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1 Introduction

One of the most pressing economic issues facing corporations today is the proper manage-
ment of financial risks. In response to a series of recent financial catastrophes,! regulators,
investment. bankers, and chief executive officers have now embraced the notion of risk man-
agement as one of the primary fiduciary responsibilities of the corporate manager. Because
financial risks often manifest themselves in subtle and nonlinear ways in corporate balance
sheets and income statements, recent attention has focused on quantifying the fluctuations
of market valuations in a statistical sense. These value-at-risk (VAR) measures lie at the
heart of most current risk management systems and protocols. For example, JP Morgan’s

{1995) RuskMetrics system documentation describes VAR in the following way:

Value at Risk is an estimate, with a predefined confidence interval, of how much
one can lose from holding a position over a set horizon. Potential horizons may
be one day for typical trading activities or a month or longer for portfolio man-
agement. The methods described in our documentation use historical returns to
forecast volatilities and correlations that are then used to estimate the market
risk. These statistics can be applied across a set of asset classes covering products
used by financial institutions, corporations, and institutional investors.

By modeling the price fluctuations of securities held in one’s portfolio, an estimate and
confidence interval of how much one can lose is readily derived from the basic principles of
statistical inference.

However, in this paper we argue that statistical notions of value-at-risk are, at best, in-
complete measures of the true risks facing investors. In particular, while statistical measures
do provide some information about the range of uncertainty that a portfolio exhibits, they
have little to do with the economic valuation of such uncertainty. For example, a typical
VAR statistic might indicate a 5% probability of a $15M loss for a $100M portfolio over the
next month. which seems to be a substantial risk exposure at first glance. But if this 15%
loss occurs only when other investments of similar characteristics suffer losses of 25%, such

a risk mayv scem rather mild after all.

For example, the multimillion-dollar losses suffered by Gibson Greetings, Metallgesellschaft, Orange
County, Proctor and Gamble, Barings Securities, etc.



This simplistic example suggests that a one-dollar loss is not always worth the same, and
that circumstances surrounding the loss can affect its economic valuation, something that
is completely ignored by purely statistical measures of risk.

In this paper, we propose an alternative to statistical VAR (henceforth S-VAR) that is
based on economic valuations of value-at-risk, and which incorporates many other aspects
of market risk that are central to the practice of risk management. Our alternative is based
on the seminal ideas of Arrow (1964) and Debreu (1959), who first formalized the economics
of uncertainty by introducing elementary securities each paying $1 in one specific state of
nature and nothing in any other state. Now known as Arrow-Debreu securities, they are
widely recognized as the fundamental building blocks of all modern financial asset-pricing
theories, including the CAPM, the APT, and the Black and Scholes (1973} and Merton
(1973) option-pricing models.

Bv construction, Arrow-Debreu prices have a probability-like interpretation---they are
non-negative and sum to unity—but since they are market prices determined in equilibrium
by supply and demand, they contain much more information than statistical models of
prices. Arrow-Debreu prices are determined by the combination of investors’ preferences,
budget dvnamics, information structure, and the imposition of market-clearing conditions,
e, general equilibrinm. Moreover, we shall show below that under certain special conditions,
Arrow-Debreu prices reduce to the simple probabilities on which statistical VAR measures
are based. hence the standard measures of value-at-risk are special cases of the Arrow-Debreu
framework.

The fact that the market prices of these Arrow-Debreu securities need not be equal across
states implies that a one-dollar gain need not be worth the same in every state of nature—
indeed, the worth of a one-dollar gain in a given state is precisely the Arrow-Debreu price of
that security. Therefore, we propose to use the prices of Arrow-Debreu securities to measure
economic VAR (henceforth E-VAR).

Despite the fact that pure Arrow-Debreu securities are not yet traded on any organized

exchange.? Arrow-Debreu prices can be estimated from the prices of traded financial secu-

?This is changing as derivatives markets become more sophisticated. For example, it is now possible to
construct a limited set of Arrow-Debreu securities by forming portfolios of “digital” or “binary” options.



rities using recently developed nonparametric techniques such as kernel regression, artificial
neural networks, and implied binomial trees. Nonparametric techniques are particularly use-
ful for value-at-risk calculations because departures from standard parametric assumptions,
e.g.. normality, can have dramatic consequences for tail probabilities. Using such technicques,
we compate the performance of S-VAR and E-VAR measures and develop robust statistical
methods to gauge the magnitudes of their differences.

