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ABSTRACT

This paper develops a method for option hedging which is consistent with time-varying
preferences and probabilities. The preferences are expressed in the form of an empirical pricing
kernel (EPK), which measures the state price per unit probability, while probabilities are derived
from an estimated stochastic volatility model of the form GARCH components with leverage. State
prices are estimated using the flexible risk-neutral density method of Rosenberg (1995) and a daily
cross-section of option premia. Time-varying preferences over states are linked to a dynamic model
of the underlying price to obtain a one-day ahead forecast of derivative price distributions and
minimum variance hedge ratios.

Empirical results suggest that risk aversion over S&P5S00 return states is substantially higher
than risk aversion implied by Black-Scholes state prices and probabilities using long run estimates
of S&P500 return moments. It is also found that the daily level of risk aversion is strongly positively
autocorrelated, negatively correlated with S&P500 price changes, and positively correlated with the
spread between implied and objective volatilities.

Hedging results reveal that typical hedging techniques for out-of-the-money S&P500 index
options, such as Black-Scholes or historical minimum variance hedging, are inferior to the EPK
hedging method. Thus, time-varying preferences and probabilities appear to be an important factor

in the day-to-day pricing of S&P500 options.
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I. Introduction

Following the lead of Black and Scholes (1973), the three elements of asset pricing — payoffs,
probabilities, and preferenc.és — are approached in a similar manner in many option pricing models.
Payoffs are determined by the contractual specifications of the asset, while probabilities are defined
by a dynamic model of the underlying price. Subsequently, the underlying price process parameters
are estimated from historical price data, and hedge ratios are obtained by differentiating the option
pricing formula with respect to state variables. Usually, option pricing models set in discrete-time
(e.g. Rubinstein (1976), Stapleton and Subrahmanyam (1982), Amin and Ng (1993), or Duan (1995))
require specific preference assumptions, but do not require estimation of preference parameters. Little
attention has been focused on the realism of the implicit or explicit preference assumptions inherent
in the specification of the underlying price process or solution of the model, and the effects of
preference misspecification on hedge performance.

Modern approaches to option pricing including Derman and Kani (1994) and Rubinstein (1994)
avoid this issue by simultageously estimating probabilities and preferences via state prices implied by
existing option premia. In these models, state prices are taken to be a deterministic function of the
underlying price level and time. While these approaches are useful for interpolation of
contemporaneous prices, the non-stationarity of the state-prices generated by non-stationarity of
payoff probabilities suggests possible pricing instability. Dumas, Whaley, and Fleming (1996)
provide evidence along these lines. Since these pricing formulas often lack a realistic model of
underlying price dynamics, the hedge ratios may be inaccurate.

This paper takes a different approach to the issue of option hedging by estimating both time-
varying preferences and probabilities. Probabilities are estimated using a statistical model of the
underlying price process based on historical price data, and preferences are estimated using an
empirical pricing kernel (EPK) which measures the state price per unit probability. The EPK 1s
estimated as the ratio of empirical state prices and empirical state probabilities, where state prices are
estimated directly from option premia. This measure of investor preferences over states is linked to a
dynamic model of the underlying price to obtain hedge ratios.

A key assumption used in this paper is that for the purposes of hedging, today’s pricing kernel is a
sufficiently accurate estimate of tomorrow’s pricing kernel. This might be considered to be a type of

martingale assumption for the pricing kernel. An additional implication is that no additional risk is



added to the hedge portfolio by preference changes over one day. Daily time-variation in the pricing
kernel is documented in this paper, and a companion paper will examine the effects of preference
variability on hedging performance.

This paper offers four pﬁmary contributions. First, a technique is developed to estimate the
pricing kernel which does not require a parametric specification of the representative investor’s utility
function or data on aggregate consumption. The EPK technique also uses a broad set of asset prices
for estimation and is updated on a daily basis using current information. Thus, it produces a daily
conditional pricing kernel, rather than a long-run average pricing kernel. Non-parametric estimation
of the EPK places no restrictions on the pricing kernel functional form.

The only similar work that uses option premia to estimate state prices and the pricing kemnel is a
paper by Jackwerth (1996). In Jackwerth’s paper, the state probabilities are held constant which
generates-eonvex utility over some periods. This is likely due to impounding probabilistic information
into preferences.

There is an extensive literature related to estimating pricing kernels via specification of a
functional form for the utiﬁty function and estimation using aggregate consumption data. See, for
example, Hansen and Singleton (1982) for a CRRA model or Cochrane and Hansen (1992) for a
description of alternative utility specifications. All of these models rely on time-invariant preferences
estimated using aggregate consumption data. The aggregate consumption data is reported relatively
infrequently and may contain considerable measurement error. The use of aggregate consumption in
the MRS also typically requires the assumption of a representative investor. In addition, identifying
assumptions are usually based only on unconditional moments of stock and bond returns. An
exception to this is Gallant, Hansen, and Tauchen (1990) which considers conditional moments of
stock and bond returns.

