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Introduction

RECENTLY CONSIDERABLE attention has been focused on the “affine”
class of asset pricing models in which the drifts and volatility coeflicients of
the state-variable processes are affine functions (e.g., Duffie and Kan (1996)).
Two approaches to developing affine models have been pursued in the term
structure literature. One assumes that the instantaneous short rate is a lin-
ear combination of an unobserved state vector ¥, r(t) = 'Y (¢), and that Y
follows an affine diffusion model (hereafter AY models). This approach is
rooted in the risk management literature, which has found it convenient to
decompose term structure movements into changes in “level”, “slope,” and
“curvature” factors. The unobserved Y'’s are the dynamic counterparts to
these constructs. Examples of AY models include the multi-factor, square-
root diffusion models of ¥ used by Chen and Scott (1993), Pearson and
Sun (1994), and Duffie and Singleton (1996) to study term structures of
Treasury and swap rates. The second approach posits a model for the in-
stantaneous short rate (r) in terms of its own lag and other state variables
(hereafter Ar models). See, for example, Chen (1996), Balduzzi, Das and
Foresi (1995), and Backus, Foresi, and Telmer (1996). This approach has
evolved from the literature on one-factor models of the instantaneous short
rate r, with the additional state variables representing the stochastic long-run
mean and volatility of r.

Though both approaches seek models that describe the temporal behav-
ior of bond yields, there has been little comparative analysis of the nature
of the restrictions imposed on the distributions of bond yields in extant
AY and Ar models. Whether or not these restrictions are normalizations
or over-identifying restrictions depends on the information about the joint,
conditional distribution of bond yields used to identify the term structure
model. Ar models have typically focused on the conditional distribution of a
short-term rate to the exclusion of information about long-term yields. Con-
sequently many (though not all) of the restrictions imposed on the diffusion
coefficients in these models (e.g., independent diffusions) are normalizations
that are necessary to identify the parameters of the state vector from knowl-
edge of the distribution of a single short rate. However, suppose there are
N state variables and the parameters are to be identified from information
about the joint conditional distribution of M (> N) bond yields. Then many
of the restrictions imposed in previous Ar and AY models represent poten-
tially strong over-identifying restrictions on the joint distribution of long-



and short-term bond yields.

Starting from the premise that the goal of both Ar and AY models is
to explain the term structure of interest rates — i.e., the joint distribution of
long- and short-term rates — this paper characterizes, interprets, and tests
the over-identifying restrictions imposed in affine term structure models. Our
analysis proceeds in three steps. First, we show that, within the general AY
model with M = N, not all of the parameters are identified from knowledge
of the conditional distribution of bond prices. A convenient normalization
that contributes to eliminating this under-identification is to assume that
there is no feedback between the state variables through their drifts. Impos-
ing this normalization, we show that affine models can be distinguished by
the different over-identifying restrictions they impose on (i) 4, and (ii) the
parameters of the diffusion matrices.

Second, we show that every AY model is analytically equivalent to an Ar
model and wvice verse. Moreover, the diagonal drift of AY models maps to a
“terraced” drift structure in multi-factor Ar models of r. This equivalence
allows direct comparisons of the substantive restrictions on the dynamics of
interest rates imposed in AY and Ar models.

Specifically, we show that the models of Chen (1996), Balduzzi, Das and
Foresi (1996), Andersen and Lund (1996), among others, implicitly restrict
one of the §’s to zero. The dimension of the state vector ¥ (N) is 3, but the
number of Y's that directly determine r through the relation r(t) = §'Y(¢)
(n) is 2; 7 is a linear combination of a strict subset of the ¥'s. In contrast,
the multi-factor Cox, Ingersoll and Ross (1985)-style (CIR) models assume
that NV = n.

Furthermore, the two-factor CIR model (N = 2), for example, is shown
to be equivalent to an Ar model in which one of the state variables is r and
the other is the stochastic long-run mean of r. Thus, C IR models have im-
plicitly always incorporated the central tendency factor that Balduzzi, Das
and Foresi (1996) and Andersen and Lund (1996) have recently argued is
an essential feature of Ar models for explaining the time series properties
of short-term rates. Moreover, given an identified AY model with N fac-
tors, there are NV equivalent, identified Ar models with the long-run mean
of r being Y; in the i*" model, ¢ = 1,..., N. What distinguishes these Ar
models, besides the different drift specifications of r, are the different speci-
fications of the diffusion coeflicients. In other words, it is the assumed form
of the diffusion coefficients in Ar models that dictates which Y; from the AY
representation is the long-run mean (or stochastic volatility} or r.
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Both Ar and AY models have imposed potentially strong restrictions
on the conditional correlations and variances of the state variables. Many of
these restrictions are unnecessary for the purpose of identifying or estimating
afline term structure models using yields on bonds with multiple maturities.
The state variables in the general affine model may be correlated and their
conditional variances and correlations may depend on multiple state vari-
ables. At the same time, one does not have complete freedom in specifying
the diffusion coefficients, because of the need to rule out certain nontrivial
rotations and to assure existence of solutions to the stochastic differential
equations describing the state variables. We illustrate the interplay between
identification and existence conditions with several models in which volatility
is stochastic and the diffusions are correlated.

The third step of our analysis is an empirical analysis of a three-factor
affine term structure model that nests many previous specifications as spe-
cial cases. Affine specifications of the state variables lead to closed- or nearly
closed-form solutions for the prices of zero-coupon bonds, so the the simul-
taneous computation of “arbitrage-free” coupon bond prices and estimation
of the unknown parameters using multiple bond yields is computationally
feasible. We compute simulated method-of-moments estimators (Duffie and
Singleton (1996) and Gallant and Tauchen (1996b)) of a three-factor affine
model using data on six-month, two-year, and ten-year swap rates simultane-
ously. Various specification tests suggest that a three-factor AY model with
correlated factors adequately describes the dynamics of swap rates.

Then we test the restrictions imposed by Chen (1996)! and Andersen and
Lund (1996) that N = 3 and n = 2 (one of the §’s is zero), and that the
conditional correlations among all of the state variables are zero. Within our
affine framework, the over-identifying restriction of independent diffusions —
a normalization when estimating an Ar model using data on a short rate
alone — is strongly rejected. Thus, affine models with independent diffusions
fail to describe the joint distribution of long- and short-term swap rates.

Moreover, the equivalence between Ar and AY D models provides insights
into the reasons why zero conditional correlations are inconsistent with the
data. With the first factor in the Ar representation being r, we show that
the second factor is well proxied by a long-term rate. In addition, the third

'The “benchmark” model referred to by Chen (1996) is a three-factor model obtained
by assuming the long run mean and conditional variance of r follow independent square-
root processes.



factor, typically interpreted as a volatility factor in Ar models, is in fact well
proxied by the slope of the swap curve! These findings are implications of
the assumed structure of the diffusion coefficients. It follows that assuming
independent diffusions amounts to the implicit assumption that r is condi-
tionally uncorrelated with the level and slope of the yield curve which, not
surprisingly, is counter-factual.

The common assumption that the second and third factors are the central
tendency and stochastic volatility of r, respectively, is also challenged by our
findings. Though most of the improvement in fit comes from relaxation of
the correlation restrictions, we also reject at conventional significance levels
the restriction that one of the ¢’s is zero. In the context of Ar representations
of affine models, this finding suggests that the drift of » depends on both the
second and third factors, and not simply a central tendency or stochastic
long-run mean of r.

Though our focus is on the term structure, the subsequent observations
are directly applicable to many affine currency pricing models, because of the
close link between bond prices and forward exchange rates. Under covered
interest parity, the forward premium is the difference of the domestic and
foreign interest rates for the horizon of the forward contract. Thus, affine
models of default-free, zero-coupon bond prices in each country lead to an
affine model for the forward premium. See, for example, Nielsen and Saa-
Requejo (1993) and Backus, Foresi, and Telmer (1996).

The remainder of the paper is organized as follows. Section I sets up the
multi-factor affine term structure model by directly specifying the pricing
kernel in an arbitrage-free economy. Section IT presents a general discussion
on the econometric identification of affine term structure models. The dis-
cussion leads to the presentation of an affine model that nest extant affine
specifications. The over-identifying restrictions implicit in the Chen (1996)
mode] are tested and presented in Section III. Section IV concludes.



I The Affine Bond Pricing Model

Consider a frictionless economy with riskless borrowing and lending oppor-
tunities. Let us fix a standard Brownian motion W = (W), W,, ..., Wy)
in R¥ restricted to some time interval [0,T] on a given probability space
(£2, F, P). We also fix the standard filtration F = {F, : ¢ € [0, T]} of W, and
let F = Fp. Assume that (a) the prices of M bonds follow the Ito process
X=(X,Xp .., Xp)inRM,

dX (1) = ux (t) dt + ox (t) dW (2), (1)

where ox(t) is an M x N matrix; (b) the instantaneous short rate process
r(t) is measurable with respect to F;; and (c) there are no arbitrage opportu-
nities. Then, under technical conditions {see Duffie (1996) and Hansen and
Richard (1987)), there exists a state price deflater 7(t), such that ()X (¢)
is a martingale under P; i.e., for any time ¢ and s > ¢,

X(t) = E, [%X(s)] . 2)

The ratio % 1s the stochastic discount factor or pricing kernel for pricing

the M securities in the absence of arbitrage. By Ito’s lemma, it can be shown
that the pricing kernel satisfies

dm(t)
m(t)

where ox{t)A(t) = pux(t) — r() X ().

The preceding characterization of the pricing kernel process x(t) for pric-
ing bond requires little more than the absence of arbitrage opportunities. The
general affine term structure model is obtained by imposing the additional
assumptions that

= —r(t)dt — A(t) dW (t), (3)

r(t) = Z 8;Yi(t) (4)
and
Alt) = S(1) A, (5)



where, § = (61,...,0x)', and A =
The state variables Yi(¢), i = 1,
dimensional stochastic process

dY (t) = K (@ — Y(2)) dt + £ S(t) dW (1), (6)

where Y () = (Y1(¢8), Ya(t),- - -, Y (t))', K and X are N x N matrices, which
may be non-diagonal and asymmetric. S(f) in (5) and (6) is a diagonal
matrix with the ¢** diagonal element given by

[S())a = Vi + B Y (2). (7)

This characterization of the affine term structure model is the continuous-
time, affine counterpart to the formulations of the pricing kernels in Backus
and Zin (1994) and Backus, Foresi, and Telmer (1996). Our formulation
generalizes the continuous time, pricing kernels assumed by Bakshi and
Chen (1997) and Nielsen and Sai-Requejo (1993), and is equivalent to that
of Fisher and Gilles (1996). Thus, the subsequent analysis of the specifi-
cations of affine term structure models applies to all of these frameworks.
Of course, it also applies to equilibrium term structure models that lead to
pricing kernels with this affine structure such as the CIR model.

