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ABSTRACT

The existence of strong “spillover” effects of private R&D increases the potential social
contribution of R&D but may depress the private incentives to undertake it. R&D consortia offer
a potentially effective means of internalizing this externality, and a number of prominent economists
have argued for public support of such consortia (e.g., Romer, 1993). Governments in Europe and
North America have adopted policies to promote the formation of such consortia, motivated less by
economic theory than by the perception that the Japanese government has used such policies to great
effect (Tyson, 1992). Despite the existence of a large theoretical literature analyzing the potential
benefits and costs of R&D consortia, there has been little corresponding empirical work on their
efficacy.

In this paper, we undertake the first large-sample econometric study of Japanese government-
sponsored research consortia which uses firm-level data on research inputs and outputs to measure
the impact of participation on the ex-post research productivity of the firm. We are able to find
evidence that frequent participation in these consortia has a positive impact on research expenditure
and research productivity. These results hold after controlling for the potential endogeneity of the
intensity of participation in consortia to participating firms’ research productivity. Furthermore, we
find evidence that part of this impact arises from the increased knowledge spillovers that take place
within these consortia. Not only are these results useful in providing empirical evidence on the
theory of research joint ventures, but they are also useful in shedding light on the question of what
role Japanese “industrial policy” played in Japanese technological innovation during the 1980s. We
conclude with directions for further research.
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L Introduction:

If some or most of the benefits of new industrial R&D spill over to a firm’s competitors,
customers, or suppliers, then the cnéuing appropriation problem can lead the firm to undersupply R&D
relative to the social optimum. Following Spence (1984), a large theoretical literature has developed over
the last decade which has analyzed the possible benefits of research consortia as tools by which R&D
externalities could be internalized. Up to this point, however, little has been done to confront this
substantial theoretical literature with the data in a systematic way. The empirical research that has been
done has tended to focus on small numbers of highly publicized (and quite possibly atypical) case studies.’
An exception to this is Sakakibara (1994, 1997a,b), which compiled a comprehensive list of consortia and
participating firms. Going further, Sakakibara used a survey of R&D managers of Japanese firms
participating in government-sponsored consortia to obtain detailed qualitative evidence about the perceived
benefits of participation.

We contribute to the literature with this microeconometric analysis of the actual effects of research
consortia on a panel of Japanese firms. By combining Sakakibara’s data on firm participation in these
projects with a rich set of firm-level data on the research inputs and outputs of a subset of the participating
firms and a control group of non-participants, we have created a data set that will allow us to test a variety
of hypotheses derived from the current theory about the operation and effectiveness of research consortia in
Japan.

This data set is useful in testing the predictions of the theory of research consortia. We also use it
to contribute to economists’ understanding of postwar Japanese industrial policy. Despite the contention of
a number of political scientists and others that Japanese postwar economic performance is primarily the
result of skillful government intervention, theoretical and empirical economic analysis has tended to support
the view that Japanese industrial policy played a small role, if any, in Japan’s industrial development.®

However, publicly supported research consortia are precisely the kind of intervention for which economic

% Por a recent example, see Scott Callon's Divided Sun: MITI and the Decline of Japanese Industrial
Policy 1975-1993 (1995). Also, for example, see Ouchi and Bolton (1988).
* Beason and Weinstein (1996) provide particularly compelling evidence at the 2-digit industry level.



theory offers some justiﬁcation.4 It is our hope that our empirical results will not only shed light on the
relevance of theoretical work on research consortia, but also provide policy lessons for other countries
seeking to emulate Japan’s success through application of this particular kind of industrial policy.
IL. Review of the Literature

Spence (1984) clearly established the two countervailing market failures that characterize R&D
activities. The first issue is that of appropriation. The existence of R&D spillovers makes it difficult for
innovators to capture the full social benefits of their innovation. Even when innovators can capture the full
benefits, through patents or other kinds of strongly-enforced intellectual property rights, however, there is
another market failure. The social cost of new knowledge, once it is produced, is the cost of transmission,
which is often, though not always, close to zero. Hence, attempts to correct the inadequacy of appropriation
incentives by strengthening intellectual property rights can exacerbate the second market failure, leading
firms to charge too much for their new knowledge, such that the diffusion of new knowledge that takes
place is iess than the social optimum. Thus, there is a tradeoff between incentives for the socially efficient
production of new knowledge and the incentives for its socially efficient diffusion. Given this dilemma,
research consortia in which firms pool their research resources to share both the costs and benefits of R&D,
may offer a solution. By joining forces, firms internalize the externality created through spillovers. Since
each participant is privy to the research results, the “transmission” problem is solved as well.

Unfortunately, the theoretical contribution by Katz (1986) revealed that research consortia have
problems of their own. If firms cooperate in R&D, but compete in the product market, then the increased
incentive to do R&D is possibly vitiated by the impact of the shared R&D output on subsequent market
competition. If that higher level of R&D makes ex post market competition more intense, either by
lowering firms’ marginal cost of production or “crowding” the product space with larger numbers of
differentiated products, then the resulting decline in profits, if internalized by the firms, will reduce their
incentives to do R&D. Katz showed that research consortia can, under some conditions, result in less R&D

as firms scek to lessen the severity of competition in the product market and raise profits.

* More gencrally, there is a literature in international trade which examines the potential role of R&D
rivalry in “strategic trade” policies. See the pioneering work by Spencer and Brander (1983).



Katz assumed that the amount of spillovers received by a firm did not depend on its level of R&D
spending. Subsequent contributions to this theoretical literature, notably the contribution by Cohen and
Levinthal (1989) argued that this is unlikely. If the amount of spillovers received by a firm depends
(positively) on its level of R&D spending, then the presence of spillovers in general and participation in
spillover-enhancing consortia in particular might lead to increased rather than decreased levels of R&D
spending. In the empirical model of spillovers that we present in this paper, we implicitly follow Cohen and
Levinthal in assuming that the level of potential R&D spillovers depends on current and past levels of R&D
spending. We will also argue below that Japanese research consortia tend into fit into that class of consortia
which tend to raise R&D spending, even in Katz's more restrictive framework.