A second contribution of the paper is application of a minimum variance hedging technique to the
option hedging problem. Typically, option hedges are accomplished using derivatives of the pricing
formula with respect to the state variables to reflect price sensitivities. This methodology is consistent
with continuous hedging. In practice, hedging occurs at discrete intervals, and as Robins and
Schachter (1994) have noted, the instantaneous hedge parameters will not necessarily be variance
minimizing. This paper uses a simulation technique to estimate the one-day variance minimizing

hedge consistent with a stochastic volatility specification for the underlying price process.



A third contribution of the paper is an empirical analysis of the performance of several methods of
hedging out-of-the-money (OTM) S&P500 index put option positions. This particular application is
informative since writing O™ S&P500 put options has been a historically profitable strategy, but
methods of effectively hedging this position are not well known. Several hedging methods are
compared including EPK hedging, Black-Scholes hedging, and a hedging technique consistent with a
local volatility function.

The final contribution of the paper is an analysis of the time-series behavior of the EPKs and the
implications for the historical behavior of investor preferences. This provides insight into sources of
priced risk in the U.S. economy.

The paper is organized as follows. Section II describes the theory of EPK estimation and EPK
hedging. Section III presents the EPK estimation technique for states defined by S&P500 returns,

while section IV analyzes the hedging test results. Section V contains the conclustons.

IL.a. Empirical pricing kernel theory

The purpose of this paper is to develop an option hedging methodology which combines a
realistic model of asset dynamic behavior with current information about investor preferences. To this
end, the EPK hedging technique utilizes a statistical model of underlying asset price behavior
combined with state prices implied by option premia. The state prices reflect both investor
preferences and probability forecasts, and preferences may be isolated by taking the ratio of state
prices and state probabilities.

Consider the following general asset pricing equation which is consistent with an investor’s

solution to an optimal consumption problem. See, for example, Constantinides (1989).

(1) S, =E[K, 1 ()S(s)]

In this case, S, is the current underlying price, K, (s) is the state price per unit probability (or pricing
kernel) at date t for a payoff at date T in state s, and S;(s) is the asset payoff in state s. In
consumption-based asset pricing models, the pricing kernel is the marginal rate of substitution of
state-dependent consumption at dates t and T, and many papers have estimated the pricing kernel

using variations of equation (1) as an identifying condition. It is typically assumed that the underlying

price distribution is stationary. An unconditional version of (1) is then used.



For derivative assets with payoff function g(S.(s)), the current derivative price D, is:
@ D, = E[K()g(Sr(s))]
Equation (2) indicates that.derivatives prices provide a rich set of additional identifying conditions for
the pricing kernel. It is clear that knowledge of the pricing kernel and the objective conditional
probability measure is sufficient to price any derivative asset with payoffs dependent only on the
underlying asset price at time T.

Equation (2) may be rewritten to emphasize the two objects which are estimated in this paper: the
pricing kernel K, 1(s) and the objective conditional probability measure £, 1(s).

(3) D, = _‘.KI,T(S)g(ST(S)).fr(ST(S))dST(S)

This paper uses the fact that the pricing kernel is interpreted as the state price per unit probability.
Thus, the ratio of estimated state prices and state probabilities may be used as an estimate of the
pricing kernel. For estimation purposes, it is useful to discretize the state space so that states are
defined by discrete return ranges. The state prices are then interpreted as the prices of the supershares
of Hakansson (1976) or the delta securities of Breeden and Litzenberger (1978).

In this case, the states used are 100 equiprobable ranges (i=1...100) based on a lognormal
diffusion with fixed parameters and fixed time interval. Let s, be the subset of the real line
corresponding to the return range for state 1. With the state space divided into 100 return states, non-
parametric estimation of the EPK may be accomplished by taking the ratio of the estimated discrete
state price for state i, z, ({s;), with the estimated discrete probability of state i, p 1(s).

4 K:,T(Sf)=Zt’—:r(sﬁ
p t,T (S 1')
Equation (4) provides a non-parametric estimate of the EPK in the sense that the functional form
of the EPK is unrestricted, although restrictions on state prices and probabilities are reflected in the
EPK. Notice that this specification allows the pricing kernel to implicitly depend on many economic

variables such as current and lagged aggregate consumption, the level of interest rates, and so forth.

