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ABSTRACT
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level of expense the institution is willing to incur for its hedging program. The costs associated with
a suboptimal choice of exercise price, in terms of either the increased VaR for a fixed hedging cost
or the increased cost to achieve a given VaR, are economically significant. Comparative static
results show that the optimal strike price of these options is increasing in the asset’s drift, decreasing
in its volatility for most reasonable parameterizations, decreasing in the risk-free interest rate,
nonmonotonic in the horizon of the hedge, and increasing in the level of protection desired by the
institution (i.e., the percentage of the distribution relevant for the VaR). We show that the most
important determinant is the conditional distribution of the underlying asset exposure; therefore, the
optimal exercise price is very sensitive to the relative magnitude of the drift and diffusion of this
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1 Introduction

Ouly recently have academics begun to study the risk management practices of financial
institutions and other corporations.! This is surprising given that the majority of firms,
according to surveys by the Wharton School in conjunction with Chase Manhattan Bank
(1995) and by Ernst and Young (1995), have been applying modern financial techniques
to the managing of some of their exposure to.interest rates, equities, or exchange rates for
some time now. One of the difficulties in analyzing these institutions’ risk management
programs is that their concept of risk is quite different from the standard measures implied
by multifactor pricing models. Ceteris paribus, according to modern finance theory, it is
cheaper for shareholders to diversify project risks on their own. Thus, a company’s need to

hedge either the systematic or unsystematic risk of their cash flows is limited.

However, there are several reasons why this standard argument may not hold true.? First,
with costly external financing, firms may need risk management programs to maintain their
access to cheap capital, that is, internal funds (Froot, Scharfstein and Stein (1993) and Stulz
(1990)). Second, in order to reduce the value of the government’s implicit call option on the
firm’s assets via taxes, risk management programs which lead to lower earnings volatility may
be optimal (Smith and Stulz (1985)). Third, without some type of risk management at the
institutional level, it may not be possible to disentangle business-related profits/losses from
profits/losses associated with market exposures (DeMarzo and Duffie (1995)). Finally, risk

management programs can reduce the costs of financial distress.(Smith and Stulz (1983)).

Of course, the above motivations for risk management are not driven by the magnitude
of the firm’s market risk, but instead by the magnitude of its total risk. More specifically,

it is the probability and magnitude of potential losses that determine the desire to hedge,

1See Allayannis and Ofek (1996), DeMarzo and Duffie (1995), Froot, Scharfstein and Stein (1993), May
(1995}, Mian (1996), Smith and Stulz (1985), Stulz (1990} and Tufano (1996), among others, for a discussion
of the underlying theory and empirics for why firms may have incentives to hedge, and, given these incentives,
how firms implement the hedges.

2See Stulz (1997) for a general overview of institutions’ risk management practices and incentives.



especially in the case of hedging motivated by the costs of external financing and financial
distress. As a result of this different criteria for risk, the Value-at-Risk (VaR) concept has
become the standard tool in the exploding area of risk measurement and management. In
brief, VaR is defined as an estimate of the probability and size of the potential loss to be
expected over a given period. While a growing number of approaches exist to answer the
question of how to measure this VaR, academics and practitioners alike have been silent on

the question of how to go about managing this risk.

We provide an analytical approach to optimal risk management in a stripped-down frame-
work in which an institution (whether it be a financial institution, corporation, or investment
fund) wishes to minimize its VaR using options. We make two key assumptions. First, the
institution’s risk management criteria is VaR. While VaR is clearly not the result of some
optimization over all possible risk management criteria, it may be a close first approximation.
As mentioned above, VaR, and similar measures, can be motivated via capital requirements
in the case of financial institutions, or through some minimum level of funds necessary to
perform business as usual in the case of other corporations. In any event, VaR is becoming

an industry standard.

Second, the institution’s hedging strategy involves options, rather than say forwards,
futures, or swaps. Of course, basis and credit risk aside, once the VaR is measured, using
forwards or futures to minimize the VaR of an institution’s assets is straightforward. While
transacting forward is a common hedge methodology, recent surveys suggest that the use
of options is also commonplace.’ There are many motivating factors for using options as a
hedging vehicle. For example, except in extreme cases, the institution may be willing, or
even have the desire, to take the underlying asset exposure, leading to only a partial hedge of
its cash flows. This would be true, for example, if the motivations for risk management were
external financing costs, financial distress possibilities, managerial incentives or tax opti-

mization. In addition, institutional constraints, such as GAAP hedge accounting guidelires,

3Gee, for example, recent surveys by the Wharton School and Chase Manhattan Bank (1995) and by
Eznst and Young (1985).
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might lead to forwards not being a viable alternative for some corporations.

Taking as given the fact that an institution hedges some of its VaR using put options,
the tradeoff is between the put options’ ability to reduce the VaR level and the initial cost of
those put options. On one hand, at high strike prices, the puts provide substantial protection
but at a high cost per option. On the other hand, at low strike prices, the less costly puts
provide weaker protection, but allow the institution the opportunity to pur'cha.se more of

them. For a given cost, there exists a menu of implementable strike prices and hedge ratios.

This paper provides the optimal solution to the problem of finding the put option that
minimizes the VaR given a fixed cost allocated for hedging. The solution is in the form of the
put option’s strike price as a function of the underlying asset value, the mean and volatility
of this asset, the risk-free rate, and the VaR hedging period. The analysis is performed in a
Black-Scholes setting in which the stochastic differential equation defining the asset follows a
geometric Brownian, and the instantaneous interest rate is a constant. As such, the analysis
is better suited to hedging exposures to exchange rates, equities, or similarly distributed

assetls.

The main results can be summarized as follows. First, independent of the level of expense
the institution is willing to incur for its hedge program, there is an optimal level of moneyness
of the put option. That is, given the fundamental parameters (i.e., the asset exposure’s
distribution, the length of the hedging horizon, and the risk-free rate), the optimal choice of

options always has the same strike price.

Second, closed-form solutions for comparative static results imply that the optimal strike
price of these options is ifcreasing in the asset’s drift, decreasing in its volatility for most
reasonable parameterizations, decreasing in the risk-free rate, nonmonotonic in the maturity
of the hedge, and increasing in the level of protection desired by the institution (i.e., the %

of the distribution relevant for VaR).

Third, we are able to characterize the functional relation between the choice of put options

and the underlying parameters. Most important is the distribution of the underlying asset



exposure, conditional on its current value. As one might expect, the optimal choice is very

sensitive to the relative magnitude of the drift and diffusion of this exposure.