The time ¢ price P(t, 7} for a zero-coupon bond with maturity 7 is given
by setting X(t +7) =1in (2):

P(t,7) = B, [”(;E;)T)] , (8)

which, by the Girsanov theorem, is equivalent to

(A1,-..,An)" are N-vectors of constants.
2,..., N, are assumed to follow the N-

P(t,7) = EP [e‘ T r(")d”] , (9)

where EX[] = EQ[-|F] is the expectation with respect to the “risk-neutral”
measure ) conditional on the filtration at time ¢{. The dynamics of the state
variables under ¢, which is needed in order to evaluate bond prices using
(9), is given by

dy (t) = K (é - Y(t)) dt + £ S(t) dW (1), (10)
where W (t) is an N-dimensional independent standard Brownian motion

under Q, K = K+ 5®, § = K~! (KO — £¢), the i** row of & is given by
Ai B, and v is a N-vector whose #*" element is given by Ajo;.
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The risk-neutral drift ;(¢) and diffusion o(¢) of Y (£) have the feature that
both p(t) and o(t)'o(t) are affine functions of ¥(¢). This assures that the
zero coupon bond prices are log linear in the state vector Y ().? Specifically,
it can be shown [see Duffie and Kan (1996}] that the zero-coupon bond prices
are given by

Plt,7) = AC-BOY V() (1)

where A(7) and B(7) satisfy the ordinary differential equations {ODEs)

dA(T) 5 o 1 iy 2
= —6' K'B(t) + 5; ' B(1))? a, (12)
N
dif) _K'B %g ()2 B + 4. (13)

These ODEs can be solved easily through numerical integration, starting
from the initial conditions: A(0) = 0, B(0) = Op.1. Consequently, esti-
mation of models that simultaneously price long- and short-term rates is
computationally feasible.

Equations (4) - (9) characterize what we will refer to as the general AY
representation of a multi-factor, affine term structure model.

2Qur specification of the state variable dynamics under the real measure is also affine
[see (8}]. This is not necessary for the log linearity of zero coupon bond prices, which only
requires that the risk-neutral dynamics of the state variables be affine.
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IT Identification of Affine Models

The mapping in multi-factor models between the state variables and bond
prices is typically non-linear. As such, the identification of the parameters
from information about the conditional distribution of bond prices is typi-
cally not transparent. In this section we address the identification problem
for the general affine term structure model defined in Section I. The identi-
fication problem for affine models is simplified considerably by the fact that
zero-coupon bond are linear functions of the state vector. Even in this affine
framework, there are subtle ways in which models may be under-identified
due to the presence of the arbitrage pricing model the lies between the spec-
ification of the state process and the bond prices. Moreover, the interplay
between existence and identification conditions is shown to restrict the flex-
ibility one has in parameterizing the state process.®

We assume that identification is achieved by using information about the
distributions of zero-coupon bond prices. Extensions of this discussion to
the case of coupon bonds is straightforward. Furthermore, assume that the
number of observed yields used in estimation (M) is equal to the number of
factors (N). If M < N, as in recent multi-factor models of r, then additional
normalizations will generally be required to achieve identification. These
normalizations for the case M < N become over-identifying restrictions when
M = N. Since our focus is on modeling the term structure, we focus on the
case M = N.*

We begin his section by showing that the general N-factor AY model
is under-identified based on knowledge of the conditional distribution of N
bond yields. A convenient normalization that contributes to eliminating this
under-identification is to set K to a diagonal matrix. Then we establish a
general equivalence result between the AY models with diagonal drifts and
Ar models with “terraced” drift structures.

3We expect that the identification problem for other nonlinear models will be at least
as challenging as for affine models. The following discussion will hopefully be informative
ahbout potential sources of under-identification or non-existence in other environments.

*If M > N, then common practice has been to introduce M — N “pricing errors” as
additional state variables, and to treat N yields as being measured without error {e.g.,
Chen and Scott (1993) and Duflie and Singleton (1996)). Since the state variables are
inferred from the latter yields, the identification problem is essentially identical to the
caseof M = N.



II.A  Under-identification of General Affine Models

To show that the AY model, defined by (4) - (9), is in general under-
identified, let us suppose initially that the parameters of the affine model,
including ¢ in (4), are unconstrained parameters. Then any transformation of
Y to ¥ {t) = XY () and 6 to §' = &X', where X is an N x N, non-singular
matrix, preserves the affine structure of the model and leaves r unchanged.
We shall refer to such transformations as non-singular rotations (NVSR) of
the state vector. The next proposition shows that zero-coupon bond prices
are also invariant to NSR'’s. Proofs are given in the Appendix.

Proposition II.1 Zero-coupon bond prices are invariant to NSR’s of the
state veclor.

This proposition follows from the observations that (i) under the real
probability measure, Y(¢) = X x Y (¢} (where X is a NSR) follows the
diffusion

dv (1) = £ (é _ f’(t)) dt + 5 $(t) dW (1), (14)

where K=XKX, % =X% 6=X0,[$(t); has Y in place of Y and
B = X'7'8; in place of 3, and (ii) A and B in the ODEs (12) and (13)
transform in such a way that the bond prices are invariant.

Moreover, this invariance extends to the conditional distribution of the
bond prices:

Proposition I1.2 The joint conditional density of zero coupon bond prices
at date t conditioned on prices at date s, s < t, 1s inveriant under a NSR
of the state vector.

An implication of Proposition 1.2 is that a given affine term structure
model will in general serve as the “basis” of a family of observationally equiv-
alent models generated by rotations of the initial model.

Eliminating the under-identification associated with rotations requires
the imposition of normalizations/restrictions on the co-dependence of the
state variables Y. There are three potential “channels” through which the
state variables may be interdependent in an affine model: (i) through the
feedback in the conditional mean (non-diagonal X), (ii) through non-zero
correlations of the Brownian motions (non-diagonal ), and (iii) as a result
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of dependence of the conditional variance on the state variables (non-zero
elements in 3; other than in the i** component). Proposition II.2 implies
that the contributions of all of these channels cannot be separately identified
in affine term structure models satisfying (4). Normalizations on K, I, or
S(t) are necessary to eliminate this indeterminacy.

A common feature of the factor structures in AY models 1s that K is
diagonal. Under mild regularity conditions, a diagonal X turns out to be a
normalization that goes a long way toward eliminating under-identification
associated with NSRs. For the purpose of interpreting term structure dy-
namics, this normalization has the attractive feature that mean reversion of
Y; is governed only by x;. Co-dependence among the state variables, and
over-identifying restrictions on this dependence, are captured through the
specifications of the matrices £ and B = [81, Bo, .- -, On ).

More precisely, we assume that

Assumption II.1 The eigenvalues of K are positive real numbers, and there
erists an N x N nonsingular matriz X with the property that

ky 0 -+ D
. 0 k2 =+ 0
XKX'=K=| (15)
0 0 - Ky

The assumption that the eigenvalues are real rules out some potentially
interesting dynamics associated with complex eigenvalues. However, as we
show subsequently, all of the affine models that have been studied in the
literature we are aware of presume that the eigenvalues of X are real.> This
assumption can be relaxed if one has a specific parameterization of X in
mind with complex eigenvalues and one is willing to restrict ¥ a priori to
assure identification. The assumption that the real parts of the eigenvalues
are positive is necessary for stationarity of the distribution of Y. A sufficient
condition for there to be a nonsingular matrix X that diagonalizes X is that
the eigenvalues of X are distinct.

Assumption (II.1) and Proposition (I1.2) imply:

5Beaglehole and Tierney {1991) discuss examples of Gaussian affine models with com-
plex eigenvalues, but these or similar models have not been pursued in the empirical term
structure or currency pricing literatures.
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Proposition I1.3 Under Assumption (IL1), normalizing the feedback ma-
triz K to be diagonal in the general affine model (4) — (7) leads to an obser-
vationally equivalent model for r and zero-coupon bond prices.®

With X diagonal, the only admissible NSR's are diagonal matrices. In
Section [1.C we discuss additional normalizations that fully identify K and
d.

Notice that normalization to a diagonal K does not restrict the depen-
dence of r on Y. In particular, r may be a linear combination of a strict
subset of the state variables which, without loss of generality, we can take
to be the first n ¥'s: r(t) = 3., &:Y:i(t). If N — n of the &’s are zero, then
the state variables Y;(t), n < i < N are auziliary factors in that they do not
affect the short rate directly, but only indirectly by influencing the distribu-
tion of the primary factors (Y;{¢), 1 <1 < n). To distinguish between models
with one or more d’s being zero, we let AY D(N,n) denote affine, diagonal
drift models with a total of NV factors (and yields) and n primary factors.”

There is another source of under-identification of the drift function in
affine models. Specifically, when the a;’s are unconstrained, the N com-
ponents of © are not uniquely determined. To see this, suppose that Y is
shifted to ¥ = ¥ + ¢. The long-run mean of the diffusion for ¥ is © + o

and the conditional variances are of the form \/ a; — 319 + BIY (t). The shift
vector ¥ must satisfy the linear restriction §'9 = 0 to preserve the relation (4)
(o' Y = ¢'Y"). Thus, this shift-indeterminacy is eliminated by imposing NV —1
normalizations on the vector O and the constants a; in S(¢). For instance,
one could normalize NV — 1 of the @’s to be zero.

I.LB An Equivalent Affine Model

Instead of parameterizing r as a linear combination of an unobserved state
vector Y, many have parameterized the diffusion for r directly. Typical

8The freedom to diagonalize K presumes, of course, that there are not a priori restric-
tions on ¥ and S(t) in a model with non-diagonal X. As noted previously, AY models
typically impose a diagonal X and restrict £ and S(¢). Qur point is that we can interpret
the restriction on X as a normalization and focus on the diffusion coefficients in charac-
terizing the over-identifying restrictions. We could instead normalize £ to be diagonal.

"The bond prices in the AY D(N,n) model may be solved by writing the AY D(N,n)
as an AY D(N, N) model, with the §;'s associated with the auxiliary factors set to zero.
Then (11} gives the zero coupon bond prices, and (12) and (13) give the factor loadings.
The zero restrictions on §;’s for the auxiliary factors appear only in (13).
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parameterizations of such Ar (affine-r) models are special cases of the three-
factor model®

dr(t) R (0(8) — (1))
dzit)=1{ dao(t) | =| v(B-6@) |dt+35,S.)dw(), (16)
dv(t) (U — v(t))

where #(t) is interpreted as the long-run mean and v(t) is the volatility of r.
In this section we show that the general AY D model has an Ar representation
similar to (16) and use this equivalence to interpret the restrictions on bond
prices implicit in (16).