Moreover, to provide an economic interpretation for the differences between S-VAR and
E-VAR, we show how to combine S-VAR and E-VAR to yield a measure of the aggregate risk
aversion of the economy, 1.e., the risk aversion of the representative investor in a standard dy-
namic asset-pricing model. We propose to extract (unobservable) aggregate risk-preferences,
what we call impled risk aversion, from {observable) market prices of traded financial secu-
rities. In particular, we are inferring the aggregate preferences that are compatible with the
pair of option and index values.

When applied to daily S&P 500 option prices and index levels from 1993, our nonpara-
metric analysis uncovers substantial differences between S-VAR and E-VAR (see Figure 2).
A comparison of S-VAR and E-VAR densities shows that aggregate risk aversion is not con-
stant across states or maturity dates, but changes in important nonlinear ways (see Figure
4).

In Section 2 we present a brief review of the theoretical underpinnings of Arrow-Debreu
prices and their relation to dynamic equilibrium models of financial markets. In Section 3
formallyv introduce the notion of economic value-at-risk, describe its implementation, and
propose statistical inference procedures that can quantify its accuracy and relevance over
statistical VAR, An explicit comparison of E-VAR with S-VAR, along with the appropriate
statistical inference, is described and developed in Section 4. We construct an estimator
of implied risk aversion in Section b and propose tests for risk neutrality and for specific
preferences based on this estimator. To illustrate the empirical relevance of E-VAR, we

apply our estimators to daily S&P 500 options data in Section 6. We conclude in Section 7.

See, also, the “supershares” security proposed by Garman (1978) and Hakansson {1976) which has been
test-marketed recently by Leland, (O’Brien, and Rubinstein Associates, Inc.



2 DGP, SPD, MRS, and VAR

Denote by 5, the price at time ¢ of a security or portfolio of securities whose risk we wish
to manage and let u,; = In{S;;,/S;) denote its return between ¢ and { + 7. The usual
statistical VAR measures are based on the probability distribution of u,,.* For example,
one common VAR measure is the standard deviation of returns u;,. Another is the 95
percent confidence interval of u;, centered at its historical mean. More sophisticated VAR
measures incorporate conditioning information and dynamics in specifying and estimating
the probability distribution of w, ;, i.e., they are based on conditional probabilities obtained
from the data-generating process (DGP) of {S¢}.

Although such VAR measures do capture important features of the uncertainty surround-
ing u, ., they fall short in one crucial respect: they are statistical evaluations of uncertainty,
not economic valuations. In particular, one investor may be quite willing to bear a one-
standard deviation drop in u¢,, while another investor may be devastated by such an event.
Therefore, although the dollar loss is the same for both investors, their personal valuations of
such a risk can differ dramatically. More importantly, the market valuation of this risk—the
value assigned by the interactions of many heterogeneous investors in a market setting—can

differ substantially from statistical measures.

2.1 Dynamic Equilibrium Models

This distinction between the DGP and market valuations lies at the heart of dynamic equilib-
rium asset-pricing models in economics—beginning with Arrow (1964) and Debreu (1359) -~
in which the valuation of securities with uncertain payoffs is determined by the interaction
and equilibration of market forces and market conditions.? In such models, the specific
DGP for prices is not assumed, but rather is derived from first principles as the (stochastic)
sequence of prices that equates supply and demand at each point in time,

More importantly, unlike a purely statistical model of prices, e.g., geometric Brownian

motion, a DGP that is derived from equilibrium prices contains an enormous amount of

*See, for example, Smithson, Smith, and Wilford (1995).
1See Merton (1982, 1992) for a review of these and related models.



