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1 Introduction

Much of insurance is provided on a group, as opposed to individual, basis, and
a substantial amount of that coverage is produced by the groups themselves
rather than purchased in the market, For example, most insurance related to
health, such as employment-based health, disability, or workers’ compensa-
tion, provides coverage for a group of employees; other types of commercial
insurance, such as property and general liability, provide coverage for risk
exposure arising out of the activities of a firm’s employees. Furthermore,
employers often bear some or all of the financial risk associated with in-
surance coverage. A recent study of the U.S. commercial property/casualty
insurance market estimated that nearly a third of the risk faced by private
firms is self-insured; for workers’ compensation. the figure could be as high
as fifty percent '. In additjon, much of the insurance contracting observed in
the marketplace features intermediate degrees of risk-sharing, through mech-
anisms such as deductibles and experience rating. This paper attempts to
understand the factors that determine the extent to which firms produce
insurance themselves through bearing risk rather than consuming it in the
market.

Section 2 studies the make-or-buy decision in a static setting and iden-
tifies the key tradeoff in becoming self-insured. The crucial benefit realized
when self-producing insurance is that the price-externalities associated with
risk-pooling can be internalized. When pooling claims with other parties,
the group is not fully internalizing the benefits of loss control activities; by
bearing risk, the group can credibly commit to engaging in these activities
and can therefore reap the benefit of commitment in the form of lower out-
of-pocket costs *. However, this benefit of self-insurance must be weighed
against the greater financial risk borne when not pooling claims with indi-
viduals outside the group. Put another way, the usual economies of scale
associated with risk pooling may be offset by a diseconomy of scale-the in-
troduction of moral hazard in self-protection. The important point is that
without the this diseconomy of scale, there are only costs to self-insuring,
and. hence. there is no reason even for large firms to self-insure ®. Based
on this simple tradeoff, we develop implications concerning the impact of
firm size on coverage, claims. and market prices. The basic argument here
is that, as firms grow larger, the demand for self-insurance will increase;
this increase in demand will result in the insurance market supplying risk-
sharing contracts at lower prices, reflecting the lower losses due to increased



self-protection. This implies a (decreasing) nonlinear relationship between
size and insurance costs. We also investigate the impact of technology and
severity risk on the demand for self-insurance.

This basic tradeofl determining the make-or-buy decision is an example
of the classic tradeoff between risk and incentives . The main benefit re-
alized through bearing risk is that ex ante pricing and ex post results will
reflect the commitment of the firm to loss control. In addition to predictions
relating to firm size, the approach also offers a framework for thinking about
differences in risk-bearing across lines of insurance ®: differences in the costs
and technology of loss control, as well as the nature of risk faced, are possible
explanations of the differences in risk retention.

We illustrate this basic tradeoff in several health-related insurance mar-
kets in which it seems to enter. First, we analyze this decision in the context
of the choice of whether or not to enter a risk-pool. Second, we discuss
commercial insurance, which may be illustrated by workers compensation
insurance. In this market, premiums are experience-rated and there are non-
contractible safety measures which may be instituted by the employer to
limit claims. Workers compensation can be self-insured, in which case the
employer retains all the benefits from safety measures. However, these ben-
efits, if the firm is small, must be weighed against the larger risk imposed
on the firm; this implies that prices and claims will be tied to firm size
through the decision to produce the insurance internally. Third, we argue
that managed care contracting with health care providers involves the same
self-insurance tradeoff. Managed care contracts are crafted with special at-
tention to cost containment incentives through the use of pre-payment on
per-patient basis, or capitation. Although it is well-known that this inter-
nalizes cost-savings, less emphasized is the fact that capitation also increases
risk due to excess costs. A provider that gets pre-paid is therefore like a
producer of self-insurance, while a fee-for-service provider is fully insured.

The three applications illustrate the general arguments regarding the im-
pact of size on internal production, the nonlinear aspect of prices and costs,
and the impact of technology and exogenous risk on the demand for self-
insurance. For example, for the third application we predict that larger
purchasers will use capitation more extensively and obtain lower prices: this
contract-induced impact of size offers a natural interpretation of the recent
merger trend accompanying capitated contracts. Furthermore. we argue that
technological change raises the demand for capitation-it leads to a realloca-
tion of risk toward smaller providers away from larger insurers because the
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benefits to cost containment, and hence self-insurance, are raised.

Section 3 studies the dynamic aspects of market versus self-insurance.
The primary motivation for studying dynamic risk-sharing is experience rat-
ing in commercial insurance; this mechanism averages losses over multiple
time periods to arrive at prospective premium adjustments. Much of the
actuarial literature (for example, see Parry and Math, [15]) has been cen-
tered on the role of experience rating in risk classification. Our focus is on
the incentive effects of experience rating, which evidence (see Ruser [19],[20])
suggests may be significant. Viewed in this context, experience rating is a
mechanism which allows employers to share in their loss performance and
may be thought of as a form of (partial} self-insurance. The distinguishing
characteristic of the multi-period analysis is that past claim histories affect
self-protection; when experience rating uses more than a single year of losses,
it may induce differences in the time-series properties of the claims series of
groups differing in their levels of self-insurance. Experience-rating may lead
to self-correcting behavior in claims series; furthermore, claims associated
with such behavior may converge to a stochastic steady state or diverge
in explosive cycles, depending on the strength of the corrective behavior.
This mean-reversion in claims occurs only with groups that are partially self-
insured; it 1s present neither for groups which are fully self-insured nor groups
which have full market insurance. The problem of optimal self-insurance in
this dynamic setting is then studied with the results on group size generaliz-
ing those found in the static analysis. We also examine the optimal length of
the experience rating period, finding a balancing between risk and incentives.

Lastly, Section 4 concludes with a discussion of the limitations of the
study, the empirical evidence that may be gathered to test its predictions, as
well as the future questions raised and possible extensions of the analysis.

The paper relates and builds on several strands of literature. Naturally,
there is a vast literature on both production and consumption of insurance
in economics, too large to justly review here. However, there is little work
on the tradeoff faced by a group between choosing between the two; the
make-or-buy decision of interest here. In particular, the classic literature
perhaps over-emphasizes the economies of scale in risk-pooling, as opposed
to the diseconomies associated with loss control discussed here. We believe
understanding these diseconomies of scale may be important, in particular
for health-related insurance, where there has been a remarkable growth of
production relative to consumption and managed care has reallocated pooled
risk from larger insurance compantes to smaller health care providers that



control expenses °.



2 Static Group Insurance

A key feature of group insurance hinges on the ability of the group to produce
the insurance internally by self-insuring. Self-insurance raises the incentives
to control losses 7 but imposes greater risk. We first describe the general
structure of this tradeoff between production and consumption that underlies
our analysis and then proceed to illustrate this tradeoff in several health-
related insurance markets.

Consider a group of size n with (L, Lo,.., L,,) being i.i.d. random vari-
ables representing the individual losses of its members. The random variable

l n
L:;EL.;

therefore represents the average loss of the group. We let M denote a random
variable representing the average loss of other groups in the market that the
group 1n question may share coverage with. The per unit price p of insurance
is assumed to be paid at the end of a static contract and is determined by
the random variable

p=p.4+pl+(1—p)M

Here, p, is a fixed component of price and p € [0,1] the degree of self-
insurance; p is the weight a group’s own experience is given relative to that
of other groups with which the group pools claims. The per-capita price thus
has a mean and variance

tp = Elpo + pL + (1 — p)M] = p, + pp(s) + (1 — p)m

2

oy = VarlpL + (1 - p)M] = pz#

Here s is a positive scalar that represents self-protection and u(s) and o%(s)
are the mean and variance of the average loss given self-protection. When-
ever we discuss technological change in losses, we are referring to increases
In a positive productivity parameter €, which affects losses according to
p(s) = Ou,(s). The idea is that technological change in the process gen-
erating losses will have consequences for the importance of loss prevention;
the marginal returns to loss control will increase with technological change.
The value m 1s the mean of the (assumed deterministic) average loss of the
market. Self-insurance involves uncertain average costs. with full market in-
surance involving certain costs through a premium. However, the uncertainty
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in average costs associated with self-insurance falls with size. In the extreme
case of a very large group, the average cost has no variance, and self- insur-
ance involves no more risk than market insurance. For smaller groups there
is variance in average costs, with the extreme example being an individual
whose loss makes up his uninsured “average” cost.

