-failure-time specification of the limit-buy
time-to-first-fill model under the generalized gamma distribution for a sample of 16 indi-
vidual stocks, for the sample period from August 1994 to August 1995. For each stock,
the percentage of execution times that fall within each of the 10 theoretical deciles of the
accelerated-failur-time specification are tabulated. If this specification is correct, the ex-
pected percentage falling in each decile is 10%. Test statistics which are asymptotically
standard normal under this specification are given in parentheses.

Decile:
Stock
1 2 3 4 5 6 7 8 9 10
ABT 11.5 12.0 10.4 10.0 10.0 9.2 8.9 9.5 9.6 9.1
(2.0) (2.6) (0.5) (-0.0) (0.0) (-1.2) (-1.7) (—~0.7) (-0.7) (-1.3)
AXP 8.0 10.0 10.2 8.5 10.0 10.8 9.5 11.5 11.1 10.6
(-2.9) (0.1) (0.2) (-2.2) (-0.1) (1.0) (-0.7) (1.8) (1.3) (0.8)
BUD 8.9 9.4 9.9 10.0 10.2 9.3 10.8 10.3 10.4 10.9
(—-1.3) (-0.8) (-0.2) (-0.0) (0.2) (—0.8) (0.8) (0.3) (0.4) (0.9)
C 7.1 9.1 11.8 9.1 11.4 10.8 10.2 11.1 9.5 10.0
(—4.1) (-1.2) (2.0) (-1.2) (1.6) (0.9) (0.3) (1.2) (—-0.6) (0.0)
CL 9.0 9.4 8.8 9.5 11.3 10.0 10.0 109 10.0 11.0
(—1.5) (-0.9) (-1.9) (-0.7) (1.9) (—0.0) (-0.0) (1.3) (0.0) (1.4)
DWD 11.0 9.9 9.8 11.6 9.2 9.5 9.3 9.1 10.2 10.4
(0.7) (-0.1) (=0.1) (1.1) (—0.6) (—0.4) (—0.5) (—=0.7) (0.2) (0.3)
GE 10.6 11.2 10.2 11.3 9.9 10.3 9.4 9.5 9.0 8.8
(1.1) (2.3) (0.4) (2.5) (—0.2) (0.6) (—-1.2) (-1.1) (-2. 2) (-2.7)
GM 9.2 9.7 10.5 10.3 11.2 10.2 10.4 9.1 10.3
(—1.3) (-0.4) (0.7) (0.4) (1.6) (0.3) (0.5) (-1.4) (—1.2) (0.5)
IBM 7.3 10.7 11.8 10.7 10.3 10.8 9.7 9.3 9.3 10.0
(—5.4) (1.2) (2.9) (1.2) (0.4) (1.4) (-0.8) (-1.2) (—1.2) (0.1)
JPM 9.0 11.2 10.9 11.5 11.2 9.9 10.1 9.0 8.7 8.5
(-1.5) (1.7) (1.3) (2.0) (1.6) (-0.1) (0.1) (-1.5) (=2.0) (-2.3)
MOB 11.1 11.9 10.2 9.6 9.2 8.9 9.2 9.8 10.0 10.0
(1.8) (2.9) (0.4) (-0.6) (-1.4) (-2.0) (-1.3) (-0.3) (0.0) (—0.0)
PAC 10.8 12.1 10.2 10.9 8.5 10.9 9.6 9.2 8.8 9.0
(0.7) (1.8) (0.2) (0.7 (-1.3) (0.7) (-0.4) (-0.7) (-1.1) (-0.9)
PG 11.1 9.0 9.6 10.1 9.9 9.5 10.3 9.6 10.2 10.8
(1.8) (-1.7) (—0.8) (0.1) (-0.2) (~0.9) (0.5) (—0.8) (0.4) (1.3)
SLE 8.9 9.7 10.4 11.0 10.1 10.7 9.4 10.6 9.9 9.3
(-1.2) (-0.3) (0.5) (1.0) (0.1) (0.7) (-0.6) (0.6) (-0.1) (—0.8)
VO 11.3 9.8 10.4 10.5 10.5 9.7 9.3 9.7 9.6 9.1
(1.1) (-0.2) (0.4) (0.4) (0.4) (-0.2) (—0.6) (-0.2) (-0.4) (—0.8)
XRX 9.4 9.4 8.9 10.1 9.4 10.3 9.9 10.3 10.8 11.6

(=1.0)  (~1.0)  (-2.1) (0.2)  (~1.1) (0.5)  (-0.3) (0.5) (1.3) (2.6)




Table 10b

Goodness-of-fit diagnostics for the accelerated-failure-time specification of the limit-buy
time-to-completion model under the generalized gamma distribution for a sample of 16 in-
dividual stocks, for the sample period from August 1994 to August 1995. For each stock,
the percentage of execution times that fall within each of the 10 theoretical deciles of the
accelerated-failur-time specification are tabulated. If this specification is correct, the ex-
pected percentage falling in each decile is 10%. Test statistics which are asymptotically
standard normal under this specification are given in parentheses.