information about market conditions and investors’ preferences that is critical for risk man-
agement. To see why, consider a standard dynamic exchange economy [see Lucas (1978)
and Rubinstein (1976)] in which securities markets are dynamically complete, there is a
single consumption good, no exogenous income, and all investors seek to maximize at date
t a state-independent utility function, subject to the usual budget constraints. They can
consume at date ¢ and at some fixed future date T. There is one risky stock (the market
portfolio, in total supply normalized to one share) and one riskless bond (in zero net supply)
available for trading at any date between ¢t and 7. Under suitable assumptions for preferences
and endowment shocks, it is well-known that market completeness allows us to introduce a
representative agent with utility function U [see Constantinides (1982)] and the date-t equi-

librium price S; of a security with a single date-T liquidating payoff of ¢/(Cr)—a function

of aggregate consumption Cr—is given by:

U'(Cr)
U'(Cy)

St = Et [w(CT)Mt,T] , Mt,T = (21)

where Afy 7 is the stochastic discount factor or marginal rate of substitution (MRS) between
consumption at dates £ and T'. In equilibrium, the investor optimally invests all his wealth
it the risky stock at every instant prior to T and then consumes the terminal value of the
stock at T, Cy = Sy

Assuming that the conditional distribution of future consumption has a density repre-

sentation fi(), we can rewrite (2.1) as:

E[w(Cr)Mr]) = fﬂ%(&)%fﬁ(%)d@

= e [T w(Cr) £ (Cr)dCr
= e " "E; [¥(Cr)] (2.2)

where 7 =7 — ¢ and

M, fi(Cr)
I Myp fi(Cr)dCr

fi(Cr)
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—

b
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and 7, 1s the continuously compounded net rate of return between t and T of a riskless
hond promising one unit of consumption at T, assumed constant for simplicity.

This version of the Euler equation shows that the price of any asset can be expressed
as a discounted expected payoff, discounted at the riskless rate of interest. However, the
expectation must be taken with respect to f*, an MRS-weighted probability density function,
not the original probability density function f of future consumption. This density f* is
called the state-price density (SPD) and it is the continuous-state counterpart to the prices
of Arrow-Debreu state-contingent claims that pay 81 in a given state and nothing in all
other states. Under market completeness, f* is unique. In particular, Arrow (1964) and
Debreu (1959) showed that if there are as many state-contingent claims as there are states,
then the price of any security can be expressed as a weighted average of the prices of these
state-contingent claims, now known as Arrow-Debreu prices. In a continuous-state setting,
f* satishies the same property—any arbitrary security can be priced as a simple expectation
with respect to f*.

This underscores the importance of f* for risk management: the SPD aggregates all
economically pertinent information regarding investors’ preferences, endowments, asset price
dynamics, and market clearing, whereas purely statistical descriptions of the DGP of prices
do not. It is possible in general to characterize the class of DGP of prices that are compatible
with an equilibrium model [see for example Bick (1990), Wang (1993) and He and Leland
(1993)]. Fixing the utility function, however, is not sufficient to identify uniquely the DGP
of the price process. If parametric restrictions are imposed on the DGP of asset prices,
e.g.. geometric Brownian motion, the SPD may be used to infer the preferences of the
representative agent in an equilibrium model of asset prices [see, for example, Bick {1987)].
Alternatively, if specific preferences are imposed, e.g., logarithmic utility, the SPD may be
used to infer the DGP of asset prices. Indeed, in equilibrium, any two of the following imply
the third: {1) the representative agent’s preferences; (2) asset price dynamics; and (3) the

SPD.



2.2 No-Arbitrage Models

The practical relevance of SPD’s for derivative pricing and hedging applications has also
become apparent in no-arbitrage or dynamicelly-complete-markets models in which sophis-
ticated dynamic trading strategies involving a set of “fundamental” securities can perfectly
replicate the payofls of more complex “derivative” securities. For example, suppose that we
observe a set of n; asset prices following It6 diffusions driven by n, independent Brownian

motions:
dSt = 'u-tdt + Utth (24)

with . > ny, and suppose that there exists a riskless asset with instantaneous rate of
return r. Then path-independent derivative securities on an asset with payoff function
¢(St) are spanncd by certain dynamic trading strategies, i.e., derivatives are redundant
assets hence they may be priced by arbitrage.” In such applications the asset price dynamics
are specified explicitly and conditions are imposed to ensure the existence of an SPD and
dvnamic completeness of markets [see Harrison and Kreps (1979), Duffie and Huang (1985)
and Duffie (1996)].