The aggregate welfare of the group is generally described by a function
U(p.s,n) representing its preferences over the three key variables of inter-
est here-self-insurance, self- protection, and the size of the group ®. These
preferences summarize how the group evaluates the distribution of average
costs implied by these three quantities. For example, mean-variance prefer-
ences u(p, o) over a mean that depends on self-protection and a variance that
depends on both group size and self-insurance would induce such a utility
function through U(p,s,n) = n - u(u(s),a(p,n)).

Self-protection is assumed to be non-contractible; its level is chosen by
the group depending on the degree of self-insurance p and group size n. This
function is denoted by s{p,n), which, in our applications, will rise in self-
insurance (s, > 0). This positive relationship will often stem from the fact
that, by bearing the financial risk of losses, the group is motivated to engage
in loss prevention activities.

The most preferred level of self-insurance for a group of exogenous size,
denoted p(n), will be determined by the group’s preferences. the function
s(p.n), and equilibrium conditions in the insurance market. Formally, the re-
lationship between the size of the group and the optimal level of self-insurance
turns out to be described by an implicit function, denoted G. incorporating
these conditions:

G(p,s(p,n),n) =0

Depending whether market power rests on the demand or supply side of the
insurance market, this implicit function may represent a reservation utility
condition or a utility maximization condition. Thus, for each particular
insurance application, there will be such a function G defining an explicit or
mmplicit relationship between the size of the group and its preferred level of
self-insurance: p(n). We will stress the positive relationship between size and
self-insurance induced by many applications that share this general heuristic
formulation. The implicit function theorem yields:

dp  Gn+ Gisn
dn G, +G,s,



Thus, in applications, the main task is an exercise in comparative statics
to determine the sign of this effect. The positive relationship between self-
insurance and size is illustrated below for several applications important to
health-related insurance: self-insurance relative to a public or private risk
pool, commercial insurance and capitation of managed care providers.

2.1 Risk Pool vs Self-Insurance

We first consider the tradeoff in a very simple case: the choice between full
self-insurance or full market insurance in a risk pool under mean-variance
preferences. Let the average costs p under full self-insurance (p = 1) have a
distribution with mean and variance [p(s(1)), (1, n)], while no self-insurance
(p = 0) involves a cost distribution with mean and variance {u(s(0)), o(0, n)]
% Then full self-insurance is preferred whenever *°

ulp(s(1)), o1, n)] > ulp(s(0)), o(0,n)]

Since the value of full market insurance does not depend on the size of the
group, the right hand side does not vary with group size, o(0,n) = 5(0) = 0-
regardless of size. Full self-insurance is more attractive if the gains associated
with the induced self-protection, given by u(s(1)) — u(s(0)), outweigh the
larger risk given by o(1,n) — (0, n}.

Three generalizable points are worth noting in this simple setting. First,
if self-protection were inelastic to the degree of self-insurance, s, = 0, there
would never be any demand for self-insurance even among large firms; self-
insurance would entail additional risk with no benefits. Therefore, reaping
the rewards of premium reductions is a necessary benefit for self-insurance.

Second, technological change, in the sense of an increase in the elasticity
of u with respect to s, may raise the demand for self-insurance by raising the
rewards for internalizing premium. In many cases, including health insur-
ance, this elasticity is related to the technology by which claims, and hence
premiums, are produced. The more impact a group’s loss control activities
have on claims as technological change takes place, the larger are the rewards
for self-insuring.

Third, consider the effect of size when the demand for self-protection is
elastic. As the size of the group goes to zero (infinity), the risk imposed on
the group by self-insuring, o(1,n) — o(0,n), goes to infinity (respectively,
zero). In other words, for small groups, the variance associated with self-
insurance becomes too high, while for large groups it is effectively zero. This
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leads to the following prediction, which we argue holds more generally for
other problems:

lim p(n) =1 lim p(n) =0

n—oc n—0

Given the premium reductions induced by the self-insurance, pu(s(1))—pu(s(0)),
larger firms will demand self-insurance but smaller firms will not. Indeed,
there is a size n, above which the group fully self-insures and below which
the group does not, since the costs of self-insuring are falling with group size
while the benefits are independent of group size; that is, p(n) = 1 if and only
ifn>n, '

2.2 Commercial Insurance

This section considers the application of our analysis to self-insurance in
commercial markets, such as workers' compensation, property, or liability.
For a given firm, let w represent income not related to insurance and u(.) the
increasing Von-Neumann Morgenstern utility of income. The preferences U
over the three quantities of interest operate through the expected utility:

Ulpys,n) = [ u(w = p = () (pls,n)dp (1

where c(s) denotes the production costs involved in self-protection. Note
that these costs may include the labor and capital costs of administrating
the insurance rather than buying it. The necessary first-order condition of
optimal self-protection is

Us = E[W](—ppts — <) + /ufsdp =0 (2)

The first term concerns the marginal benefit of premium reduction relative
to the marginal cost of self-protection: the benefit increases in the degree
of self-insurance because premium reductions are more internalized. The
second term is the marginal impact of self- protection on the distribution of
average costs: depending on the effect of self-protection on the variance of the
loss distribution, this term could represent a cost or a benefit. Competitive
insurance with zero profits implies that the market premium m(p,n) equals
expected claims given by

pe = pp(s(p.n)) + (1 = p)m(p,n)
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which implies
mlp,n) = ls(p,)

The degree of self-insurance offered in a competitive market will then
maximize group welfare {/ subject to two conditions. The first is that the
self-protection it induces is compatible with incentives; that is, given p. s
maximizes group utility. The second is that the market price m(p,n) sat-
isfies the competitive pricing condition. The first-order condition of an in-
terior solution to this counstrained problem then defines the implicit func-
tion ({p, s(p,n),n) relating self-insurance and size described earlier in gen-
eral terms. The following proposition characterizes the conditions under
which this implicit relationship yields a positive relationship between firm
size and self-insurance {and thus nonlinear pricing involving discounts for
larger groups).

Proposition 1 Assume that the average loss is normally distributed as in

2
o
L~ N(u(s), —
(uls), =)
If 1 and ¢ are convex, satisfy the Inada-type conditions '? | and have positive
third derivatives, then self-insurance rises with size and unit prices fall with
size:
dp

diip
— > 2 (-
dn_O& dn—o

Proof: See Appendix.

The proposition concerns the case when average losses are normal which,
due to the Central Limit Theorem, is far less restrictive than the assump-
tion of normally distributed individual losses. Indeed, for most individual
loss distributions, the average is asymptotically normal and can be approxi-
mated as such if the group is sufficiently large. The key issue in applying this
condition, then, is whether the size of the group is large enough for the ap-
proximation to hold. When it does hold, the proposition states that optimal
self-insurance rises monotonically with firm size. This is consistent with the
observed pattern in commercial and employer-based insurance markets, in
which the degree of self-insurance rises with size. For example, in U.S. work-
ers compensation insurance, the premium for an individual firm is roughly
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proportional to a weighted average of the firm’s own claims and the average
claim of the industry,

p = pln)r + (1 = p(n))m

where the weight p(n) on the firm’s claims increases with firm size.