Fourth, we show that the benefits of choosing the options optimally are economically
significant. For example, using parameters which are typical for equity indexes, the hedged-
VaR using at-the-money options can exceed the optimally hedged VaR by more than 15%.
Alternatively, using at-the-money options it would require 65% more in hedging expenditures

to achieve the same VaR.

The paper is organized as follows. Section 2 describes the setting and the underlying
mathematical framework for optimal VaR control using options. In addition, a graphical
interpretation of the problem of minimizing VaR using options is given, showing how the
distribution of the underlying assets change with the use of options. Section 3 presents the
main theoretical analysis, including the solution to the VaR control problem, comparative
static results, and the underlying economic intuition. Section 4 illustrates these results in
the context of a numerical example and quantifies the benefits from the optimal choice of
options. Section 5 concludes and discusses some possible extensions and directions for future

research.

2 Optimal VaR Control

The starting point of our analysis is the classical hedging example, where an institution has
an exposure to the price risk of an underlying asset. This asset may be an exchange rate,
or a basket of exchange rates, in the case of a multinational corporation considering the
exposure associated with a given cash flow, oil prices in the case of an energy provider, gold
prices in the case of a mining company, etc. We assume that the corporation is willing to
devote financial resources in order to limit the loss it may incur on its endowed position in the
underlying due to adverse market conditions. We assume further that the measure of market
risk with which the corporation is concerned is the position’s VaR. The VaR of a position

will translate to a statistical statement such as “with 95% confidence the percentage loss on



the dollar value of the cash flow in one year will not exceed 10%". Clearly the position’s VaR
is a function of a given confidence level, which, as we show in the paper, is not an innocuous

choice.

Faced with the unhedged VaR of the position, we assume that the institution chooses
to use options (e.g., put options to hedge a long position in the underlying), and that the
institution has access to options with various exercise pﬁces. For simplicity we shall assume
that all options and VaR estimates are evaluated in a world where the Black-Scholes option
pricing model applies. In some cases exchange traded options on the underlying may not
exist. For example, an energy producer may want to hedge the spread between crude oil
prices and electricity prices, hence the underlying is a spread. Financial markets nowadays
would gladly provide over the counter options on such an exposure. The only qualification is
that the Black-Scholes assumptions still apply, and that option will still be priced according
to Black-Scholes, and that

The corporation’s goal is to choose a level of expenditure and an exercise price on put
options from a menu of VaR/cost alternatives. It is important to note, however, that the
menu of alternatives is quite large. To see this, consider a point on this VaR/cost frontier. For
a given level of expenditure (cost), there is a continuum of positions which the corporation
can implement. For example, the corporation may hedge the full value of the underlying
with a deep out-of-the-money put, a fraction of the exposure using an out-of-the-money put
with a larger exercise price, or a smaller fraction of the underlying with an at-the-money

put.

This menu of options will imply vastly different distribution for the terminal value of
the hedged position (i.e., the value of the underlying plus the option hedge). For example,
a full hedge with a deep out of the money option will have a lower bound for the value of
the portfolio, and this lower bound will be attained for any value of the underlying which is
below the exercise price of the put option. The distribution of the hedged position will be a
truncated log-normal distribution, with a probability mass at the exercise price. A partial

hedge using a put with a higher exercise price will still provide a floor value to the hedged



position (at the exercise price times the hedge ratio), but the terminal distribution will now
look quite different. In fact, its distribution will be a combination of a lognormal (above
the exercise price) and a shifted lognormal (below the exercise price). It is important to
recognize that such different distributions have different percentiles, and thus have different

VaR levels.

Hence, for a given cost, there are infinitely many pairs of exercise prices and hedge ratios
which will generate different levels of VaR. We present analytical results for the optimal
choice of exercise price, and hence enable the investor to generate the VaR/cost frontier,

where each point on this frontier corresponds to a certain optimal exercise price.

2.1 The Distribution of the Hedged Payoff

Suppose that the institution has an exposure to an asset, S;, whose process is governed by

the following stochastic differential equation:

ds
"‘S,'ti = dt + O'dzh

where z and & are the drift and the diffusion of the asset value, and z, is a standard Brownian
motion. One can regard this asset either as a single asset, or as a portfolio of assets like,
for example, the S&P index, or a portfolio of the institution’s currency exposures. The only
requirement is that this portfolio’s return follows a geometric Brownian motion. As such,
the analysis is better suited to an institution concerned with their exposure to commodity

prices, equities, or exchange rates.

The institution is concerned about its exposure to the asset over the next 7 periods, and
has decided to hedge the asset’s value using put options. Define the market price of the put
today (i.e., time t) as P, = P(S;, X,r,7,0), where the strike price of the option equals X

and the interest rate is r. Then the hedged future value of this asset in 7 periods is given by

1/.:-i-r = St+r + h Max[X - S:+1'1 0]
= Max(Sesr + A(X = Sesr), Stes]
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= Max[aX + (1 = B)Sesr, Sear);

where k represents the hedge ratio, that is, the number of options P, used in the hedge.

The conditional distribution of the asset r periods from today, Si4r, is well known:

InSepr ~ N [111 S+ (.U - %o’z) 1",a"2 ]
=N [m,az] ,

where

m = ln5¢+(p—%az)r
s = gt

The distribution of the hedged future value of this asset, Viy,, is less straightforward.
One can think of this distribution as a mixture of two separate distributions, one if the put
option finishes out-of-the money, the other if finishes is in-the-money. Mathematically, define

this distribution as

f(v:‘.-{-flst+‘r Z X) lf St+‘r 2 X

f(V;+r) = .
f(Vigr|Seer < X) if Seqr < X

If Sipr = X, then f(Viyr) is a lognormal distribution, i.e.,

v’t-{-flst-l-f 2X = St+1'

1 1 {lnVier —m 2
f(Vear|Ster 2 X) = Toavi P [—5 (—"%—"')]
t+r

Note that Si;, > X implies Vigr 2 X. In contrast, when Syr < X, f(Vigr) s still

lognormal, but with different characteristics:

Vt+‘rlS£+T <X = hX + (1 -— h)SH.-,—

f(Vt+flSt+f < X) = ﬁ}-s(vi —hX) exp [—l (ln(V}_'_, — hX) :(ln(l - h) + m)) jl




Sevr < X implies Viyr < X, and the option provides a lower bound on the value of the
hedged payoff of AX. Combining these results:

-m\? .
[ (2= s
—AX ) —{In (1—R)+m)N 2] .
f(Veyr) = 2«a(v.1+f—f.X) exp [_% (1n(v,+,. hm,(h QA )') ] ifAX < Viyr < X
0 if Vigr < RX

This result assumes the hedge ratio is less than one, i.e., A < 1. From a practical
perspective, this is the most interesting case, and the one on which we focus below, since the
expenditure on hedging tends to be small relative to the exposure, yielding low hedge ratios.
However, if the exposure is overhedged (i.e., h > 1), then Seyr < X implies X £ Vigr < RX.
The exercise price is a lower bound on the value of the hedged position, and the distribution

is

( 2
Tt exp |3 (B=2) if Vigr > hX
InVigr—m 2 )
f(‘/t+ ) = ¢ \_/Z:r:V,,H exp _% ( P ) if X < VH-T < hX

1 1 {In(AX-Viyr)=(In(h=1)+m)}?
+ X —Vers) exp[ 2( B )]

L 0 if Vigr < X

See Appendix A.l for the details.

To build some intuition, Figures 1 and 2 graph the probability density function of this
hedged value for different choices of the hedge ratio (k) and different choices of the exercise
price (X), respectively. Figures 1-4 are all based on the parameter values p = 0.10, o = 0.15,
r = 0.05 and T = 1. The figures illustrate the basic effects of option hedging on VaR for any
set of parameters. In Figure 1 the option is purchased at-the-money, and in Figure 2 the
options are at-the-money and 5%, 10%, and 15% out-of-the-money.

Figure 1 provides the distribution of the hedged position for five different hedge ratios,
h =00 h=025h=05 h =075 and k = 1.25. The mixture of distributions is
obvious from the picture. For hedge ratios less than one, if the asset value exceeds the
exercise price, and hence the option finishes out-of-the-money, the distribution of the hedged

position is the same for all hedge ratios. When the option finishes in-the-money, the value of

8



the hedged position depends materially on the hedge ratio, 2. The higher the 2, the greater
the protection, and the more truncated the distribution of the hedged position. For hedge
ratios greater than one, asset values less than the exercise price generate payoffs greater than
X. Consequently, the distribution is truncated at the exercise price. Clearly, the higher the
hedge ratio, the lower the VaR.

Figure 2 provides the distribution of the value of the Eedged position for a hedge ratio
of A = 0.5, and for four different choices of the exercise price. Again, the mixture of
distributions is obvious from the picture. If the asset value exceeds the strike price, and
hence the option finishes out-of-the-money, the distribution of the hedged position looks like
the loghorma.l distribution of the underlying asset. For asset values below the strike price,
the asset distribution is compressed due to the payoff from the option. Clearly, the higher
the X, the greater the protection, the more truncated the distribution of the value of the
hedged position, and the lower the VaR.

As shown in Figures 1 and 2, we can decrease VaR.;, by increasing either the strike price
(X) or the pumber of options in our hedge (k). Unfortunately, this leads to an accompanying
increase in the hedging costs. The primary question raised in this paper is
Is there a VaR-minimizing combination of strike price X and hedge ratio A for a

given cost?

2.2 Minimizing VaR

There is a tradeoff between the strike price and the hedge ratio. As the hedge ratio increases,
the strike price must decrease in order to maintain a fixed hedging cost. Giver a cost, C,

the exercise price (X) and the hedge ratio (k) must satisfy
C=hP(5,X,r1,0)

Buying options with a higher exercise price affects a larger range of the distribution, but it
also results in a lower hedge ratio. Consequently, more of the extreme tail of the distribution

is left unhedged.



Figure 3 shows for a given cost three combinations of exercise prices and hedge ratios
out of the continuum of possible choices. Specifically, the hedging cost is fixed at 0.35% of
the value of the underlying asset. For hedge ratios of 0.25, 0.5, and 0.75, the corresponding
options are approximately 8%, 13%, and 15% out-of-the-money. The problem is to choose
the option position to minimize the VaR at a given percentage level. The optimal exercise
price (and hedge ratio) will depend on the particular percentage level chosen. Of the three
choices here, as the Figure illustrates, the optimal hedge ratio is 0.5, which obtains the lowest

VaR. This is generalized later to the optimal choice out of a continuum of options.

The dependence of the optimal exercise price on the VaR percentage level, and the
tradeoff between the exercise price and the hedge ratio are illustrated in Figure 4. This
graph presents the value of the hedged position at maturity (i.e., Vi+r) versus the value of
the underlying asset, for the different hedge ratios and option strike prices from Figure 3.
The 45° line (solid line) is the payoff assuming no hedging. The hedged payoffs for all the
hedge ratios lie on this line above their respective exercise prices because the option finishes
out-of-the-money. Below the exercise price, the slope of the hedged payoff depends on the
hedge ratio - the higher the hedge ratio, the flatter the line. For a fully hedged position, the

payoff would be completely flat below the exercise price.

From this graph it is relatively simple to calculate the a% VaR for a given hedge ratio
and exercise price pair, and thus to choose the best option. First, find the unhedged payoff
that corresponds to the a% level. The corresponding hedged payoff is the a% payoff for
the hedged distribution. Consequently, the hedge ratio (and exercise price) that provides
the lowest VaR for a given percentage level corresponds to the highest payoff line for that
corresponding underlying asset value. For small percentage levels (i.e., when the institution
is concerned about larger potential losses that occur with a smaller probability), the optimal
exercise price is lower and the hedge ratio is higher. For large percentage levels, it is optimal
to use options with a higher exercise price but at lower hedge ratios. At intermediate

percentage levels, an intermediate exercise price is optimal.

In the next section, we present the formal solution to this problem, allowing the institution
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to purchase an option with any strike price.

3 Hedging VaR with Options

3.1 The Solution to the Minimization Probhlem

The institution faces the following problem: what is the optimal choice of put options that
will minimize the Value-at-Risk of the institution’s exposure for a given cost? Define VaR,,..
as the loss at the a% level of the distribution of the institution’s exposure Sy, Given the

lognormality of S:, the Value-at-Risk of the institution for our problem is given by
VaRiy, = S = [(1 — h)Siexp(8(a)) + RX], (1)

where 8{a) = (u — 30%)7 + ¢(a)o /T under the assumption that X > Siy-exp(8), and <(-)
is the cut-off point of the cumulative distribution of a standard normal. Intuitively, the
exercise price is above the a% percent level of the unhedged payoff, so the VaR depends on

the compressed lognormal distribution for the region where the option finishes in-the-money*.