For example, the system of asset prices S in (2.4) supports an SPD if and only if the

system of linear equations ¢; - A, = p; admits at every date a solution A; such that

exp [/tT)\T-)\TdT/‘Z]

has finite expectation, and

exp l— /tT/\TdWT—ftT /\T-/\TdT/Zl

has finite variance. In the presence of an SPD, markets are complete if and only if rank(o,) =

ny almost evervwhere. Then the SPD can be characterized explicitly without reference to

? Additional assumptions are, of course, required such as frictionless markets, unlimited riskless borrowing
and lending opportunities at the same instantaneous rate r; ;, a known diffusion coefficient, etc. See Merton
(1973, 1992) for further discussion,



preferences  -in the particular case of geometric Brownian motion, with constant volatility
o, interest rate ry, and dividend yield 4, , over the period (¢,¢ + 7), the SPD or risk-neutral
pricing density is given by the conditional distribution of the risk-neutral stochastic process

with dvnamics
dS: = ('rt,’r — 53,1-)S:dt + US:th

which is a lognormal distribution with mean ((ry; — ;) — 02/2)7 and variance o7,

More generally, denote by S; the price of an underlying asset and by f¥(S;, St 7,77, 0t.r)
the SPD of the asset price St at a future date T', conditioned on the current price S;. Consider
now a European-style derivative security with a single liquidating payoff +>(S7). To rule out
arbitrage opportunities among the asset, the derivative and a risk-free cash account, the

price of the derivative at ¢ must be equal to:

+o0
T [0 W (S7) fF (St Sz 7, Turs Gr) dST (2.5)

For example. a European call option with maturity date 7' and strike price X has a payoff

function +(Sy) = max[Sy — X, 0] hence its date-¢ price Hy is simply:
H (5‘{,- ‘\'1 T, .'Pf‘T) == ({—rt‘rT/ max [ST - XJ O] ft* (Sia ST‘J 7, 'rt,Tu 5!,1’) dST : (26)
0

Even the most complex path-independent derivative security can be priced and hedged ac-

cording to (2.5).

3 Economic VAR

The relevance of the SPD for risk management is clear: the MRS-weighted probability
densitv function f* provides a more relevant measure of value-at-risk—economic value—
than the probability density function f of the DGP. Therefore, we advocate the use of f~
in all VAR measures such as standard deviation, 95% confidence intervals, tail probabilities,

ete. To distinguish the more traditional method of risk management from this approach, we



shall refer to the statistical measure of value-at-risk as “S-VAR” since it is based on a purely
statistical model of the DGP, and call the SPD-based measure “E-VAR” since it is based on
economic considerations.

Now if the MRS in (2.1) were observable, implementing E-VAR measures and comparing
them to S-VAR measures would be a simple matter. However, in practice obtaining f* can
be quite a challenge, especially for markets that are more complex than the pure-exchange
economy described in Section 2.1. Fortunately, several accurate and computationally effi-
cient estimators of f* have been developed recently and we provide a brief review of these
estimators in Section 3.1 and derive their asymptotic distributions in Section 3.2. With these
estimators in hand, we show in Section 4 how to how to gauge the relative iinportance of

E-VAR empirically by examining the ratio f*/f.

3.1 Kernel Estimators of the SPD

Banz and Miller (1978), Breeden and Litzenberger (1978), and Ross (1976) were among the
first to suggest that Arrow-Debreu prices may be estimated or approximated from the prices
of traded financial securities. In particular, building on Ross’s (1976) insight that options
cau be used to create pure Arrow-Debreu state-contingent securities, Banz and Miller (1978)
and Breeden and Litzenberger (1978) provide an elegant method for obtaining an explicit
expression for the SPD from option prices: the SPD is the second derivative (normalized to
integrate to unity) of a call option pricing formula with respect to the strike price.