The benefit of greater risk-bearing is that the returns from self-protection
are more fullv internalized. but the obvious cost is that more financial risk
is borne by the firm. At one extreme is a single individual, n = 1, for whom
self-insurance would involve no insurance as the individual would pay her own
loss at the end of the contract; hence, the financial risks are too severe to
self-insure . At the other extreme is a firm large enough to have no variance
in its average loss. n = 2. In this case, self-insurance would involve only
benefits as the firm would reap the rewards of self-protection fully; market
insurance, on the other hand, does not allow the firm to internalize these
benefits

As before. the basic size tradeoff is not only monotonic but also involves
convergence to the extreme forms of self-insurance with extreme sizes .

llmp(n)=1 & limp(n)=0

Ho—r n=—4+0
Although prices. which depend on average costs, fall with size from one
extreme to the other. the predicted effect of size on the variance of average
costs is less obvious. On the one hand, as a group becomes larger, it takes
on more variance through being more self- insured, but, on the other hand,
the larger size lowers the variance when holding self-insurance constant. The
size effect on the equilibrium variance in costs is

do./dn = (do,/dp)p, + Oc,/On
Inserting the partial derivatives and rearranging one obtains
Moy = 21, — 1

where 7,, and 1, are the size elasticities of o, and p. In other words, the
size-elasticity of the variance in claims is proportional to the size-elasticity of
self-insurance. Therefore. the variance of average expenditures may rise or
fall with size. depending on the size-elasticity of self-insurance in equilibrium.

Size 1s not the only factor that affects the demand for self-insurance.
although predictions about size are more easily tested empirically. Self-
insurance is also affected by the level of technology # and the individual

12
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risk of the insured loss o. As technology improves, the mean loss becomes
more elastic with respect to investment in self-protection—under some cir-
cumstances, this will lead to increased self-protection. As the loss variance
increases, the cost of internalizing also increases, leading to a decrease in the
optimal p.

Proposition 2 Assume that the average loss is normally distributed as in
2
a
L~ Nu(s), )

If i and ¢ are convez, satisfy the [nada-type conditions, and have positive
third derivatives, then an increase in risk is associated with a decrease in
self-insurance: % < 0. Furthermore, if U exhibits constant absolute risk

aversion, then technological change increases self-insurance: %s > 0.

Proof: See Appendix.

Hence, self-insurance should be observed in lines of business in which self-
protection can be expected to have a significant impact in reducing losses.
As was the case in the simple example of participating in a risk pool, when
losses are inelastic to behavior, there is no incentive to bear risk since there
are no benefits to self-protection. In workers’ compensation, loss rates may
be affected on a day-to-day basis by the employer’s attention to workplace
safety and employee screening. Life-insurance, on the other hand, is a line
in which we would expect to find less self-insurance- since the employer has
limited control over the loss outcomes.

One should also expect the variance of average losses to affect the self-
insurance decision. As the variance increases, the risk costs of self-insuring
become more expensive. Hence, high-risk lines of insurance, such as product
liability, should be associated with less self-insurance.

2.3 Managed Care as Self-Insurance

The tradeoffs found in managed care contracting with health care providers
bears very strong similarities to the problem of production versus consump-
tion of insurance. Managed care contracts are crafted with special attention
to cost containment incentives. A common method for delivering these in-
centives is to reimburse using capitation. Instead of paying a provider on
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a fee-for-service basis regardless of the costs incurred, many HMO's pay
the provider a fixed per-member-per-month fee. As is well known, from the
provider’s perspective, this system completely internalizes the benefits of cost
containment. However, less emphasized has been that capitation also places
the provider in a position of financial risk—if the case mix is more severe
than anticipated, the provider may incur costs above the prepaid fees, A
provider who is pre-paid is therefore like a producer of self-insurance. The
fee-for-service provider, on the other hand, is fully insured against cost risk
and may be regarded as a consumer of insurance. Just as group size affects
the tradeoff between production and consumption of insurance, so does the
patient pool in managed care. The variance in average costs associated with
patient care drop as the number of patients increase; hence, the costs of
cost-containment through managed care also drop. Capitation, then, is only
a viable method for internalizing cost-reduction incentives when the volume
of patients is sufficiently large.

In the managed care problem, L now represents the average losses of
the patient pool for which care is provided. Let p denote the fraction of
this patient pool that is pre-paid on capitated rate so that the average loss
satisfies

p=p(pO—L)+(l—p)0=p(po—L)

The first term is the uncertain profits on the pre-paid patients, and the
second term is the certain (but zero) profits that occur under fee-for-service
when costs of production are fully insured. For example, under full capitation
(p = 1}, the provider pays for all claims and cost-containment expenses, L+c,
and receives a pre-paid capitation rate p, per patient from the insurer. On
the other hand, in a fee-for-service system {p = 0), the insurer would pay all
incurred expenses. The mean and variance of the net-payment is then

o = p(po — p1(5))

so that, as before, self-insurance raises the rewards from loss control but alse
raises risk 1°,

The utility of the provider for a given level of capitation is now analogous
to the previously-analyzed cases of self-insurance. Under the conditions of the
Central Limit Theorem, the uncertain net payment is normally distributed

14



and we therefore consider preferences over the mean and variance as in

0,2

Ulp,s,n) = uw{w + p(p, — u) — C(S)aP;)

As before, it follows that optimal self-protection, satisfying U, = 0, rises in
self-insurance
Us=0= Sp 2 0

Consider now the case of a fully competitive supply side. The size of the pa-
tient pool, the level of self-protection. and capitation are then related through
the provider utility function; the competitive market delivers all surplus to
the HMO, and the utility of the provider is set equal to his opportunity cost
%. Thus under perfect supplier competition, the capitation rate p,(n,p) is
bid down to the the level at which

U(pﬁs(p’n)ﬂn) =u

Since self-insuring a larger pool involves smaller risk costs for the provider,
the price satisfying this condition must fall with size %Enﬂ <0.

Now consider the demand for capitation from the view of the demand
side purchasing the services. The total reimbursement price R paid to the
provider is made up of the capitation rate for those capitated and the average
medical losses for those who are not

R = pp, + (1 = p)p(s)

For simplicity, suppose cost and quality of care are traded off by the purchaser
according to a function

Wi(Q(s(p)) — Rp.s(p),n))

where (J(s) is the decreasing and convex quality of care as a function of loss
control activities. For a demander of size n, the optimal level of capitation
is then implicitly defined by the first-order condition

G(S(p)noan) = Sp(Qs - Rs) + RP =0

As before, comparative statics on the G-function determines the impact of
size on self- insurance, that is, how capitation varies with HMO size. By the
implicit function theorem we obtain

dp G, + U,

dn G, + Gs,

-
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In this case, this implicit function theorem has a particularly intuitive inter-
pretation. The first term in G is the indirect cost of changing loss control
behavior on the part of the provider; this lowers quality and hence reim-
bursement. The second term in G is the direct benefit this implies by shifting
patients from cost-determined to capitated reimbursement. An extra percent
of capitated patients face the change in reimbursement

Rp:Po—ltZO

Therefore, since the capitation rate falls with size (because the provider does
not have to bear as much risk). size raises the value to the demander of
having the provider capitated

R,, <0

In other words, when a demander is bigger, it does not cost her as much
to have providers capitated because they do not have to bear as much risk.
Since the indirect effect this reduction balances does not depend on size. it
follows that size must raise the capitation /
dp
=
The impact of size in this way leads to a natural interpretation of the trends
in consolidation and mergers into integrated delivery systems that have ac-
companied capitated contracts. Larger firm sizes may be a consequence of the
contracts used to control costs when the new contracts require larger pools to
be served to limit their risk. Capitation thus provides one form of increased
economies of scale leading to mergers associated with risk-contracting.
As was true for employment-based insurance, size is not the only factor
that affects the demand for self-insured capitation. The impact of patient
treatment cost variance on p 1s negative:

y
<

do —
The impact of patient risk is rather straightforward since an increase in risk
is equivalent to a decrease in size. Hence. drawing on the size results. the
capitation rate 1s increasing in patient risk: this affects the marginal bene-
fit from capitation in the predictable manner; R,, > 0. However, together
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with the impact of size discussed previously, it delivers some interesting pre-
dictions about how different types of providers sub-capitate their doctors.
Sub-capitation involves an infernal capitation contract, as opposed to an ez-
ternal capitation contract for the entire provider. Depending on the size of
the patient pool and the variation in treatment costs across patients in the
pool, i.e. {o.n), different providers are predicted to have different fractions
of their income capitated. For example, primary care providers are often
capitated. as they see large volumes of patients with small variation in costs
across patients. Specialists, however, are usually reimbursed on a fee-for-
service bhasis: they serve a smaller number of patients and may face a much
higher variance in care costs associated with an individual patient ex ante.