As in Section 2.1, this result assumes & < 1. When the exposure is overhedged (A > 1),
the VaR is much more complex because two levels of ;ur'xhiedgéd payoffs generate the same
hedged payoff. Consequently, the VaR depends on the distributions both when the option
finishes in-the-money and when it finishes out-of-the-money. There is no simple closed form

solution, but the VaR is characterized in Proposition 1 of Appendix A.2.

It is clear from equation (1) that VaR,.. is a decreasing function of X and h. However,
increasing X and A will also increase the hedging cost. The researcher’s task is to find the
optimal mix of X and &, given a particular hedging cost. Using Black and Scholes (1972),

the hedging cost is easy to characterize. In particular,

C =hP(S, X,r,7,0)

4]t can be easily shown that the choice of smaller X will be inefficient since VaR,r is unaffected.
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where the price of the put option equals

P = Xe7"®(dy) — 5:B(d)
P ln(X/S)—(_r—i';)-r
1 O’\/F

4 - ln(X/S)-(r+5)r

o7 !
and &() is a cumulative normal distribution. Given these characterizations of the VaR and

costs of hedging, the optimization problem faced by the institution can be written as

Minyx VaRey, = S; — [(1 — B)S,efte) 4 hX]

: (2)
subject to C = hP..
Substituting in the hedging cost constraint, equation (2) can be rewritten as
- . C C
X" = argminy S5;— [(1 - }_9;) S, +,}?' ]
X — §,efla)
= argmaxy C [_ftc_] (3)
P,
[X -_ Sgﬂafa)]
= argmaxy |—————]|. (4)
P,

Some observations are in order. First, perhaps the most striking cbservation is that equation
(3) indicates that the VaR.y is an affine function of hedging cost, C, and so it will not affect
the choice of X. Thus, regardless of the given hedging cost, the choice of X remains the
same. Once the cash flow of the asset is given, the optimal X is determined by that, and the
hedge ratio will adjust depending on the hedging costs. Recall that this result holds only if
the resulting optimal hedge ratio is less than one. Below we discuss the case where hedging

expenditures are sufficiently large so as to violate this assumption.

Second, equation (4) shows that the minimization of VaR4, is equivalent to the max-
imization of the ratio of the distance between the exercise price and the a% level of the
unhedged payoff, and the price of the put option. Loosely speaking, the objective function

can be interpreted as the ratio of the benefit of hedging and the cost of hedging. Increasing

12
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the strike price of the option hedges a greater fraction of the distribution, but the option

becomes miore expensive.

The first order condition for the maximization problem in equation (4) is

P~ (X — 5,ef*)) 8

ax _
7 = 0.
Hence, the solution X" satisfies the following nonlinear equation,
X" = Sgea(a) -+ %‘ .
ax -
T X ®(dy) - S:®(d2)
= Gefa o & t
et e 0(d,)
,®(dz)
= S 8(ax) X" — rr )
t€ + SgC ‘I’(dl)
Therefore, X~ is the solution that satisfies
$(dz2)
0 = S dla) _ rr XA/
te S:c @(dl) (5)

< X7,

= .S'tee(“) - EQ [SH'TISH"F

where @ denotes the risk-neutral probability measure.

Several comments are in order. First, it is clear that equation (3) can be rewritten as

ea(a)—r‘r — @(dz(X'/Sg))
®(di(X*/5))

. As one might expect, the optimal choice of put options is equivalent to choosing a level
of moneyness of the option. Second, one can interpret equation (5) in the following way.
The strike price is chosen such that the a% payoff of the unhedged position is equal to the
risk-neutral expectation of the truncated distribution of the exposure when the option 1s

exercised.’ This is not surprising given the nature of the optimization problem. Specifically,

SNote that in equation (5), the necessary condition for the existence of solution X* isthat § < rr because
®(d2)/®(d1) < 1. For most reasonable parameter values, this restriction will be satisfied. Tt essentially
requires that the asset’s drift not be too large relative to its diffusion. We thank Bruce Grundy for this

observation.
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“preferences” are specified for the expected payoff of a given percentile of the return distri-
bution. There is no aversion to any other moments of the distribution in the cost function.
As we have seem above, in section 2.2 and Figure 4 the payoff maximizing scheme is achieved

at X, the optimal exercise price for the chosen percentile.

In arriving at the above solution, we impose the budget constraint C = AP(X). Conse-
quently, A* = C/P(X"), i.e., the hedge ratio at the optimal exercise price is simply the cost
divided by the value of the put option at that strike price. If A* < 1, then this solution is
correct. However, if A" > 1, then the expression for the VaR in equation (1) is incorrect,
and the VaR is given by Proposition 1 in Appendix A.2. Under these circumstances, what
is the optimal strike price? The solution is to increase X until A = 1, a corner solution (see
Appendix A.3 for the details). Hence, the global solution to the VaR minimization problem

can be summarized as follows:

e If C is low enough that at X, 2" < 1, then X" is the optimal strike price and 2" is

the optimal hedge ratio.

e If C is large enough so that at X", h” > 1, then the optimal hedge ratio is A = 1 and
the optimal strike price is simply the solution to C = P(X).

While there is no closed-form seolution for X* in the more interesting and relevant case
when hedging expenditures are limited, closed form expressions are available for comparative
statics using the implicit function theorem. These results are provided below.

3.2 Comparative Statics

Rewriting equation (5), the optimal choice of X satisfies the following equation:

&(d,)exp(b(a) — rr) = &(dy). (6)

14



Define 8 = (u, o, r, 7). Since X = X(S;, A), using the implicit function theorem and equation

(6) yields,
0X _ N(d)%% - N(d) g%y — 0(dy) 455

®(d,) a8 £
o8 N(d) 3% — N(d;)5%
where '
oa _ 1
X = otX
o4, _ _1
80X ~ ovTX

N(d) = astandard normal pdf = \/;_Wexp (—%dz)

Taking the derivative of d; and d; with respect to each element of the parameter vector, 3,
yields the desired comparative statics results. The proofs of all these results are providéd in

Appendix B.