To see why, consider the portfolio obtained by buying two call options struck at X and
selling one struck at X' — ¢ and one at X + ¢. Consider 1/¢% shares of this portfolio, often
called a “butterfly” spread because of the shape of its payoff function ¢(St) which payvs
nothing outside the interval [X — €, X +¢] . Letting ¢ tend to zero, the payoff function of
the butterfly tends to a Dirac delta function with mass at X, i.e., in the lmit the butterfly
becomes an elementary Arrow-Debreu security paying $1 if Sy = X and nothing otherwise.
The limit of its price as ¢ tends to zero should therefore be equal to €"77 f*(X). Now denote
by H{S:, X,7) the market price of a call option at time ¢ with strike price X, time-to-

maturity 7. and underlying asset price S;. Then, by construction, the price of the butterfly



spread must be:

0
ot =

S 2H(S, X, 1) - H(S., X —¢,7) — H(S;, X + ¢, 7)] (3.1)

which has, as its limit as ¢ — 0, 3*H(S,, X, 7)/0X?.
For example, recall that under the hypotheses of Black and Scholes (1973) and Merton
(1973), the date-# price H of a call option maturing at date " = ¢ + 7, with strike price X,

written on a stock with date-¢ price P, and dividend yield &, ,, is given by:®

Hps(Si, X7, 10, 80050) = e ]0 max[Sr — X, 0] fs (Sr)dSy
= St(I)(dl) "‘Xeir"f’rq)(dg) (32)

where

I (Si/X) + (s — 61r + 02/2
g = Y H“;'\/; RO/ = 4 - vt (3.3)

In this case the corresponding SPD is a log-normal density with mean {(r;, — &:,} — 6%/2) 7
and variance (72?':
0*Hps

Gxz 1X=sr
1 [In(St/Ss) — (res — 8y — 02/2)7]2
Srv2rott P 20271

frs(Sr) = et

(3.4)

This expression shows that the SPD can depend on many quantities in general, and is
distinct from but related to the PDE of the terminal stock price Sp. More generally, while
sufficiently strong assumptions on the underlying asset price dynamics can often characterize
the SPD uniquely, in most cases the SPD cannot be computed in closed form and numerically

intensive methods must be used to calculate it. Tt is clear from (3.4) that the SPD is inex-

€Let F} , denotes the value at t of a futures contract written on the asset, with the same maturity T as
the option. At the maturity of the futures, the futures price equals the asset’s spot price. Thus a European
call option on the asset has the same value as a FEuropean call option on the futures contract with the
same maturity. As a result, we will often rewrite the Black-Scholes formula as Hgg(Fi ., X, 7,7 ;0] =
T T (R L B(dy) — X(dy)), with di = (log(Fy . /X) + (6?/2)7)/(o\/T) and dy = d) — 0/T.

10



tricably linked to the parametric assumptions underlying the Black-Scholes option pricing
model. If those parametric assumptions do not hold, e.g., if the dynamies of {S;} contain
Poisson jumps, then {3.4) will yield incorrect prices, prices that are inconsistent with the
dynamic equilibrium model or the hypothesized stochastic process driving {S;}. Given the
general lack of success in fitting highly parametric models to financial data (see, for example,
Campbell. Lo, and MacKinlay [1997, Chapters 2 and 12]), combined with the availability of
the data and the large effects of differences in specification, it is quite natural to focus on
nonparametric methods for estimating SPD’s.

Aft-Sahalia and Lo (1997) propose to estimate the SPD nonparametrically by exploiting
Breeden and Litzenberger's (1978) insight that f}{Sy) = exp(ry,7)8*H(-)/0X? They
suggest using market prices to estimate an option-pricing formula H () nonparametrically,
which can then be differentiated twice with respect to X to obtain 92H(-)/dX2%. They

use kernel regression to construct H(-).”

Assuming that the option-pricing formula H to
be estimated is a an arbitrary nonlinear function of a vector of option characteristics or
‘explanatory” variables, Z=[F,, X 7 r,].