A more subtle impact is that of technological change '8, as represented
by the parameter 6 in u(s) = fu,{s). Self-protection in this example is effort
directed at containing costs. With more costly and sophisticated medical
technology, the decisions regarding what treatments or preventions to under-
take have a much more dramatic impact on the distribution of losses—decades
ago, the choices did not make much of a difference because there was less
technology to use. Hence, an increase in technology 6 raises the marginal
benefit in the first-order condition determining self-protection

pOlis| = cs

Since the marginal benefit is increased by both technological change and capi-
tation, the change interacts positively with the capitation rate in determining
the level of self-protection
S0 > 0

In the first-order condition of the demander which defined the G-function
above, this implies that the indirect effect of raising capitation s,(@; — R;).
is raised when technology improves. Consequently, if this indirect effect
dominates the direct effect on cost-reduction by change of contract form ,R,,
improved technology will raise capitation rates. The benefits of capitation
under improved technology results from the fact that managing care (and
hence costs) has a greater effect as the feasible set of technologies improve:
that is, loss control matters more. This is important for interpreting the
rise in cost-containment through capitation in countries where technology
is relatively more advanced, such as the US. This is consistent with the
rise in capitated service that has been observed. In other words, risk has
been reallocated toward providers because provider actions now have a much
greater impact on the medical loss distribution.



3 Dynamic Aspects of Self-Insurance

When multiple periods are introduced into the analysis, the possibilities for
risk-sharing are expanded. While the basic tradeoff between risk and in-
centives remains, the possibility of bearing a share of a moving average of
past losses offers a way to internalize incentives at lower cost. That is, the
averaging of losses over multiple periods reduces the costs associated with
risk-bearing.

Some risk-sharing in the insurance world does indeed involve smoothing
of losses over multiple periods. Experience rating in commercial insurance
is a prime example. In workers’ compensation, the typical experience rating
mechanism involves the use of three years of loss history in setting prospec-
tive rates. Experience rating is especially prevalent for middle- sized firms
offering a degree of risk-bearing which falls in between the extreme cases of
full insurance and self-insurance.

In this section, we start by characterizing self-protective behavior in the
presence of experience rating. We find that this type of risk-sharing tends to
induce dynamics in self- protection; under some circumstances, the dynamics
lead to self-correction in claims over time. We then move on to examine
optimal experience rating, focusing on both the optimal degree of risk-bearing
and on the optimal length of the experience rating period.

3.1 Dynamic Self-Protection Implied by Self-Insurance

The basic motivation for self-insurance in a dynamic setting is the same
one found in the static setting. By taking some measure of responsibility
for losses, the firm can make a credible commitment to engaging in loss
control activities, and, hence, can be priced accordingly. We analyze multi-
period experience rating here as a risk-bearing mechanism, an analog of self-
insurance in the static case. Both impose controllable risk on the party
insured. Indeed, being fully experience rated amounts to being uninsured.
However, the extension of the number of periods changes the analysis in two
ways. First. when a firm’s insurance costs depend on its loss history, we
may expect self-protecting behavior to depend on that history. Second, in
addition to selecting a degree of self-insurance, p, 1t is necessary to select a
time period over which losses will be shared.

Assume that time is discrete and that the market experience rates the
group using A + 1 periods '7. We denote by the vector = (z1, .2k, Tx41)

18



the loss history, which contains information on the claims of the last K + 1
time periods where x; is the most recent period and rx 4, the least recent.
The vector x takes values in a compact subset X C R¥*!. Uncertainty enters
the model through a shock w € €. For ease of exposition, we will focus on the
case in which the shocks are i.i.d. and Q is a closed interval in R. The shock
w, the pre-chosen level of self-protection and the group size affect the claim
of the new period through z(s,n,w); hence, the next period claim vector ' is
distributed according to F({z'|z,s,n), where the law of motion for the state
variable is expressed as dropping the last period and adding the new one:

' = (z.y(z)) (3)

Here, y(x) = (z1,...,zK) is the past state when the claim of the most dis-
tantly rated period, x4, has been dropped. We assume that z(s,n,w) is
decreasing in s so that larger levels of protection will be associated with
smaller claims. This implies that if s > &', then F(z'|s',n,z) exhibits first-
order stochastic dominance over F(z|s,n,z). In the case of a large group in
which variance can be ignored, this distribution is degenerate.

The market price now depends on the degree of experience rating and
the vector of claim experiences according to the function p(z,p), assumed
increasing in x. We will often focus on a simplified form of experience rating,
analogous to the static analysis:

p(z,p) = pZ + {1 — p)m

where T = (&1 + .. + zx41)/(K + 1) is the average over the claim history.
The choice of self-protection given past losses implies the recursively defined
value function as in

Vir) = max{u(w — p) — c{s) + 5/ V(e"\dF(&'|z,s,n)}

where the discount factor is given by é € (0. 1), the current utility by uw(w —
p) — c(s), and, as in the static case. u and ¢ are increasing with the former
concave and the latter convex.

3.2 Dynamic Insurance for Large Groups

To illustrate the basic idea behind self-protective dynamics, we first start
with the case where losses are deterministic, as would be the case when
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considering a very large firm. In this limiting case, F' is degenerate, and the
transitions of the claims are

x' = (2. y(z)) (4)

This is now a deterministic function mapping the past claims and self-
protection into the new claim (the notation » = oo and p = 1 is omitted
for brevity). The value function is then given by:

Viz) = msax{u(w —p)—c+8V(z,y(z))} (5)

In a static setting, the relationship between self-protection and self-insurance
was argued to be positive. Now, in addition on depending on p, self-protection
depends on the state variable of past claim histories. In general, the loss his-
tory can affect the marginal benefit of self-protection in two ways. The first
is through wealth effects, which make risk-averse groups with poor loss his-
tories have a higher marginal utility of income. Therefore, the returns to
self-protecting are higher after poor performance for these firms. The second
is through the shape of the premium function.

Experience rating, in general, means that premiums rise with past claims;
this is simply a statement about the first derivative of p. The interesting point
is that the policy function depends on how the group is experience rated in
terms of the second derivative of p. This is so because the interactions be-
tween the claims of different periods are key to the dynamics of claims under
self-protection; a nonlinear premium schedule implies that different claim his-
tories will be associated with different returns to self-protection at the mar-
gin. It can therefore be shown that in the case when the premium function
is linear and there are no wealth effects, the optimal level of self-protection
is constant across all states (s{z) = s); self-protection does not depend on
the claim history since future claim realizations do not interact with past
realizations in determining the premium. This implies an immediate tran-
sition to a steady state claim level. In this case, the level of self-insurance
operates just as in the static case; it raises the history-independent level of
self-protection s, > 0. '

On the other hand, with wealth effects or strict convexity in the premium
function, the following shows that self-protection will lead to self-correcting
dynamics .

Proposition 3 [f z is linear and either of the following conditions hold:
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1. p is strictly conver.
2. u is strictly concave.

then the optimal policy function s(x) is weakly increasing in the claims (z;.... xx)
of the last i periods.

Proof: See Appendix.