Consider an AY D(N, n) model, where n may be strictly less than N,
Any transformation of ¥ by a nonsingular matrix L with elements that are
known functions of the parameters of the AY D{N,n) model produces an
equivalent model. And any transformation in which the first row of L is ¢’
gives an equivalent Ar model. A particularly revealing Ar model is obtained
by the following transformation of Y

Z(t) =6, + LY (t), (17)

where L is a block-diagonal matrix, partitioned conformably with a partition
of Y into n primary and N — n auxiliary state variables, given by

I = ( L(ﬂ) Onx(N—n) ), (18)
Ov-myxn  LN—n)x(N=n)

wilth Lg’:) = fyfj), where 7§j) =0forz < jand 1 < 57 < n, and the
%(3) are constants for ¢ > j and 1 € j < n. The shift vector is 6, =
(021,6:2,...,0:0,0,...,0). The diffusion representation of Z(¢) has drift

function u,(t) and diffusion matrix £,5,(t), where £, = LE,

( r(t) \ ( k1 (Z2(t) ~ Z1(t)) \

Zy (t) kg (Z3 (1) — Z3 (1))
2= | Gy | wtn= | I A )
Zny1 () King1 (Ons1 — Zni1 (1))
\ Zv(t) / \  avOn-2Zn®) )

8See, for example, Chen (1996) and Balduzzi, Das and Foresi (1996). Andersen and
Lund (1996} study a model with the same drift as (16}, but their parameterization of
volatility does not fit within the affine class.
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and [S,)i = Vaz + BL,Z(t). The &;’s, 8, 8;’s, o,; and j3,; are functions of
the parameters in the AY D(N, n) model and known constants. (Details are
given in Appendix B.)

Inspection of the form of this Ar representation leads to several observa-
tions about the factor structures in affine term structure models. The drift
in (19) is such that, for the first n — 1 state variables, Z;.(¢) serves as the
stochastic long-run mean of Z;(t). The drifts of the last N — n Z’s are of
exactly the same form as the drifts of the N —n auxiliary Y’s. The fact that
the last N — n state variables affect the drift of + only through the diffusion
coeflicients is the Ar counterpart to the dependence of r on only the first n
Y’s in the AY D representation. With this correspondence in mind, we refer
to Ar models with drifts of the form (19) as Ar(N, n) models.

This equivalence result implies that the potential sources of testable over-
identifying restrictions in all AY D(N,n) and Ar(N,n) models can be clas-
sified into two categories: restrictions on 4 in (4) and restrictions on ¥ and
S(t). We next discuss each of these in turn.

II.C Restrictions on the Number of Primary Factors

In AY D(N,n) models, the normalization of X to be diagonal does not fully
rule out non-trivial NSRs. When n = N, i.e., when all é; are known to be
nonzero, then any transformation of the state vector by a non-singular diago-
nal matrix X will lead to an observationally equivalent model, since XXX !
will also be diagonal. This indeterminacy is eliminated in AY D(N, N) mod-
els by normalizing the §; to 1, for all = 1,..., N. With ¢ fixed, the require-
ment 8 = (X!)'§ = § implies that the diagonal elements of X must be unity.
This was the normalization imposed by Chen and Scott (1993), Pearson and
Sun (1994), and Duffie and Singleton (1996) in specifying their multi-factor
CIR models. These are AY D(N, N) models, because K was assumed to be
diagonal and r depended on all NV state variables.

An immediate implication of the preceding discussion is that one Ar (N, N}
representation of the N-factor C7TR model is given by (19). In the case of
N = 2, we see that the two-factor CI R model has an equivalent represen-
tation in which one of the state variables is r and the other is a stochastic
“central tendency” factor to which » mean reverts. Recall that previous im-
plementations of two-factor AY models (e.g., Duffie and Singleton (1996))
found that the two factors are highly correlated with the “level” (a long-
term rate) and “slope” (long minus short rate) of the yield curve. Thus,
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the central tendency of r can be interpreted as the “level” or “slope” of the
vield curve, depending on how one chooses to order the factors in the AY
representation. These equivalent representations of the drift of r are not
observationally equivalent, in general, because the choice of a particular Y
as the central tendency factor has implications for the specification of the
diffusion coefficients. The interpretation of the factors in the Ar models we
estimate is explored more extensively in Section II1.D.

Setting N = 3 and n = 2 in (19) leads to a representation of u,(t) that is
identical to the drift in (16). It follows that extant three-factor affine models
of the short rate have implicitly assumed that r depends directly on two
of the three state variables in the model: r(t) = Yy(t) + Y2(¢). This is a
testable, over-identifying assumption {see below).

More generally, whether or not a primary risk factor has a stochastic
long-run mean in an Ar representation depends on the value of n relative
to N. In the case of AY D(N, N) models, the equivalent Ar representation
has each factor mean reverting to its own stochastic long-run mean in a ter-
raced fashion. On the other hand, an Ar(N,n) model implies an AY D(N, n)
representation in which N — n of the 4's are restricted to be zero. These
restrictions show up in the Ar(N,n) model as N — n state variables having
constant long-run means.

When one is interested in testing the null hypothesis that n = N (for
Ny < N) against the alternative n = N, ¢ cannot be normalized to the unit
vector, because this null hypothesis is equivalent to §; = 0 for Ny <i < N. If
estimation proceeds under the alternative (with the J; being free parameters
for Ny < ¢ < N) then nontrivial, diagonal NSR’s are again admissible. In
this case, a d; can be treated as a free parameter in estimation by normalizing
the it element of a 3; (for any j for which 3, has a non-zero i** element) to
a non-zero constant.

A third case arises under the null hypothesis when one (or more) of the
&; is restricted to be zero. With §; = 0, a normalization is still needed to
preclude a nontrivial rescaling of ¥;. As above, the i** element of one of the
B; could be normalized to unity, for example.

For example, Chen (1996) and Balduzzi, Das and Foresi (1996), in their
Ar(3,2) models, assumed that £, = I and the volatility of r was /3., Z(¢),

9This remark applies as well to the non-affine model in Andersen and Lund {1996},
since the equivalence of the representations of the AY D and Ar drifts does not depend on
an affine volatility model.
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with 3., = (0,0, 1). Thus, they normalized the third element of 3,; to unity.
It is easily verified that this is equivalent to normalizing the third element
of (3, to unity in the equivalent AY D(3,2) specification of the volatility of
Y:. From the preceding remarks, it follows that this normalization identifies
3 in the AY D(3,3) model with r(t) = Yi(t) + Ya(t) + 83 Y3(f). 5 can be
treated as a free parameter in estimation and the restriction d3 = 0 that they
imposed is therefore testable.

I.LD Restrictions on ¥ and S(t)

Consider again the general AY D(N,n) model. The normalizations on K
and ¢ do not assure identification of the parameters governing the diffusion
coeflicient of Y. Additional normalizations can be imposed to achieve identi-
fication of “maximally flexible” AY D(N,n) representations. However, such
normalizations will not in general guarantee that the terms o; + G;Y(t) in
S(t) are positive with probability one, a condition that is required in affine
models for the existence of a strong solution to (6). Existence of a solution
to the model typically requires the imposition of restrictions that are not
required by the standard conditions for identification. Consequently, there
is not a single equivalence class of just-identified affine models, but rather
multiple branches of non-nested, identified models that satisfy the existence
conditions in different ways. We begin this section with some general remarks
about identification of the parameters in S(¢) and £, and then illustrate the
practical implications of these observations for the three-factor model that
will be examined empirically.

The diffusion is parameterized in terms of the product £5(¢) so normal-
izations must also be imposed to rule out rescalings by non-singular diagonal
matrices. We choose to normalize the diagonal elements of ¥ to be 1. All
subsequent discussion of the identification of ¥ and S{t) presumes this nor-
malization. One could instead fix the scales of 3;, : = 1,2,..., N.

There is a more subtle scale-invariance that arises in some special cases
of affine models. Notice that the PDE’s that determine bond prices and
the conditional density of the state variables depend on the diffusion only
through the combination (X5)(XS), and (£S5)(SA}. It follows that a new
model with .5 replaced by L5U, and SA replaced by I’SA, for an arbitrary
unitary matrix U/, will produce the same observable predictions. (A unitary
matrix U has the property that U/ = U~'.) If U commutes with S (i.e.,
US = SU), then a new affine model defined by replacing ¥ by XU and A by
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U\ is observationally equivalent to the original affine model. We call such
a transformation a unitary rotation {UR). The requirement U'U = Iyxy
imposes N{N + 1)/2 restrictions on a UR, so U has at most N(N — 1)/2
free parameters. The requirement that U/ commute with § further restricts
the free parameters in U. If S is completely unrestricted, then the only
unitary matrix that commutes with § is the identity matrix. In this case,
no further normalizations on ¥ are necessary. On the other hand, if S is
the identity matrix, as would be the case in Gaussian diffusions, then any
unitary matrix commutes with S. Tn this case, we need to impose N(N—1)/2
restrictions on X. A convenient normalization for the Gaussian model is to
restrict ¥ to be upper {(or lower) triangular. An intermediate case where a
normalization is necessary to preclude nontrivial UR’s is when [S(t)];; and
[S(t));; are proportional for some ¢ # j.

In addition to ruling out rotations and rescalings, a parameterization of
S(t) and ¥ must be such that the affine model is well defined. Duflie and
Kan (1996) derived what are essentially necessary conditions for the existence
of a strong solution to the stochastic differential equations in (6}. Condition
A in Duffie and Kan (1996) is reproduced here as Condition 1 (the Existence
Condition):

Condition 1 (Existence) For all i with 3; # 0
(a) For all Y such that [S(t)]; =0, 3/K(© - Y) > 3/'EE'8;/2
(b) For all 3, if (8;%); # 0, then [S(t)]s and [S(t));; are proportional.

The requirements of the Existence Condition may significantly influence
the extent to which S(t) and ¥ can be freely parameterized. Different as-
sumptions about B = (8, 32, 73) and ¥ may interact with the Existence
Condition to lead down different, non-nested branches within the class of
admissible affine models. Following are three illustrative examples:

Example 1

If all the elements of 3; are free, then Condition 1(b) requires that B'Y be
diagonal. Since the diagonal elements of ¥ are normalized to 1, this require-
ment fizes all of the off-diagonal elements of ¥ in terms of the free parameters
in B.

Example 2

If B is diagonal, as in multi-factor CIR models, then ¥ must be diagonal.
Thus, the only admissible extension of the square root model is to allow the
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volatility of each factor to have the form /o, + 3;;Yi(t). Correlation among
the factors violates the existence conditions.

Example 3
If the wolatilities of two or more of the state variables are proportional,
then some of the off-diagonal elements of ¥ can be unconstrained parameters.