3.2.1 The Drift

The derivative of the optimal exercise price with respect to the drift of the underlying asset

is

f9_)_(_ _ —&(d;)®(dz)o X 732 > 0.
Iy N(d)®(ds) — N(dz)@(dh) ~
The effect of increasing the mean of the distribution is to increase the optimal strike price.
The reason is that, for higher drift parameters, the future distribution of the asset is shifted
to the right relative to its current value. Thus, the optimal exercise price is also increased

to preserve its relation relative to the a% level of the unhedged payoff.

3.2.2 The Volatility

The derivative with respect to the underlying asset’s volatility is

0X _ XJT[N(d)®(d2)dr — N(d2)®(d1)ds + $(d1)®(d2) (077 — ¢(e)o/T)] >,
do N(3)3(d5) — N(d)®(dy) =0,
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which is of an indeterminate sign. The effect of ¢ on X™ is more complicated than that
of the drift. As o increases, the price of the put increases. Higher volatility also increases
the dispersion of the distribution of the underlying asset. Consequently, the exercise price
must decrease to preserve its relation relative to the a% level of the unhedged distribution,
for reasonable values of a. Since both these effects work in the same direction, we might
expect that as ¢ rises, the optimal strike price falls. For most parameterizations this is
true. However, if o > 50%, then the a% level of the unhedged distribution is increasing in
volatility and the unhedged VaR.,, is decreasing in volatility. For a sufficiently high o this

effect can offset the cost effect, and the optimal exercise price will be increasing in volatility.

3.2.3 The Interest Rate

The derivative with respect to the risk-free rate is

9X X [N(d)®(da)7 — N(d)8(dy)r + 8(d1)®(da)or™?] j i
e N@)(&) ~ N(&)e(d) =60

As the interest rate increases the optimal strike price decreases. Two observations are in
order. First, the optimal strike price falls as interest rates rise because of the corresponding
fall in the cost of the put. Second, because the effect on the cost is small and there is no
effect on the distribution of the underlying asset, the overall effect of interest rate changes

1s small.

3.2.4 The Horizon

The derivative of the optimal exercise price with respect to the hedging horizon is

60X X [N(di)®(da}n — N(d:)®(di)ya — 207@(d)B(ds) (1 — Jo? — 7 + o))

>
g _ ~0.
ar 27 [N(dy)®(d;) — N(d2)®(dy)) <
where
T = O'dz + 27‘\/‘?
T = Jdl + 27"\/1_'
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The horizon over which the partial option hedge takes place can have a dramatic, yet non-
monotonic, effect on the optimal level of moneyness of the option. On the one hand, as the
horizon increases, the positive drift in the asset’s return dominates, and the strike price rises
to reflect the shift in the distribution of the asset’s value away from its current value. On the
other hand, the volatility of the asset increases with the horizon, and the distribution gets
more disperse, leading to lower optimal exercise prices. As the horizon gets very long, the
former effect dominates, and strike prices increase. For shorter horizons, the volatility effect
dominates, and strike prices decrease. In general, this reversal will always occur (as long as
the drift is positive); however, its point of inflection depends on the underlying parameter

values themselves.

3.2.5 The Level of Protection

A further interesting question is to consider how the optimal strike price changes as a function
of the institution’s desired VaR level, i.e., the a% of the distribution the institution wishes
to protect itself against. In particular, we want to investigate the sensitivity of X to the
percentile, ¢, where we recall that ¢{«) is a cut-off point which satisfies

/ “ N(2)dz = 8(c(a)) =

-3

We define the inverse function of the cumulative normal density ®~*(a) (i.e., if a = 2.5%,
then c(a) = —1.96) such that
c= % a).

This inverse function is well-defined because ®(c) is a monotonic function of ¢. Then, it is
straightforward to show
e . _p
% =¢ (C!) > 0.
An application of the implicit function theorem to equation (6) yields
X _ —8(dy)d(d))Xo?r® " (a)
8o~ N(di)®(dz) — N(d2)(d1)’
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The denominator as well as the numerator is negative, so we can conclude

X
>
e > 0.

While the sign of this derivative is not surprising, equation (8) does provide an exact so-
lution for how the level of optimal moneyness changes with the institution’s desired level
of protection. Of particular interest, since this level is a choice variable of the institution,
one could imagine using these results to help the institution tradeoff the choice of options

against the amount they are willing to pay and the desired level of protection.

4 An Illustration of Optimal Hedging

In order to illustrate some of the above results, and to quantify the benefits associated with
optimal hedging, we turn to a numerical example. Throughout this example we use the

parameter values S, = 100, p = 0.10, ¢ = 0.15, r = 0.05, 7 =1, and « = 2.5%.

4.1 Hedging Costs and VaR

For the above parameter values, the optimal X* is $87.59, or in other words the institution
should purchase options 12.41% out-of-the-money. Figure 3 shows how the optimal VaR
changes as the institution increases its willingness to pay for options. For example, if no
hedging takes place, the VaR is $18.56; however, by purchasing $0.35 worth of put options,
the VaR is reduced to $15.65. By adding another $0.35 to these options, the VaR drops to

$12.75. The institution can then tradeoff its VaR reduction versus the cost of this reduction.

One key point, however, is that equation (3) shows that the optimal level of the moneyness
of the option is invariant to these costs. In other words, as the institution increases its
willingness to pay, this decision will not affect what the optimal strike prices of these options

should be.
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4.2 The Benefits of Optimal Hedging

It is worthwhile at this point to quantify the benefit of a judicious (i.e., optimal) choice of
an exercise price relative to a suboptimal choice. We compare the VaR and cost of a hedged

position using various exercise price options. We address two related questions:

1. Given a certain cost allocation for hedging, how does the VaR using the optimal exercise

price options compare to the VaR using other exercise prices?

2. Given a targeted VaR level, how does the cost of implementation differ across different

choices of exercise prices?

Figure 6 plots the VaR as a function of the exercise price. Each line represents a certain
level of expenditure on the options hedge. Note that the absolute VaR level clearly declines
as the cost allocated for the hedge increases. As expected given our parameter values, the
VaR of the position is minimized for out-of-the money options with an exercise price of
$87.59. Since the optimal exercise price is independent of the total cost of the options hedge,
the minimal VaR is obtained at this exercise price for any expenditure level as long as the
cost is not so high that overhedging will occur at the optimal exercise price. When it does,
as is the case for C = 1 in Figure 6, Appendix A.3 shows that the optimal hedge ratio is

one. The figure vividly presents this case.