This proposition states that the effort today to reduce future claims rises
with the claims experienced in the last K periods. Note that the claim of the
most distant period, K + 1 periods back, does not affect the current choice
of self-protection since it will drop out of the experience rating function in
the next period. Intuitively, if there are wealth effects or convex premium
schedules. then the marginal benefit of self- protection rises with the level
of past claims—this leads to self-correction. This is because prices are more
sensitive to changes in claims for poor claim histories, so that the marginal
premium reductions are larger when claims histories are poor. When self-
protection is increasing in past claims in this manner, it follows directly that
future claims are decreasing in past ones.

Corellary 1 The claim of a given period is a negative function of claims the

last K periods;
dz dz ds
=(— <0, k=1, ,K
dxy, (ds )dz’k - h

This states that claims are self-corrective in that larger claims in the cur-
rent period induce lower claims in the future through increased self-protection
'8, This result is also consistent with empirical evidence. as described by

Ruser [21]

3.3 Dynamic Insurance for Small and Market-Insured

Groups

In the case when firms are smaller, so that the future prices are uncertain.
we may obtain stochastic results analogous to the deterministic results of the
previous section.

Proposition 4 [f = is linear and cither :



1. p is strictly convezr function of .
2. u is strictly concave.

then the policy function s(r) is weakly increasing in the claims (ry....zx) of
the last K periods.

Proof: See Appendix.

Hence. even when the group is small, so that there is variance in future
claims and prices, self-protection rises with past claims in a self-corrective
manner. This is the stochastic analog to the negative relationship between
current and past claims. This generalization is in terms of K negative lags
on the current claim.

Corollary 2 The conditional mean of current claims is a negative function
of past claims
d

_E[Zl)(l :ml....‘X}(‘:I}\"}SO, k‘:l,..,K
d.’ltk

This corollary has empirical content in the sense that if one estimated a
specification considering the effects of A lagged claims on current claims,
the coefficients are predicted to be negative. The corollary is also important
because it allows one to obtain a key difference between the dynamic claim
behavior of self-insured and market insured groups. The following corol-
lary shows that, for self-insured groups, lagged claims should not bear any
relationship with future claims.

Corollary 3 [f the group is self-insured. there is no effect of lagged claims
on current claims;

d
p=RK=1=—FE[ZINi=r.. Xx=zx]=0, k=1,..H4
dz;

Proof: See Appendix.
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Note that in a dynamic setting, self-insurance implies that the rating
window reduces to only the current period. Each period’s stochastic premium
is determined only by that period’s claim. The key point is that past claims
do not interact with future claims in the price of insurance when the group
is self- insured. There is self-protection, but it will not exhibit the negative
lag-structure of (partial) experience rating.

3.4 Dynamic Equilibrium and Size Effects on Self-Insurance

The basic problem we examine, how the optimal degree of self-insurance
varies with group size, is now more difficult to solve due to the self-corrective
properties of self-protection discussed in the previous section. The value
function may be written out as a function of self-insurance and size as in

Viw,pyn) = ulw — (o3 + (1 = p)m]) = e(s) + 8 [ V(&',p,n)dF(e], 5,m)

where self-protection and market prices are implicit functions of the variables
pn, and 2. The most preferred level of self-insurance then satisfies

max V (z,p,n)
P

and the dynamic object of interest is the schedule p(x, n)—the optimal degree
of self-insurance as a function of loss history z and firm size n.

As in the static analysis, an equilibrium condition on the price of market
coverage m 1s needed to close the model. Furthermore, we require mutual
consistency between the functions s and m. That is, the market price m must
be consistent with the level of self-protection being chosen in equilibrium,
and the level of self-protection s must be consistent with the market price
of insurance. We consider a steady state that requires that m be equivalent
to the average loss across all firms; note that this may involve mispricing of
individual firms and requires commitment on the part of insurers and firms '*.
The optimal policy function induces a transition function on the state space
X. Under fairly general conditions (see Lemma 3 in the Appendix), we show
that there is an invariant distribution over this state space. and our interest
is in the associated univariate distribution F(z|n,p,m) for each period. **
This invariant distribution is the stochastic analog to a steady state in a
deterministic setting. In equilibrium, then, the zero-profit condition for the
insurer will require that:

mip,n) = [ edFzln,p,mip,n))
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Insurance coverage is priced at the average loss over time.

In principle, the solution approach involves calculating the equilibrium s
and m for any given value of p, after which the most preferred level of self-
insurance according to V(x,p,n) vcan be obtained. However, this general
problem does not offer an easily-characterized solution. To make the analysis
tractable, we analyze a linear-quadratic case;

u=-p" & c(s)=cp+as & p=pz+(1—p)m & Elz(s,w)]=p—3s

If the state variable is vectorized according to z = (1, z;,...,2x+1)’, the law
of motion z' = (z,y(r)) may be expressed in the standard ! linear fashion
Az 4+ Bs + Cw, where

- - - - — ~

1 00 0 0 0
g 00 -~ 00 ~1 1

(000 -~ 1 0] | 0 ] | 0]

As before, w represents the shock that is added to the mean of the loss (in
this case, i — s) to produce the next period loss. We assume that w is normal
with mean zero and variance o?/n. Because of the linear-quadratic structure
of the problem, we know that the value function is quadratic and that the
optimal policy function is linear in the state variable and independent of
uncertainty. It can be shown that optimal policy function satisfies:

sle)y=s,+(z1 + ..+ k)

where s, is some constant. As discussed more generally previously, self-
protection rises with past claims ; s(z) is increasing in the arguments of z.
In this particular problem. s(x) exhibits perfect negative correlation with
each past claim so that average losses are time-invariant

= s,

K +1

r =

with the corresponding price being constant over time

[— s

K+

p =0 ‘1’]+(1—p)m
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Using the fact that the optimal policy function sets the average loss at
fixed level in each period, we may write the first order condition for s as:

de K §%u'(p)
E - p[kz K + 1 ]

:=1

Imposing the equilibrium pricing constraint on the market price one obtains

— 7 [,_I,—-SO
TR

[nserting this into the first-order condition and, along with other substitu-

tions, one obtains
2p L k
c = m )
1= [kg ]

This condition implicitly defines the equilibrium insurance price, denoted
m(p, K), as a function of self-insurance and the length of the rating window.
It follows directly that equilibrium losses are decreasing in self-insurance but
increasing in the length of the window:

m, <0 & mg2>0

As an the static case, more self-insurance internalizes loss control so that
prices fall. Also, as the length of the window is extended, the benefits of loss
control are deferred further into the future. Since the future is discounted,
this implies that the returns to reducing losses fall with the length of the
window. The length of the window in which rating takes place affects self-
protection negatively because the marginal benefits of current self-protection
are diluted. This suggests an incentive value of the short windows observed
in health-related group markets; a very small fraction of the years the group
has been insured is used *2.

In order to establish how size affects the optimal level of self-insurance
and the optimal rating window, p(n) and K(n), we focus on a steady state
loss level for the value function ?*. That is, we consider the instituting
of an experience rating scheme where each element of the loss history is
set at the mean prospective average loss; this may be interpreted as firms
entering the plan with a “clean slate” on day one. Under this assumption, we
can take advantage of the certainty equivalence principle (see, for example.
Sargent [22]) to calculate the value function associated with a given p: the
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value function will then be equal to the (easily calculated) value function for
the deterministic problem minus a correction for uncertainty.
m? (co + €157) p? f‘i

Ve K+l =15 -5 " [&+1)pn

where s* = g — m 1s the optimal policy.

This may be interpreted as the value of perpetually maintaining a loss
level of m(p, K + 1) minus the costs associated with the uncertainty. This
follows because the deterministic policy function sets the average loss level
at m in each period; the value of pursuing such a policy (due to our simplifi-
cations regarding initial conditions) is just the sum of the first two terms in
the above expression. The last term represents the impact of uncertainty.