Decile:
Stock
1 2 3 4 5 6 7 8 9 10
ABT 11.9 11.9 10.0 9.8 10.2 9.2 9.1 9.5 9.6 9.0
(2.5) (2.5) (0.0) (-0.3) (0.3) (-1.2) (—-1.4) (-0.8) (—0.6) (—1.5)
AXP 8.5 9.4 9.7 8.9 9.8 10.8 9.8 12.1 10.7 10.4
(-2.0) (—0.8) (—0.4) (—1.5) (-0.3) (1.0) (-0.3) (2.5) (0.9) (0.5)
BUD 9.5 8.7 9.2 10.5 10.2 9.2 11.3 10.2 10.4 10.8
(-0.6) (—1.5) (-0.9) (0.6) (0.2) (~0.8) (1.3) (0.2) (0.4) (0.9)
C 6.1 10.1 10.3 9.9 11.0 11.0 11.0 10.4 9.8 10.3
(—5.8) (0.1) (0.4) (-0.1) (1.2) (1.1) (1.2) (0.5) (-0.2) (0.4)
CL 9.2 9.3 8.5 10.0 11.3 9.9 10.7 10.2 10.1 10.8
(-1.2) (-1.1) (—2.4) (-0.1) (1.9) (-0.2) (1.0) (0.3) (0.2) (1.2)
DWD 10.1 10.1 9.9 8.7 9.2 104 9.8 9.9 10.6 11.4
(0.1) (0.1) (-0.1) (—-1.0) (-0.6) (0.3) (—0.1) (—0.1) (0.4) (0.9)
GE 10.6 11.0 10.2 11.1 10.3 10.1 9.3 9.6 8.9 8.8
(1.2) (2.0) (0.4) (2.2) (0.7) (0.2) (—1.4) (-0.9) (-2.4) (—2.6)
GM 8.7 11.1 10.1 10.1 10.8 11.0 9.3 9.6 9.3 10.1
(—2.0) (1.5) (0.1) (0.2) (1.0) (1.4) (—1.0) (—0.6) (-1.0) (0.1)
IBM 7.5 10.8 11.7 10.4 10.6 10.6 9.9 9.4 9.3 10.0
(—5.1) (1.3) (2.7) (0.8) (1.0) (1.0) (—0.2) (-1.2) (—-1.2) (=0.1)
JPM 9.2 11.2 11.1 11.0 10.8 9.8 10.5 9.3 8.5 8.6
(-1.2) (1.6) (1.5) (1.3) (1.2) (-0.3) (0.7) (-1.1) (—2.3) (-2.1)
MOB 11.1 11.5 10.5 9.8 9.2 8.7 9.5 9.8 10.1 9.9
(1.8) (2.3) (0.8) (-0.3) (—-1.3) (-2.3) (-0.9) (—0.4) (0.1) (-0.2)
PAC 11.5 12.7 10.2 9.9 8.4 10.0 9.8 10.1 8.7 8.7
(1.2) (2.0) (0.1) (-0.1) (—1.4) (0.0) (—0.2) (0.1) (—-1.1) (-1.1)
PG 10.9 9.1 9.7 9.9 9.7 10.1 9.9 9.8 10.1 10.8
(1.5) (—1.6) (-0.5) (-0.2) (-0.5) (0.2) (-0.2) (—0.4) (0.2) (1.2)
SLE 9.1 9.2 10.6 10.8 10.1 10.9 9.3 10.8 10.0 9.3
(-1.0) (—0.9) (0.6) {0.8) (0.1) (0.9) (-0.7) (0.8) (-0.1) (-0.7)
vO 11.9 8.2 11.1 10.7 10.1 9.6 9.9 9.7 9.5 9.3
(1.6) (-1.7) (0.9) (0.6) (0.1) (—-0.4) (-0.1) (—0.3) (—0.4) (-0.6)
XRX 9.2 9.5 9.5 10.3 9.4 9.8 10.3 10.2 10.6 11.3

(-1.5)  (-08) (~1.0) (0.5)  (-1.2) (-0.3) (0.4) (0.4) (1.0) (2.1)




Table 10c

Goodness-of-fit diagnostics for the accelerated-failure-time specification of the limit-sell time-
to-first-fill model under the generalized gamma distribution for a sample of 16 individual
stocks, for the sample period from August 1994 to August 1995. For each stock, the percent-
age of execution times that fall within each of the 10 theoretical deciles of the accelerated-
failur-time specification are tabulated. If this specification is correct, the expected percentage
falling in each decile is 10%. Test statistics which are asymptotically standard normal under
this specification are given in parentheses.