For example, at a cost level of $0.70, the hedge ratio using at-the-money options is
18.85%, and the VaR is $15.06. Reducing the exercise price to the optimal level affords an
increase in the hedge ratio, to 94.57%, and generates a much lower VaR of §12.75. This 1s

an economically meaningful reduction in the VaR of the position of over 15%.

Figure 7 addresses the same issue from a slightly different perspective. We examine the
cost of hedging across various exercise prices holding fixed a targeted VaR level. The figure
plots the cost as a function of different exercise prices, where the lines now go though fixed
VaR pairs of exercise price and cost. The similarity between this graph and the previous one

(Figure 6) is not surprising, and is due to the linear relationship between cost and VaR. This
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figure demonstrates, for example, that if a VaR of $12.5 is desired, implementing it using
at-the-money options would cost $1.21, while at the optimal exercise price the cost would

be $0.73.

4.3 Determinants of the Optimal Strike Price

Holding the above parameter values fixed, Figures 8-11 -deSt.:ribel how X™ varies with yx and o,
r, r and a. Figures 8a and 8b present the optimal exercise price in terms of the parameters
of the underlying distribution of the institution's exposure, S;. Figure 8a provides a 3-
dimensional graph of this relation. As the drift g varies from 0.05 to 0.15, the optimal
strike price for the option can increase dramatically, from being 10-15% out-of-the money
to 10-15% in-the-money. For high drift parameters, the distribution of the assets payoff is
shifted dramatically relative to its current value; thus, the optimal exercise price also varies
substantially. An effect of similar magnitude, but in the opposite direction, can be observed
for the volatility. As o increases from 5% to 15%, there is a large decrease in the optimal

exercise price.

Figure 8a shows that the effect of the drift (1) and diffusion (o) parameters on the optimal
level of moneyness of the option is similar in that theyboth relate to the option’s ability
to protect against losses at the tail of the distribution. To see their combined effect more
clearly, Figure 8b provides a contour plot of the optimal exercise price. For these parameter
values, and a given optimal X*, the underlying p# and o are proportionally related. For
example, for the pairs (g = .04,0 = .08), (¢ = .065,¢ = .10), and (p = .09,0 = .115), the
optimal exercise price is 92, or 8% out-of-the money.

While Figures 8a and 8b illustrate the importance of the underlying distribution of the
asset in determining the optimal strike price for hedging the institution’s VaR, Figure 9
shows that, while this strike price is decrea.s'ing in the risk-free rate r, the effect is of second
order. For example, increasing r from 5% to 20% causes the optimal level of moneyness to

fall from 12.5% to only 14.4% out-of-the money.
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Figure 10 shows that the horizon over which the partial option hedge takes place has
a large and nonmonotonic effect on the optimal level of moneyness of the option. As the
horizon increases to 1 year, the optimal strike price decreases from 6% to 12% out-of-the-
money. Between 1 and 2 years the relation between horizon and strike price reverses. It is
at this point that the mean effect begins to dominate the volatility effect. For a horizon of

7 years, the optimal exercise price is 10% in-the-money.

The final determinant of the exercise price is the level of desired protection. For exam-
ple, the institution may wish to protect itself against losses at either the 2.5% tail of the
distribution or the 10% tail. What level of moneyness provides the minimum value-at-risk-
at these a% levels? Figure 11 graphs the optimal strike price against the desired level of
protection. Obviously, as additional protection is desired, more and more of the distribu-
tion of the asset needs to be hedged against, and the strike price rises. Figure 11, however,
shows that this relation between the strike price and level is highly nonlinear. This suggests
that an institution should take these results into account when deciding how much loss they
should protect themselves against. For example, going from a desired a = 2.5% to o = 10%

increases the exercise price of the option from $87.59 to §100.00.

5 Conclusion

This paper provides a formal analysis of optimal risk control using options in a simplified
framework in which an institution wishes to minimize its VaR. The complication arises
when considering a menu of possible pairs of exercise prices and hedge ratios given a leve!
of expenditure, since such different choices imply different levels of hedged VaR. We find
that the optimal strike price is independent of the level of cost. Therefore, the cost/VaR
frontier is linear. That is, given the parameters governing the distribution of asset returns,
and the desired confidence level, an institution faces the choice of increasing the position
in an optimal exercise price option, thereby reducing its VaR. Interestingly, the choice of

optimal exercise price is sensitive to the desired confidence level.
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There are several natural extensions to our analysis to non-normal distributions, mean
reverting processes, fixed income securities etc. The most natural extension, however, is to
multiple asset exposure. Examples are the case of an exporter/importer to various exchange
rates, the case of a pension fund manager to equity and bond markets, or the case of an
energy company to the cost of various energy sources. The optimization can then be extended
to the question of optimal choice of a menu of options on the different underlying exposures,
taking into consideration a richer set of parameters, namely the correlations among assets
(which may provide a natural hedge). Addressing such a problem may be necessary in
the absence of options on baskets of securities. Since a portfolio of options is generally
more expensive than an option on a portfolio, though, the risk management problem is best
addressed by approaching the over-the-counter option market, and constructing an option on
the compound position. In doing so, the analysis falls back within the realm of our modél, 50
long as the distributional assumptions hold. One might argue in this context that the recent

explosion in the use of over-the-counter basket-options may be related to this argument.
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Appendix

A Results for h > 1
A.1 The Distribution

Assume that k > 1. Similar to the case of 2 < 1, we will have two conditional distributions. If

Seir > X, then f{Viy,) is a lognormal distribution, i.e.,

‘/t-{-flst-l-‘r = SH‘"‘
1 1 /InVi, —m\?
VierlSine > X) = —meee— exp | == (___Ef__) .

f( H-TI t4+7 = ) \/2_‘:1'3V¢+.,- exp [ 9 3 (9)
In contrast, when S:;4r < X, the distribution is still lognormal but with different characteristics.
To see this,

Viger|Ster < X = R X + (1 - A)Se4-.
Hence,
hX — I/H,f = (h— I)SH.-;- > 0.

Therefore,

In(hX — Vigr) = In(h = 1) + 10 Seyr ~ N [In(h - 1) + m, 57 .

Therefore, the conditional distribution is

_ - _ 2
FVigrlSepr < X) = \/ﬂs(h;‘ e [_% (ln(hX Vier) s(ln(h 1)+m?) ] 10)

In fact, this distribution is the mirror image of that of Vi1+|Si4r < X when & < 1, reflected through

the exercise price X. The maximum value is AX when 5¢ 4. = 0.