In choosing p, the above expression contains the costs and benefits we
must consider when choosing p for a fixed window K. The first order condi-

tion is given by:
o2
n

m, P
—2m+ ] = 2——
T2t al =2y
The left-hand side represents the marginal benefit due to decreasing the aver-
age losses m-the marginal benefit of premium reduction minus the marginal
cost of self-protection. The right-hand side represents the marginal increase
in risk costs due to raising self-insurance p. As firm size n increases, this lat-
ter marginal cost drops; it is evident that the optimal choice of self-insurance
will be weakly increasing in size (for fixed K):
dp
>0
dn —
The opposite logic applies to the optimal choice of window K for a fixed level
of experience rating. The first order condition is
20%  o? mE

(K+1Pn 1 52—l

Now the left-hand side represents the marginal benefit to increasing K
through decreasing risk costs. The right-hand side is the marginal cost;
since average losses rise as K is increased, the cost is in terms of the excess
of the marginal return to self-protection over the marginal cost. Evidently,
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as size is increased, the marginal benefits of risk reduction will drop; hence,
the optimal window length will weakly decreasing in size

i <0
dn —
The intuition behind these results is simple. With the window length
fixed, the benefit of raising self-insurance is that average premiums are re-
duced due to the internalizing of incentives. However, the cost is that the
group bears increased risk. When group size rises, the marginal increase in
risk due to self-insurance drops; hence, it is optimal to increase self-insurance
further. With self-insurance fixed, the benefit of raising the window length
is that the costs associated with risk-bearing decrease. The cost is that the
incentive to invest in loss control is weakened, and this is reflected in higher
average losses and insurance costs. When group size rises, the marginal de-
crease in risk costs drops, encouraging a decrease in K. The following propo-
sition describes the optimal levels of risk-sharing and length of experience
rating for this linear-quadratic problem.

Proposition 5 Some risk sharing is optimal and the optimal length of ex-
perience rating is weakly decreasing in firm size; p € (0,1) and dK/dn < 0.

Proof: See Appendix

In this problem, an increase in A can be used to completely offset the
increases in risk that are associated with an increase in p. However, such
offsetting is associated with increased benefits on the incentive side; propor-
tional changes in p and K drive the average cost m lower while leaving risk
unaffected. Hence, smaller firms support greater levels of risk-bearing by
smoothing risk over a longer window of time.

To illustrate, in US workers compensation insurance, self-insurance and
window length vary according to firm sizes. Large self-insured or retrospec-
tivelv rated firms usually bear all of the loss risk (p = 1) and are rated on
a window of minimum length such as a single year. Medium-sized firms are
usually experience-rated and bear some risk through partial self-insurance
(0 < p < 1); the rating windows associated with experience rating plans typ-
ically fall between three and five years and are thus longer than the minimum
length ?*. In order to support levels of risk sharing that might otherwise be
imfeasible, the rating window can be extended.

(8N
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Note that the short rating windows observed in practice, and which we
have attempted to explain on a theoretical basis, are not consistent with much
of the existing theory on multi-period insurance contracts. For example,
Rubinstein and Yaari {18] use penalties based on infinite loss histories to
solve the problem of moral hazard. Our approach offers a possible reason
why all available information is not used in the rating process.
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4 Concluding Remarks

As many forms of insurance are produced by groups themselves rather than
purchased in the market, particularly in health-related insurance markets,
this paper attempted to better understand the determinants of whether
groups produce insurance themselves or consume it through the market. The
tradeoff stressed facing a group in its make-or-buy decision was that self-
insurance is a substitute to market insurance which rewards self-protection
but forgoes the pooling of risks with members outside the group. Relying
on this simple tradeoff, we arrived at several useful implications that were
illustrated for health-related insurance markets, including employment-based
insurance as well as managed care provision. Although our focus was mostly
on health-related insurance, there are other forms of insurance for which our
arguments may be relevant **. We believe the general results are robust to
other cases: the basic tradeoff between risk and the internalization of price-
externalities seems fundamental to the make-or-buy decision of groups.

A natural future research question concerns a systematic empirical anal-
ysis of our predictions using firm-level panel data on group insurance plans
26 There exists several empirical studies which are suggestive of our effects
of experience rated group insurance. Bruce and Atkins [4] find a significant
change in workplace safety following the introduction of workers compensa-
tion in several industries in Canada. Ruser [19] , [20] finds evidence of the
impact of workers’ compensation experience rating on US firms, and docu-
ments evidence that larger firms tend to invest more heavily in workplace
safety to lower workers compensation claims. Scholz and Gray (23] and
Ruser [21] find evidence of auto-regressive claims in plant occupational in-
jury rates over time, which indicates support for our prediction of a negative
lag structure. Lastly, our size prediction on claims is consistent with evidence
of both Ruser and Harrington [10] , who find that expected losses decline with
firm size in workers’ compensation insurance. Furthermore. the patterns of
experience rating in workers’ compensation markets, with self-insurance for
the largest firms, but intermediate levels of risk-sharing with longer rating
windows for medium-sized firms, was again suggested by our discussion and
may hold in other markets as well. There may, of course, be other reasons
for insurance behavior to be related to size-a primary one being increased
bargaining or market power. However, the bargaining effects of size would
seem to suggest that self-insurance. which does not utilize the bargaining
power in the market, should be negatively related to size.

29



A second set of issues raised, but abstracted from here, is the impact of
the industrial organization of the insurance market in general, and market
power in particular. Presumably, rents in the insurance market raise the
demand for the substitute self-insurance ?7. However, the elasticity by which
groups substitute away from market insurance should increase with size, since
self-insurance is a better substitute for larger groups. This would lead one
to suspect that markups are larger for smaller groups as they face worse
opportunities insuring alone and hence are less elastic in their make-or-buy
decision.

Lastly. understanding the issues raised in the unregulated markets an-
alyzed here may suggest insights into impact of regulatory or fiscal inter-
ventions on group insurance. We did not elaborately analyze the impact of
public interventions here, e.g. state mandated benefits, subsidies for em-
ployment based insurance, or sales taxes imposed on market insurance such
as premium taxes. The many reforms that have been proposed to increase
coverage in the small group market in the US 23, such as underwriting restric-
tions and small firm tax-subsidies, impose important distortions in the group
insurance market ignored in the initial analysis here. However, it seems that
the underlying tradeoffs discussed will be present under such regulations as
well. A better understanding of the distortions or benefits induced by reg-
ulation in environments such as the one analyzed seems to be an important
avenue of future research.
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FOOTNOTES

1. Source: Conning and Company[7]: estimate includes self-insurance, cap-
tives, risk retention groups, and large-capacity facilities.

2. “Out-of-pocket” costs include both premiums and retained losses.

3. Our analysis assumes fair {(actuarial) pricing of insurance, abstracting from
issues such as premiwm taxation-which reflects our suspicion that unfair in-
surance pricing has been overemphasized as a motivation for risk-bearing in
insurance markets. However, there are some insurance markets, such as the
markets for the funding of emplovee benefit plans, in which the taxation and
regulation story is likely to have merit. See Jensen, Cotter, and Morrisey [14]
for theory and evidence on the impact of premium taxation and regulation
on the decision to self-insure benefit plans.

4. See e.g. Pauly [16], Zeckhauser [29], Ehrlich and Becker [8], Holmstrom [13],
Harris and Holmstrom [12] and Gaynor and Gertler [9] for an application to
physician partnerships.

5. The 1996 Cost of Risk Survey [26} indicates significant differences in reten-
tion of risk across lines of insurance for U.S. firms; the amount of workers’
compensation risk retained was significantly greater than the amounts of
property and liability risk retained.

6. In the US, the fraction of private health-insurance coverage, not includ-
ing by the public Medicare and Medicaid programs, that is self-insured or
insured through and HMO has grown from about 6 percent of the private
market in 1945 to about 60 percent in 1994 (Health Insurance Association
of America [11]).