Decile:
Stock
1 2 3 4 5 6 7 8 9 10
ABT 9.9 10.6 13.1 11.7 10.2 9.6 10.3 9.3 7.2 8.0
(-0.1) (0.4) (2.2) (1.2) (0.2) (-0.3) (0.2) (—0.6) (—-2.5) (-1.7)
AXP 7.8 9.8 9.2 9.3 11.0 10.2 8.8 11.8 9.9 12.3
(-1.8) (-0.2) (—0.6) (-0.5) (0.7) (0.1) (-0.9) (1.2) (-0.1) (1.5)
BUD 12.7 9.7 6.4 9.7 11.1 10.2 10.9 9.0 10.4 9.9
(1.5) (—-0.2) (—-2.7) (-0.2) (0.8) (0.1) (0.6) (—0.6) (0.2) (—0.1)
¢} 8.8 7.6 124 9.4 11.4 8.4 11.6 8.4 10.4 11.6
(—0.9) (-2.0) (1.6) (—0.4) (1.0) (-1.2) (1.1) (-1.3) (0.3) (1.1)
CL 7.2 9.6 10.7 8.8 11.8 9.3 8.9 13.9 11.8 5.7
(-1.8) (-0.2) (0.4) (-0.7) (0.9) (—0.4) (—0.6) (1.8) (0.9) (-3.0)
DWD 11.0 12.7 9.6 7.1 8.7 7.2 11.0 114 9.7 11.6
(0.5) (1.3) (-0.2) (-1.9) (-0.7) (-1.8) (0.5) (0.7) (-0.2) (0.8)
GE 9.0 10.0 10.1 10.7 10.7 11.7 9.8 10.0 9.6 8.4
(-0.8) (-0.0) (0.0) (0.6) (0.6) (1.3) (-0.1) (0.0) (~-0.3) (—1.5)
- GM 7.7 9.0 9.5 104 9.9 10.1 9.0 10.8 11.9 11.8
(—2.1) (-0.9) (-0.4) (0.4) (-0.1) (0.1) (—0.9) (0.6) (1.5) (1.4)
IBM 9.4 10.0 11.1 11.6 7.9 10.6 10.6 10.6 8.8 9.4
(—0.6) (0.0) (1.0) (1.4) (-2.1) (0.6) (0.5) (0.5) (-1.1) (—0.6)
JPM 8.4 9.0 8.5 12.9 9.7 10.4 8.9 10.2 11.1 10.8
(—1.6) (—1.0) (-1.5) (2.4) (-0.2) (0.4) (-1.0) (0.2) (1.0) (0.7)
MOB 12.0 12.2 10.6 9.6 9.9 9.5 10.6 7.4 9.5 8.7
(1.4) (1.5) (0.4) (-0.3) (-0.1) (—-0.4) (0.5) (—-2.2) (—0.4) (—1.1)
PAC 8.0 7.5 8.4 11.3 12.2 9.4 11.0 9.5 11.8 10.9
(-1.5) (-1.9) (—1.1) (0.8) (1.3) (-0.4) (0.6) (-0.3) (1.1) {0.6)
PG 12.0 13.5 12.3 10.2 11.1 7.6 10.7 8.0 7.5 7.0
(1.3) (2.2) (1.4) (0.1) 0.7) (-1.8) (0.5) (-1.6) (—2.0) (-2.4)
SLE 12.0 9.7 94 9.7 12.5 9.1 10.0 10.7 9.8 5.5
. (1.0) (—-0.2) (-0.3) (-0.2) (1.2) (-0.5) (-0.0) (0.3) (-0.1) (-3.1)
VO 9.5 11.2 13.1 6.8 13.4 7.2 11.2 10.8 7.3 9.6
(-0.2) (0.4) (1.1) (-1.5) (1.1) (-1.2) (0.4) (0.3) (—1.2) (-0.2)
XRX 12.0 121 9.2 6.9 11.7 12.3 7.3 10.5 7.4 10.5

(0.8) (0.9) (-04) (-1.6) (0.7) (1.0)  (-1.4) (02)  (-1.4) (0.2)




Table 10d

Goodness-of-fit diagnostics for the accelerated-failure-time specification of the limit-sell time-
to-completion model under the generalized gamma distribution for a sample of 16 individual
stocks, for the sample period from August 1994 to August 1995. For each stock, the percent-
age of execution times that fall within each of the 10 theoretical deciles of the accelerated-
failur-time specification are tabulated. If this specification is correct, the expected percentage
falling in each decile is 10%. Test statistics which are asymptotically standard normal under
this specification are given in parentheses.