The third example is of particular interest, because a typical specifi-
cation of Ar models has v being the volatility of r: [S,(f)ju = /v and
[S:(t)]3s = nv/v. To illustrate the flexibility in parameterizing £ provided
by this proportionality restriction in S,(t), consider the following AY D(3, 2)
model with r(t) = Yi(#) + Ya(?):

dY (t) = py (t)dt + ZS(t)dW (1), (20)
where
k(0 — Y1 (1))
py(t) = | v(0-Ya(t)) |, (21)
(7 — Ya(t))
Si =i + 8lY(t), a = (0,,0), and
I o1 o013 31 0 0 1
s=(0o 1 o}, { & |=(05b 0} (22)
0 0 1 Ji 0 0 b3

The normalizations in this system were chosen as follows: The zero long-
run mean of the first state variable in (21) and w3 = 0 are normalizations
that preclude non-trivial shifts in Y. (With these normalizations, 9 and o are
free parameters in (21).) o is zero, because of the proportionality between
the first the third diagonal elements of S(¢).

In the matrix ¥, o3 = 09, = 023 = 0 is a requirement of the existence
conditions [B'E]}p = [B'Z]a = [B'E]as = 0, because [S(t)]11 and [S(2)]as are
not proportional to [S(t)]22. 03, = 0 is a normalization that precludes non-
trivial U R’s. It follows that further relaxation of the fixed parameters in B
and Y., while preserving identification and satisfying Condition 1(b), is not
possible.

An equivalent Ar(3,2) model is obtained by applying the the transfor-
mation

Z(t) = LY (t) + L9, (23)
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where

1 1 0 —-:50
L=[0 =20}, d=( &0 | (24)
0 0 1 0

By construction, Z;(t) = r(¢) and the drift of Z(¢) is the same as the drift
n (16). Also, co-dependence among the Z’s through the diffusion coeflicients
is governed by

1 org Opy
s,=[0 1 o |, (25)
0 0 1
1 0 ' 0 0 1
o, | =1 a |, s l=10¢ 0 ], (26)
o 0 ” 0 0 7n?

where 0,9 = 2= (012 + 1), 0y = 013, @ = (E22) (o — Z£0bs0), (* = by,

|t 2
and 7% = bs3. Two special cases of this model are:!°

o Chen’s “benchmark” model. @ = 0, 0,94 =0 and o, = 0.
e Balduzzi, Das, and Foresi model. 0,4 =0 and { = 0.

All of these AY D(3,2) (equivalently, Ar(3,2)) models can be nested in a
less restrictive AY D(3,3). As noted previously, the normalization [3;]; = 1
allows 63 to be treated as a free parameter. Relaxing the constraint d; = 0
leads to a three-factor affine term structure model with r(t) = Y;(¢) + Ya(t) +
83Y3(t). The AY D(3,3) model described by (21) and (22) is the basis of our
empirical analysis of affine models in the next section.

0In Chen’s “benchmark” model, #(t) ~ the “central tendency” factor - is assumed to
follow a CIR process (by restricting @ to zero), while in Balduzzi, Das and Foresi (1996),
it is assumed to follow a Vasicek process (by restricting ¢ in (26) to zero). Balduzzi, Das,
and Foresi also allow for correlation between r and v (g9 # ().
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IIT Specification Tests of Affine Models

Empirical studies of Ar models of r have typically focused on fitting the short
rate alone. This section describes an approach to evaluating the goodness of
fit of any affine model, and presents the results from a specification analysis
of the Ar(3,2) model given by (25) and (26) and its AY D(3,3)} extension.
Particular attention is given to the consequences of relaxing the assumptions
on £, and 43 in extant Ar models for describing the joint distribution of
long- and short-term bond yields.

JITI.A Simulated Method of Moments Estimation

Let 1, denote the parameter vector describing the AY D model of interest.
Following Duffie and Singleton (1993) and Gallant and Tauchen (1996b),
we compute a simulated method-of-moments (SM M) estimator of ¢hp. As
Gallant and Tauchen (1996b) have recently shown, the scores of the likelihood
function from an auxiliary model that describes the time series properties of
bond yields or currency prices can serve as the moment conditions for the
SMM estimator. More precisely, let y; denote a vector of yields on bonds
with different maturities, z; = (¥, ¥_1,-- -, ¥_¢), and f(ye|zi-1, Po) denote
the conditional density of y associated with the auxiliary description of the
yield data. The score of the log-likelihood function evaluated at the maximum
likelihood (M L) estimator of ¢y with sample size T (¢r) satisfies

1

T
T —_

> 55 08 Fuiloe-s, 1) =0 (27)

t=1

Under suitable regularity conditions (see Duffie and Singleton (1993} and
Gallant and Tauchen (1996b)), as sample size gets large the sample mean in
(27) converges to E[0log f(yi|zi—1, do)/8¢]. It follows that, if the asset pric-
ing model is correctly specified, then the sample mean of the score evaluated
at y’s simulated from the asset pricing model (§,),

1 = 8 -
7_—- Z % log f(y‘r|$7—1: ¢T)1 (28)
T=1

where T is the simulation size, should also be approximately zero. Thus, by
choosing the estimates of the term structure model to make the sample mean
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in (28) as close to zero as possible, we obtain estimates of the affine term
structure model.

The requirements for the SM M estimator to be consistent for 1, beyond
the requirement that the auxiliary model have at least as many unknown pa-
rameters as the dimension of ¢y, will be met by many descriptive time series
models of bond yields. In particular, consistency of the SMAM estimator
does not require that the auxiliary model describe the true joint distribu-
tion of the discretely sampled bond yields. To select an auxiliary model,
we used the Semi-Non-Parametric (SNP) framework proposed by Gallant
and Tauchen (1996b). Under plausible regularity conditions, an SNP aux-
iliary model can approximate arbitrarily well the joint conditional distribu-
tion of discretely sampled bond yields. Gallant and Long (1997) show that,
for our term structure model and selection strategy for an auxiliary den-
sity f(yy|zi_1, ¢o), the SMM estimator is asymptotically efficient.'’ That
is, we achieve the efficiency of the maximum likelihood estimator for the
true conditional distribution of (discretely sampled) bond yields implied by
the AY D(3,3) model. It follows that our SM M estimator is more efficient
(asymptotically) than the quasi-maximum likelihood estimator proposed re-
cently by Fisher and Gilles {1996).

For our illustrations, ¥ was chosen to be the yields on six-month LIBOR
and two-year and ten-year fixed-for-variable rate swaps over the sample pe-
riod April 3, 1987 to August 23, 1996. The length of the sample period was
determined in part by the unavailability of reliable swap data for years prior
to 1987. The yields are ordered in y according to increasing maturity (i.e.,
1, is the six-month LIBOR rate, etc.). Duffie and Singleton (1996) found,
for a somewhat shorter sample period, that a two-factor CIR model did not
simultaneously describe all three of these yields. One outcome of the sub-
sequent empirical analysis is an assessment of the adequacy of the Ar(3,2)
model (25)-(26) or its AY D(3, 3) extension as a description of the swap term
structure.

In selecting an SN P approximation to the conditional density of swap
vields, we started with a conditional normal distribution for the three bond
yields with a linear conditional mean and ARCH specifications of the con-
ditional variances. Then we scaled this conditional normal distribution by

Y1 More precisely if, for a given order of the polynomial terms in the SN P approximation
to the density f described subsequently, sample size is increased to infinity, and then
the order of the polynomial is increased, the resulting SM M estimator approaches the
efficiency of the maximum likelihood estimator.
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polynomial functions of the yields in order to accommodate non-normality
of the conditional distribution. After examining the properties of several
auxiliary models [see Section IIL.B], we selected the auxiliary model with the
following conditional density for our empirical analysis:

fyelzemy, do) = c(x1-1) [60 + [h(zt|$t#1)]2] n(2t), (29)

where n(.) is the density function of the standard normal distribution, ¢ is
a small positive number, h(z|z) is a Hermite polynomial in z, ¢(z,-;) is a
normalization constant, and x,_; is the conditioning set. z; is the normalized
version of y,, defined by

zp = R;,l—-l(yt — Hepo1). (30)

The shift vector pi, 41 is assumed to be linear with elements that are
functions of L, =1 lags of y,

Y1+ Yayi -1 T Y y2—1 + Yo Uag1
Pzt1 = | Yo+ ¥syie—1 + Vs Y21 + V11 Y31 |- (31)
Y3+ Yo Yre-1 T Yo yai—1 + Y12 Y31

The scale transformation R,; ; is taken to be of the ARCH(L,)-form,
with L, = 2,

71+ 77 |€1,p-1] T2 T4
+735 |€1,4—2]
0 T3 + Ti5 |€2,4-1] T5
R, = K 2
mi-l +733 |€2,¢-2] (32)
0 0 Te + To4 |€3,4—1]
+Ta2 €34 2]

where ¢, = y; — fiz+—1. Thus, the starting point for our SNP conditional
density for y is a first-order vector autoregression (VAR), with innovations
that are conditionally normal and follow an ARCH process of order two:
n(y|uz, Tz), where Xp, ) = Ry 1 Ry, .

More complex conditional densities are accommodated by scaling n(z,) by
the square of the Hermite polynomial k(z|z;—,). In general, h is a polynomial
of order K, in z;, with coefficients that are polynomials of order K in x; 4
and the conditioning information x;_; consists of L, lagsof y,. Weset L, =1,
so that the conditioning information is z, 1 = y; . Additionally, we set

21



K. = 4, with all of the interaction terms suppressed, and K, = 0. With
these choices, our A depends only on z and can be represented as:

4 3
hizy|ze—y) = Ay + Z Z As—1y414i Zf,,: (33)
1=1 i=1

The normalizing constant c(x;_) is the inverse of the integral over y; of
the product of [h(z)]? and n(z).

The state variables are simulated using the Euler approximation of the
stochastic differential equation governing the state dynamics. We use five
subintervals for each week, and take every fifth simulated observation to
construct a simulated data set of size 50000. The values of the simulated
states are adjusted, if necessary, so that the o; + 3;Y (¢) are always nonnega-
tive. Furthermore, the requirements of the Existence Condition are explicitly
imposed.?

Gallant and Tauchen (1996b) showed that the simulated SNP scores
(i.e., the SN P score function evaluated at the converged parameter values of
the SN P parameters and the converged SMM estimators of the structural
parameters) are asymptotically normally distributed with zero mean. Thus,
individual scores can be tested by forming t{-—statistics that have a standard
normal asymptotic distribution. The minimized value of the GM M crite-
rion function serves as an overall goodness-of-fit statistic with an asymptotic
x? distribution and degrees of freedom equal to the difference between the
number of SN P parameters and the number of structural parameters.!?

12The Existence Condition can be reduced to a set of state-independent constraints on
the model parameters. Details on how these constraints are implemented for the models
studied here may be requested directly from the authors.

