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The Surprising Symmetry of Gross Job Flows
Christopher L. Foote

1. Introduction

For some time now macroeconomic research has focused on gross job flows (job
creation and destruction) in hopes of learning why the net growth rate of employment
fluctuates so much. Early papers in this literature found that job destruction is more
volatile over time than job creation, suggesting that there is useful information in gross
flows that is unavailable in the net flow alone. Students of the business cycle have taken up
the challenge of explaining this asymmetry by modelling frictions in factor markets that
give rise to smooth creation and volatile destruction. This research program has begun to
effect the way many economists view the costs (and potential benefits) of recessions. For
example, in the most recent edition of their macroeconomics textbook, Robert Hall and
John Taylor note that the large amount of labor reallocation typical of downturns may be
the “silver lining to the storm clouds of recession.”?

Because early research in the gross—flow literature used US manufacturing data from
the 1370s and 1980s, its authors cautioned that their findings may not necessarily gener-
alize to other sectors, time periods, or countries. In fact, job destruction does not appear
especially volatile in other data. Foote (1997), using firm-level employment data from
Michigan’s unemployment insurance system, finds that job creation, not destruction, is
the more volatile gross flow in most non—manufacturing industries over the 11 years of
his sample. He suggests that positive trend growth rates in non-manufacturing sectors,
interacting with labor adjustment costs, may explain why creation is so volatile outside
of manufacturing. Unfortunately, a simple (S,s) model cannot explain the strength of the
positive relationship between trend employment growth and the relative volatility of job
creation observed in the Michigan data. Similarly, Boeri (1996) finds that job destruction
is not especially volatile in European data, and also suggests that the high variance of

destruction in US manufacturing may be related to the high mean of destruction in that
sector.

For this paper, John Jackson kindly supplied the Michigan UI data, and John Haltiwanger supplied
the Census Bureau gross flows via his anonymous ftp site. Russell Cooper, Lawrence Katz, David Laibson,
John Leahy, and N. Gregory Mankiw supplied helpful comments. Financial support through a Harvard
University faculty research grant is gratefully acknowledged.

! Hall and Taylor (1997}, p. 136. If one defines labor reallocation as the sum of job creation and job
destruction, then reallocation will covary negatively with the net employment growth rate if the variance
of job destruction is larger than the variance of job creation.



This paper takes a step back from the research on gross job flows to ask whether a
representative—-agent framework can help reconcile the behavior of manufacturing and non—
manufacturing data as well as clear up some other puzzles in the literature. We start by
thinking about gross flows in an economy with a single representative firm. We then ask the
data to tell us whether the intuition from such an economy is useful for understanding gross
flows in the real world. It turns out that the representative-firm case is not as irrelevant as
previously believed. This insight leads to a surprising result: Job creation and destruction
are not so asymmetric after all.

The paper proceeds as follows. Section 2 outlines the main ideas with some simple
graphs and Section 3 motivates a regression to explore these ideas. Section 4 presents some
empirical results using annual data, while Section 5 presents results that use quarterly
data. Section 6 evaluates alternative explanations for the empirical findings and links the
paper to an earlier criticism of the sectoral shifts literature made by Abraham and Katz
(1986). Finally, Section 7 concludes and offers directions for future research.

2. The Relationship Between the Net Flow and Gross Flows

The now-standard definitions of job creation and job destruction rates for industry
J at time period ¢, originally due to Davis and Haltiwanger (1990), are

1
POS;, = = > (Bije — Eije1)*
Je

1 -
NEG; = X Z (Bt — Eije—1)" 1,
g

where (E;j; — Eyj¢—1)% is firm 7’s positive change in employment (equal to zero if the firm
does not increase employment), |(E;;: — Ej;¢—1)~| is the absolute value of a firm'’s negative
change, and Xj; is the size of the sector, defined as the average employment in sector j

over periods £ — 1 and ¢. Suppressing the j and ¢ subscripts for clarity, note that the net
flow is simply the difference of the gross flows:

NET = POS — NEG.

For an industry with only one firm, there is an exact, deterministic relationship between the
two gross flows and the net flow, summarized in Figure 1. For positive net growth rates,
NEG is zero and POS = NET. For negative growth rates, POS is zero and NEG =
—NET. We will refer to this situation as the representative firm (RF) case.? Graphically,

2 Careful readers will note that the assumption of a single representative firm does not rule out the
possibility of simultaneous job creation and destruction at that firm or plant. Typically, however, data on
gross flows is built up from net employment changes at individual firms or plants.



if we plot POS and N EG on the vertical axis and N ET on the horizontal axis, as in Figure
1, the POS line will sit atop the horizontal axis for negative net growth rates, intersect the
origin, and rise with a slope of 1 for positive net growth rates. NEG is plotted analogously,
with a slope of -1 in the region of negative net growth rates. Note that at least one gross

flow must be zero at all times in the RF case. Both POS and NEG are zero in the special
case of NET = 0.

Once we relax the RF assumption, then we allow gross flows to be simultaneously
positive and lose the exact, deterministic relationship between the net flow and the two
gross flows. In fact, a graph of gross flows against the net flow has only two restrictions.
First, NEG and POS must not fall below zero, and second, the vertical distance between
the NEG and POS lines must be equal to the net growth rate. However, one restriction
that proves very helpful in understanding real-world data is to assume that NEG and
POS are negatively correlated. Unlike the finding on the relative variances of creation and
destruction, this finding is replicated easily in datasets generated by a variety of industries
and sample periods. One implication of a negative correlation between POS and NEG is
that POS will covary positively with NET, while NEG covaries negatively. This simple
fact has important implications for how to think about gross flows, because it means that
the RF case may be more useful than previously believed.

Consider an industry with simultaneously positive but negatively correlated gross
flows, as in Figure 2. Note that at NET = 0, gross flows are equal to one another. Even in
the non-RF case, the two gross flows must still intersect at the vertical axis, though not
necessarily at the origin. Note also that the restriction of negatively correlated gross flows
forces the intuition of the RF case to assert itself at strongly positive and strongly negative
net growth rates. For example, at strongly positive growth rates, POS is virtually equal
to NET while NEG is virtually zero, similar to the RF case.