Further, we can show that
Sepr 2 X = Vigr 2 X

. (11)
Sipr <X = Vigr > X

That is, the minimum value of V4, is X. Since Viy, > X for either of (Seyr > X) or (Seir < X),

we can combine (9) and (10) such that

fVegr) = f(Vier|Seer 2 X) + f(VigrlSiqr < X)
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1 1 /(lnVip, —m\?
T e 1 (2=
1 1 (In(hX — Vipr) = (In(h — 1) + m)\?
T JarehX —Vipy) P ['5( S )] (12)

A.2 The VaR

Denote V* = §; — VaR¢4r, the level of the hedged payoff at the VaR. From equation {12} and the
definition of VaR, VaR;, at the & percentile should satisfy the following equation:

ve Ve (V*ALX)
Jo fGantVinr = [ f(VeaelSiae 2 X)Virr + [ SVl Sear < X)Ver

= @ (13)

where a A b = min(a,b). Since the maximum value of Vi4r|5:4- < X is RX, we have to check V*
is greater than kX, so that in the second term of the RHS in equation (13), the upper limit of
integral is V" A hX.

Now we establish the following proposition about the VaR for A > 1.
Proposition 1: Given o, the VaR of the hedged payoff Vi, when h > 1, equals
VaR¢+1- = S; —- V-,

where V™ satisfies the following equation

I 2 I

o (=) _ g [2EEE)™) g (o)
(14)

¢ (ln¥i=m) if o > ¢ (tX)-m)

where m and s are

3
!

].D.S¢+ (p—%az)‘r
s = oyT.

Proof: The first term of the right hand side in equation (13) is

Ve Ve v, 2
1 1/In 4T
VierlSenr > X)dVipr = / —_—  ex __(__m) dVius
/X f(VegrlSet )dVes ; B sVigr Pl 2 p t+
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_ ve 1 1 hlSH.f—m 2 )
- fX \/:??33&1- =P [ 5 ( 3 ) dSH-?
Q(mvs—m>_@(mxs— m), (1)

since Viypr|Setr 2 X = St4-. The second term is more complicated.

1. V* < hX.

In this case, the second term will be

e
./x f(Vegr|Star < X)dViy,

v 1 1 /l(hX — Viyr) = (In(h — 1) + 1) 2

x  V2rs(hX — Vier) exp[ 2 ( s ) ]dv‘“

53 1 1 /In((h = 1)Sesr) — (In(h — 1) + m)\?
s 1 ; JJERLE

X 1 1 11:15:4,1,--:—:1)2
= ——exp |-z [ | dSiys
f - J2nsSisr ""‘"[ 2( s +

() (),

_RX -VT
T hR-=-1 "~

il

where
5.

Therefore, from equations (15) and (16),

o = ¢(M)_¢(Mi)+¢(ﬂ;ﬂ)u¢(h‘~g_‘?ﬂ)
S 8 S 8
Q(an —m)_q‘(lns —m).
k] 3

One important thing is that given X, there is the upper bound for V7, or equivalently, the

lower bound for VaR4-. Using L'Hospital’s rule, it can be easily shown that

sup V™(h) = fim V*(h)

a=¢(an'—m)_q>(lnX~m).
s S

Therefore, some deep-out-of-the-money options cannot obtain certain levels of VaRs if those

is the solution to

values are lower than the lower limit.

=
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2. V* > hX.

In this case, the second term on the right hand side in (13) will be

hX
'/;( F(ViarlStar < X)dViyr

hX 1 1 (In(hX — Vir) = (In(h — 1) + m)\?
j,; VZrs(hX = Vipr) T ['5( - )]m,,

X 1 1 (S, —m\?
—_— e dSipr
[ a2 (222 | s

o (BX=m), -

L]

Then, the V* should satisfy

o - () () o (2

§ 8

= & (w;‘ m).

Finally, the condition V* > AX implies that a > prob(Viyr < hX). Further

a > prob(Viy, € AX)} = @(W——ml)_q,(ln)(—m)_l_@(ln)(-m)

$ s $

_ Q(].u(hX)—m)

]

which yields the desired results. In this case, however, the hedging is inefficient since VaR(y- is

unaffected. @.E.D.

Even though we do not have a closed-form expression for the VaR in this case, we can easily

find the numerical solution using a numerical search such as the Newton-Raphson method.

A.3 The Optimal Exercise Price

In Section 3 we solve for the optimal exercise price X under the constraint that A < 1. Recall
that we impose the budget constraint C = hP(X). Consequently, A" = C/P(X*), i.e., the hedge
ratio at the optimal exercise price is simply the cost divided by the value of the put option at that
strike price. If A™ < 1, then this solution is correct. However, if A* > 1, then we must use the VaR

derived above to find the optimal exercise price. In this case, the solution is to increase X until
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h = 1, a corner solution. Hence, the solution to the VaR minimization problem can be summarized

as follows:

¢ If C is low enough that at X*, A~ < 1, then X~ is the optimal strike price and A® < 1is the

optimal hedge ratio.

o If C is large enough so that at X*, A* > 1, then the optimal hedge ratio is-A = 1 and the

optimal strike price is simply the solution to C = P(X).
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B Comparative Statics

We will prove the set of equations (7). N(d1)®(dy) — N(d2)®(d1} is a common term in the de-
nominators of all the equations. Define A = N(d,)®(d;) ~ N(dq)®(d;). It is possible to rewrite A
as
A = N(d)®(d)~ N(d2)%(d1)
= N(d2)[®(d2) ~ ®(d1)] + $(d2)[N(d1) - N(d3)]
d d
= —N(dg) /d ' N(2)dz + 8(ds) /d '(—zN(2))dz
] 2
d
- - [d '[N (ds) + 28(dy)|N (2)dz,
2
using the fact that dN(z)/0z = —zN(z) for any z 2 d;. Now, we need to prove that N(d;) +

2&(d;) > 0 for any z > da. To do that, we establish the following lemmas:

Lemma 1: If z is a standard normal variate, then
N(z)+z98(z) > 0.