ILb. Estimating state prices

The first step in EPK estimation involves the state price density, ,(r,1), and the discrete state

prices, z,(s;). The continuous state price density is defined over net return states, 1,1, for the period



from t until T, where the conditioning variables are suppressed. The state price density is estimated
using the flexible risk-neutral density function method of Rosenberg (1995).
Consider the following state-price and risk-neutral density formulation of equation (3). Letting the

payoff function g(e) depend on the T-t period net return and suppressing dependence on S;;
(5) D= [w.r(no)g(nr)dSy =0 [gln 1) for(n r)drr

Equation (5) provides identifying conditions so that the state price density may be estimated from
a cross-section of derivatives prices. Normalized state prices, also known as the risk-neutral
probabilities defined by the risk-neutral density {'1(r,1), are estimated based on a flexible density
function which allows for a variety of tail shapes, but incorporates the lognormal as a special case.
The flexible density function used in this paper is a modified version Rosenberg (1995) formulation,
so that the null model for the risk-neutral density of retumns is the lognormal density implied by a
diffusion process over a period of length T-t with drift rate p and diffusion parameter .

The flexible density generalizes the lognormal density by allowing the ¢ parameter to be a
function of the level of the state variable. However, this is not the density implied by a diffusion with
drift rate dependent on the level. The intuition behind the flexible density function is that, at a given
point, the actual probability may deviate from the lognormal probability with constant variance. The
actual probability at the point may be matched by adjusting the variance of the lognormal distribution
as needed.

The function that maps the lognormal probability into the actual probability 1s called the sigma
shape polynomial (SSP). The SSP and its graph concisely summarize the deviation of the risk-neutral
density from the lognormal. Stochastic volatility effects should result in higher tail probabilities
consistent with lognormal distributions with higher values of ¢. In this case, the sigma shape
polynomial would be an upward parabola. Leverage effects may result in left skewness causing a
negatively sloped SSP which puts greater probabilities on large negative outcomes than for a flat SSP.

Equations (6), (7), and (8) specify the flexible density function used in this paper. Equation (6)
defines the flexible density function with scaling parameter given by equation (7). Equation (8)

defines the sigma shape polynomial, which in this case is log-quadratic in log-gross returns.

log(r, , +1)—(p,—.56(n.r;0,)2(r—r)))z

6 ) ;/1, (191 = kex -"5
(6) Sfor(rz Ao #4,6,) P [ o(r, ;) T —¢
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®)  0lr:60)=exp| B, + By, log(r,, +1)+ B, log(r,r + 1)’

Notice that this particular specification defines a density family with the five parameters A, u,, B, ,
B, Bs. A is a scaling factor necessary to ensure integration to unity, and the density function is
defined over a large but bounded support. 3,, and B;, are the terms that allow the sigma shape
polynomial to deviate from lognormality. The parameters of f (T, p) are time-varying reflecting the
fact that time-varying objective probabilities generate time variation in state prices not captured by
Black-Scholes.

Using the return boundaries for the 100 prespecified states, the continuous state price density is

mapped to the discrete state prices using numerical integration.

©)  z(s)= jyx(n,r)dr,,:e"f‘“) [Frnp)dry i=1..100

IS RS

Il.c. [Estimating objective state probabilities

The second stage in EPK estimation involves the time-varying objective probability density,
f +(r,1), and the discrete state probabilities p,(s;). One of the fundamental forms of time-vanation in
the objective density, especially over short time horizons, is stochastic volatility. In this paper, the
GARCH components with leverage (GCOMP) model (Engle and Lee, 1993) 1s used to provide a
parsimonious description of the time-varying conditional volatility process. The GARCH components
model allows for a long and short run component of volatility that decay at different rates, and an
asymmetric effect of news on volatility.

The model is specified as follows:
(10) 1In(S,/S_)=u+s, &~ N(0,07)
(1) o =g} +a(s, —ql )+ y(Max[0-¢,_, T =5¢. )+ Blo7, —q.)
(12) g =o+pg. +@(el, —07)
While it is clear that the constant risk premium formulation as in equation (10) is not compatible

with time-varying state prices, the effect over the short time horizon considered in this paper is not



likely to be important, and equation (10) may be viewed as an approximation. Even if this particular
volatility model is misspecified, GARCH models often exhibit useful approximating characteristics
for other volatility processes. In addition, to reduce the potential effects of model misspecification,
the empirical standardized residuals are saved from the estimation procedure and used when the state
probabilities are estimated. The GCOMP model is also re-estimated each day using current data,
which will capture potential non-stationarity in the parameters.

The conditional discrete state probabilities on date t are estimated by simulating N=100,000
returns based on an estimated GCOMP model and calculating the observed probability of a return

within each state’s return range.