What can prevent the tyranny of the RF case from determining the behavior of gross
job flows? Note that the distance AB in Figure 2 provides an upper bound for NEG at
positive net growth rates, just as it provides an upper bound for POS at negative net
growth rates. An unspoken assumption in all previous research on gross flows is that the
distance AB is large enough so that the RF case is not worth thinking about. In fact,
a separate stylized fact to emerge from early work on gross job flows (aside from the
assertion concerning the high volatility of destruction) goes back to the original paper by
Leonard (1987): Gross flows are large relative to net flows. In order to rule out the RF
case, however, gross flows must be large relative to extreme values of the net flow, not just
the average value of the net flow. Moreover, it is not the unconditiocnal expectation of the
gross low that must be large, it is the expected value of the gross flow conditional on a net
growth rate of zero. This conditional expectation, after all, is just the distance AB from
Figure 2. If this distance is small relative to extreme values of the net growth rate, then
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one of the gross flows will bump up against its zero constraint (providing, of course, that
the gross flows are negatively correlated). The RF case then becomes relevant.

Figure 3 portrays our graph with two important features. First, the distance AB is
large relative to extreme values of the net flow, and second, the net growth rate is solely
determined by the rate of job destruction. Note that we have drawn the distance AB to
be large enough so that the relationships between NET and POS and between NET
and NEG are linear. The POS relationship is linear because job creation does not vary
over the business cycle. The NEG relationship is linear because the distance AB is large
enough (and relevant movements in the net growth rate are small enough) so that NEG
never bumps up against the horizontal axis at positive growth rates. The fact that both
relationships are linear at the same time is no accident. If one relationship is linear, then
the other must be linear as well, because NET = POS — NEG. Note also that in this
graph, it makes perfect sense to use the relative variances of job creation and destruction
as an index of gross—flow asymmetry over the cycle. No matter what the distribution of
actual net growth rates, NEG will vary more than POS, and thus the cyclical importance
of NEG relative to POS will be revealed. Though drawn only once to my knowledge in
any previous paper, this “linear” graph summarizes the conventional wisdom on gross job
flows.?

Though a simple comparison of the variances of POS and NEG is appropriate for
the linear world of Figure 3, it is inappropriate for the nonlinear world of Figure 2. This is
because the sample variances of POS and NEG in Figure 2 will depend on the distribution
of net growth rates. For example, if most growth rates are negative, then POS will trace
out the flat part of its curve, and NEG will trace out the steep part of its curve. The
variance of POS will therefore be smaller than that of NEG, but this comparison will
tell us more about the density of net growth rates than about any asymmetry in the
cyclical behavior of gross job flows. In light of this problem, I develop a simple alternative
measure of asymmetry between job destruction and job creation that is more flexible than
the comparison of raw gross—flow variances. This measure will be based on regressions of
either POS or NEG on the net growth rate and (to pick up the non-linearity) the square
of the net growth rate. It turns out that these regressions will provide compelling evidence
that the non-linear model of Figure 2 describes the world better than the conventional,
linear model of Figure 3. These results, in turn, suggest that arguments for asymmetry
based on simple comparisons of the variances of creation and destruction are fundamentally

flawed, as is the use of simple creation and destruction variances to calibrate specific models
of the business cycle.

3 In one of his original paper on monetary rules, John Taylor (1994) uses a graph similar to Figure
3 (with GDP on the horizontal axis) to contend that absent any non-linearities in the POS or NEG
relationships, GDP volatility does not necessarily enhance reallocation and productivity growth.



3. A Regression Framework

To interpret regressions of POS and N EG on the net flow and its square, it is helpful
to sketch out a simple stochastic model of gross and net job flows. We will start with a
linear model to gain intuition, then modify the model to address non-linearities in the
spirit of Figure 2. The model is built around “fundamental” (but unobservable) values of
NET, POS, and N EG, which are denoted with stars. Conceptually, the stochastic process
begins with a draw of the fundamental net growth rate, N ET™, which has constant mean
7%
NET” =un+EeENET, (1)

where eypr- is a random variable. To bring about NET*, fundamental gross flows are
determined as follows:

POS* = a+ BposNET* Brpos € (0,1) (2)

NEG* =a+ fNgeNET” Bnec = Bros —1 € (—1,0) (3)

Because 8pps — Onvec = 1, it must be the case that POS* — NEG* = NET*. The
parameter « is the empirical counterpart of the distance AB in Figures 2 and 3, representing
the value of both gross flows when the net growth rate is zero. A large negative value for
BN Eec and a small positive one for Spos signifies that job destruction is the most important
adjustment margin for NET* over the cycle. A value of .50 for Spos and -.50 for BnEc
represents perfect symmetry.

At this point, there are three series (POS*, NEG*, and N ET™*) but only one source
of stochastic variation (exgr-). Were POS* and NEG* the actual gross flows that we
observe, there would be a deterministic relationship between them, but we do not observe
this in the data. Therefore, to convert POS* and NEG* into observable (unstarred) values,
we add sources of independent variation to POS* and NEG*:

POS = POS* +€pos (4)

NEG = NEG* + eNEq, (5)

where the correlations of the random variables eppg and eyge with each other and with

POS* and NEG* are left unspecified for now. Finally, subtract destruction from creation
to get the observed net growth rate

NET = POS — NEG = NET* + €pos — eNEc. (6)



Deriving e regression equation

Ideally, we would like to find 8pos and Sygg by examining POS™, NEG*, and
NET* directly. Since these flows are unobservable, we estimate Bpps and Sygg from
regressions of POS or NEG on NET. These estimates will be biased by the independent
sources of variation in POS and NEG, epos and engpg, which will feed back to the
observed net growth rate. Consider a regression of POS on NET:

POS = a+ BposNET* + €pos

= o+ Bpos(NET — epos + ENEG) + €POS

=a+ BposNET + (1 — Bpos)epos + Brosenea,
or

POS = a + BposNET + £pos, (7)

where £pos = ([1 — Bpos]epos + BposeNEG) A If epos and ey pg are uncorrelated with
POS™ and NEG*, but potentially correlated with each other, then they generate “mea-
surement error” in {7).> The expected value of Spog becomes

E(ﬂA - BprosV(engr:) + Var(epos) — Cov(epos, enrc) (8)
POS V(GNET') + Va’r(epos) -+ Var(eNEcg) - 2. CO'U(GPOS, ENE'G) ’

Similar steps reveal that the expected value of ﬁ;v—;g‘(; in a regression of NEG on NET is

E(Bnme) = ByecV{engre) — Var(eneg) + Cov(epos, eNEG)
NEG V(ENET-) + VaT(Epos) + Va’."(eNgg) - 2. Cov(epos, fNEG) ’

(9)

Note that even though we do not observe the fundamental flows, it still must be the
case that ﬂ;;s - ﬁ;;a = 1, just as Bpos — Byec = 1.8 Yet the estimates are biased
in a direction that depends on the relative variances of epos and eygg. Also, bias in
the estimates of Bppg and Oy ge via epos and engg is less worrisome as the variance of
engr+ becomes large relative to epos and ey ge. Another consequence of small variances of
€pos and exgg is that we are increasingly likely to observe a negative covariance between
POS and NEG as these variances diminish. This is because a negative correlation is
“hard-wired” into POS* and NEG* via the opposite signs of Bpos and Syeq, and this
correlation emerges as the independent sources of variation in the gross flows diminish.

4 Similarly,
NEG = a+ 3vpagNET + EnEg,

where EvpG = ([ + ByveclenEc — BNEGEPOS) -
5 I take up the issue of a possible correlation between POS* and eppog or NEG* and eypg below.
6 There is one (very unlikely) case in which bias does not appear: when epos = engg. Then

any innovation in eppg is matched by an equal innovation in ey gg, so that both epos and eygg are
uncorrelated with NET.



Investigating non-linearities with a guadratic regression

As yet, no non-linearities have been introduced in the model; we have described a
model appropriate for the linear world of Figure 3. To make the model appropriate for the
non-linear world of Figure 2, rewrite (2) and (3) to

POS* =a+ BposNET* + yNETSQ* (2"

and
NEG"=a+ NggNET* +yNETSQ* (3"}

where NETSQ* = (NET*)?. The non-linear coefficient (7) is the same in both equations
and enters with the same sign, which preserves the relation POS* — NEG* = NET™* as
long as Bpos — Bvec = 1. Figure 2 suggests that the value of v will be positive, as the
POS line becomes steeper as the net growth rate increases, while the N EG line becomes
flatter.

Just as we might hope to estimate Bpos with a regression of POS on NET, we
might also hope to estimate both Spos and v with a regression of POS on NET and
NETSQ. As noted above, the accuracy of these estimates will depend on the variation in
NET* relative to that in epos and eyge. If this variation is strong enough, it may be
possible to notice a change in ﬁ;gs when NETSQ is added to the right—hand-side of a
regression of POS on NET.

In addition to the sign of v, the direction of this change in ﬁ;;s will depend on the
sample correlation of NET and NETSQ. If « is positive, a negative correlation between
NET and NETSQ (which may exist in a declining industry, or in an industry where
employment drops suddenly and rises slowly) would bias down the estimate of Spog if
NETSQ is omitted. In the language of Figure 2, the negative correlation between NET
and NETS(Q would be associated with a sample that traces out the flat portion of the
POS curve. A linear regression would erroneously extrapolate the sample flatness of POS
over all portions of the graph, with the implication that job destruction is always and
everywhere the most important margin of adjustment. Adding flexibility to the POS line
by inserting NET'SQ in the regression allows us to change our estimate of the slope of the
POS line as the net growth rate changes.

Should we expect the addition of NETSQ to change our estimate of Bpos even
if non-linearities of the type displayed in Figure 2 are unimportant? We know from the
stochastic model outlined above that estimates of 8pos are likely to be biased due to the
independent sources of variation in the gross flows (epos and enygg) that feed back to
the net growth rate. However, as long as these sources of variation enter linearly, entering
NETS(Q should not lead to spurious changes in Spos. This finding is illustrated in Table 1,
where I report densities of regression estimates from simulated data, generated by (1)—(6).
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Sensitivity analysis is performed by varying the values of v, the size of the variation in epogs
and ey g relative to NET™*, and 8pos. For all of the simulations, I choose a negative value
of it in order to bring about a negative correlation between NET and NETSQ. Moreover,
variance in the independent sources of variation (epps and eypg) are always set equal
to one another for simplicity.” Because real-world sample sizes are often small, I choose
an N of 17 for each regression, and repeat the regression 10,000 times for each unique
collection of true parameters. In addition to the mean and standard deviation of 5;53 for
both the linear and quadratic regressions, I report the fraction of regressions for which the
t-statistic for v in the quadratic regression is greater than 2 or less than —2. All random
variables are distributed normally.

The first six rows of Table 1 show that if v = 0, adding NETSQ to the regression
should not be expected to change our estimate of Bpps. In rows 1, 3, and 5, the true
value of Bpos is equal to .5, and this is the estimate given by Spos in both the linear
and quadratic regressions. The estimates center on the value of .5 exactly because there
is no non-linearity in the model (v = 0) and because the variances of epps and exype are
equal.® Rows 2, 4, and 6 use a true value of 8pog equal to .2. Parameter estimates in these
rows, however, are closer to .5, because the equal variation in epgg and ey g biases the
estimates toward .5.° More importantly, though, the central tendency of these estimates
does not change when NETSQ is entered. Looking down rows 1 through 6, it does not
appear that adding NETSQ to the regression would spuriously support non-linearities
when none exist, no matter what the true value of Bpgos.