In general, Japanese R&D consortia involved some government subsidization of consortia R&D
expenditures, lowering the effective cost of R&D. This strengthens the “effective R&D cost-reducing”
effect of participation which comes from economies of scale, avoidance of wasteful duplication, and ease of
access of the necessary complementary resources for R&D in Katz's framework. Secondly, the government
generally sought (not always successfully) to encourage complete dissemination of all research results to the
participating firms. Furthermore, in selecting participants, the government generally sought to bring
together firms with complementary research assets. This tendency has been especially strong since the early
1980s, which is the focus of our analysis. This implies that the level of intra-consortia spillover could be
quite high. These two factors augment the spillover-enhancing aspect of participation. Finally, we would
argue that the potentially vitiating effects of consortia R&D on second-stage industry profits are small.
Consortia have frequently brought together firms that were not direct rivals in the product market. For
instance, suppliers would come together with downstream firms to improve the efficiency of the production
process. In some cases, the product market relationships between participants were complementary rather
than rivalrous. Consortia also sought to target markets in which Japanese firms played a small role in global
production and trade.’ If we assume that foreign firms received no spillovers from consortia R&D, then the

impact on industry profits following Japanese entry would come solely from the impact of new Japanese

3 By the late 1970s, government assistance to established firms and industries had become increasingly
difficult to justify both to the Japanese public and to Japan’s trading partners. The 1980s and 1990s were
marked by a redirection of government assistance toward new businesses and precommercial technological
research.



products on the industry--but if the Japanese competitors were starting from a very small base, then this
effect is second order in importance, whereas the spillover-enhancing and cost-reducing aspects of
participation on Japanese consortia participants are first-order.

Even having made this assumption, theory does not necessarily guarantee that participation will
lead firms to increase their R&D spending. Both the spillovers-enhancing and cost-reducing aspects of
participation in consortia can be viewed as having both "income" and "substitution" effects. If participation
allows firms to realize greater benefits from a given level of R&D, firms may choose to increase R&D
spending if the "substitution effeci” dominates. On the other hand, they may actually reduce their R&D
spending if the "income effect" dominates. Based on our reading of the theoretical literature (especially
Cohen and Levinthal) and on Sakakibara's interviews with R&D managers from these
firms, we think that substitution effects are likely to be more important.® However, the data do not yield
unambiguous evidence on this point.

We therefore establish the following predictions:

L Participation in research consortia augments knowledge spillovers.

2. The spillover-augmenting effect of research consortia raises the “research productivity” of
participating firms, controlling for their R&D expenditures.

3. As a result of 1 and 2, participation in research consortia may lead to an increase in R&D
spending.

Qur paper will test predictions 1-3 using microdata drawn from a sample of participating and
nonparticipating firms. We find evidence in favor of all three.

111. R&D Consortiain Japan

Since the late 1970s, govemments throughout the developed world have adopted policies to spur

the development of cooperative R&D, albeit with mixed success. The United States granted broad antitrust

exemption to groups of firms collaborating in joint research projects by passing the National Cooperative

% The balance between the “income” and “substitution” effects cannot be deduced analytically. There is an
extensive theoretical literature which examines the determinants of R&D intensity (for a summary of this
literature, see Reinganum, 1989). The outcomes of these models are highly assumption-sensitive, and these
models cannot be easily nested (Cockburn and Henderson, 1994).



Research Act of 1984". A successor bill, the National Cooperative Research and Production Act, was
passed in 1993. While the expected number of research joint ventures failed to materialize, a few famous
examples, including SEMATECH, a consortia of semiconductor manufacturers, received substantial direct
subsidies from the federal government.® The Clinton Administration generally sought to strengthen federal
government intervention in this area by vastly increasing the budget of the Advanced Technology Program
(ATP). This program funds proposals for collaborative research from the private sector. European
governments also attempted to foster the development of research consortia. ESPRIT (European Strategic
Program for R&D in Information Technologies) and EUREKA are two famous examples of European
multinational projects.’

However, the nation that has most assiduously and consistently fostered R&D through the policy
instrument of R&D consortia is undoubtedly Japan. To a great extent, the adoption by European
governments aﬁd U.S. administrations of policies promoting R&D consortia was prompted by the perceived
success of this policy instrument in Japan. The promotion of R&D consortia in Japan has a long history,
reaching all the way back to late 1950s. We focus on its recent history for two reasons. First, Japanese
observers of R&D consortia point out that until the later 1970s, the focus of Japanese firms’ R&D efforts
was not on creating new technology so much as understanding, catching up to, or adapting Western
technology for use in Japanese markets, Wakasugi, in particular, notes that prior to the 1980s, much
emphasis was placed on R&D close to commercialization (Wakasugi, 1986). While R&D consortia may
have been successful at diffusing Western technology, that is less applicable now that Japan has reached the
technological frontier. The second reason is more practical: prior to the early 1980s, data on Japanese

R&D spending and patenting at the firm level is generally of poor quality.

" See the study undertaken by Scott (1988) for an empirical analysis of these research joint ventures.

¥ Irwin and Klenow (1996) have studied the impact of Sematech on semiconductor firms’ R&D, profits,
and labor productivity and concluded, on the basis of mixed evidence, that it did not have the desired effect.
Albert Link, David Teece, and William Finan, using participating firms’ estimates of the rate of return of
individual Sematech research projects, have come to a very different conclusion (1996).

? Despite this increase in the incidence of cooperative R&D, there have been few empirical studies which
have attempted to estimate the effects of this cooperative R&D on research productivity. Most of the few
empirical papers that have appeared in the literature draw upon “one-time” surveys of firms. The general
lack of any time-series dimension in the data severely constrains the ability of prior reseatchers to control
for left out variables or endogeneity. Furthermore, most researchers lack any micro-level measure of
research “output,” and therefore concentrate on the effects of participation on R&D spending or undertake



Compared to the overall level of government intervention in R&D in the West, the level of

Japanese government support of R&D is relatively small."®

Between 1960 and 1991, for example, the
average level of US government spending on R&D, as a percentage of GDP, was 1.32%, while in Japan it
was 0.47%. The contribution of government-sponsored R&D consortia to total R&D spending in Japan is
also small, accounting for only 1.6% of total R&D expenditure during the same period (Sakakibara,
1997a,b).