N
(13)  pr(s)= —J%.FZ I, e I(*)isanindicator function  i=1.100
j=t

I1.d. Estimating EPK hedge ratios

This paper introduce; an option hedging technique that utilizes the empirical pricing kemnel. This
hedging technique offers two primary advantages over existing methods. First, option hedging using
an EPK incorporates current information about investor preferences and forecast probabilities. This
should improve hedge performance in markets characterized by time-variation in either of these
factors. Second, option hedging using an EPK directly solves the problem of minimum variance
hedging rather than relying on a continuous approximation. The EPK hedging methodology could
also be applied to hedging downside risk or value-at-risk.

Suppose the objective of the hedger is to minimize hedge portfolio variance for a one-day hedge.
In particular, let D, be the price of the instrument being hedged, let D, be the price of another
derivative asset, and let S be the price of the underlying asset. The hedger chooses the optimal
holdings of the two additional assets by solving the program:
Min Var[(Dys = Diy) + @1 (D = D3y ) + 3, (S = 50)]

al.t’al,t

(14)

In general, the hedge portfolio composition will change through time reflecting changes in
conditional probébilities, the EPK, and the moneyness of the options. Equation (14) can be applied to

the single asset hedge by constraining a,, or a,, to be zero.



The difficulty in solving equation (14) is that, as of date t, the derivative prices and underlying
price at t+1 are distributions which may not have closed form representations. To surmount this
problem, a simulation tech_x_lique is used. By holding the pricing kernel at date t constant until t+1, the
joint distribution of prices at t+1 may be obtained.

The use of the date t pricing kernel for pricing at date t+1 might be viewed as a form of martingale
assumption. Notice that risk due to the stochastic behavior of the pricing kernel over one day is not
considered in this formulation, but 1t will be addressed in a companion paper.

Initially, 100 simulated underlying prices at t+1 (S, j=1...100) are generated by sampling
independent draws with replacement of innovations from an empirical distribution and using the one
day ahead GCOMP conditional variance forecast, 02”1',. The empirical distribution is defined as the

distribution of standardized GCOMP residuals from a model estimated over a fixed time period.

- +Jot e
(15) S, =8 exp” v e, ~D

»y 3~ Dampiicar =110

The fundamental pricing equation (2) may be then used to approximately price derivatives at date
t+1 by simulating underlymg price returns from t+1 until T and substituting the date t pricing kernel
for the date t+1 pricing kernel. Each simulated return is mapped to one of the one-hundred possible
discrete state returns based on the state return range.

Define the discrete state return for state i, r;,., ;, as the midpoint of each state return range for
states 2 through 99 and as the lower and upper return range bound for states 1 and 100 respectively.
Let the payoff function for the derivative with price D, be g,(») with dependence on S,,,; suppressed.

Then, the j" simulated derivative price t+1 is:

1 5000100
(16) Dy, = m ZZ K:,T(sz)fr,,l” es, gl(ri,HI,T,j)
k=1i=1

Equation (16) may be used to price other derivative assets by substituting the appropriate payoff
function, e.g. g,(*). The assumption of a constant pricing kernel over one day is evident in this
equation.

This procedure generates 100 realizations of underlying and derivative prices at t+1. The
minimum variance portfolio weights are obtained by regression of the price changes of the instrument
to be hedged on price changes of the other two instruments. This appears similar to minimum
variance hedging of futures, but in this case, the regression is not over time, but over state realizations

at t+1.
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IIl.a. Estimation of the S&P500 state prices and probabilities

S&P500 state prices and probabilities are estimated on 839 of 1243 days in the sample period
based on data availability for the hedging tests. The criteria for inclusion in the hedging tests is
described in section IV.

Table 1 summarizes the characteristics of the S&P500 index option data provided by the CBOE.
State price estimation utilizes a cross-section of all non-in-the-money call and put option prices on
each hedging date with the same maturity as the selected ATM and OTM options. The second panel
of Table 1 shows that on average, there are 16 non-ITM options available per day with a moneyness
range of 11%. Moneyness is defined as S/K-1 for calls and K/S-1 for puts, where S is the current
underlying price and K is the option exercise price.

Figures 1 and 2 summarize the state price estimation results. Figure 1 plots the average sigma
shape polynomial over thi sample period. The downward sloping curve reflects the volatility skew
often found in post-crash equity option data and suggested by the ATM and OTM implied volatilities.
The skew implies that state prices for large negative return states are relatively high compared to
those of the Black-Scholes model. At this stage, it cannot be determined whether this pattern is due to
higher probabilities associated with these states or increased investor preferences for positive payoffs
in these states. Figure 2 plots the daily sigma shape polynomials estimated over the period May
through June 1996. It is clear that the state prices vary from day to day, although the general shape of
the SSP is consistent.