7. For example, in workers’ compensation, an employer may invest in safety
precautions for the purpose of preventing accidents; she may also pressure
injured employees to refrain from filing claims. Another example is provided
by the efforts a hospital can direct toward limiting stays for patients under
a managed care contract when the hospital shares some of the financial risk
associated with the cost of caring for the patient pool.

8. This function, like all functions discussed if not mentioned otherwise, 1s
assumed to be well-behaved—continuous and twice differentiable.
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9. Here we assume for simplicity that self-protection s depends only on p;
this would be true, for example, if preferences were separable in the mean
and variance.

10. Although not very enlightening, the general implicit function ¢ defining
p(n) may in this case be written as G = pluy — up] + (1 — p)[ug — wy] > 0
where u, = u[u(s(p)), o(p,n)} is short-hand for the utility under p.

11. This implies that both a larger mean and a larger variance of the size
distribution of an industry may imply more self-insurance; variance increases
may imply large masses on upper tails. If this is the case, then an industry
with a larger variance in its distribution of firm sizes will feature a larger
fraction of self-insuring firms.

12. By this we mean lim,,o, p'(s) = 0 and lim, p'(s) = oo, with the reverse
conditions holding for ¢/(s).

13. Sloan et al [24] document physician disapproval of the use of experience
rating in medical malpractice insurance, despite presence of economies of
scale and the actuarial validity of past claims as a rating variable. Citation-
masking practices and “goud driver-statutes in auto insurance may be in-
terpreted as evidence of attempts at limiting experience rating in personal
insurance markets.

14. The proof of this is omitted for brevity.

15. If the provider has a portfolio of [ contracts, as opposed to a single con-
tract, the net return would be p = Y21_, fip; where f; is the fraction of the
patient pool in contract ¢. The analysis then would take into account diversi-
fication whereby negative covariance across HMO contracts would be valued
in addition to a lower stand-alone variance.

16. For a detailed discussion of the interaction between technical change and
different types of insurance contracts. see Baumgardner [2].

17. For example, in most states. the standard experience rating formula for
workers’ compensation insurance uses a firim’s loss experience from the most
recent available three-year period.

18. Self-protection may also involve not claiming losses (e.g. not seeking care
for small health claims, not filing small auto-claims, or paying off workers
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to not file workers compensation). This fits the problem analyzed when the
premium is a function of claimed losses p(z — s) where s is unclaimed loss.
If this is the only form of self-protection, then a simple first-order condition
equates the marginal loss of not claiming today to the marginal benefit of
lowering the premium today U, = Up%. The claim is then less than the
total loss which amounts to a self-deduction. Even without a deductible, the
experience rating makes the insured act as if he had one.

19. Another approach, which becomes intractable, is to require the market
price m to vary with the state variable of loss histories z and thereby deliver
correct prices for each firm at every point in time.

20. This slightly abuses notation. Having an invariant multivariate distri-
bution F(zy,..,zx|n,p,m) is equivalent to having an identical invariant uni-
variate distribution F;(z;|n,p, m) for each claim period.

21. See e.g. Sargent [22] and Anderson et al. [1].

22. This is also exemplified by some academic institutions claiming high pro-
ductivity of older members because "one is only as good as one’s last paper’.

23. The characterization of the optimal p is not sensitive to this simplification.

24. Interestingly, The Workers’ Compensation Insurance Rating Bureau of
California asserts that "the experience period has been established to be long
enough to provide a good spread of experience, yet short enough so that the
experience modification is responsive to your efforts to control losses™ in a
communication to employers.

25. For example, Topel [27],{28] describes the experience rating of employment-
based unemployment insurance and estimates that about one third of tem-
porary unemployment is associated with the form of experience rating used.

26. For example, Philipson and Zanjani [17] assess the empirical validity of
our predictions for the large Workers Compensation program in California
using a unique data set obtained from the state insurance board.

27. This behavior is exemplified by the recent drop in self-insured workers
compensation in California as the rate-regulations which had inflated prices
were eliminated.
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28. See e.g. Blue Cross and Blue Shield Association [5] and Congressional
Research Service [6].
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APPENDIX

Proof of Proposition 1: Without loss of generality, set # to one. We may
write:

L=pu(s)+e
where € is normally distributed with mean zero and variance % The em-
ployer out-of-pocket costs for insurance are then:

(I =p)m+pL = (1-p)m+p(u(s) +ec)
The first order condition defining the implicit function G is given by
[ st = Vg — dftenide =0
The incentive compatibility condition gives us:
ds w(s)
dp " pu'(s) +¢'(s)

Using this and the assumed conditions, we observe that the problem is glob-
ally concave and has an interior solution. Comparative statics yields:

dp = [Ulg—dfs

dn SocC
where ¢ = %ﬁ—i}‘i The Inada-type conditions guarantee that ¢ > 0. Exam-

ination of f, reveals that %ﬁ > 0. Recall that f is:

G
e %

fle,n) =

2
o
27rn

fr = flae* 4+ 3], where o, 3 are constants, and a < 0. Hence, using the FOC,
the numerator of Z—Z is now

- [wla = dlac!lf(en)

This is just the FOC with an additional “weight”. Recall that with constant
weights (just the FOC), the expression would be zero. Note, using the sym-
metry of the normal distribution, we may rewrite the previous expression
as:

=20 ["(a(Z + pola+ ] = w'(Z — pellg — ) f (e m)
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where Z is a constant. The term
(W(Z + pe)lg+ €] + u'(Z — pe)lg — €]} = Gle)

is obviously positive for ¢ < g. For ¢ > q. the expression is strictly decreasing.
Hence, there exists an € such that the term is less than zero for all € > ¢*
and greater than or equal to zero for all € < ¢*. Hence, rewrite the expression
as:

2ol [" Gloesem + [T 60 ()

Now, given the derived properties of GG, we can conclude that the preceding
expression is [ess than:

2ol casten + [T G em] =0

Proof of Proposition 2: The proof of % < 0 is analogous to the proof of
j—;’ > 0. To prove the second part, observe the FOC:

ds

/u'[(—@y' — c’)—% —€f=0

Inada conditions and the positive third derivatives guarantee that ds/dp 1s
positive and that the SOC is satisfied. Substitution for ds/dp and compara-
tive statics on the FOC yields:

d d
S0C1Z [ u'l(—8u' - )d—p —df

;gg)

,d([_e:u,_c dp _
+ [ T If=0

The last term is positive. The second term is zero. The result, then, follows.
a

Lemma 1 The value function associated with Proposition 3 is unique, con-
tinuous, decreasing, and concave. Furthermore, the optimal policy correspon-
dence is a continuous. single-valued function.
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Proof of Lemma 1: Let S be the choice set for self-protection. Assume X
and S are convex and compact subsets of their respective Euclidean spaces.
Let C(X) be the space of bounded and continuous functions on X. Take
V € C(X). Define the operator T : C{X) — C(X) by Equation 5. By Black-
well’s Sufficient Conditions T is a contraction (see Stokey et al,[25]). Hence,
the Contraction Mapping Theorem ([25], p. 50) implies that T has exactly
one fixed point in C'(X). Furthermore, it is clear that 7 : C'(X) = C"(X),
where C’(X) is the space of bounded, continuous, and weakly decreasing
functions on X and C"(X) is the space of bounded, continuous, and strictly
decreasing functions on X. Since C'(X) is a closed subset of C'(X), we may
apply Corollary 1 to the Contraction Mapping Theorem ([25], p. 52) to con-
clude that V € C”(X). Similar logic establishes that V is weakly concave.
The Theorem of the Maximum implies that the optimal policy correspon-
dence is upper hemi-continucus and non-empty. To see that the correspon-
dence is also single-valued, assume not. Then, for some z € X, there are two
values sy and s; which are optimal. But, the properties assumed for z and ¢
imply that s; and s, are strictly dominated by a convex combination of the
two values, which contradicts the assumption of optimality. O