130ur implementation of SM M with an SN P auxiliary model differs from many pre-
vious implementations by our inclusion of the constant e in the SN P density function.
Though eq is identified if the scale of h(z|z) is fixed, Gallant and Long (1997) encoun-
tered numerical instability in estimating SN P models with €g treated as a free parameter.
Therefore, we chose to fix both ¢; and the constant term of A{z|x) at non-zero constants. It
appears that g was set to zero in previous implementations of the SN P model. However,
this choice may introduce numerical problems in SAf A estimation, because the SN P
density is not guaranteed to be positive definite with ¢y # 0. In our implementations of
SMM, we often found that some simulated observations were close to the zeros in the
density function. In such cases {even if it is only for one simulated observation), the SN P
scores became nearly singular. This, in turn, caused spurious random spikes in the SM M
objective function. This problem was eliminated by setting ¢y to a positive number that
is sufficiently small to leave the estimated parameters of the auxiliary model essentially
unchanged. All of the empirical results reported in this paper are obtained with ¢; = 0.01.
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IIL.B Picking the Auxiliary Model

In selecting our SN P models, we sought to accommodate known features
of both the conditional density of ¥ implied by the AY D(3,3) model and
of the empirical distribution of swap yields, while adhering to the principal
of parsimony. There were several considerations that influenced our final
choice of SN P model. For ease of notation in the subsequent discussion, we
summarize SN P models in terms of the notation SJL”L,.L,,K,,_IzKzl’,;.14

Consideration 1 (Conditional Means) An implication of the assump-
tion that the state vector Y follows the affine diffusion (6) is that its condi-

tional mean is linear'®
EY®|Y(Et-1),Y(t-2),..]=C,+e *Y({t - 1), (34)
where C, is a vector of constants.

This model-implied property of ¥, and the empirical observation that
most of the serial dependence of swap yields is well described by a first-order
VAR, motivate our choice of L, = 1.

The AY D(3, 3) model assumes that the eigenvalues of X are positive real
numbers. This implies that the roots of the polynomial I — e in (34) are
real and lie outside the unit circle. The roots of I — X, evaluated at the
SMM estimates, did in fact lie outside the unit circle. However, in many
of the SNP models with L, = 1, including the chosen s1214300 auxiliary
model, the roots were complex. This is not necessarily inconsistent with the
AY D(3,3) model, because there is a nonlinear transformation between the
state variables and swap yields. Whether or not it is consistent, allowing
for complex roots provided an additional dimension along which the swap
data could inform us about the validity of the family of affine term structure
models we consider. That is, a central role for complex roots in characterizing

1L, is the order of the autoregressive specification of the conditional mean; L, is the
order of the ARCH specification of the conditional variance; L, is the number of lags
included in the conditioning set for the Hermite polynomials; K, is the order in z of the
polynomial A(z|z), with positive value indicating non-Gaussian behavior; positive values
of I indicate suppression of cross-terms in z; K, is the order in z of the polynomial A(z|z),
with positive values indicating heterogeneity in the conditional density; finally, positive
values of I indicate suppression of cross-terms in z.

158ee, for example, Fisher and Gilles (1996).
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the conditional distribution of y may be manifested in larger values of the
goodness-of-fit statistics.

Most of the SN P models estimated with L, = 2 implied non-stationary
roots in the transformation from y to z. This is another reason we did not
pursue SN P models with L, > 1 any further.

There are at least two reasons why the linear structure (34) may not, in
fact, be a good approximation to the conditional means of the swap yields
y. First, swap yields are related to zero-coupon yields according to the
expression (Duffie and Singleton (1996))

1— P(t,n)
2321 P(ta 5.7)
and, hence, they are not linear functions of Y. Of course swap yields can
be approximated by linear functions of Y with state-variable durations as
weights. Our empirical findings suggest that this may be a reasonably good
approximation for characterizing the properties of ¥. However, it is an ap-
proximation that is not imposed a priori.

Second, the true conditional means of the swap yields and underlying zero
yields may be nonlinear. That is, the affine term structure model may be
mis-specified. Evidence for nonlinearity in univariate models was presented
in Ait-Sahalia (1996). Andersen and Lund (1996), on the other hand, found
little evidence for non-linearity in the drift of their multi-factor analysis of a
short rate alone.

If K, = 0, then the conditional mean of z;, and hence of y,, is linear in
the SN P model, regardless of the order of K,;. Therefore, to accommodate a
nonlinear conditional mean for y, we start by allowing K, > 0. With K, > 0
and K, = 0, the structure of SN P model is that of an ARCH-in-Mean model,
where the ARCH is of order L,.

More complex forms of nonlinearity for the mean can be accommodated
by having both K, and K nonzero. However, with K, > 0, incrementing K,
by one increases the number of free parameters in the SN P model by 3(3K,+
1). Thus, parsimony suggests some caution in setting these parameters.

n

Y =

(35)

Consideration 2 (Conditional Second Moments) The conditional vari-
ances of the state variables in the AY D(3,3) model are time varying and
conditional correlations of the diffusions are nonzero.

Though the conditional variances of the state variables in affine models
are linear functions of the current state, the pricing relation (35) gives little
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guidance on the structure of the conditional variances of the swap yields. To
accommodate persistence in the volatilities of the swap rates, (32) includes
a ARCH(2) transformation of the swap yields (L, = 2).!° Additionally,
the assumption that K, > 0 allows for more general dependence of the
conditional variances on the lagged values of the swap yields than in (32},
though still of the ARCH type. Again, complete generality is obtained by
letting both K, and K, exceed zero.

Precisely how the relaxation of the assumption of uncorrelated diffusions
in affine models will be manifested in the conditional distribution of ¥y is
difficult to say. The conditional correlations of the swap yields in the SN P
model are influenced by the parameters of R, and of the polynomial h(z).
Therefore, we expect that freeing up the restrictions g,y = 0 and o, = 0
will result in improved diagnostics with regard to the scores for the SNP
parameters A; and 7; associated with h(z) and R;,_, (see Section IIL.C}.

Consideration 3 (Non-normal Innovations) Though the conditional
means of discretely sampled affine diffusions are linear, the innovations are
non-normal. For instance, it 1s well known that the innovations implied by the
square-root model are non-centrel chi-square. To capture this non-normality,
we choose K, > 0.

Given the importance of K, > 0 for accommodating the non-normality
of the normalized swap yields (z;) and allowing for some non-linearity of the
conditional mean of y, we set K, = 4. To keep the number of free parameters
manageable, we also set suppressed all of the cross terms in the polynomials
in z. As noted above, setting K, > 0 with K, > 0 substantially increases
the dimensionality of the parameter space. In fact, using the Schwarz model
selection criterion (BIC), the SN P model §1214300 (BIC = —3.93100) was
clearly preferred over s1214310 (BIC = —3.778). Therefore, we chose to set
K. =0

The deterioration in BIC with K, > 0 was not a consequence of having
K, = 4. A similar deterioration occurred with X, = 2 when K, was increased
from 0 to 1. This lends further support to our view that K, > ( was not
essential for characterizing the conditional distribution of swap yields for our
sample period. Nevertheless, to provide some assurance that our conclusions
are insensitive to the assumption K, = 0, we also fit all of the affine models

16Notice that the formulation of ARCH is in terms of the absolute values of the VAR
innovations and not their squared values.
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using the SNP model 1111010 (K, = 1, K, = 1). All of the specification
tests were qualitatively identical to those with the model s1214300.

In the light of all of these considerations, we chose to report results for the
auxiliary model s1214300. Maximum likelihood estimators for the parameter
vector

¢o = (4;:2<5 <13 ¢:1< 7 <12
707 =1,2,...,7,15,24,25, 33,42) (36)

are given in Table I. Note that A, is normalized to 1. Several of the A;
parameters governing the non-normality of the “innovation” 2, and the 7;
governing conditional heteroskedasticity are significantly different from zero
at conventional significance levels.

III.C Specification Tests

Table II presents the SM M estimates and the estimated standard errors for
three nested affine models; Chen is nested in AY D(3,2) which is nested in
AY D(3,3). The last row of the table gives the x*-statistic for an overall test
of the model’s ability to explain the over-identifying restrictions supplied by
the score generator. The degrees of freedom for this statistic is equal to the
number of free parameters in the auxiliary model minus the number of free
parameters in the structural model.

Associated with each element of the parameter vector ¢g of the auxiliary
model for y is an element of the sample score vector (28). Under the null
hypothesis that the affine model correctly prices the swaps, each of these
sample scores should be close to zero when § is simulated at the estimated
values of the parameters. Table ITT displays the values of these sample scores
and the associated t-ratios for the null hypotheses that the scores are zero.
The first column lists the free parameters of the auxiliary model (see (31)
and (32)) that index the elements of the score vector (28).

Consider first the results for the Chen benchmark model. The value of
the test statistic x?(26) = 129.027 is large relative to its degrees of freedom,
which suggests that this model does not adequately describe the full term
structure of swap rates. The ¢-statistics for the scores in Table II1, column
3 reveal that this model does a poor job of fitting the conditional means and
variances and the non-normality of innovations of swap rates as captured by
the SN P model. The t-statistics for half of the scores have absolute values
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larger than 2.. Among these eighteen statistics, three are associated non-
normality of z (A;), five are associated with the conditional mean (®;), and
eight are associated with the conditional second moments (7;). The model
appears to have the greatest difficulty fitting the conditional second moments
of swap rates.

Relaxing the zero restrictions ¢,, = o,y = 0 leads to a just-identified
Ar(3,2) (equivalently AY D(3,2)) model'”. Results for this model are dis-
plaved in columns 4-5 of Tables II and III. The p-value of the x* statistic
(30.224 with 23 degrees of freedom) is 14.308%. Thus, the AY D(3,2) model
is not rejected at conventional significance levels. The ¢-statistics in column
5 of Table III show that the AY D(3,2) model does a much better job of de-
scribing the conditional second moments of swap yields then the model with
Gry = 0y = 0. The sample scores for the AY D(3,2) model are uniformly
smaller (except for Ag, which is already very small in the Chen model) rel-
ative to their estimated standard errors. Only three of the statistics have
absolute values larger than 2 and none of these is associated with the SN P
parameters characterizing the conditional second moments of swap rates.
Thus, allowing for nonzero correlations among the diffusions helps not only
in explaining the conditional second moments, but also in explaining the
conditional first moments and the non-normality of z.

We also conducted a test of the Chen benchmark model against the al-
ternative of the AY' D(3,2) model using the x*-test proposed by Newey and
West (1987)and Gallant and Tauchen (1996a). Under the null, the differ-
ence between the minimized values of the SM M criterion functions for two
nested models is asymptotically distributed as x?(gq), where ¢ is the number
of parametric restrictions in the constrained model (the null). The Chen
model is strongly rejected against the AY D(3,2) model (x?(3) = 98.803)
and, by implication, against the AY D(3,3) model.