State probability estimation is based on historical S&P500 index return data. The sample
properties of the S&P500 index return over the hedging period are described in the first panel of
Table 2. S&P500 return volatility was fairly low with a return standard deviation of .57% per day.
This is substantially below the average ATM or OTM implied standard deviation. S&P500 returns
exhibited negative skewness and positive kurtosis, which is consistent with a stochastic volatility
model with asymmetric effects. The average daily S&P500 index return was .06%.

Table 2 also describes a GCOMP model estimated over the period 1982-1996, a period
substantially longer than the hedging period. The standardized residuals from this model define the
empirical distribution of the innovations in the state probability and EPK hedge ratio estimation. The

leverage term, which indicates that large negative returns disproportionately increase volatility, is
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significant using a standard t-statistic but only marginally significant using a robust t-statistic. The
long run and short run volatility components are both significant, with a highly persistent long run
component indicated by a value of p close to 1. The standardized residuals deviate significantly from
normality as illustrated by their negative skewness and positive excess kurtosis.

The last panel of Table 2 reports the iteratively estimated out-of-sample GCOMP models used in
the daily estimation of the state probabilities. The initial estimation is performed using 1000 lagged
returns, and subsequent estimations use an expanding window of returns. The average estimates are
somewhat different than the estimates in the long sample estimation, suggesting possible non-
stationarity in the parameters over the sample period. The average iterated leverage estimate is
smaller than the full sample leverage estimate, and average iterated long run volatility persistence is
lower than the full sample estimate.

Figure-3 plots the GARCH daily average conditional volatility for a T-t period horizon, the daily
implied volatilities for a T-t period horizon, and 20-day rolling standard deviations over the sample
period. The GCOMP estimates and ATM implied volatility estimates track most closely, although the
ATM implieds are more volatile than the GCOMP forecasts. The OTM implieds are consistently the
highest volatilities, and the 20 day standard deviations are lower than the other volatilities over most

of the perod.
III.b. Estimation of the S&P500 empirical pricing kernel

Using the methodology described in section II and the results from section IIL.a, the S&P500
empirical pricing kernel is estimated on a daily basis over the period 1992 through 1996. Initially, it is
useful derive the benchmark pricing kernel implied by the Black-Scholes model for comparison to the
EPK.

The pricing kernel implied by the Black-Scholes model is simply the ratio of the BS state prices
as derived by Breeden and Litzenberger (1978) and the state probabilities implied by a diffusion with
parameters set equal to the sample values over a fixed period. In this paper, the coefficient of relative
risk aversion is defined as the opposite of the exponent in the power pricing kernel function. The BS
coefficient of relative risk aversion may be derived by taking the ratio of the state price density and

the objective probabilities and writing the solution as the product of a constant and a power function,
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Using the average one-»month Treasury bill rate as the riskless rate and sample moments of daily
returns for the periods 1992-1996 and 1962-1996, the implied BS risk aversion coefficients are 14.7
and 5.7, respectively. These levels of risk aversion are substantially higher than obtained from GMM
estimation using aggregate consumption data. For example, Hansen and Singleton (1982, 1983) find
risk aversion coefficients less than 2.

The implied BS risk aversion coefficients illustrate the equity premium puzzle of Mehra and
Prescott (1985). There is a divergence between the empirical risk-premium which reflects investor
preferences and the implications of many consumption-based representative agent utility models with
plausible levels of risk aversion. Cochrane and Hansen (1992) utilize the Hansen and Jagannathan
(1991) framework to examine the compatibility of several utility specifications with historical return
moments. They find that risk aversion coefficients of at least 40 are required for CRRA utility, and
coefficients of at least 7.5 are required when habit persistence is incorporated. Thus, the high BS risk
aversion coefficients are consistent with previous results.

At this point, it is useful to find a single summary measure of EPK risk aversion that may be
directly compared with the BS risk aversion coefficient. One way to summarize the EPK is viaa
power function with a single shape parameter y,. This parameter summarizes investor preferences on
date t for payoffs over the states on date T and may be interpreted as a local coefficient of relative risk
aversion. The following optimization program, which minimizes the squared distance between the
realized and fitted EPK, is used for estimation ofy,.

2

99
(18)  Min 2 |Kor(s)-(+7)7]

b i=2
In this case, 1; is discrete state return which is defined as the midpoint of the state return range for
states 2 through 99. States 1 and 100 are defined over return ranges substantially larger than the other
states, so they are excluded from this estimation. State 1, which might be viewed as the crash state, is
of direct interest, and its time series behavior is analyzed separately.
The average EPK fitted y is 14.8, and the range is from 1.4 to 30.2. The average EPK vy is quite
close to the BS y for the sample period of 1992-1996, but substantially higher than the BS y for the

longer time period 1962-1996. In addition, there is a large amount of day-to-day variation in
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preferences as measured by the EPK. Strong persistence in the daily EPK v is illustrated by a first
order autocorrelation of .72.