Mariko Sakakibara (1994) has presented a detailed breakdown of the distribution of projects by
industry, time, and budget. Her results are summarized in Tables 1 and 2. A number of trends are evident
from this sectoral distribution of projects and spending. First, government spending rose rapidly and
peaked in the 1970s. In the 1980s, there was a substantial real decline in spending. To some extent this
mirrored the general real decline in Japanese government discretionary spending in the 1980s as Japan’s
Ministry of Finance successfully labored to bring the overall budget into balance. Secondly, projects and
spending were concentrated in a few sectors. The semi‘conductorsfcomputcrs cluster stands out as a sector
which has received a consistently high level of support over time. In particular, telecommunications and
semiconductors/computers together constituted 41 of the 143 total projects during the 1980s (the period for
which our microdata is most complete) and nearly 30% of total government R&D spending on cooperative

research projects (Sakakibara, 1994)."

IV, Empirical Challenges

an analysis of the “motives for participation” using probit and ordered probit models. Our paper represents
an important departure from this tradition.

10" A sizable component of this difference can be traced to the role of defense-related R&D spending in the
U.S., and to a lesser extent, in the UK and France. Japan is perhaps unique among large advanced countries
in the extent to which national R&D spending has been financed by the private sector. This is changing
somewhat in the very recent past as Japanese firms have responded to the prolonged 1990s recession in
Japan by curtailing R&D expenditures and the Japanese government has increased its overall contribution
to the national R&D effort.

' This data set was originally prepared for The Two Japans: Reexamining the Japanese Model of
Competitiveness, by Michael Porter and Hirotaka Takeuchi, with Mariko Sakakibara, forthcoming.



There are two substantial challenges to empirical estimation of the impact of participation in
consortia on research produétivity and research intensity.'> The first is the problem of measurement.
Technological innovation, per se, is not observed. We observe instead the economic manifestations of this
innovation, such as patenting and increases in revenue from the introduction of new products and processes
or the refinement of existing ones. These empirical proxies are imperfect, and potentially fraught with
significant errors of measurement, As is well known, the ex-post economic value of patents varies
enormously, with many patents never leading to new products and others leading to billions in new
revenues. Our measures of revenue increases are clouded by the lack of hedonic price deflators which
adjust for improvements in quality.”

On the input side, there are measurement issues as well. Qur measures of capital input are taken
directly from firm accounts and deflated by a capital price index. As such, they are the product of numerous
acts of creative accounting which may not accurately reflect economic fundamentals. Qur measures of
R&D input represent a vast improvement over the commercially available data series, such as the NEEDS
database or the Japan Development Bank Corporate Finance Data Base. Having supplemented data from
these sources with Japanese language primary sources, we believe that our data are the best nonconfidential
data available.”® Nevertheless, there are likely to be errors of measurement here too, since firms vary
considerably in the extent to which “informal” research and “process engineering” is recorded in the formal
R&D budget.

These measurement problems are common to al] micro studies of innovation. In our case, there are
a few additional measurement issues particular to the topic at hand. First, especially prior to 1990, many if
not most of the patents to directly emerge from the research undertaken within government-sponsored
research consortia were, by government directive, assigned not to the participating firms but instead to the

research joint ventures themselves. We are still in the process of obtaining data on patents assigned to these

i2_ Saxonhouse (forthcoming) seeks to measure the financial impact of a small number of projects by
conducting an “event study” which examines the reactions of participating firms’ stock prices to the
announcement of formation of a consortia.

3 Furthermore, the more “basic” nature of the R&D undertaken in the consortia implies that the current
consortia research will only have an impact on revenue years later, when the technology is further
developed and commercialized through the introduction of new or improved products or processes.



joint ventures. In our estimates reported in this paper, we include only data on patents assigned directly to
firms. This means that we may systematically undermeasure the total direct benefits of the consortia."” We
are also missing, in this version, data on the government subsidy received per firm per project per year,
This subsidy is not straightforward to compute, as the effective level of the subsidy differs across firms,
projects, and years, and the typical participating firm is involved in more than one project per year in our
sample. However, the average level of the subsidies has been quite high -- on the order of two thirds of the
total project budgets have been contributed by the government. Thus, we may also be undermeasuring the
total social costs of the consortia. This is unfortunate, and if our goal were to undertake a comprehensive
“social” cost/benefit analysis of these research consortia, this data problem would severely constrain our
analysis.’® However, our goal in this paper is to undertake the more modest task of estimating the impact of
participation on the research inputs and innovation of the firms themselves. We do have sufficient data on
the private costs and benefits of the consortia, direct and indirect, to begin to undertake such analysis.

If the theoretical models of research consortia are at all correct, then the knowledge spillovers that
take place through participation in consortia should have an impact on firm research inputs and research
productivity that goes beyond the narrow topics investigated by the consortia. In other words, even if we do
not observe all of the patents a firm generates through direct involvement in a certain project (because they
are assigned to a research joint venture}, we certainly observe the lingering effect of the project on the
firm’s subsequent research activities, and the subsidiary research activities that grow out of the initial
project, as well as the costs associated with them. If these “indirect” effects are large, then we should find
them in the data, even without complete information on the direct costs and benefits of the consortia. As it
turns out, we find evidence of such effects in the data.