Estimates of Bpos do change in the lower six rows of the table, where v > 0, provided
that variation in NET™ is large relative to variation in epos and exge. Rows 7, 9, and
11 show that estimates of Spos are biased down from their true value of .50, because the
regression samples trace out the flat portion of the POS curve. Adding NETSQ increases
the estimates, as long as variation in NET* is large, though estimates do not generally
move all the way to .50. Estimates of fpo s are also increased with the addition of NET'SQ
when the true value of Bpos = .20, which is the case in rows 8, 10, and 12. Because of the
equal variances of epos and enpg, however, removal of the downward bias arising from
the correlation between NET and NETSQ moves the coefficients closer to .50 and farther

7 There is also no correlation between epos and eypa. Adding a negative correlation had no effect
on the message of Table 1. Neither did making the variance of ¢y pg larger than that of epos.

8 As can be seen from (8), equal variances of epog and exgg tend to bias the estimate of Bpog

toward .5, which happens to be the true value of 8ppg in rows 1, 3, and 5. Hence, the central tendence of
estimates is .50.

9 Note that this bias is more severe the higher is the variation in e ppg and ey gg relative to variation
in NET*. In row 4, where the variance of epos and ey g are both three times the variance of NET*, the

estimate of Bpp s is centered quite close to .5 (.46). In row 6, where the magnitude of variance is reversed,
the estimate is centered closer to the true value.



away from the true value of Spogs = .20.

This movement away from the true value of 8ppg in rows 8, 10, and 12 highlights
the difficulty of estimating B8pos without knowledge of the fundamental flows. We may
find that our estimate of Bpogs changes after adding NETSQ, but we should remember
that this estimate is still biased away from its true value, in a direction that depends on
the relative variances of epps and eypg. For example, if we find that our estimate of
Bpos rises to something close to .50 after adding NETSQ, this may be caused by a true
value of Bpps that is lower than .50, combined with a variance of epog that is larger than
that of exygi. This would still be a surprising result, however, since most previous models
implicitly contend that there is no dependence of gross job flows on any fundamental net
growth rate, and that the independent sources of variation in the gross flows are all that
matter. Moreover, because these models seek to explain a large variance of destruction,
they contend that independent variation in destruction is more volatile, not less volatile,
than independent variation in creation.

4. Empirical Results using Annual Data

Manufacturing vs. services

Before examining coefficient estimates explicitly, it is helpful to run some ocular
regressions using graphs constructed along the lines of Figures 1-3. Figure 4 graphs annual
values of POS and NEG against NET for US manufacturing from 1973-1988. These data
were constructed by Davis, Haltiwanger and Schuh using the Census Bureau’s Longitudinal
Research Database (LRD).!? The top two panels plot POS and NEG against NET along
with linear regression lines, while the bottom two panels plot the flows with quadratic
regression lines. Simple inspection of the top two panels indicates that POS and NEG are
negatively correlated and that the linear regression line for NEG is steeper than the linear
regression line for POS. However, it is clear from the bottom two panels that the quadratic
lines give a better fit. These inferences are verified in Table 2, where various correlations
and parameter estimates using the annual LRD flows are presented. I report the parameter
estimates from the regression of POS on NET and NETSQ only, because regressions of
NEG on NET give the same estimates of «, v, and the residuals. Moreover, as was the
case for the linear regression, one can show that the estimate of Sy g¢ from the quadratic
regression equals the quadratic estimate of Spps minus 1 as well. The only interesting

10 gee Davis, Haltiwanger and Schuh (1996) for details on the construction of job creation and de-
struction measures from the LRD. Thanks are due to John Haltiwanger for supplying gross flows from the
LRD via his anonymous ftp site.



extra information from the NEG regression is the adjusted R2.!! Table 2 shows that the
correlation between POS and NEG in annual manufacturing data is strongly negative
(—.75) as is the correlation between NET and NETSQ (-.61). The estimate of Spps from
the linear regression is only .39, suggesting asymmetry, but this estimate rises sharply to
.47 (near the “symmetric” value of .50) when NETSQ is entered. Moreover, the estimate
of v enters with a t—statistic of more than 2.5, even though there are only 16 annual
observations available.

Table 3 uses annual Michigan Ul data to confirm these results. Unlike the LRD,
these data are on the firm-level, rather than the plant-level, and are annual averages of
employment, not point—in—time data.'? The Michigan data allows us to see whether sectors
with positive correlations between NET and NETS(Q generate estimates of Gppg that
fall, rather than rise, when NETSQ is entered. This is generally the case. Perhaps the
best example of this is Michigan’s services indusiry, where the correlation between NET
and VETSQ is strongly positive (.94) and where 6;;5 from the linear regression is much
larger than .50. Adding NVETSQ, however, reduces the estimate of Spps to near .50.
Additionally, the quadratic services regression provides an estimate of v that enters with
a t-—statistic of more than 5, even though there are only 10 observations in the Michigan
sample period. The estimate of Bpog from the quadratic services regression (.45) turns out
to be quite close to the corresponding estimate from Michigan manufacturing (.47), which
is in turn exactly the same as the estimate using the LRD (Table 2). Looking at all nine
sectors in the Michigan data, point estimates of  are always positive and are significant
at conventional levels in four of the nine sectors (agriculture, mining, manufacturing and
services). Addition of NETSQ brings the estimate of Bpos closer to .5 in all sectors except
agriculture, mining, and construction. For these sectors, however, the linear estimate ranges

from .43 to .55, so it is hard to interpret these results as compelling evidence against
symmetry.!3

11 Though the standard error of the estimate must be the same in the two regressions, because the
residuals are identical, R? also depends on the raw variances of POS and N EG, which are usually different.

12 Because virtually every employer must report employment to the state employment office, the
Michigan data cover almost every employer in the state. The LRD, by contrast, is generated mostly by a
probability—based sample of individual manufacturing plants (the Annual Survey of Manufactures) along
with the Census of Manufactures, which is taken every five years. A main advantage of using the LRD
is the ease of linking plants from year—to—year across changes in legal ownership, which is more difficult
with Ul data. Advantages of using UI data lie in its wider coverage and its inclusion of comparable data

on manufacturing and non-manufacturing employment. See Foote (1997) for an extended comparison of
the LRD and the Michigan UT data.