The closeness of the egtimated BS and EPK y obscures important differences in the two functions.
Figure 4 plots the average empirical pricing kemnel over the sample period along with the two pricing
kernels implied by the Black-Scholes model using the two sets of sample moments, a time horizon of
20 days, and the average one-month Treasury bill rate from 1992-1996. EPK preferences indicate that
payoffs in the largest negative return state are more desirable relative to implied BS preferences.The
average probability standardized value to an investor of a $1 payoffin a -9% S&P500 return state is
about $5.90 using the EPK and about $5.30 or $1.90 using the BS pricing kemnels. EPK preferences
also suggest that payoffs in large positive return states are less desirable relative to implied BS
preferences.

Figure.5 illustrates the day-to-day variability in the EPK over the period May through June 1996.
The daily EPK shapes are similar, but the level of risk aversion varies substantially. Figure 6 plots
time-variation in the average annual EPK, while figure 7 plots the average EPK and the fitted average
EPK using a power function. By fitting a power function to the average EPK, ay of 15.6 is obtained,
which is slightly higher than the average daily EPK y of 14.8.

Figure 8 illustrates the difference between conditional (EPK) and unconditional (BS) preference
models. In this figure, the time-series of EPK y’s is plotted along with the BS y for the sample period.
The BS y will only change when either the drift, volatility, or riskless rate changes. Of course, a
maintained assumption in the Black-Scholes setting is that all of these parameters are constant over
time. In contrast, the EPK y exhibits a substantial amount of variability due to changes in state prices
and probabilities which suggests that investor preferences are stochastic.

Figure 9 plots the empirical and implied BS preferences over the crash state, i.e. a T-t day return
less than -9%. The BS implied preferences are derived using S&P return moments from 1992 through
1996, the average riskless rate over this period, and a time-horizon of 20 days. While the EPK
suggests greater average preference for payoffs in the crash state than BS, the more dramatic
difference is the variation in EPK crash preferences compared to BS. The crash state price per unit
probability ranges from $.02 to $38.30 for the EPK.

The first panel of Table 3 contains the results of a regression of the daily EPK y on its first lag and
several additional variables. The purpose of this analysis is two-fold. First, if the daily EPK y is

considered to be an adequate representation of investor preferences, then the sources of time variation
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in preferences may be identified using projection of y onto explanatory variables. Conversely, if the
relationship between y and other explanatory variables is plausible, then this suggests that y is a useful
measure of investor preferences.

About 63% of the variation in y is explained in the regression. Most significantly, the y regression
results indicate that the level of risk aversion is negatively correlated with changes in the S&P500
index. In other words, a drop in the S&P500 index level is related to an increase in risk aversion. In
particular, a one-day 5% drop in the S&P500 index is associated with an increase of 4.1 in the level of
risk aversion. This may also be interpreted as evidence that relative risk aversion is declining in the
level of wealth.

The regression results also show that the volatility spread (ATM-GCOMP) is positively correlated
with the level of risk aversion. This result is intuitive and expected, since this spread can be
considered-as a proxy for the risk-premium based on how much the market is pricing options above
the objective volatility. Even in the presence of other variables, y is strongly autocorrelated with a
coefficient on it’s first lagff .65,

The change in time to expiration variable indicates that as the time to expiration is declining, y
declines. The lagged EPK for state 1 and the change in interest rates are not significant in the
regression. Table 3 provides similar results for the time-series behavior of preferences over the crash

state, K,(s,), which is abbreviated as k1(t).
IV.Hedging tests

The EPK hedging methodology is applied to the problem of hedging out-of-the-money (OTM)
S&P500 index put options using at-the-money (ATM) put options and the index with the objective of
minimizing the variance of one-day hedge portfolio price changes. This particular application is
informative since writing OTM S&P500 options has been a historically profitable strategy, but
methods of effectively hedging this position are not well known.

For the EPK hedge, S&P500 state prices and state probabilities are estimated on a daily basis over
the period 1992 through 1996. As described in section II, state prices are derived from S&P500 index
option premia and the flexible risk-neutral density function method (Rosenberg, 1995), while

probabilities are obtained using simulation of an estimated GARCH components with leverage model
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(Engle and Lee, 1993) for S&P500 index returns. The EPK for S&P500 states is the ratio of state
prices and the state probabilities.