Both the Chen benchmark and AY D(3,2) models presume that Y3 does
not affect r directly; d3 = 0 so that r(t) = Y1(t) + Ya(t). The AY D(3,3)
offers a potential further improvement in fit over the AY D(3,2) model by
relaxing this constraint. From Table II it is seen that by = 112.253 with a
standard error of 49.1.'* Consistent with this finding, the difference between

174 is also relaxed. See Section IT1.D.3 for some relevant discussion.

18The scale of 83 is roughly two orders of magnitude larger than § = §, = 1, because
(for ease of comparison with extant affine models) we normalized [3;]3 to 1. This value
for [1]3 is two orders of magnitude larger than the scale for the elements of 3; associated
with the first and second state variables.
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the x? goodness-of-fit statistics for the AY D(3,3) and AY D(3,2) models
(see Table I1) is 3.769, which is significantly different from zero at the 5%
confidence level.

In going from the most to the least restrictive affine model, we relaxed
the covariance restrictions in 2 first and then relaxed the restriction é; = 0.
The incremental declines in the overall x? statistics suggests the the largest
gain in fit came from relaxing the covariance restrictions. This is indeed the
case as we find substantial evidence against the model with é; = 0, but o,
and o,y nonzero.

III.D Interpreting the Results

In order to interpret the evidence against the over-identifying restrictions
imposed in Ar models, it is instructive to examine in more depth the nature
of the factors in the AY D and Ar representations of affine models. Toward
this end we first relate the fitted Y's to movements in the historical swap
rates. Then we exploit the fact that every Ar model has an equivalent AY D
representation to interpret the state variables in the Ar model.

ITII.D.1 The Risk Factors Y

The factors in AY D(2,2) models are typically interpreted as “level” and
“slope” based either on the factor loadings in principal components anal-
yses (e.g., Litterman and Scheinkman (1991)) or on the properties of the
implied state variables (e.g., Duffie and Singleton (1996)). Litterman and
Scheinkman (1991) found that their third principal component had loadings
that are suggestive of a “curvature” factor. To confirm that the ¥’s in our
AY D(3, 3) model have similar interpretations, we computed the implied state
variables ¥ and compared the ¥ to various linear combinations of the swap
yields (Figures 1-3).1?

Y, is plotted against Level, defined as the ten-year swap yield. Y; is
plotted against Slope, defined as the difference between the ten- and two-

19The implied state variables from a given model are the particular realizations of the
state variables that let the model price the six-month, two-year and ten-year yields exactly,
using the SM M parameter estimates. If the model is correctly specified, then the implied
state variables associated with the model embody the correct assumed factor dynamics,
except for sampling errors. We report results for the implied state variables computed
using parameter estimates from the AY D}(3,3). The results are qualitatively the same
when the AY D(3,2) estimates are used.
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year swap rates. The third observed factor we considered was Butter fly,
defined as the residual from the regression of the two-year swap yield on the
six-month LIBOR and ten-year swap yields. In order to compare Butter fly
with a comparable fitted state variable, we examined the residual from the
regression of 1:’1 on 13’2 and f’;; All time series are standardized by subtracting
their means and scaling by their standard deviations.

Figure 1 shows that (the orthogonalized) ¥; is highly correlated with
Butter fly and, hence, represents a curvature factor.?® From the other two
figures we see that Y, behaves like a Level factor, and Y, behaves like a Slope
factor. Thus, the three state variables are the dynamic counterparts to the
risk factors typically identified in principal component analyses.

IT1.D.2 The State Variables in the Ar Models

Given an identified AY D(3,3) model, our equivalence result implies the ex-
istence of an Ar(3, 3) model with a terraced drift structure: the second state
variable is the long-run mean of r and the third state variable is the long-run
mean of the second state variable. However, this particular Ar representa-
tion of the AY D model is not the most convenient for interpreting the state
variables in extant Ar models, because in these models the second, central
tendency factor dees not have a stochastic long-run mean.

Fortunately, there is another equivalent Ar(3, 3) model that preserves this
feature of extant Ar(3,2) models and, thereby, facilitates interpretation of
the factors. Namely, consider the Ar representation of the AY (3, 3} model
obtained by the transformation (23) with the first row of L set at (1,1, d3).
This transformation maps Y,(¢) to 8(¢) and Y3(¢) to v(t). Moreover, the drift
of (#(t), v(t)) is identical to that in (16), while the drift of r has an additional
term due to 43 being nonzero,

K(O(2) — r(2)) dt + 6k — p)u(t) dt. (37)

Thus, one component of the drift of r has r mean reverting to a long-
term swap rate - the Level of the swap curve. However, with J3 # 0, 6(2) is
not the long-run mean of r (see Section II1.D.4). Perhaps most surprisingly,

20Within the AY D(3, 3) model, the correlation between AY; and AButter fly is —0.991,
whereas the correlations between AY; and ASlope and ALevel are 0.633 and —0.472, re-
spectively. The correlations of AYy with AButter fly, ASlope, and ALevel are 0280,
0.065, and 0.969, respectively. AY3 has a correlation of —0.899 with ASlope, and correla-
tions of 0.832 and 0.245 with A Butter fly and ALevel, respectively.
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v(t) = Y3(t), which is the volatility of the instantanecus short rate, closely
tracks the slope of the swap curve!

Why is the third factor well proxied by the slope of the yield curve instead
of a proxy for short-rate volatility as was presumed in extant specifications
of Ar models? The identification of the AY D(3,3) model was driven largely
by the assumed structure of the diffusion matrices, which was dictated by
our desire to nest previous Ar(3,2) models as special cases. A key assump-
tion in the AY D(3,3), as well as the nested AY D(3,2), models is that the
correlation between 8(¢) and v(t) is zero. In our sample, the correlations of
AButter fly with ASlope and ALevel are —0.567 and 0.423, respectively,
while the correlation of ALevel and ASlope is only —0.178. The relatively
small correlation of ALevel and ASlope suggests that v(¢) = Y3(t) is pro-
portional to either Level or Slope.

In addition to the zero correlation between v and #, the conditional vari-
ances of r and v are proportional and the drift of r includes «(8(t) — r(2)) dt.
Both of these assumptions affect the dynamic properties of the implied term
structure and, thereby, influence the selection by the SM M criterion func-
tion of Level and Slope as the second and third state variables, respec-
tively, With 8(f) oc Y3(¢), the first term in (37) serves to pull the instan-
taneous short rate toward the long-term rate. This is consistent with pre-
vious Ar(3,2) models that had r mean reverting to a process that itself is
slowly mean reverting (see, e.g., Andersen and Lund (1996)). Furthermore,
Yi(t) = [(r(t) — Ya(2)) — 63Y3(2)], and (r(t) — Y2(t)) behaves much like minus
the slope between the ten-year and instantaneous swap rates. Thus, if Y3(¢)
closely tracks the 2 — 10 slope of the swap curve, then Y;(¢) will behave much
like (minus) a linear combination of two measures of the slope of the swap
curve. Thus, these assignments assure that, within the equivalent AY D(3, 3)
model, the volatilities of Y;(t) and Y3(¢) = #(¢) will be approximately pro-
portional.

Clearly, the properties of the joint conditional distribution of the level,
slope, and curvature factors play a central role in these interpretations of
and v, and in whether or not this particular branch of the affine family of
models describes the U.S. swap curve. Singleton {1994), for example, found
that the properties of the level and slope risk factors were very different for
Japanese and U.S. government bond markets. Consistent with this finding,
we would expect that different institutional and macro-economic conditions
will lead one to explore different branches of the affine class.
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II1.D.3 Evidence Against the Covariance Restrictions

These observations “explain” the large chi-square statistics obtained when
the covariance restrictions o,y = 0., = 0 are imposed. The zero restrictions
essentially state that the instantaneous short rate is conditionally uncorre-
lated with the level (long-term rate) and slope of the swap yield curve. In
the true probability model, these correlations are evidently non-zero, which
is not surprising.

Though not stressed in our preceding discussion, the Ar(3,3) model also
relaxes the assumption that @ = 0. The results in Table II suggest that
the estimated value of this parameter is significantly different from zero at
conventional significance levels. This implies that the Level factor 8(t) does
not follow a standard square-root diffusion. Rather, its volatility is of the
extended square-root form (/@ + (26(¢). The extension, however, is respon-
sible for only a small amount of the reduction in x2. The rejection of the
Chen model is due entirely to the covariance restrictions.

III.D.4 Evidence Against the Null Hypothesis i3 =0

One interpretation of the evidence that 43 s 0 is provided by the equiva-
lent Ar(3,3) with a terraced drift structure. Whereas extant Ar(3,2) models
assume that the long-run mean of the central tendency is constant, the ev-
idence suggests that a better model for the swap curve has the third state
variable mean reverting to the central tendency of r. Alternatively, within
the Ar(3, 3) representation in which the drift of r is (37) and the drifts of 8(¢)
and v(t) are constants, d; # 0 implies that the third state variable affects the
drift of r. The key feature shared by both of these Ar representations is that
v(t) affects r through the drift of the multivariate diffusion (r(t),8(t), v(f))
and not just through the specification of volatility. In other words, v(f) is
not a pure volatility factor, but rather has a direct effect on r. Such a direct
effect of all three state variables on r is assumed in multi-factor CIR-style
models.

III.E Model Diagnostics with Simulated Moments

There is a potentially important difference between the specification tests
conducted here and those based on the implied bond yields in previous studies
of affine models. In the case of C'IR-style models, square-root diffusions
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were estimated by maximum likelihood, the model was “inverted” to obtain
fitted state variables as functions of the data and the maximum likelihood
parameter estimates, and then the moments of the implied bond yields were
compared to the corresponding moments of the actual yields (the data). For
example, Pearson and Sun (1994) and Duffie and Singleton (1996) assess
the goodness-of-fit in their models by regressing actual bond yields on the
implied bond yields and testing whether or not the intercept is zero and slope
coefficient is unity.

The diagnostics discussed in Section II1.C are all based on simulated
moments. Using the SMM parameter estimates, long time-series of the
state variables are simulated, and the associated values of the bond yields
are computed using the affine pricing model. Then, the scores of the sample
log-likelihood function of the auxiliary model are computed using simulated
yields and compared to zero, their population value if the model is correct.

In the context of an N-factor affine model in which N of the bond yields
are assumed to be priced exactly, the implied state variables will, by con-
struction, exactly price NV of the bond yields.?! So the empirical and implied
distributions of these N yields must be identical. Moreover, when the number
of yields M is larger than N, the information in the data enters the implied
distributions of the other M — N yields in two ways: indirectly through the
ML estimates of the model, and directly through the inversion of the model,
observation by observation, to compute the implied state variables from the
N yields that are fit exactly.