13 Additionally, agriculture and mining are the two smallest sectors in the Michigan data. Services,
manufacturing, and retail trade are the largest.
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Young and old manufacturing plants

In addition to resolving the manufacturing vs. non—manufacturing puzzle in the be-
havior of gross job flows, our framework is also helpful in addressing purported differences
in gross flows generated by young and old manufacturing plants from the LRD. Table 4
reports results using gross flows for young plants (0 to about 10 years old) and mature
plants (older than 10 years).!* The linear estimate of 3pps for young plants is exactly .50
while the linear estimate for mature plants is much smaller (.33). However, young and old
plants also differ in their correlations between NET and NETSQ, which is positive for
young plants (.48) and strongly negative for older plants (~.85). These correlations suggest
that the addition of N ET SQ should lower the estimate of 8pps for young plants and raise
it for old ones, and it does. The estimate of 8pos for young plants drops to .47 in the
quadratic regression, while the estimate for old plants rises to .44.

Note that the estimate of v is statistically significant for old plants (with a t-statistic
of about 2), while it is insignificant for young plants. The explanation for this difference may
center on the large differences in & across the two age classes. Recall that @ is our estimate
of the distance AB in Figures 2 and 3. A larger value of AB makes it less likely that the
“zero constraint” for POS and NEG will bind, so that non-linearities in the relationship
between the gross flows and the net flow are less likely to arise. Estimates in Table 4 suggest
that the distance AB is about twice as large for young plants than for old ones. This is not
surprising, since Davis, Haltiwanger and Schuh (1996) have shown that reallocation rates
for younger plants are generally larger than rates for older plants.!® Because the distance
AB is relatively large for young plants, we would expect non-linearities there to be less
important. The empirical implication is that adding N ET'SQ changes the estimate of Spog
for young plants relatively little while the change for old plants is more substantial.

Disaggregated data from the LRD and the Michigan data

As we move to the investigation of gross flows in two— and four—digit SIC clas-
sifications, we would expect that non-linearities would be just as important, since the
assumption of a representative firm becomes even more compelling the lower the level of
aggregation. This hypothesis is supported by both the Michigan data and the LRD. Be-
cause of space limitations, I present results from the disaggregated data with histograms,
rather than with tables of actual parameter estimates. Figure 5 presents results using the

14 The line dividing old from young plants is usually about 10 years, but varies over time due to data
limitations in the LRD. The flows for young plants in Table 4 are actually employment-share weighted

averages of rates for the youngest two age classifications (plants less than one year old and plants from
one to about 10 years old).

15 The estimate of & can be thought of as an index of reallocation intensity at a net growth rate of
ZETO.
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20 two—digit manufacturing sectors in the LRD. The upper left histogram graphs estimates
of Bpos from linear regressions. This density is centered well to the left of .5 because 18
of the 20 two—digit sectors display negative correlations between NET and NETS(Q. The
upper right panel presents the estimates of Spos from the quadratic regressions. The cen-
tral tendency of the density moves to the right, approximating .5.'® The lower two panels
present results relevant to the estimate of 7. The lower left panel shows that a large major-
ity of -y estimates are positive, and the lower right panel shows that even though there are
only 16 annual observations in the LRD, many of these estimates of v generate t—statistics
of two or more. Figure 6 presents results from 447 four—digit LRD sectors.!” The message
is the same as in the previous figure: The central tendency of the 8pos estimates moves
to the right when NETS(Q is entered, and the point estimate for 7 is usually positive and
often significant.

Support for the non-linear model is also found in the 70 two—digit Michigan in-
dustries, which generate results displayed in Figure 7. Here, however, the density of Bpos
estimates does not shift to the right across the top two panels, because (unlike manufactur-
ing data) there is no preponderance of negative correlations between NET and NETSQ
in the Michigan data.'® However, the bottom two panels show that the estimates of v in
the two—digit data are generally positive, and that a non-trivial portion of these estimates
are significant at conventional levels, even with only 10 observations.

5. Empirical Results Using Quarterly Data from the LRD

Using quarterly rather than annual data also lessens apparent asymmetries between
the volatility of creation and destruction, but estimates of Spps from the quadratic regres-
sions generally do not approach symmetry as closely as they do with annual data. The top
two panels of Figure 8 present POS and NEG graphed against N ET, along with implied
quadratic regressions lines. As was the case with annual data presented in Figure 4, there
also appears to be a non-linear relationship between NET and the two gross flows. The
bottom two panels present spline regressions rather than quadratic ones, with a linear
slope change allowed at zero. The POS line becomes steeper and the NEG line becomes
flatter as we move leftward from negative to positive net growth rates, as is the case (more
smoothly) in the quadratic panels above. Figures 9a (quadratic) and Figures 9b (spline)
plot the fitted values of POS and NEG against each other to facilitate comparisons.

16 The actual means of the two densities are .39 (linear) and .48 (quadratic).

17 Because of the 1987 change in SIC designations, the sample period for the four—digit data ends in
1986. The SIC change does not significantly affect two~digit data.

18 The mean of Bpos estimates is .55 in both the linear and quadratic regressions.
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Unlike the case with annual data, however, allowing the responsiveness of POS to
NET to vary across different net growth rates does not bring us to virtual symmetry. Ta-
ble 5 shows that the estimate of Bppg rises from .29 to .38 with the addition of NET SQ,
but this value is still more than two standard errors away from .50. {The estimate of + is
positive with a t—statistic of about 2.5.) There are several possible reasons for this finding.
One is that previously suggested explanations for why job destruction is excessively volatile
work well on the quarterly level, but not the annual level. For example, if it takes a shorter
time to destroy existing job matches than to create new ones, which is the fundamental
mechanism in Mortensen and Pissarides (1994), then perhaps these asymmetries are only
strong enough to emerge in quarterly data. A similar case could be made for other ex-
planations of excessive job destruction volatility, such as that of Caballero and Hammour
(1996), which focuses on the nature of specific investments in firm—worker relationships.