As mcntio_ncd above, the theoretical literature on research consortia suggests that one of the

primary benefits of these organizations will be to increase the impact of knowledge spillovers. Like

4 Much of this data came from the R&D survey undertaken by Toyo Keizai as well as data reported in
various issues of Nikkei Kaisha Joho. We thank Kazuyuki Suzuki, formerly of the Japan Development
Bank, for guidance regarding these and other data sources,

5 Of course, firms had an incentive to “delay” patenting until after the official conclusion of the project so
that they could secure the intellectual property rights to their innovations. To the extent that this happened,
our measures of the direct benefits of consortia are complete.



innovation, spillovers are not observed per se. We utilize the micro-econometric framework pioneered by
Taffe (1986) and modified by Branstetter (1996a,b) to empirically estimate the differential impact of
knowledge spillovers on firms which frequently participate in consortia and those which do not. This
framework allows us to identify a significant and positive effect on knowledge spillovers associated with
frequent participation in research consortia,

The final measurement issue has to do with aggregation. Even though we do empirical analysis at
the level of the firm, there is reason to believe that this is still too aggregated. The reason is that the typical
participant in research consortia is a fairly large firm with a fairly large research and product portfolio. The
typical project targets only part of this research and product portfolio. Thus, one might expect, ex ante, that
it would be hard to identify the impact of participation in consortia on the overall R&D effort, sales, and
patenting of the firm as a whole."” In this paper, we do find such “overall” effects, but the interpretation of
these effects is rendered more problematic by this aggregation problem. As part of our research agenda on
Tapanese research consortia, we are currently gathering detailed data at the project level that will allow us to
get around this aggregation problem.

In addition to problems of measurement, there is also the problem of the potential endogeneity of
the intensity of participation in research joint ventures. The process by which the goals of R&D consortia
and the participating firms are selected is a complex one, involving input from interested firms, academics,
and MITT's own experts. Ultimately, however, MITI decides which firms participate in which projects.
This assignment is not random. To the extent that they can observe it, it is quite likely that MITI officials
pick firms with higher “research quality” for participation in more consortia. If we find that research
productivity is correlated with the intensity of participation in consortia, it may be that the chain of causality

runs from research productivity to participation, rather than the other way around.'®

18 We are currently engaged in building a project-level data base including information on patents assigned

to the research joint ventures and government subsidies per project that will, at least in principle, allow us to

undertake such a cost/benefit analysis.

. 17 This is particularly a problem with R&D spending. Survey evidence at the project level suggests that
firms see R&D subsidies as a complement to their own R&D spending rather than a substitute for it.

" However, if the overall firm R&D budget is fixed, then, at least in the short term, an increase in private
consortia-related R&D spending may “crowd out”’ private R&D spending that is not consortia related.
'® There is also the problem of confounding the effects of consortia with exogenous changes in
technological opportunity. If consortia are quickly established in “hot” fields, it may be that our estimates
are picking up not the direct effect of consortia but the indirect effect of these changes in technological



This is a difficult issue to surmount, especially at our level of aggregation. We take two
approaches. The first is the fixed effect approach, in which we assume that, whatever “research quality” is,
it evolves slowly over time, so much so that it does not change in the 5-7 years of our sample period. If this
assumption is correct, we can obtain consistent estimates of the impact of consortia on research productivity
by looking only at the “within” dimension of the data. The second is the standard two-stage least squares
(2SLS) approach, in which we first use exogenous and lagged endogenous variables to predict the number
of research consortia a given firm will be involved in during a given year. In the second stage, we
instrument our measure of participation using these predicted values. This allows us to utilize the cross-
section dimension of our data, It also allows, in principle, for research quality to evolve over time. If both
approaches, which make quite different assumptions, give us the same results, then we have reasonably
robust evidence of an effect of participation on research productivity. This is precisely what we find.

V. Perceptions of Japanese R&D Managers

Sakakibara has examined the perceptions of Japanese R&D managers conceming the costs and
benefits of participation in consortia by distributing a confidential survey directly to the R&D managers of
participating firms. While we lack the space here to relate all of the results from this survey, we summarize
several key points. Details of the survey are provided in Sakakibara (1994) and some important results are
discussed in Sakakibara (1997a,b). The survey, conducted in 1993, obtained the replies of 67 firms
concerning 86 separate projects.

The first key result is evidence on the firms’ motives for participating in consortia. While firm
R&D managers listed a number of motivations for seeking to participate in consortia, the most highly cited
reason for seeking to participate in consortia was access to complementary knowledge assets of other
participants.” In particular, these firms consistently ranked this as a stronger motivation than that of
sharing the costs of research with other firms. This survey evidence has been strongly reinforced by more
anecdotal evidence obtained from conversations with Japanese R&D managers, industry observers, and
MITI officials. It is primarily this fact which leads us to look for a specification that can directly test the

effects of knowledge spillovers.

opportunity. Our ability to control for this at the firm level is limited, though we believe that some of these
“technological opportunity” effects are likely captured in our year and industry dummy variables.
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The second is the effect of participation on the firm’s own R&D spending. We have already noted
that government subsidies constituted as much as two-thirds of the total budget of the projects on average.
This figure masks considerable heterogeneity within projects. There are some projects in which
government provided 100 percent of the project budget, and there were others in which the government
provided much less than half of the total budget. Nevertheless, in the majority of projects, government
provided an important share of total costs. How do firms respond to these subsidies? Survcry evidence and
more anecdotal evidence strongly suggests that firms do not view government funding as a substitute for
their own R&D spending. Rather, survey evidence indicates that firms, on average, undertook private R&D
spending on consortia-related research by an amount equal to nearly ninety percent of the government
contribution.”® This increase in expenditure arises in two ways. First, the typical project budget involves
costs not accounted for in the government budget which must be born by the firms. Second, firms often
choose to invest in private R&D closely related to the consortia research in hopes of appropriating the
benefits of that research.

This increase in private R&D spending arises from two motivations. One is the direct substitution
effect of the subsidy. The other, potentially more important factor is the spillover-augmenting interaction
among firms that arise through participation in consortia.?' Of course, these two effects are not mutually
exclusive; in fact, they as mutually reinforcing. With the available data, it is not possible to distinguish
precisely between these two effects. However, we do present evidence which suggests that “spillover
augmentation” is the primary component of the overall impact of participation.

The third important result arising from survey evidence is the firms’ own subjective evaluation of
consortia. Typically, firms R&D managers see the projects as being modestly beneficial to the firms, but
not critical to their commercial success. A frequent criticism is that the focus of the projects on research

close to the technological frontier often fails to generate immediate financial gains. In terms of costs, firms

1% See Sakakibara (1997a) pp. 13-18 for details.