In contrast, the empirical and simulated distributions will generally differ
for all M yields. This is because the information in the actual data enters
only indirectly through the SMM parameter estimates. The values of the
simulated moments are otherwise determined only by the structure of the
state-variable process and the choice of risk premiums. For the purpose of
evaluating the characteristics of the distributions of bond yields implied by
an affine model, it is the simulated distribution that is most relevant. At a
practical level, it is a close correspondence between the simulated and actual
distributions that is desirable for pricing options on bonds by Monte Carlo.

Another potentially informative use of simulated bond yields is an assess-
ment of the effects of relaxing parameter constraints on the distributions of

21This was true of the models in Chen and Scott (1993), Pearson and Sun (1994), and
Duffie and Singleton (1996), and is also true of our model as the number of state variables
equals the number of bond yields.
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yvields implied by the model. We illustrate this possibility, as well as the fact
that simulated and empirical distributions are different even with M = N,
by examining the mean swap rates. Figure 4 plots the means of the simu-
lated swap rates for the Chen, AY D(3,2), and AY D(3, 3) models against the
observed mean swap yield curve. Consistent with the overall goodness-of-fit
statistics, the differences between sample and simulated mean swap rates are
smallest for the AY D(3,3) model and largest for the Chen model.

While the average ten-year yield is fit almost exactly, the models over-
state the average slope of the swap yield curve. This is evidently linked
to the dual role of the third state variable as both the “volatility” factor
and the “slope” factor. Since the volatilities are more precisely estimated
than the average yields, the SMM objective function assigns more weight
to fitting the moment conditions associated with the conditional variance
than those associated with the conditional mean. This weighting influences
the estimated value of the long-run mean of the third state variable, ©. The
flexibility from relaxing the correlation restrictions in the Chen model allows
7 to increase (from 0.0002456 to 0.0004378), since the increased variance of
the short rate induced by a higher ¥ is offset by the (negative) covariance of
the short rate with other state variables. Since a higher ¥ implies a flatter
yield curve, relaxing the correlation restrictions leads to a better fit to the
average slope.

Relaxing the constraint d;3 = 0 in the AY D(3,2) model adds a direct
contribution of v(¢) to the drift and the conditional variance of the short
rate. These effects, in combination, lead on average to a further flattening
of the swap curve.

The remaining gap in Figure 4 between the means of the simulated and
actual two-year swap rates for the AY D(3,3) model suggests that this model
does less well at explaining the level of the two-year rate compared to the
ten-year rate. This may underlie the relatively large values of the simulated
SN P scores associated with 1, v5, ¥g, and t; (see Table IIT). All of these
SN P parameters are associated with the conditional mean of the two-year
swap rate.

III.LF Level Effects on Volatility

Though the parameterization of the Ar models examined here do not allow
r to directly affect its volatility ([S.(t)]in = /v(t)), there is nevertheless
a “level effect” of r on volatility in these models. The level effect enters
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indirectly through the correlation among the state variables. More precisely,
the conditional variance of r, o2(#), implied by the Ar(3,2) model is*?

0 (t) = opgl + (1 + o, 0" u(t) + 07C*0(t)- (38)

r

The level effect of the short rate on its own volatility in this Ar model takes
the form of a non-zero weight on 6(t), the long-run mean of r. Increases in
the long-run mean imply an increase in short-rate volatility.

Evaluating the weights on »(t) and 6(¢) in (38) at the point estimates
from the Ar(3,2) model gives 2.44v(¢) and 0.000728(¢). The standard de-
viations of the implied »(¢) and #(¢) are 0.00030 and 0.01406, respectively.
Combining these observations, it follows that the variances of (1 +02,7%)v(t)
and 02%,¢%0(¢) are 5.35 x 1077 and 1.04 x 107'?, respectively. We conclude
that, though the model accommodates a level effect through the non-zero
correlations, the volatility of r is driven almost entirely by the third state
variable v(t). Different branches of affine models satisfying the existence
condition might, of course, show stronger or weaker level effects than this
particular class of models.

22The relation (38) is the 1 — 1 element of the matrix £,5,(t)S;(¢)Z’,. Similar results
are obtained using the estimates from the AY D(3,3) model.
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IV Concluding Remarks

In this paper we placed two important strands of the empirical term structure
literature on a common footing by showing that models that focus directly
on the representation of the short rate are equivalent to models that describe
the short rate as a linear combination of unobserved states. This facilitated
comparisons and interpretations of the affine models in the literature. Fur-
thermore, we addressed the identification problem for general affine models in
order to assess the extent to which the over-identifying restrictions typically
imposed can be relaxed. In applying our results to an evaluation of popular
three-factor affine models of the instantaneous short rate, we found that the
over-identifying restrictions were strongly rejected by the data. One reason
this may not have been apparent from previous studies, is that empirical
studies of affine models of the short rate have used data on the short rate
alone to estimate multi-factor models. In contrast, we fit our models using
data on bonds with three different maturities. The diagnostic evidence sug-
gests that relaxation of the restrictions on the conditional second moments
of the state variables is important for simultaneously explaining movements
in the short and long ends of term structures. In addition, the findings sug-
gest that the drift of the instantaneous short rate is more complicated than
simply the short rate mean reverting to a stochastic long-run mean.

We also highlighted the interplay between conditions for econometric
identification of affine models and conditions for the existence of solutions to
the PDE describing bond prices. Different specifications of the diffusion co-
efficients may lead to distinct non-nested families of affine models. To make
this point more concretely, consider the the over-identifying restrictions on
the diffusion matrices within the family of three-factor models that we ex-
amined empirically. The most flexible affine model examined relaxed these
constraints as much as was possible, given proportionality of the variances
of the first and third state variables and the requirements of the existence
conditions. The reported diagnostics suggested that relaxing the constraints
substantially improved the goodness of fit. Greater flexibility in fitting the
joint distribution of swap rates can not be achieved within this particular
class of affine models. The comparative properties of affine models along
different branches will be explored in future research.
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Appendices

A Proofs

A.1 Proof of Proposition II.1

To show that the bond pricing formula is invariant under an SPR, it suffices
to show that A(7} and B(7) transform as

A(T) = A(T) = A(1), (39)
B(r) — B(r) = (X")™" B(r); (40)

i.e., A(7) and B(7) defined above satisfy the Ricatti equations for V(t) =
X x Y(t). Notice that

dA(r) _ [—éi }%B(T) + % Z [2’3(7)]2 @i] (41)

(42)

t

(Xzy X! B(T)] F x B—-X"16

+
|-
1

N
_K' B(r) - % > [ BOE .+

|-o
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where we have used the fact that A(r) and B(r) satisfy the Ricatti equa-
tions under the original model, and the model parameters transform in the
following manner??

K—-K=XKX"', E5K=XKX"!, 656=X0, (43)
i0=X0, To5=X%, a—oba=aq
g F=gx"1 Ao A=, §—d=8Xx"

A.2 Proof of Proposition I1.2

First, the conditional density f(§|2) of the transformed model satisfies the
Kolmogorov forward equation:

2 iwe + (k@ -9 2-iw)
1 2o CF@IRY |

Changing the variables from § to y = X~ !¢ and from % to r = X~ 'z,

defining g(y|z) = f(5|2) = f(Xy|Xz), and using (43), we obtain

S9(ule) + 1K(© — ) 3-glu)

1 , 0%g(ylz)
+ 2Tr [(ZS)(ES) By J =0, (45)
which is the PDE satisfied by the conditional density f(y|z) under the orig-
inal model. It follows that f(y|z) = Cg(y|z), where the constant C is
determined by the requirement that the density integrate to unity. In this
case, since [ g{y|z)d§ = 1, we have C' = | X|, where | X| is the absolute value
of the determinant of X. Thus,

f@1) = | X7 F(x T glx T E). (46)

The conditional density of the observed zero-coupon bond prices (with
maturities 7, 7 and 73), is given by

Fo(pelpey) = T flunlpmr) (47)

A Bt is not always necessary, but convenient for the sake of conformity to rescale £, &,
3, and A so that the diagonal elements of ¥ are unity.
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where J = p,|(B(n), B(r2), B(73))| is the Jacobian for the transformation
from y, to p;, and y; should be interpreted as the implied state variables
here. We can now verify the invariance of f,:

el Pe—1) {48)

(
= [pel(Bn). Blrs), B IXIT X 30X )

= [p | X" 1(B(r), B(m), Brs)|) ™" 1X17" £ (wely-n)
= J7 flyedyeor)-
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B Equivalence of AYD(N,n) and Ar(N,n)

B.1 From AY D(N,n) to Ar(N,n)

An arbitrary AY D(N,n) model may be parameterized as follows: r(t) =
w 8Yi(t)
=1 ’

K (81 — Yl( )
Y (t) = . +ES(E)dW (1), (49)
KN (9N — Yn(t))

where S;(t) = Ja; + BIY (¢). Without loss of generality, we may normalize
the 4,’s to 1 because we have assumed that they are non-zero. However, for

the sake of generality, we will keep them in the formulae in this section.
To show that an Ar(N,n) model characterized by (19) can be derived
from the AY D(N, n) model defined above, we first define the following. Let

Z(t) =8, + LY (%), (50)

where L is a block diagonal matrix®

Lin -

L= ( . ; O () ) (51)
(N—n)xn (N—n)x(N-n)

and L' =49, Fori<j,1<j<n 4" =0 Fori>j1<j<n, "

are defined through the following recursion:

B N :_"1), 2<j<n. (52)
i

Furthermore, 6, = (6,1,6.2,...,6:,0,...,0), where

1 K .
921_0 923—923 1+ Z ’}’(J - 9@, QSJ < n. (53)

i=j—1

A telescoping sum gives

] n
ZZ 93, 2<7<n. (54)

24Note that the partition of L and other matrices are conformal with the partition of
the state vector into the n primary factors and the N — n auxiliary factors.
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It is now straightforward to show that the drift of Z(¢) defined in (17) is
given by (19) by checking three cases.

First,

Bz ()

= M) = Z diki(6; — Yi(t))
i=1

= 92—.‘{.121 2(5 KZI—Kt )

= Ki(Za(t) — Z1(2))

Secondly, for 1 < j <n -1,

Hz;(t)

Thirdly,

Hza(t)

where

g =

Z 7(1)#1/,-(1:)
Z’n K0 — — Z 'yt

= *ﬂa(Zm(t) Z;(?))

= Y v = 1 kel = Kn(Za(t) - 6:0)
= fﬁn(g Zn( ))7

Bon + 7 —ZZ =,

Jj=l i=3

. 1 () i hange-of-ord
B;Z% m]’ (change-of-order)

6; Z( AR )] . {use (52))
:(’Y:gl) 'TFH)) 9] = i [6:6:] .

i=1

n

11"

M:

71

NE

-
il
—_

Thus, 8 is the steady state mean of r(¢).
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We end this section by making the following two observations. First, Z{t)
is linked to Y (¢) through a sum-preserving shift and a non-singular rotation,
and the transformations depend only on the free parameters of the original
AY D(N, n) model and known constants. In other words, the Ar(NV,n) model
is simply a different but equivalent "basis” representation of the AY D(N,n)
model. To see this, we note that, since L™ is generically non-singular, (17)
may be rewritten as

Z(t) = LY (t), (59)
where
Y(t)=Y(t) +9, (60)
and
) 1
d = ( N ) =L7'9,. (61)

Since the first row of L is §', and 8,; = 0, it follows that ¢'9 = 0.