However, there is also an explanation for robust destruction volatility in quarterly
data in terms of the model of this paper. Recall from Figures 2 and 3 and from the
discussion of old and young plants that the likelihood of non-linearities depends in large
part on expected gross flows at a net growth rate of zero (the distance AB, as measured
by the parameter o). The regression at the top of Table 5 constrains « and v to be the
same for all quarters, which could obscure evidence for non-linearities if these parameters
differ across quarters. The middle portion of Table 5 estimates the linear and quadratic
regressions for each quarter separately and suggests that o and ~ do differ across quarters.
Most importantly, the estimate of a is much larger for the first quarter than for other
quarters. Part of this difference could be due to true seasonal patterns in reallocation.
Another part may stem from the fact that the quarterly LRD is generated from answers
to annual surveys, so that recorded job flows in the first quarter vary systematically from
job flows in other quarters.!® In any event, removing the first quarter from the quarterly
sample, as is done in the bottom part of Table 5, results in a quadratic estimate of Bppg
of .47, which is identical to both the annual estimate in Table 2 and to the estimate for
the first quarter alone in the middle part of Table 5. Moreover, in the regression that
excludes the first quarter, the estimate of -y enters with a t—statistic of more than 4, while
this estimate is not significant in the regression that uses first—quarter data alone. This is
consonant with a relatively high value of AB in the first quarter.

One must be careful in interpreting these quarterly results as rock—hard endorsements
of symmetry. Since 1972, the quarter with the largest employment decline was the first
quarter of 1975. Treating the first quarter differently may therefore be using this important
cyclical variation incorrectly. Moreover, the seasonal pattern of job creation and destruction

19 See the technical appendix to Davis, Haltiwanger and Schuh for more details of the uniqueness of
the first quarter in the quarterly LRD.
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may be linked to the business cycle in an important way.?? In any case, the least that
can be said with regards to quarterly data is that evidence of asymmetry in destruction
and creation flows is substantially weakened when non-linearities are taken into account.
Truly compelling arguments for complete symmetry must await the collection of additional
quarterly data from other industries or time periods.

Figures 10 and 11 repeat the earlier disaggregated analysis by two— and four—digit SIC
classification. (All quarters are included in all regressions.) Like the annual data, addition
of NETSQ moves the density of Spogs estimates to the right, as is evident in the top
two panels of Figures 10. All 20 estimates of v are positive and significant at conventional
levels; the statistical significance results from the larger number of observations in the
quarterly data. The message is basically the same for the 447 four—digit industries that
generate Figure 11, though some estimates of v have t—statistics less than 2.

6. Intepretation of Results

Other potential non-linearities

Though the empirical results of this paper seem strong, they are only as useful as the
identifying assumptions underpinning them. The key identifying assumption of the paper
is that the effect of NET* on POS* and NEG* is non-linear, while the independent
sources of variation in POS and NEG (epos and engg) enter linearly. Are there good
reasons to believe that these independent sources of variation are non-linearly related to
the underlying net growth rate? For example, rewrite (5) to

NEG = a+ BvgcNET* + (ONNETSQ* + éngc), (5")

where €y g has been redefined to equal (§y NETSQ* + €y EG)- One explanation for such
a non-linear correlation summarized by #n could be a “reallocation timing effect” in the
spirit of Davis and Haltiwanger (1990). If aggregate activity is extremely low, then agents
may decide to intertemporally optimize by reorganizing the economy and destroying large
numbers of jobs. If this effect kicks in only at strongly negative values of NET*, then
the slope of the NEG line could become much steeper at strongly negative net growth
rates. The result would be a non-linearity in the relationship between NEG and NET
that is picked up by NETSQ in our regressions. The problem with this explanation is
that Figures 4 and 8 give no evidence that non-linearities are important for NEG only
at strongly negative values of NET. Specifically, the lower two panels of Figure 8, which
present fitted lines from spline regressions, do not suggest that the non-linearity arises

20 gee the work of Jeffrey Miron on this point.
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only at strongly negative growth rates. If anything, they suggest that the non-linearity
is appropriate at zero, as it would be in the truly representative agent world of Figure 1.
While inferring a break in the slope of any collection of data points is tricky, it does not
appear from these two panels that the break in the slope of the NEG points is in the
wrong place.

Perhaps even more compelling evidence against unforeseen non-linearities comes
from examining sectors with generally positive growth rates, such as Michigan services
(Table 3). One may think that industry—level congestion effects in job creation of the type
described by Caballero and Hammour (1994) may put a ceiling on the job creation rate.
For example, a rising supply price of capital goods may prevent the economy from creating
a large number of jobs all at once. The problem here is that this non-linearity goes the
wrong way — rather than flattening out at strongly positive net growth rates, estimates
from Michigan services suggest that the POS line gets steeper. In short, non-linearities in
both POS and NEG are well explained by the representative agent framework, which is
not the case with non-linearities based on other explanations in the literature.

Revenge of the representative agent

If the motivation for this paper starts with the representative agent — who was not
exactly scarce in pre-gross—flow macroeconomics — why have the ideas of this paper taken
so long to surface? One explanation may be that the large size of gross flows surprised
many economists when these flows were first calculated. Before the seminal papers of
Leonard (1987) and Davis and Haltiwanger (1990), economists knew that a huge number
of workers regularly flowed in and out of employment, unemployment, and out—of-the-
labor—force status. But no one could foresee the large extent to which these worker flows
were generated by a constantly changing set of job opportunities. The finding that job
flows are an important source of worker flows will undoubtedly be a lasting contribution
of gross—flow research. However, as this paper has shown, it is not obvious that gross flows
are large enough to make the representative agent completely irrelevant.