Proof: The lemma is true if z > 0. If z < 0, we need —szl > ®(z). For notation convenience
we define a positive normal variate, w = ~z. Then, the above inequality is equivalent to %ﬂ >
1 — &(w), using the fact N(z) = N{—z) and &(z)} = 1 — &(—2). Differentiating each side yields

N(w)

W

—N{w) - = - (1+w7%) N(w)

and — N(w), respectively. Thus, the LHS of the equation is

¥ = /:ﬂ (1 + y‘z) N{y)dy, (18)
and the RHS is
1-o@w)= [ Ny (19)

For w > 0, we have (1 + y~2)N(y) > N(y) for all y > w, so that equation (18) exceeds (19); and
the lemma holds for z < 0. Q.E.D.

Lemma 2: For any z > dj,




Proof: For any z,
JN(z)/®(z)) —-zN(z)®(z) - N(z)?
9z 3(2)? '

Consider the following two cases:

1. f z > 0, the numerator is negative, so i(ﬂfa){.ﬂi)l <0.

2. If z < 0, the numerator is —N(2)(N(2) + z8(z)) < 0 from Lemma 1, which results in

a!N‘ZL{Q!Z“ < 0-
Therefore, ﬂﬁ%lz&@l < 0 for any z, which is equivalent to ﬂﬂ(ggﬂ@l > 0. Then, — %(25)1 >

-%f{;‘—;}, for any z > d2. Q.E.D.

From Lemma 1 and Lemma 2, for any z > dj,

_N(z) > _N(d2)
T 8(z) T ®(dz)’

Zz

Therefore, N{ds) + z&(d2) > 0 for any z > d,, which ylelds A < 0; thus, the sign(8X/30)
=-sign{the numerator of (8X/80)).

B.1 The Drift (u)

With respect to u, using
o4 o by 00-rr) _
p T op w
the numerator of (§.X/89u) will be simplified to

Ty

—8(dy)®(dy)o X 32 < 0,
which results in (3X/8u) > 0.

B.2 The Volatility (o)

Using the expressions for d, d2 and the definition of #{x), we have

8d1 _ dg 6d2 _ d1 3(3—— T‘T) _
50 =% B~ Te ae - orrelavr
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Then, the numerator of §X/3¢ will reduce to

q,( 7303 [M(d1)@(da)dz ~ N(d2)®(d1)ds + 8(d1)8(d2) (o7 = c(a)o/7)] . (20)
N(d,)®(d2)d2 — N(d3)®(d1)dy can be shown to be negative using Lemma 1, while the sign of
&(d;)®(dz) (6?1 - c(a)o+/T) is indeterminate. As long as we are concerned about the payoff below

mean a < .5, the term will be positive. Hence, the sign of (8X/d¢) will be determined by which

term will dominate.

B.3 The Interest Rate (r)

We can show that
0d, VT 8dy _ /T 8- rT)

Br o' or o’ ar
Then, the numerator of (§X/3r) can be written

1

c®(d1) [N(dl)q)(di’)\/_*- N(dg)@(dl)\/; + @(dl)‘ﬁ(dz)o’r] , (21)

which will give us the desired result.

It is possible to rewrite equation (21) as

C,Q,@ ) [V (d1)®8(d2) = N(d2)®(d1) + ¥(d1)®(d2)ov/7]

= ,;,{; 3 [N (d))®(dy) — N(d2)®(dy) + &(d1)®(dz) (d1 — d2)].

Now we need to prove
[(dz) = N(d1)@(dz) — N(d2)®(d1) + ©(d1)®(d2) (d1 — d2) 2 0.

Using d, — d3 = o+/7, we can show

dT

L [V(d1)®(ds)dz — N(d2)®(dy)dy].

From Lemma 1 and Lemma 2,
N(d1)®(d2) £ N(d2)®(d1).
Further, since N(d)®(d2) > 0, N(dz)®(d) 2 0, and d; < d,
N(d)@(d2)d ~ N(d2)®(dy)d; < 0,
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which yields - > 0. In addition,
inf T'(d2) = lim I'(d;) =0,
djl—co
so ['(d;) > 0 for any da. This results in (8X/dr) < 0.

B.4 The Time to Maturity ()

We can show that

9 _ T

ar 2r o T

04 _ _d_ s

8r 21 ot
88 —rr) 1, cla)e
—af = (p——éa -—1‘)-1-2\/;

Substituting these inta (8X/805) will give us the desired result. The sign is indeterminate as shown

in Figure 10.
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Figure 1: The probability density function of the hedged value for different choices of the
hedge ratio (h). Parameter values are g = 0.10, ¢ = 0.15, r = 0.05 and 7 = 1.
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Figure 2: The probability density function of the hedged value for different choices of the
exercise price (X) using a hedge ratio of 0.5 (h = 0.50). Parameter values are p = 0.10,
c=0.13,r=0.05and r = 1.
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Figure 3: The probability density function of the hedged value for different choices of h and
X, given a fixed hedging cost. Parameter values are 4 = 0.10, 0 = 0.15, 7 =0.05and 7= L.
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Figure 4: The payoff of the hedged position at maturity 7 versus the unhedged payoft, for
different choices of A and X, given a fixed hedging cost. Parameter values are p = 0.10,
o=0.15r=005and r = 1.
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Figure 5: The changes in the optimal VaRy, for different hedging cost €. The parameter -
values used are S, =100, x = .10, ¢ = .15, 7 = .05, r = 1, and & = 2.5%.
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Figure 6: The VaR.y- as a function of the exercise price. Each line represents a certain level
of expenditure on option hedge. Dotted lines illustrate the functional relationship when -
overhedging is needed. The parameter values used are S, = 100, p = .10, ¢ = .15, r = .05,
r =1 and e = 2.5%.
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Figure 7: The cost of hedging across various exercise price required to obtain targeted VaR
levels. Dotted lines illustrate the functional relationship when overhedging is needed. The
parameter values used are S5, = 100, u = .10, 0 = .15, r = .05, 7 =1 and ¢ = 2.5%.
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Figure 8: The effect of the underlying distribution of S; on the optimal exercise price X.
The parameter values used are §; = 100, r = .03, 7 =1, and a = 2.5%.
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Figure 9: The effect of the interest rate r on the optimal choice of exercise price X. The
parameter values used are S, = 100, u = .10, ¢ = .15, 7 =1, and & = 2.5%.
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Figure 10: The effect of the maturity over which the option hedge takes place, v on the
optimal choice of exercise price X. The parameter values used are S, = 100, y = 10,
o = .15, r = .05, and a = 2.5%.
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Figure 11: The effect of the desired level of protection a on the optimal exercise price X.
The parameter values used are S; = 100, = .10, o = .15, r = .05, and 7 = 1.
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