2 The survey data also suggest that, on average, participation in consortia raises private R&D spending on
consortia-related topics by nearly 40% more than the level which firms would have undertaken in the
absence of participation. See Sakakibara (1997b) pp. 16-18 for details. This is to be contrasted with the
finding of Irwin and Klenow (1996) that participants in the Sematech consortia reduced their R&D
spending. Wallsten (1996) finds that recipients of SBIR research grants reduce their R&D spending
substantially as a result of receiving the grant.

11



seem quite sensitive to the direct costs and the opportunity costs of participation in consortia. In particular,
coordinating research activities across several different firm laboratories tends to pose a substantial burden
on the time of key senior research personnel.

Finally, while it is difficult to document quantitatively, discussions with managers and MITI
officials frequently drew attention to the issuc of adverse selection” This arises both in terms of the
selection of participants and the selection of projects. Firms which are technology leaders are
understandably more reluctant to participate in projects in which they perceive that they have relatively little
to gain. This problem seems to have become more pronounced in recent years.” In the same way,
especially promising projects that can be profitably undertaken by the firms themselves are typically not the
focus of government consortia. Instead, especially in the 1980s and 1990s, consortia projects have tended
to involve more frontier research with greater uncertainty in the expected outcomes.

V1. Empirical Models for Estimating the Impact of Research Consortia

Our basic empirical strategy is two-fold. First, we establish that the intensity of participation in
research consortia raises both the level of research input and the level of research output, with the latter
measured by patents. Our analysis of patenting controls for both private research input and industry
characteristics. Thus, the intensity of participation is found to have a modest, but significant impact on both
research input and research productivity.

Next, we attempt to identify the extent to which this positive impact on research productivity is
produced by the augmenting or strengthening of spillover effects within consortia. To that end we introduce
an empirical framework which allows us to measure spillovers, albeit indirectly, and infer their effects on
research output.

A Model of Research Productivity

2! Sakakibara (1997a) showed evidence from the survey data that, after controlling for the government
subsidy effect, the learning motive from other participants is likely to increase a firm’s R&D spending.
22 See Sakakibara (1997b) pp. 23-26.

2 1t may be that as Japanese firms have become large players in many high-tech global product markets,
they have increasingly internalized the “competition-enhancing/profit-reducing” effects technological
cooperation might have on industry equilibrium output and profits.
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The first step requires us to develop a model of research productivity. To do so, we postulate the
following simple “knowledge production function,” suppressing time subscripts for the moment to simplify

notation,
N, =RFe™ @, : (1)
where N is innovation, R is firm-level R&D spending, C is our measure of the intensity of participation in

research consortia, and

Y 8,0y
D, =e? e (2)

where the & ’s are the coefficients on our industry dummy variables. Taking the logs of both sides of (1)

provides us with a simple log-linear functional form
n, =P, + 0, + 28,0, +&, 3
d

in which the estimation of fixed and random effects is straightforward. Now, n is not observed, but if firms
patent a certain fixed portion of their new ideas then, allowing this propensity to patent to vary across

industries and firms, we can use the relationship

Y 84Dy
—_— 4 i
P, =e e N, 4)
to substitute patents, which we do observe, for innovation, which we do not observe.? Taking the logs of

both sides of (4) and substituting into (3), and putting the time subscripts back in gives us
P =Br, +1e, + Z‘Sded +Hy )
d

and we allow the error term [ to consist of unmeasured firm effects as well as a truly random, iid error
term which satisfies the usual assumptions of the Gauss-Markov theorem. Thus, [ can be rewritten as
p’ir = qi + uir (6)

where g; might have the interpretation of the unmeasured “quality” of firm i’s research team. The presence

of g; in the error term raises the specter of omitted variables bias. In particular, it may be that MITI tends to

% Here the & s represent industry effects and the & ’s represent firm effects in the propensity to patent.
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pick “high q” firms more frequently for participation in research consortia, so that our measure of intensity
of participation in consortia 1s correlated with the error term.

There are two relatively straightforward “fixes” for this problem. One is to use the “fixed effects”
estimator pioneered by Mundlak. We define transformations of our variables such that, for each firm in

each year, we subtract the mean of the variable for that firm over time. Thus

) 1

Py =Py _?E,Pn
) 1

r,o=r, ~;Z,r:-,

cr'r* =Gy "'i.l':zr Cy (7

. 1
H, =H; _}'Z,uir

Note that our industry dummies fall out, since they do not vary “within firms” over time. Note also that the
individual effect falls out of the error term, because it also, by assumption, does not vary over time.

Performing least squares on our transformed equation

p*i: =Briy + '}t"ir + !—l:, (8)

Gives us potentially unbiased and consistent estimates of all parameters, albeit at the cost of throwing away
the cross-sectional variance in our data, which is most of the total variance. Unfortunately, as Griliches and
Hausman (1986) have shown, the fixed estimator may itself be biased in the presence of measurement error.
Given the aforementioned imperfections of patents as indicators of innovative output and our measures of
firm-level R&D spending as measures of innovative input, some level of measurement error is virtually
certain. It is difficult to judge just how severe this problem is, but the existence of this problem suggests the

need for another approach.
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An alternative method is to view our measure of intensity of participation in consortia as itself a

function of research guality, R&D investment, and industry characteristics such that

C, = 6)0 +qun +92rﬂ' +29dDid +v, 9
d

In which case, OLS gives us inconsistent results and even fixed effects estimates are not guaranteed to be
consistent, because in this specification the individual effect is allowed to evolve over time -- it is not, in
fact, fixed. If (9) truly describes the movement of our measure of participation, then we cannot identify its

impact. Let us suppose though, that the movement of ¢ is actually described by

¢, =0,+0,q,+0,1, +0,c,, +0,c, , +0s;, +26dDid +v, (10)
d

Equation (10) implies that there is some “bureaucratic” inertia to the selection process. Firms that were
frequently picked in the past are more likely to be picked in the present regardless of their true research
quality. This sort of behavior, perhaps the result of slow adjustment of firms’ reputations within MITI to
actual changes in research quality, is quite consistent with the experience of the authors, both of whom have
had official connections to MITT in the past. It is also consistent with the autoregressive properties of the c;
series. Thus, even if g, evolves partially as a function of participation in consortia, we can achieve
identification by using “predetermined” or k-lagged values of c; as instruments, where k is a lag long
enough to be exogenous with respect to q. The proper procedure to employ is two stage least squares.