Secondly, some of the normalizations required to identify the AY D(N, )
models are built-in in the Ar(N,n) representation. To see this, note that
we started with n &;’s in the conditional mean of the primary factors in the
AY D(N,n) representation, and ended up with only one parameter, 4, in
the conditional mean of the primary factors in the Ar(N,n) representation.
The other n — 1 parameters are absorbed into the definition of «,;. Also
note that all of the §;’s are absorbed into other parameters in the Ar(N,n)
representation.

B.2 From Ar(N,n) to AYD(N,n)

Intuitively, starting from an Ar{N,n) model, a reverse transformation using
L~ will take us back to an AY D(N, n) representation. That is, define Y'(t) =
L7'Z(t) — ¥, where L is given by (18) and ¢ is given by (61), then, r{t) =

=, 6:Yi(t), and Y (t) is governed by (49). However, both L and ¥ depend
on parameters of the AY D(N,n) representation. In order to achieve the
reverse transformation, we need to express L in terms of the parameters of
the Ar(N,n) model. In addition, different choices of 4, and 8;, treated as
normalized constants,?® would lead to different, but equivalent AY D(N,n)

%Subject to the constraint that 3", 6;8; = #, where § is a primitive free parameter of
the Ar(N,n) maodel.
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models (this is related to the discussion at the end of the last section). Thus,
wefixd, =1,for1<i<n, 6 =0, fort <i<mn,andlet 8, =8. Then (52)
and (53) become

=1, W= 255 < (62)
—
j-1 K
0,, =0, azj:ZV,Q)H—':o, 2<j<m. (63)

=1

Now L and 9 are defined entirely in terms of the primitive free param-
eters x; and 8 of the Ar(N,n) model and known constants. The resulting
AY D(N,n) model is given by r(t} =3, Yi(#),

k1 (0 —Y1(2))
( ko (0 — Y3(2)) \

dY (t) = "”‘“g: Eg B }{:G)()t” + SS(8)dW (1), (64)

K+t (Ons1 — Yara (2)

\ kw0 —Yn(®)

with ¥, a;, and §; properly defined in terms of ,, a4, 8., #;’s and 8. The
reverse rotation of (59) is achieved by using (43) (setting X = L~'. The
reverse shift of (60) is achieved by transforming # and « in the following
manner:

§—0=0—19, (65)
and
o; —» (idi = ; + [3:’19, 1< < .!'V, (66)

where ¥ = L714,.
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Table I: Estimators for SN P Parameters — 51214300

[ ¢o || Estimate | STD [ t-ratio [ p-value
A, || 0.14072 [ 0.15618 | 0.90100 | 36.76%
A; || 0.04042 | 0.05218 | 0.77500 | 43.83%
A, || 0.09981 | 0.07455 | 1.33900 | 18.06%
As || -0.29095 | 0.09579 | -3.03700 | 0.24%
A || 0.02513 | 0.03418 | 0.73500 | 46.23%
A; || -0.10082 | 0.04492 | -2.44500 | 1.45%
Ag || -0.01392 | 0.03543 | -0.39300 | 69.43%
Ao || 0.00340 | 0.00979 | 0.34800 | 72.78%
Ay || -0.00818 | 0.00925 | -0.88300 | 37.72%
Ay | 0.02178 | 0.01547 | 1.40800 | 15.91%
A;2 || 0.00843 | 0.00590 | 1.42900 [ 15.30%
Ass || 0.01519 | 0.00422 | 3.59900 | 0.03%
¥; || -0.01931 | 0.00875 | -2.20800 | 2.72%
Ys || -0.02615 | 0.01832 | -1.42700 | 15.36%
¥s || -0.02708 | 0.02375 | -1.14000 | 25.43%
vy | 0.92663 | 0.01877 | 49.36800 | 0.00%
¥s || -0.00359 | 0.02945 | -0.12200 | 90.29%
¥e || 0.01104 | 0.03406 | 0.32400 | 74.59%
¥ || 0.09446 | 0.02626 | 3.59700 | 0.03%
¥s || 1.00261 | 0.04092 | 24.50400 | 0.00%
o || -0.01008 | 0.04758 | -0.21200 | 83.21%
10 || -0.02676 | 0.01217 | -2.19900 | 2.79%
Y1 || -0.00685 | 0.01769 | -0.38700 | 69.88%
Y12 | 0.99160 | 0.02014 | 49.24200 | 0.00%
1 0.03544 | 0.00373 | 9.51000 | 0.00%
72 || 0.02612 | 0.00290 | 8.99200 | 0.00%
72 || 0.03368 | 0.00372 | 9.05100 | 0.00%
T4+ || 0.06457 | 0.00725 [ 8.80500 | 0.00%
75 || 0.13351 | 0.01372 | 9.72800 | 0.00%
76 || 0.16425 | 0.01737 | 9.45500 | 0.00%
|| 0.16619 | 0.05915 | 2.80900 | 0.50%
s || 0.01944 | 0.02152 | 0.80300 | 36.65%
724 || -0.01995 | 0.03042 | -0.65600 | 51.18%
725 || 0.12629 | 0.05575 | 2.26500 | 2.35%
33 || 0.02938 | 0.02403 | 1.22300 | 22.13%
Tez || 0.03229 | 0.03335 | 0.96800 | 33.30%

45



‘Elp = fdp AH._.NGV -

A—N

"€8g = v pue ‘T L = . ANSQ
= #4p 10 [opoul (U ‘N )(J AV 91 Jo sivjeurered aanturtad o1

I

- Nﬁvmﬂ

—H

)="1

pue 9[qe) a3} Ul pajussaid s1ajaurered ) usamiaq suolye[oy -sanea-d Surpuodsaliod
9y} ale ) pue ‘¢ ‘g SUUWN[O) "S[APOU 3A1303dsal 9y} 10] WOPIDY JO $93180P PoIeIOOSSE
oy} (seseyjusred ur) pue sOISIFRYS 1503 X SIROIPUL MOI JSB[ 9Y) JO § PUR ‘f ‘g SUWN]O))

[ %99z°¢0 | (28) 95792 || %808+1 | (£0) 3208 || %0000 | (93) 220621 | <X
6SOTICY | 8S8°SOLT || SLTTIST | TO6'E69T || S6L8FV | 6770661 By
07’8 958 F¥- €019 Z91'g8- 628°9 88.,°8¢" &y
LS0GLT | 080182~ || 612 TR | L0LCRE- 28982 PELPII- Y
00070 2100 2000 ¢10°0 £00°0 200 b
Z10°0 £50°0 £00°0 9800 z00°0 960°0 9
£0000°0 1000°0 £0000°0 | 000070 - - D
089°2F | 1¥500Z- G80°GE PE66L- - - Mo
06070 651°0 €080 1870~ - - 840
»—209T1°0 | ;-9862°C || y-2G68°T | - 28.EF || ,-2%9€0 | ,-29GhC a
600°0 $10'0 L00°0 9200 ¢00°0 ¥£0°0 g
100°0 GFO'1 8L1°0 769°0 PSH0 11¢°7 U
Zr0'0 8¥1°0 9%0°0 6L1°0 1£0°0 PZ10 %
9650 02873 6081 0.8 3280 965°7 &
2916 €911 - - - - ko
ais GRS aLs djemnsy als | @weumnsy Och
(€‘c)d AV (2‘e)dAv uay BPPOI

s1oyemnsg WING °II 21981

46



Table III: SNP Scores

Model Chen AYD3,2) AYD(3.3)
o Score t-ratio Score | t-ratio Score | t-ratio
As 0.524 0.272 -0.096 -0.051 0.043 0.023
Aj 6.132 2.687" 4.396 2.033* 3.809 1.767
Ay 2.071 0.997 1.621 0.906 -0.523 -0.321
As 3.772 1.874 0.352 0.197 1.121 0.660
Ag 7.893 3.770* 4.735 2,753 4.365 2.631"
Ay 7.367 3.371* -0.008 -0.004 2.088 1.093
Ay -1.114 -0.227 -1.957 -0.410 -0.973 -0.198
Ay 21.163 2.328* 13.648 1.575 10.464 1.216
Ajp 13.073 1.507 5.540 0.734 -2.791 -0.389
A 7.208 0.775 0.464 0.053 3.167 0.363
Ay 28.332 1.963 16.241 1.245 17.861 1.400
Az 41.161 1.954 9.423 0.497 22.206 1.135
in -13.408 -0.674 1.164 0.066 -14.755 | -0.939
P 45.011 1.726 33.874 1.396 39.618 1.618
i -31.728 -1.578 -29.715 | -1.545 -27.521 | -1.434
iy 29.209 1.840 21.513 1.202 22.766 1.357
5 -67.102 | —3.246* || -43.163 | —2.184™ || -39.472 | —2.105*
g 35.431 2.055* 24.567 1.540 17.755 1.102
Pr 33.837 2.105" 13.985 0.788 21.728 1.252
¥y -65.471 | —2.944* || -39.752 | -1.862 -42.950 | —2.053*
g 30.380 1.660 22.348 1.282 17.543 1.013
Y10 15.895 0.889 2.060 0.112 17.974 0.966
Y11 -49,125 | —2.054* || -29.329 | -1.252 -40.383 | -1.748
Y12 18.126 0.937 13.276 0.696 10.984 0.585
n 45.026 3.105* -9.378 -0.724 1.557 0.108
T -217.587 | —8.600" [ -13.143 | -1.230 -11.956 | -0.960
T3 226.365 7.513* 39.029 1.972 30.767 1.541
T4 -57.585 | —3.841* || -7.450 -0.722 -3.757 -0.356
Ts 47.061 2.595* 8.234 0.571 7.071 0.502
Te 8.111 0.650 6.647 0.603 8.773 0.863
7 3.055 2.392* 1.319 1.016 1.925 1.414
Tis 11.681 3.736* 2.447 0.880 2.152 0.769
To4 -2.011 -1.032 -1.632 -0.876 -1.293 -0.689
T2s 2.274 2.084* 0.667 0.589 1.316 1.085
Ta3 12,217 4.796* 2911 1.364 2.534 1.175
T42 -0.855 -0.356 -0.411 -0.175 -0.109 -0.046

Numbers indicated by * have absolute values larger than 2.
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Figure 1: First State - AY D(3,3) — —s1214300

(All time series are standardized.)

First State (Orthogonalized) — Butterfly
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