Another reason for the lack of any representative agent modelling in gross flow re-
search could stem from the way in which densities of micro-level employment growth rates
have been analyzed. Researchers with access to micro—level data often compute these den-
sities to study their shapes. Virtually all research suggests that these densities have fat
tails and spikes at zero, as firms or plants make large positive or negative employment
changes or none at all. A particularly interesting characteristic of these densities is how
they change shape over the business cycle. In recessions, the mean of the density falls, but
this is generally not accomplished by a shift of the entire density to the left. Rather, the
mean falls due to a disproportionate swelling of the (fat) left tail. Simply put, recessions
occur as the percentage of firms making big employment cuts goes up. Yet even in reces-
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sions, there are still firms that either increase employment or hold it steady. As recessions
were discovered to be anything but equal opportunity destroyers, the attempt to explain
why employment fell at some firms and not others tock center stage.

However, even though aggregate employment declines are accomplished by dramatic
increases in job destruction, it does not automatically follow that employment increases
will be accomplished by dramatic decreases in job destruction. Consider a heuristic micro—
level growth rate density, pictured in Figure 12. This simplified density has just three bins,
a destruction bin (populated by firms which cut employment by 25 percent), a zero bin
(populated by firms which make no changes in employment), and a creation bin (populated
by firms which increase employment by 25 percent). The placement and shape of the bins
1s meant to capture the “fat tail” nature of real-world employment—change densities. In
recessions, the shift to the left in the mean of the density is not accomplished by leftward
shifts in each of the three bins, but rather by a swelling of the destruction bin. Observing
this behavior in an industry in which employment declines are relatively frequent (such
as US manufacturing) could lead one to place inordinate emphasis on job destruction as
the most important margin of adjustment. Yet consider what must happen if employment
is going to jump sharply. For job destruction to remain the most important margin of
adjustment, the size of this bin must shrink by a large amount, but mathematically, it
cannot shrink below zero. A good indicator of whether the destruction bin is generally
large enough to accommodate big increases in employment is the size of the bin at a net
growth rate of zero, when both the creation and destruction bins are the same size.?!
This size, of course, is related to the distance AB in Figures 2 and 3. If the two bins at
NET = 0 are small relative to the increases in NET that must be accommodated, then
the creation bin must also be used to increase employment, and job creation takes its place
as important adjustment margin over the business cycle.

The Abraham and Katz critique revisited

It is also helpful to place this paper in the long literature on sectoral shifts as a
potential source of aggregate fluctuations. In a famous paper, Lilien (1982) noted that
growth rates of one-digit sectors such as manufacturing and services moved farther apart
from one another in recessions, and suggested that shifts in labor demand among one-digit
sectors could be a key forcing variable in aggregate fluctuations. In an equally famous pa-
per, Abraham and Katz (1986) pointed out that an alternative explanation for increased
dispersion in industry-level growth rates in recessions is the difference in cyclical sensi-
tivities between declining industries (such as manufacturing) and growing ones (such as

21 of course, the bins will be the same size at NET = 0 only if they are placed the same distance
away from zero, but this is meant to be a heuristic discussion.
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services). Since manufacturing generally resides on the left tail of the industry-level growth
rate density, and since manufacturing employment is more sensitive to the business cycle,
recessions may simply knock manufacturing even farther to left of the density relative
to services, increasing dispersion. Abraham and Katz concluded that there was a funda-
mental identification problem when determining causality between reallocation intensity
(measured by dispersion in industry-level growth rates) and recessions (measured by the
mean of the industry-level growth-rate density). One needs to bring other information to
the matter before being sure that reallocation causes recession, rather than the other way
around.

This paper shows that a similar identification problem between reallocation and
recession may exist in the study of gross flows. Consider a model which delivers asymmetric
behavior in the net employment growth rate due to frictions in product markets (rather
than factor markets), with sharp decreases in employment followed by relatively small
increases. Perhaps the simplest model that does so is characterized by output equalling
real balances, prices that adjust slowly over time, and sharp drops in nominal balances due
to decisions of the monetary authority. This model would generate a negative correlation
between NET and NETSQ. In the non-linear world of Figure 2, such a model would make
job destruction appear to be the most important margin of adjustment over the business
cycle, even though job destruction was not “causing” the business cycle in any fundamental
sense. Conversely, consider one of the many models in the gross—flow literature, based on
reallocation frictions or other phenomena, that operate via factor markets. These models
are designed to generate highly variable destruction, and in those models job destruction
is a true “driving force” in the economy. To the extent that gross flows are symmetric,
however, product-market models and factor-market models are observationally equivalent,
in that they can both generate a high raw variance of job destruction, depending on the
correlation of NET and NETSQ. In short, the simple availability of job flow data does

not necessarily mean that the most important friction in the economy is located in factor
markets rather than product markets.

7. Conclusion

The results of this paper suggest that purported asymmetries in the cyclical behav-
ior of job creation and destruction may be overstated because of important but previously
ignored non-linearities in the effect of the net flow on gross flows. This simple finding,
motivated by a mathematical tautology appropriate for a representative agent, explains
why the high volatility of job destruction in US manufacturing has been hard to replicate
elsewhere. It reconciles the behavior of gross flows in services and manufacturing and in old
and young manufacturing plants, at least on the annual level. Results also suggest an ex-
planation for why trend employment growth is related to the cyclicality of creation relative
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to destruction.?? Finally, accounting for non-linearities substantially reduces asymmetries
in quarterly manufacturing data, though evidence for complete symmetry there is weaker.

As for future empirical research, it would be very useful to obtain high—frequency job
flows for non—manufacturing sectors in order to determine whether evidence for remaining
asymmetries in the quarterly LRD is corroborated elsewhere. Regarding theory, this paper
has suggested that models with frictions outside of labor markets may be quite consonant
with the cyclical behavior of gross job flows, as long as they generate the “right” correlation
between NET and NETSQ. Whether these models can do better than factor-market

models in explaining the entire constellation of business—cycle facts must be resolved by
future research.