Thus, we estimate a version of (10) using only the exogenous variables

C, =0, +0,1,+0.¢,,, +0,c, . +05c, 5+ ZBdDId +v, (11
d

We obtain from (11) a predicted value for c;, Ei, , which we can substitute into equation (5) to obtain
consistent estimates through 28L8.%

Heretofore we have used linear regression models. However, patent data are actually count data
whose distribution is quite skewed. Problems arise in applying linear regression models to such data,
particularly when there are a nontrivial number of firm-years for which the number of patents recorded,

either in the U.S. or in Japan, is zero. Of course, the natural log of zero is not identified, so the dependent
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variable for such observations is set to zero. Concerns that this sort of arbitrary transformation, which is
standard in the older patents-R&D literature, might affect the results motivated us to estimate a set of
nonlinear versions of (5), using empirical models based on the Poisson and Negative Binomial distributions.
We also estimate the fixed-effects version of the Negative Binomial mode! developed by Hausman, Hall,
and Griliches (1984). These models are developed in the Technical Appendix. As the reader will see, these
models give us results very similar to our linear models.

An Empirical Framework for Measuring Knowledge Spillovers

Now we turn to the issue of what is behind the positive, significant effects associatcd with
participation. Is it merely the result of government subsidies or do consortia actually increase the impact of
knowledge spillovers, as is alleged by their supporters? Here we introduce an empirical framework which
allows us to examine this question econometrically. This framework was pioneered by Adam Jaffe (1986)
and modified by Branstetter (1996a,b).

The typical firm conducts R&D in a number of technological fields simultaneously. We could
obtain a measure of a firm's location in "technology space” by measuring the distribution of its R&D effort

across various technological fields. Let a firm's R&D program be described by the vector F, where
F=(fi f) (12)

and each of the k elements of F represent the firm's research resources and expertise in the kth technological
area, We can infer from the number of patents taken out in different technological areas what the
distribution of R&D investment and technological expertise across different technical fields has been. In
other words, by counting the number of patents held by a firm in a narrowly defined technological field, we
can obtain a quantitative measure of the firm’s level of technological expertise in that field.

We assume that, in the short run, a firm’s position in technology space is fixed. Over time, of
course, a firm can change its position by building technological expertise in new areas, but this takes time

and the “adjustment costs” associated with this kind of change can be high. For this reason, we calculate for

% The use of three lagged terms is not dictated so much by theoretical considerations as by the limitation in
the time series dimension of our data on firm participation.
% This section borrows heavily from Branstetter (1996b).
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each firm in our sample a single Iocation vector based on its patenting behavior over the entire sample
period.

We can measure the "technological proximity" between two firms by measuring the degree of
similarity in their patent portfolios. Firms working on the same technologies will tend to patent in the same
technological areas. We can state this more precisely: the "distance” in "technology space” between two
firms i and j can be approximated by T; where Tj; is the uncentered correlation coefficient of the F vectors

of the two firms, or

FF
T;J = 7 —1 7
(FF, )(F,F, 1"

(13)

Other things being equal, firm { will receive more "R&D spillovers” from firm j if firm j is doing a
substantial amount of investment in new technologies. Firm i will also receive more R&D spillovers if its
research program is very similar to that of firm j. Thus, the total potential pool of R&D spillovers for a
firm can be proxied by calculating the weighted sum of the R&D performed by all other firms with the
“similarity coefficients" for each pair of firms, T, used as weights. More simply, suppressing time

subscripts here and in the equations below for expositional convenience, the spillover pool for the ith firm is

K, where K, is
K, = ET}R; (14)
i#j

Here E; is the R&D spending of the jth firm (j not equal to i) and T}; is the "similarity coefficient” which
measures the correlation in patent portfolios between i and j as in the previous expression.
Assume that innovation is a function of own R&D and external knowledge. Then, the "innovation

production function" for the ith firm is

N, =RPK]'®, (15)
where

> 84Dy
D, =’ £ (16)
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Here the & s can be thought of as exogenous differences in the “technological fecundity” of d different

industries. Taking the logs of both sides of (15) and adding time subscripts yields the following log-linear

equation

n, = Pr, +v(c,)k, +25dDr'd +&, (17)
d

Here, n;, 1s innovation, r; is the firm's own R&D investment, k; is the potential spillover pool, the D’s are
dummy variables to control for differences in the propensity to generate new knowledge across industries
(indicated by the subscript ) , and £ is an error term. However, we hypothesize that the impact of

spillovers on innovative output, ¥ , is an increasing function of the “intensity” with which firm i
participates in research consortia ('y'(c,.) > (), such that frequent participants enjoy a higher innovation

output elasticity for a given level of potential knowledge spillovers. The reasoning behind this is
straightforward: spillovers are not automatic. To monitor and understand other firms” R&D can be a
difficult task. It may be facilitated by participation in consortia, in which the cost of accessing other firm’s
knowledge assets is reduced.

As in equation (6), we substitute observed patents for unobserved innovation, so that we are left
with

px‘: = Brzr +7(ci:)kr'r +26dDid +#ir (18)
d

Again, we allow for [ to contain an individual effect as well as a truly random error component.