Decile:
Stock
1 2 3 4 5 6 7 8 9 10
ABT 10.5 9.3 12.8 13.7 7.9 11.1 10.4 9.2 7.5 7.7
(04)  (-0.5) (1.9) (2.5)  (-1.8) (0.8) 0.3) (=0.7)  (-2.2) (-2.0)
AXP 7.3 9.6 8.0 10.1 10.1 11.8 9.9 10.9 10.2 12.1
(—-2.2) (-0.3) (—1.5) (0.1) (0.0) (1.2) (—0.0) (0.6) (0.2) (1.3)
BUD 12.7 8.2 6.8 9.5 12.4 11.7 8.7 10.7 9.7 9.6
(1.5) (—1.2) (-2.3) (-0.3) (1.3) (1.0) (-0.9) (0.4) (-0.2) (-0.2)
C 8.6 9.3 11.6 9.5 11.0 8.8 10.5 10.0 9.1 11.4
(-1.1) (-0.5) (1.1) (-0.3) (0.7) (-0.9) (0.4) (0.0) (-0.7) (0.9)
CL 7.6 9.2 7.6 8.9 11.0 11.2 10.2 13.0 11.9 5.9
(—1.5) (—0.4) (—1.5) (—0.6) (0.5) (0.6) (0.1) (1.5) (1.0) (—2.8)
DWD 9.9 13.1 8.4 6.8 9.7 9.2 10.5 11.5 9.8 11.0
(-0.1) (1.5) (-0.9) (-2.1) (-0.2) (-0.5) (0.3) (0.8) (-0.1) (0.5)
GE 8.1 9.7 10.3 11.4 10.9 11.8 9.7 10.8 8.9 8.4
(-1.7) (-0.2) (0.2) (1.1) (0.7) (1.4) (—0.3) (0.7) (-1.0) (—1.5)
GM 8.5 8.7 9.9 9.9 9.2 10.4 7.8 11.3 12.7 11.6
(-1.3) (-1.1) (-0.1) (-0.1) (-0.7) (0.3) (—-2.0) (1.0) (2.0) (1.2)
IBM 8.8 12.0 11.5 9.2 9.2 10.9 11.7 8.9 8.7 8.9
(-1.1) (1.7) (1.3) (—-0.7) (—0.8) (0.8) (1.5) (-1.0) (-1.2) (-1.0)
JPM 7.4 9.2 9.1 12.1 9.5 10.5 9.7 10.7 10.2 11.7
(—2.8) (—0.8) (-0.9) (1.8) (-0.5) (0.4) (-0.3) (0.6) (0.2) (1.5)
MOB 12.6 13.2 9.4 9.7 9.3 11.2 8.7 8.5 8.4 9.0
(1.8) (2.1) (-0.4) (—0.2) (—0.5) (0.9) (—1.0) (-1.2) (-1.3) (—0.8)
PAC 7.5 8.2 8.5 11.8 11.0 9.2 10.2 104 12.1 10.9
(-1.9) (-1.3) (-1.1) (1.1) (0.7) (-0.5) (0.1} (0.3) (1.3) (0.6)
PG 12.8 12.9 13.2 8.4 11.7 8.8 9.0 8.3 8.1 6.9
(1.7) (1.8) (2.0) (-1.2) (1.1) (-0.9) (-0.7) (-1.3) (-1.4) (—2.6)
SLE 11.6 11.3 9.9 9.3 11.0 9.6 10.2 10.5 9.1 5.4
(0.8) (0.6) (-0.1) (-0.4) (0.5) (-0.2) (0.1) (0.2) (-0.5) (-3.2)
VO 11.0 9.7 10.2 8.4 10.4 8.3 15.1 8.7 7.6 10.4
(0.4) (-0.1) (0.1) (-0.7) (0.2) (-0.7) (1.6) (-0.5) (-1.0) (0.1)
XRX 12.0 11.6 10.3 6.5 12.5 9.4 7.3 12.1 7.8 10.5

(0.8) (0.7) (0.1)  (-1.9) (1.0)  (=0.3) (-1.4) (0.9) (-1.1) (0.2)
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Estimated Survival Functions, Gamma vs FPT*
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Sensitivity to Market Condition, BCP
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Sensitivity to Limit Price, BCP
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