Proof of Proposition 3: Since p(x) is strictly convex, it follows that the
value function V(z) is strictly concave. Following Benveniste and Scheinkman [3].
we take a point z° in the interior of the state space and construct a function
W (z) which is strictly concave and differentiable in a neighborhood N of
29, while satisfying W(z?) = V(2°) and W(z) < V(z) for all z € N. We
know from Lemma 1 that the optimal policy correspondence is a well-defined
continuous function. Write out z? as:

0_ ;.0 0 0
o0 = (2 Ly TR )

Now define a recursive set of vectors:

ri(z%) = (2(s(2®)), 27, -+, 2%)

ra(2®) = (2(s(r1(2?))), 2(s(2°)), 2F, - - 2R y)
rr(2?) = (2(s(rr 1 (29)) ,r?)

rr(a®) = (2(s(re(x®))). - -, 2(s(2°)))
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Now define W(z) as

u(w —p(:v)) — o(s(2°)) + 8(u(w — p(2(s(2°)). 21, -+ xx)) = e(s(rm(z))))+
&*(u U‘—P 2(s(ry (2N 2(s(2%)), oy ko)) = e(s(ra(29))))+

§E (u(w - p(z(s(v'h'_l(;ro)), coeyz(8(29), 21)) = els(re(a®)))+
RV (riea(2?))

This function is evidently concave and differentiable in the neighbor-
hood N by assumption, and satisfies the requisite properties by construction.
Hence, by the Lemma 1 reproduced in [3], V/(z°) = W'(z°). The first order
condition for optimal self-protection, then, is given by:

A(s)+ 8Vi(z(s),x1 -+ zx)2

where A and C are the obvious matrices which deliver the law of motion
r' = (z,y(z)). Examination of the formula for Vi implied by W(z) and
consideration of the assumed conditions reveals that 1} is decreasing in all
arguments. This, together with the convexity of ¢ and monotonicity and
concavity of V', imply that the optimal level of self-protection is weakly in-
creasing in x (strictly increasing when the optimal level lies in the interior of

=

Lemma 2 The value function associated with Proposition 4 is unique, con-
tinuous, decreasing, and concave. Furthermore, the optimal policy correspon-
dence is a continuous, single-valued function.

Proof of Lemma 2: Assume X is convex and compact and S is a closed
interval on the real line.  satisfies Assumption 9.5b of [25]. Let C({X) be
the space of bounded and continuous functions on X. Take V € C(X). By
Lemma 9.5 ([25], page 261), the integral is continuous in z. Hence, we define
the operator T : C'(X) — C(X) by the Bellman equation. Once again, an
application of Blackwell shows that 7" is a contraction, and we apply the Con-
traction Mapping Theorem to conclude that T has exactly one fixed point
in C{X). Furthermore, it is clear that 7 : C/(X} — C"(X), where C'(X) 1s
the space of bounded, continuous, and weakly decreasing functions on X and
C"(X) is the space of bounded, continuous. and strictly decreasing functions
on X (this step relies on Lemma 9.5 as well). Since C'(X) is a closed subset
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of C(X), we may apply Corollary 1 to the Contraction Mapping Theorem
(25], p. 52) to conclude that V' € C"(X). Similar logic establishes that V'
is weakly concave. The Theorem of the Maximum implies that the optimal
policy correspondence is upper hemi-continuous and non-empty. To see that
the correspondence is also single-valued, assume not. Then, for some z € X,
there are two values s; and s; which are optimal. But, the properties as-
sumed for ¢, z, and the assumption of independent and identically distributed
shocks imply that s; and s; are strictly dominated by a convex combination
of the two values, which contradicts the assumption of optimality. O

Proof of Proposition 4: Since p(z) is linear and U strictly concave, 1t
follows that V(z) is strictly concave. Following the idea of Benveniste and
Scheinkman, we take a point z¥ in the interior of the state space and construct
a function W{(z) which is strictly concave and differentiable in a neighborhood
N of 2°, while satisfying W (z®) = V(z°) and W(z) < V(z)forallz € N. We
know from Lemma 2 that the optimal policy correspondence is a well-defined
continuous function. Write out z° as:

2’ = ('L'(l)w ‘Igw Ty x?\’+1)

Recall the assumption of i.i.d. shocks and let £{w) represent the probability
measure on the measurable space formed by @ and the Borel sets. Define
the recursive set of functions:

r(%w) = (z(s(fo) wi), 29, )

ra(z®, wi,wa) = (2(s(rm (2° wl)) wa), 2(s(z 0)1w1)’r[1)"”’$?&'—1)
T‘}\"(;E}J,wl,'-',w;\’) = (z(s(rx-1(2% w1, s wk-1)),WK), - ,JE?)

rrer (20w, wrer) = (2(s(rk (@ wi, - wk)) Wi ), 2(s(2%),w1)

where w; are draws from ; = (). Define W(x) as:

— p()) — efs(e)+
§ [l — pl=(s(2%),w0), 21,
5 [ flulw — pl=(s(r(2° wn

o xx)) — e(s(r (20 w)))]df(wn )+
(s(ra(z®,wy,w2)))]dl(wr )df(ws) M

2))e2(s(2%), wi), 21,00 TR-1)) -

+

B f- f[;t(w — p(z(s(rr_i (e wr, - wr1)), o 2(s(20), wr ) x)) -
e(s(rr(z® wi, - wi)))]df(wr) - - db{wi )+

gRI [ V(T’K+1('~FO»W1~"' Wiy ) ) dl{wr) - - l5’(¢01‘\+1)
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This function is evidently concave and differentiable in the neighborhood N
by assumption, and satisfies the requisite properties by construction. Hence,
by the Lemma 1 reproduced in [3], V/(2°) = W'(z°). The first order condition
for optimal self-protection, then, is given by:

d(s)+ 5] Vilz(s,w),z1, -+, zk)2 (5, w)dE(w)

Examination of the formula for Vi implied by W{z) and consideration of
assumed conditions reveals that V] is decreasing in all arguments. This, to-
gether with the convexity of ¢ and monotonicity and concavity of V, imply
that the optimal level of self-protection is weakly increasing in z (strictly
increasing when the optimal level lies in the interior of S). O

Proof of Corollary 3: Since the value function satisfies
V(z) = maxU(w,s,p,n) + (5[V(:c')dF(:c’|s, n)
the first order condition is
Ulw,s,p(z,n),n) + 5/ Viz' ') fs(&'|s,n,w)ds’ =0

Separability in / then implies that the optimal choice of s does not depend
on (zy,..,Zx), so that ds/dz, = 0. O

Lemma 3 In addition to the previous assumplions, with iid shocks, there
exists an invariant distribution associated with the transition function.

Proof of Lemma 3: Following [25] (page 286), define:
H(z,A) = {w’' € Q: Bz + Cz(s(z),w') € A}

forall z € X, A € X, where B and C are the obvious matrices which deliver
the law of motion z’ = (z,y(z)). Then P(r,A) = Q(H(z, A)) defines a
transition function on (X, X’). Since both z and the optimal policy function
s are continuous, P has the Feller Property. To see this, observe that the
integral:

/f(w’)P(;c,d;r’)
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(where f is bounded and continuous) may be rewritten as:

/f(B:c + C2(s(2), ) Q(d)

which is bounded and continuous by Lemma 9.5 of [25]. The result follows
from Theorem 12.10. O

Proof of Proposition 5: Since self-protection must be incentive-compatible,
it is evident that some level of risk-bearing is necessary. Next, we prove that
the optimal A" must be falling with firm size. Assume not. Then there exist
firm sizes n, > ny such that K; > K, where we denote the optimal values
of K and p for firm : by K, p;. First, note that the optimal ratio g7 must
be increasing in firm size. Since the optimal ratio is increasing in firm size:

P1 > P2
K, +1 K;+1

But consider g = pQ%_%. The pair {p, K1} is a feasible choice for n,; and
yields a lower mn at the same risk level, contradicting the supposed optimality

of {pz. K2}. O
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