Real technological spillovers should lead not only to more patents but also higher levels of
revenue, by increasing product quality, and thus product demand, or lowering production costs. To measure
this effect, we estimate a standard Cobb-Douglas production function in its “growth rate™ (difference) form,
again assuming that the impact of spillovers is a function of the intensity of participation in research
consortia. We allow the revenue elasticity of spillovers to vary as an increasing function of the intensity of
participation in research joint ventures. We start with the log transformation of our Cobb-Douglas
production function.

g, = o, + Bl + r + p(c) )k, +¢, @
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Here g is output, & is capital, ! is labor input, 7 is the firms’ own R&D stock, and & is the domestic
spillover stock.”” Again, we allow for the existence of individual effects which are potentially correlated
with the right hand side regressors, such that
E, =g, +u (20)
Following Griliches and Hausman (1986), we use the so-called “long difference” estimator, regressing the
log difference in the starting and ending levels of firms’ sales on the “long” log difference in levels of
capital and labor inputs, etc.
Gir = Gio = 0K r = Kio) + Bl —Lo) + 9y — o) + (e ) kip — ko) +(g, = q,) +uy —uy
(21)
Here, T is the last period in the panel, while 0 is the first period. Thus our estimates are, it is hoped, less
biased in the presence of measurement error as well as individual effects which are correlated with firm’s
levels of capital, employment, or R&D.®

Revenue growth is subject to idiosyncratic and systematic demand and input supply shocks. In
particular, unmeasured growth in the quality of capital and labor inputs, the level of capacity utilization, or
the effective demand for the firm’s products can all show up in the “residual” as productivity growth.® As
a result of this additional noise, it may be considerably more difficult to distill a relationship between
spillovers and firm-level innovation from the data. If, however, our production function regressions give us
results similar to those of the patent equations, we have strong confirmation that we may be observing a
“real” effect.

Note that, in practice, we do not have enough degrees of freedom to allow ¥ to vary with the

number of project-years. Instead, we divide our sample into nonparticipants/infrequent participants and

frequent participants and allow the parameter ¥ to vary across the two subsamples. In some specifications,

“ Here, we use the perpetual inventory method to calculate R&D and spillover “stocks” from the R&D
expenditure series. We do this in the case of the production function because, while the impact of R&D on
patenting might be largely contemporaneous, the impact of R&D (and spillovers) on revenues is likely to be
subject to longer lags, with past R&D, appropriately depreciated, having some effect on current revenue
growth. In doing this, we follow the conventions of the economic literature on patents and R&D.

B Gee CGriliches and Hausman (1986) for a thorough exposition of this ecopometric problem.
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we allow the overall intercept term to differ for the two subsamples as well. Then we can construct a
étanda.rd Chow test whether or not these parameters are significantly different across the two subsamples.
VL Empirical Estimates of the Impact of Consortia

We have collected data on approximately 230 firms’ R&D spending, sales, capital stock, labor and
materials usage, and patenting in the U.S. as well as in Japan, for the years 1983-1989, Of the firms, over
140 participated in at least one consortia.’® Data on participation in consortia come from Mariko
Sakakibara’s data base, the construction of which is documented in Sakakibara (1997b). The other data
come from the same sources and are prepared in the same way as in Branstetter (1996b). Unfortunately,
data are not available for all variables on all firms in all years. In particular, data on R&D spending at the
firm level and data on patent applications in Japan are not available for all firm-years.”® Thus, some of our
regressions will be run on a smaller “balanced” panel with 208 firms.”

Our analysis proceeds as follows. First, we divide our sample firms into
nonparticipants/occasional participants and frequent participants as measured by their involvement in
consortia over the entire sample period, 1983-1989. We present sample statistics for these two samples in
Tables 3 and 4. Then, we attempt to quantify the effects of participation on the R&D input and output
variables of the firm. Controlling for industry effects and R&D spending, we estimate a “patent” production
function to assess the extent to which participation improves “R&D efficiency.” Finally, we attempt to test

if spillovers are stronger, on average, among participating firms.”

¥ In order to reduce the impact of these fluctuations, we attempt to “average them out.” Equation (21) is
actually estimated using data averaged over three early years of the sample, as the “first period,” and four
later years of the sample, as the “last period.”

3¢ Supplementary Table A-1 gives the distribution of projects across industry clusters for only the firms for
which we have micro data. A comparison of this table with Table ! shows that we have reasonably
representative coverage of the universe of projects in our data for the 1980s.

1 Our data on the Japanese patents of Japanese firms is considerably more limited than our data on their
U.S. patents due to the difficulty and expense of obtaining apanese patent data by firm.

%2 Our sample was selected on the basis of availability of micro data on research inputs and outputs. It thus
consists of firms that are, on average, larger and more R&D intensive than is generally the case in the
“universe” of Japanese manufacturing firms. This is especially true for the “infrequent participants.” We
are currently working to expand the data set in both the cross-section and time series dimension.

% One potential problem we do not address in this paper is the issue of unmeasured technological
collaboration outside the official consortia sanctioned and subsidized by MITI. It is well known that
Japanese firms are actively involved in interfirm technological collaboration. Frequently, but not always,
this cooperation takes place within so-called “production keiretsu,” in which firms and their suppliers
engage in the deliberate exchange of proprietary information and research personnel to enhance the
efficiency of product and process innovation. The effects of this knowledge transfer on research
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A. Sample Statistics

Table 3 gives data on firms that were infrequent participants in MITi-organized research consortia.
Since the typical consortia lasted more than one calendar year, we made our division on the basis of
“project years.” Using Sakakibara’s data, for each firm in each year we noted how many consortia it was
concurrently involved in. ' We summed these “project-years” over the entire sample period for each firm.
Firms with 11 or fewer project-years over the entire sample period were deemed infrequent participants.
Firms with more than 11 project years were deemed frequent p.':u"ticipanis.34 Table 4 shows data on frequent

participants.

It is immediately obvious that f_niauegfpéiﬁéiﬁé;lts we;CSlgrilﬁcz;lt_ly iarger and more R&D
intensive than nonparticipants. Frequent participants also tended to take out more patents in the U.S. and in
Tapan. Do frequent participants tend to do significantly more R&D? One traditional measure of R&D
intensity is the R&D/sales ratio. A Wilcoxon sign-rank test for the equality of the median R&D/sales ratio
in both subsamples strongly rejected the hypothesis of equality, providing us with our first statistical
evidence that they do, though the actual magnitude of the difference is relatively small. Nevertheless, in
terms of absolute yen expenditures, the frequent participants spend much more since, at the median, they are
more than 5 times as large as the nonparticipants as measured by size. Because of this clear size difference
as well as differences in the industry mix of frequent participants and others, we need to make this
comparison using control variables.