22 The link between trend growth and the relative volatility of creation lies in the correlation between
NET and NETSQ, which is likely to be positive in sectors when trend employment growth is positive.
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Table 1: Simulation Results

True Estimates from Estimates from

Parameters Linear Regression | Quadratic Regression

% of “large”

Row | un | ~ Vl(gf—f%% Bros E(Bros) E(Bpos) | t-stats for 7
1 -.01 .00 1.00 .50 .50 (.11) .50 (.19) 0637
2 .20 40 (.12) 40 (.20) .0626
3 3.00 .50 50 (13) .50 (.21) .0634
4 20 46 (.13) 45 (.22) .0685
5 0.33 50 .50 (.08) .50 (.16) .0661
.20 .32 (.09) 32 (.17 .0654
7 .10 1.00 .50 .43 (.12) 46 (.19) 0742
8 .20 33 (.13) .35 (.22) 0746
9 3.00 .50 A7 (.12) A7 {(.20) .0624
10 20 43 (.13) 43 (122) .0630
11 0.33 .50 .38 (.10) .45 (.16) .1527
12 .20 .20 (.12) 27 (119) .1323

The data generating mechanism is described by equations (1) through (6) of the text:

NET* = u+ enpp-.
POS* = a+ BposNET* + y(NET")?
NEG* = a+ BnpegNET* + v(NET*)?
POS = POS* +€pog
NEG = NEG® +engg
NET = POS - NEG

where Svgc = Bpos — 1 and a = 10. There is no correlation between epos and engq, nor between either
of these variables and NET*. The variances of ¢pos and eygg are equal. The linear regression is

POS = a + BposNET + £pos
while the quadratic regression is
POS =a+ BposNET + yNETSQ + £pos.

Each regression sample consists of 17 observations and is replicated 10,000 times. Standard deviations of the

sampling distributions appear in parentheses. “Large” t-statistics for vy are those which are greater than 2
or less than -2,



Table 2: Results Using One-Digit Annual Data from LRD (1972-1988)

N =16 Correlations Regression Results
POS NET
Sector & NEG | & NETSQ a Bros 5 R2pos | RPnec
Manufacturing -.75 -.61 9.56 (.24) | .39 (.05) .81 91
9.12 (.26) | .47 (.05) { .023 (.009) .86 .94

All regression statistics are taken from a regressions of POS on NET or of POS on NET and NETSQ,
except for R? ygq, which is taken from regressions with N EG on the left-hand-side.

Table 3: Results Using One—Digit Annual Data from Michigan UI Dataset (1978-1988)

N =10 Correlations Regression Results
Pos NET
Sector & NEG | & NETSQ a Bros 5 R2ppg Rnpc
Agriculture —67 84 15.14 ( .42) | .43 (.08) 7 86
14.91 { .33) | .19 (.11) | .041 (.016) | .87 92
Mining -25 -75 12.55 (1.25) | .45 (.14) .52 .63
10.26 (1.22) | .76 (.15) | 033 (012) | .75 80
Construction —-.74 —-.42 18.54 ( .65) | .55 (.07) .38 83
17.67 (1.11) | .58 (.08) | .009 (.010) | .88 83
Manufacturing ~.68 -.68 6.94 ( .48} | .33 (.07) .71 91
6.43 ( .38) | .47 (.07) | .017 (.006) .85 .95
Trans & Comm -.02 23 7.61 ( .43) | .73 (.15) 71 18
7.33 ( .64) | .71 (.16) | .036 (.058) | .69 12
Wholesale Trade —-.57 .36 9.93 ( .36) | .58 (.09) .82 .70
9.41 ( 47) | .53 (.09) | .039 (.025) | .84 74
Retail Trade -84 68 10.52 ( .18) | .62 (.05) 95 87
10.13 ( .33) | .56 (.06) | .035 {.026) 95 .88
FIRE ~.42 .88 6.20 ( .28) | .81 (.08) 92 35
6.11 ( .32) | .71 (.18) | .025 (.039) | .91 30
Services -.78 .94 12.08 ( .29) | .77 (.05) 97 73
12.36 ( .15) | .45 (.07) | .031 (.006) | .99 94




Table 4: Results Using One-Digit Annual Data from LRD (1972-1988)
Separated by Age of Plant

N =16 Correlations Regression Results
POS NET
Sector & NEG | & NETSQ & Gros 5 Rpos | RZnec
Manufacturing: | -.36 48 15.40 (.65) | .50 (.09) 65 66
Young Plants 15.09 (.87) | .47 (.11) | .008 (.015) | .63 66
Manufacturing: -.80 -.85 7.72 {.20) | .33 (.04 .82 .95
Mature Plants 7.58 (.19) | .44 (.07) | .017 (.008) .85 .95

NOTE: Because of data limitations, the dividing line between young and old plants changes slightly from
year to year in the LRD. The line generally falls at about 10 years of age. The flows for young plants are
actually employment-share weighted averages of rates for the youngest two age classifications, plants less
than one year old and plants from one to about 10 years old.

Table 5: Results Using One—Digit Quarterly Data from LRD (1972-1988)

Correlations Regression Results
POS NET
Quarter & NEG | & NETSQ a ﬁ—;o—s 5 ﬁpos '}?NEG
All -.36 -7 5.30 (.08) | .29 (.04) 47 .85
(N=67) 5.18 (.09) | .38 (.05) | .031 (.012) .52 .86
Q1 only -73 -.90 5.61 (.14} | .32 (.05) .75 93
(N=16) 5.67 (.47) | .47 (.10) | .023 (.015) .78 94
Q2 only -.20 —-.69 5.16 (.18) | .26 (.09) .32 .81
(N=17) 4.63 (.22) | .48 (.10) | .132 (.041) .68 .88
Q3 only -.05 .49 5.15 (.19) | .47 (.12 .46 .53
(N=17) 4.71 (.18) | .28 (.10) | .235 (.061) .72 .76
Q4 only -.21 -.82 5.19 (.16) | .29 (.09) 35 .79
(N=17) 4.95 (.17) | .55 (.14) | .110 {.047) .50 .84
Excluding Q1 -.20 —.56 5.21 (.10) | .32 (.05) 41 .76
(N=51) 4.84 (.11) | .47 (.05) | .110 (.022) .60 .84
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Figure 9a: Implied Quadratic Lines (Quarterly LRD)
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Figure 12! Heuristic Growth--Rate Density