The EPK hedge portfolio weights are estimated daily according to the methodology in section
I1.d. Three separate regressions are run to estimate the minimum variance EPK hedge portfolios.
These are: a regression of the simulated one-day OTM price change on the simulated underlying price
change, a regression of the simulated OTM price change on the simulated ATM price change, and a
regression of the simulated OTM price change on both price changes.

In addition to the EPK hedge method, there are four alternatives analyzed for hedging using only
the underlying, only the ATM option, and both assets. The first hedging method used is Black-
Scholes delta and delta-gamma hedging. In this case, a 20-day historical standard deviation is used to
calculate the pricing sensitivities.

An alternative to Black-Scholes delta-gamma hedging is considered to ensure that the Black-
Scholes model is not rejected because the hedging occurs in discrete-time. This method is the Black-
Scholes minimum variance hedge. In this case, a simulation is used to generate 5000 realizations of
one day ahead underlying_and ATM option prices. The underlying price process is specified using the
fixed historical S&P500 moments over sample period. The minimum variance portfolio weights are
estimated by a regression of OTM price changes on the price changeé of the hedging instruments.

A historical regression hedge is also used and is constructed by a rolling 40 day regression of
OTM price changes on price changes of the hedging instrument. The historical hedge portfolio
weights are updated daily.

The hedging method which is intended to represent local volatility function (LVF) models is the
LVF hedge. The LVF technique used in this paper is somewhat different than deterministic volatility
function (DVF) methods in the existing literature. Usually in DVF models, the sigma function (or the
implied risk-neutral probability density) is estimated as a deterministic function of the level of the
underlying price and time using the current cross-section of option prices. The theoretical hedge
consistent with the DVF model should be based on the dynamics implied by a fixed DVF. However,
in practice, the instability of the DVF makes it is clear that the effects of changes in the DVF must be
hedged as well as changes due to the underlying price and time.

The primary feature of the DVF techniques is their ability to match a current cross-section of
option prices. In this paper, this feature is modeled in a LVF by allowing each option to be priced

using the Black-Scholes formula with an option specific implied volatility. As an approximation to
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the option price dynamics, it is assumed that option sensitivities to underlying price changes are given
by the Black-Scholes delta and gamma evaluated at the option-specific implied volatility. One
justification for this method is that local price movements might be approximated by a local version
of the Black-Scholes pricing formula. This technique results in substantially different hedge portfolio
weights than Black-Scholes hedging.

The LVF method, unlike the EPK method, reveals nothing about the relative effects of time-
varying preferences versus time-varying probabilities or the effects of non-diffusion price dynamics
on hedge ratios. However, the LVF method does capture the joint departure of probabilities and
preferences from Black-Scholes at an instant in time.

The first panel of Table 1 reports characteristics of the ATM and OTM put options used in the
hedging tests. On each day, the nearest maturity put options with at least 10 but no more than 60
trading days until expiration are chosen. Then, the ATM option is selected as the nearest to the money
put option, which must be within 1% of the money. The OTM option is selected as the option which
is closest to, but at least, 3% out-of-the-money. The average ATM moneyness is near 0%, the average
OTM moneyness is -3.5%‘,and the average time to expiration is approximately 20 trading days.

The average ATM and OTM implied volatilities of .74% and .94% suggest that the period is
characterized by an implied volatility skew. That is, OTM implied volatilities are higher than ATM
implied volatilities. The standard deviations of one-day ATM and OTM implied volatility changes
illustrate that implied volatilities are not constant over the sample period.

Table 4 reports the hedging test results, including both the standard deviation and interquartile
range of hedge portfolio price changes. While the standard deviation of price changes was chosen as
the criterion to minimize, several outliers in the raw option price change data suggest that a more
robust variability measure should be reported as well.

The results of using the five methods to hedge a written $100 OTM put position using only the
underlying asset are quite interesting. The unhedged OTM put position has a standard deviation of
price changes equal to $24.60 per day. The most effective hedge in this case is the LVF delta hedge
which reduces the portfolio standard deviation by about 40% to $14.90 per day. The least effective
hedge is the BS delta hedge which reduces the standard deviation by about 18% to $20.16 per day.
The EPK hedge is the third most effective hedge with a standard deviation of $15.10, but is the most
effective hedge based on IQR. All of the hedge methods require a fractional short position in the

underlying asset.
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The next hedge considered is a hedge of the OTM option using only the ATM option, which is a
form of a ratio spread. Since the ATM option is a more similar asset to the OTM option than the
underlying, it is not surprising that all methods offer some improvement over the hedging using the
underlying. Again, the most effective hedge 1s the LVF hedge which reduces the portfolio standard
deviation by about 50% to $12.58. The EPK method comes close to this performance with a hedge
portfolio standard deviation of $12.80. Again, the EPK method is most effective hedge based on IQR.
All of the hedge methods require a fractiona!l long position in the ATM option.