In practice, they propose to reduce the dimension of the kernel regression by using a
semiparametric approach. Suppose that the call pricing function is given by the parametric

Black-Scholes formula (3.2) except that the implied volatility parameter for that option is a

nonparametric function o (X/F -, 7):
H{S, X, 7.r05,0,) = Hps(Fr, X, 7100 0(X/Fer, 7)) (3.5)

We assume that the function H defined by (3.5) satisfies all the required conditions to be
a “rational” option-pricing formula in the sense of Merton (1973, 1990).® In this semipara-

metric model, we only need to estimate nonparametrically the regression of & on a subset Z

"See Hirdle (1990) and Wand and Jones {1995) for a more detailed discussion of nonparametric regression.
There are other alternatives to that can be used to obtain option-pricing formulas: see Derman and Kani
(1994}, Dupire (1994), Hutchinson, Lo, and Pogglo (1994), Jackwerth and Rubinstein (1996), and Rubinstein
(1904). Tor an extension to American options and the nonparametric estimation of the early exercise
boundary. see Broadie et al. {1996).

#See Merton (1990, Chapter 8.2). These conditions imply that o(X/F,7) cannot be an arbitrary function
but nwust vield an Hps(Fy -, X, 7,7 o(X/ F; 7, 7)) that satisfies all the conditions of a rational opticn-pricing
formula.

11



of the vector of explanatory variables Z. The rest of the call pricing function H(-) is para-
metric, thereby considerably reducing the sample size n required to achieve the same degree
of accuracy as the full nonparametric estimator. We partition the vector of explanatory
variables Z = | Z' Fir rir | where 7 contains d nonparametric regressors. As a result, the
effective number of nonparametric regressors d is given by d.

In our empirical application, we will consider Z = [ X/F,, 7 | (d = 2) and form the

Nadarava-Watson kernel estimator of E [0 | X/F; ;, 7] as:

n X{Fe.—XifF,. .. o
> kxp ( - i ') [ (fm') o;

hx/F

~ oy _ =l
5(X/F..7) = n A X/Ftr—Xi[F,, .. f (EL) (3.6)
o MXIF hx/F T\,

where o, is the volatility implied by the option price H;, and the univariate kernel func-
tions ky,r and k. and the bandwidth parameters hx,r and f, are chosen to optimize the
asvmptotic properties of the second derivative of ]ff(), i.e., of the SPD estimator. We then

estimate the call pricing function as:
H(Sth.u T, 'rt,'ry"jt,f) = HBS (F:‘S,'ruX: T) Tt,'ra(st,f;a-(X/-Ft,TuT)) . (37)

The SPD estimator follows by taking the second partial derivatives of g () with respect to
X

321{1 (St,, X., Ty Tt 6t,r)
2X?

X (Sy) = e (3.8)

[x=3p
3.2 Statistical Inference for E-VAR

We collect option prices in the form of panel data, consisting of N observation periods and J
options per period. The sample size is n = NJ. We make the following assumptions on the
data used to construct the nonparametric regression (3.6), i.e., (0, Z) where Z = [ X/F,, 7 |'.
The nonparametric regression function is 5(Z), and we wish to estimate its m-th partial

derivative with respect to the first component X/ F; ;. of the vector 7.
Assumption 1

12



1. The process {Yi =(0,,Z;): i=1,... ,n} is strictly stationary with E[o]] < oo and

[l

2
] < 0o, and is F-mixing with mixing coeflicients 3; that decay at a rate at
least as fast as 7% b > 4, as j — co. The joint density of (V,Y)y;) exists for all j

and is continuous.

2. The density 7(o, Z) is p-times continuously differentiable with respect to Z, with p > m,
and 7 and its derivatives are bounded and in LQ(RH‘E). The marginal density of the
nonparametric regressors, (Z), is bounded away from zero on every compact set in
R

3. o(Z)7w(Z) and its derivatives are bounded. The conditional variance

(2) = E [(0 - 0(2))* |Z] (3.9)

is bounded and satisfies s*(Z) € Ly(R?%). The conditional fourth moment E[(o —

a(Z))*| Z] is bounded.

Definition 1 A kernel function k is of order g if:

o 1 if (=0
/ dk(2)dz = {0 if 0<l<g
T (-elx, f I=¢

where 1is an integer and [T212)' |k (2)]dz < oo for all 0 < I < q.