The final hedge considered uses both the ATM option and the underlying as hedging instruments.
Since their price changes are not perfectly correlated, one would expect that a two asset hedge would
improve on a one asset hedge. In fact, only two methods show a slight improvement, and they both
are inferior to the LVF and EPK methods. In this case, the EPK method is most effective based on
both the standard deviation and IQR criteria.

Several other results are as follows. The BS minimum variance hedge is consistently more
effective than the standard BS hedge. However, the BS minimum variance hedge has the advantage of
using the realized S&P moments over the sample period. In addition, the historical regression hedge
is a significant improvement over the BS hedges.

Overall, the hedge results indicate that the EPK method is a superior hedge technique based on the
standard deviation criterion relative to the alternatives except the LVF method. When the more robust

IQR criterion is used, the EPK method is superior to the LVF method as well.
V. Conclusions

This paper develops an option hedging methodology based on daily estimation of the empirical
pricing kernel (EPK) or state price per unit probability. This measure of investor preferences over
states is linked to a dynamic model of the underlying price to obtain a one-day ahead forecast of
derivative price distributions and minimum variance hedge ratios.

The EPK is estimated on a daily basis over the period 1992 through 1996 for states defined by
S&P500 returns. The non-parametric EPK estimation technique used does not restrict the functional
form of the EPK. State prices are estimated using S&P500 index option premia and the flexible risk-
neutral density function method (Rosenberg, 1995), while probabilities are obtained using simulation

of an estimated GARCH components with leverage model (Engle and Lee, 1993).
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Empirical results indicate that average EPK nisk aversion is higher than that implied by the Black-
Scholes model using long-run estimates of the mean and variance of S&P500 returns, but is close to
implied BS risk aversion using the mean and variance of S&P500 returns over the sample period. In
addition, evidence from the estimated daily EPK suggests that investor preferences vary significantly
over time. It is found that the daily level of risk aversion is strongly positively autocorrelated,
negatively correlated with S&P500 price changes, and positively correlated with the spread between
implied and objective volatilities.

Deviations from the Black-Scholes preference and probability assumptions suggest that hedging
performance may be improved with a model that better reflects empirical data including the time-
varying nature of both preferences and probabilities. Hedging results reveal that typical hedging
techniques for out-of-the-money S&P500 index options, such as Black-Scholes or historical
minimum-variance hedging, are inferior to the EPK hedging method. The similarity of the LVF hedge
performance to EPK performance suggests that in some cases the LVF technique may offer a

reasonable approximation of the EPK hedge ratios.
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Table 2 - Models of S&P500 daily returns

S&P500 daily total returns over all days in the hedging test period
Jan. 1992 - Dec. 1996

Excess
Number obs |Mean Std. Dev. |Skewness |kurtosis
1265 0.0006 0.0057 -0.27 2.47

GARCH components with leverage model for S&P500 index returns
In-sample estimation
Maximum likelihood estimation with normal as the underlying density.
Week of Oct. 1987 crash down-weighted.
3528 observations, log daily total returns for S&P500 index from Jan. 1982 - Dec.1996.

Robust | Robustt-] Ljung-
Coefficient | Std Error t-stat Std Err stat Box{15)
o 0.0008 0.0001 9.29 0.0001 6.86 5.97
0! 8.00E-09| 9.00E-09 0.92| 4.00E-08 020
a 0.0420 0.0054 7.7475 0.0159 2.64
B 0.9181 0.0045 204.94 0.0222 41.39
¥ 0.0424 0.0069 6.13 0.0307 1.38
¢ 0.0020 0.0015 1.38 0.0092 0.22
p 0.9990 0.0004| 2677.13 0.0011 893.01
Properties of standardized residuals: et/sqrt(ht)
Excess
Number obs [Mean Std. Dev. |Skewness |kurtosis
3528 0.02 1.05 -0.81 8.55

Out-of-sample estimation

lterative estimation of GCOMP model with expanding window
Initial estimation is with 1000 observations
839 estimated models on hedging dates from Jan. 1992 -June 1996

Mean St.dev.

estimate estimates
n 0.0007] 0.00005
@ 5.13E-06]| 1.86E-06
o 0.0160 0.0063
3 0.9463 0.0929
¥ 0.0087 0.0232
¢ 0.0228 0.0026
p 0.9118 0.0300
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Figure 5
Daily empirical pricing kernels

May-June 1996
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Figure 9
Preferences over crash state
T-t day return < -9%, 1992-1996
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