Assumption 2 The kernel functions kx;r and k. are bounded, three-times continuously
differentiable, and have derivatives which are bounded and in Ly (R). kx/p is of order gx,r

and k. is of order g,. The bandwidths are given by
: hy = ¢,s{T)n~1/(@+2) (3.10)

h .\'J.r‘"F — ('/\'/’FS(X/F)H— 1/(J+2(QX/F+m))

where s(X/F) and s{T) are the unconditional standard deviations of the nonparametric re-

gressors, cx;p = yyyp/In{n), with yy,p constant, and e, = v, /In(n), with v, constant.

13



In practice, we use the kernel functions
by (2) =7 Var ) kg (2) = (3 22) 2 [Var (3.11)

which are of order ¢ = 2 and ¢ = 4 respectively. We then obtain

Proposition 1 Under Assumptions 1 and 2:

: s AT e d
n.l/zf('f/l“ /2’1/2 {aX (Z) - aXm(Z)l = N(0,00,) (3.12)

where

ook w)de | {22k 2(w)dw
L #(2) (12 () @)de) (17 b 2) ). -
w(Z) F2r

Therefore the E-VAR estimator 1s distributed asymptotically as
fal A* * d
MR R [F(Sr) - £ (Sn)] S N(0.0%) (3.14)
where OHys /00 is the option’s gamma evaluated ot 5(Z) and

cszr* = [e’""” OHps

—&—;(5(2), Z)] ok, . (3.15)

Here A( v;r (enotes the m-th derivative of the univariate kernel function k. The term Fzm

in the denominator of (3.13) is due to

"6 (Z) oms(Z) 1

8Xm  B(X/F )™ Fp

We give in Table 1 the values of the integrals of the kernel functions that appear in the
expressions above for the functions (3.11) to be used in our empirical estimation of the S&P
500 E-VAR.

This proposition follows from the functional delta method in Ait-Sahalia (1995): the
expression Hus(6(Z), Z) — Has(o(Z), Z) behaves asymptotically like 8Hps/00 (6(Z) —
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a(Z)); and hecause derivatives of &(Z) converge at a progressively slower rate (by com-
paring (3.12) for m = 0,1 and 2) the asymptotic distribution of &Hygs /0X? (6(Z), Z) —

FHps /0X? (o Z), Z) is that of OHys /00 (8%6 /0X? — 8%6 /8X?).

3.3 Other Estimators of the SPD

Several other estimators of the SPD have been proposed in the recent literature (see Ait-
Sahalia and Lo [1997] for a more detailed discussion and an empirical comparison). Hutchin-
sonr, Lo, and Poggio (1994) employ several nonparametric techniques to estimate option-
pricing models that they describe collectively as learning networks—artificial neural net-
works. radial basis functions, and projection pursuit—and find that all these techniques can
recover option-pricing models such as the Black-Scholes model. Taking the second derivative
of their option-pricing estimators with respect to the strike price yields an estimator of the
SPD.

Another estimator is Rubinstein’s (1994) emplied binomial tree, in which the risk-neutral
probabilities {7}} associated with the binomial terminal stock price Sy are estimated by
minimizing the sum of squared deviations between {#?} and a set of prior risk-neutral
probabilities {7'}. subject to the restrictions that {7’} correctly price an existing set of
options and the underlying stock, in the sense that the optimal risk-neutral probabilities yield
prices that lie within the bid-ask spreads of the options and the stock (see also Jackwerth
and Rubinstein (1996} for smoothness criteria).

This approach is similar in spirit to Jarrow and Rudd’s (1982) and Longstaff’s (1995)
method of fitting risk-neutral density functions using a four-parameter Edgeworth expan-
sion. However, Rubinstein (1994) points out several important limitations of Longstaff's
method when extended to a binomial model, including the possibility of negative probabil-
ities. Derman and Kani {1994) and Shimko (1993) have proposed related estimators of the
SPD.

There are several important differences between kernel estimators and implied binomial
trees. [mplied binomial trees require a prior {7} for the risk-neutral probabilities; kernel
estimators do not. Imp