B. Effect of Participation on R&D Spending
We have run such a regression, using the log of firm i's capital stock to control for size and using

industry dummies as additional control variables. Thus, our equation is

productivity and spillovers are explored in Branstetter (1996b} and compared with the impact of
participation in the research consortia studied here. However, Branstetter’s (1996b) preliminary results
indicate that the knowledge transfer which takes place within keiretsu seems is qualitatively different from
that which takes place in the research consortia modeled here. Thus, concerns that omitting variables on
keirersu affiliation might substantially bias the results reported here are not supported by the data.

* This cutoff number is the 75 percentile in our sample data. ‘

21



!

log(R& D,) = at; + B, log(capital,) + B,(c,) + 3,8,D, +&, 22)
where @, is the individual effect, c; is the number of consortia in which firm i is involved in year t and the

& ’s are the coefficients on our industry dommy variables.*® This equation is not meant to be a realistic
model of firm level R&D spending, and it is certainly not meant as a structural model. We do not believe,
for instance, that firms “optimize” R&D on the basis of their capital stock.* This regression is run only to
test the hypothesis that increases in the intensity of participation is associated with increases in R&D.

Given the ad hoc nature of our specification, we realize our results are open to a number of interpretations.

The results in Table 5 come from our “unbalanced” panel, with 1,486 observations from 226 firms.
Here, as in later equations, “c” is simply a count varjable showing the number of projects in which the ith
firm was involved in the fth year. As in subsequent tables, standard errors are given in parentheses. It
seems clear from our results that, at the margin, participation in an additional consortia has a statistically
positive and significant impact on R&D spending. Firms which participate in more consortia do spend
more on R&D even after controlling for size and industry effects. We explore whether or not the same kind
of relationship exists in the “within” dimension of the data and find that it does. (Naturally, the industry
effects fall out as part of the fixed effect in this and other “within” regressions). Results did not
qualitatively change when we restricted our data to firms for which we have data on all variables in all
years. The coefficient on ¢ (about .02 in the fixed effects model) is small, but the reader should recall that
the interpretation of the coefficient is the impact of an additional project-year on annual R&D spending.
Some firms participate in more than 10 projects per year, so the cumulative effect of a transition from being
a nonparticipant to a frequent partici.pant could be quite substantial. For instance, an increase in intensity of

participation on the order of an additional 5 projects per year is associated with an increase in total R&D

% The industry dummies used are, in numerical order, chemicals/pharmaceuticals, general machinery,
transportation, and precision instruments. The reference industry is the electronics sector.

% Of course, there are other potential indices of firm size, including log of sales and log of employment.
All of these indices have problems as measures of “size.” Sales can fluctuate quite dramatically relative to
capital stock for various reasons., Qur measures of employment include only “full time” workers whereas

22



spending of over 10%. However, we must note that while our random effects estimates are robust to the
inclusion of a full set of time dummies, our fixed effects results are not. This arises partially because a
fixed effects model sweeps out all of the cross-sectional variance, which is most of the total variance in the
data. Taking out common time series variance leaves relatively little “signal” in the data relative to the
“noise.” However, we acknowledge that the evidence for the impact of participation on R&D spending is
ﬁot as robust as some of the other evidence we present in this paper.
C. Patent production function

We have found some evidence that participating firms are more R&D-intensive, a result that is
consistent with the predictions of theory. Can we also make statistical inference regarding the productivity
of that R&D spending? Here, we continue our exploration of the data by looking for a statistical
relationship between a firm's “productivity” of R&D and its “intensity” of participation in R&D consortia.
. We measure productivity as patents generated per year, controlling for R&D spending, industry effects, and
firm effects. Results from both a random effects specification and a fixed effects specification are provided.

The equation we seek to estimate is
Py = ﬁo + ﬁ1rf: + ﬁzcir + Z‘SdDid +U,
d

which is based on equation (5). Results are given in Table 6.

The results in Table 6 show a positive and significant relationship between participation and
patenting.”” Here we use the numbers of U.S. patents granted to Japanese firms as our dependent variable,
though the results using Japanese patent applications are qualitatively similar. The third column shows the
results when we use a dummy variable to identify the most frequent participants. It is, of course, difficult to

assign any causal interpretation to the results in this column because of the likelihood that “research quality”

many Japanese firms use large numbers of part time workers. Still, we note that the results of Table 5 are
not sensitive to the use of sales or employment as alternative measures of size.

37 In these equations, we regress patents by the ith firm in the fth year on the number of research joint
ventures that firm has participated in during that year. If research consortia augment firm patenting through
R&D spillovers, then one might expect its effects to enter with some lag. The short time series dimension
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is correlated with the intensity of participation in consortia. Because of this, in fact, the random effects
estimates may be inconsistent. A fixed effect model removes all constant factors, like industry affiliation
and, hopefully, research quality, from the regression, although this may worsen the bias that arises from
measurement error. The results from the fixed effects model are broadly consistent with our earlier
regressions and suggest that at least some of the impact of participation on patenting is, in fact, driven by
participation rather than écme left out variable like “quality of the research team.””®

The point estimate from the fixed effect model suggests that participation in an additional consortia
increases patenting by about 5%, holding other variables constant.*® This seems like a small effect, but the
cumulative effect of an increase in the intensity of participation from 1 to 5 projects per year could have a
substantial cumulative effect on research productivity.*

While there are a number of reasons to think that at least some of the effect of participation on

patenting is practically contemporaneous”’

, as we have modeled it, there are alsc reasons to believe that the
full impact only comes after a lag of one or two years. In particular, a two-year lag makes sense because
research personnel are typically rotated into research consortia, then rotated back to the parent firm on a
two-year cycle. When these research personnel return to the firm, they presumably bring with them a
substantial amount of explicit and “tacit” knowledge about the new technology being developed within the
consortia. To allow for these lags in a simple way, we substituted one and two-pericd lagged measures of
participation in place of our contemporaneous measures and re-estimated our fixed effect model. The

results are qualitatively similar to the ones reported in Table 6. Our lagged measure of “c” remains positive

and significant, with a coefficient of approximately the same magnitude as in Table 6.

of the data and the limited variation in participation in that dimension are such that the lag structure is
difficult to estimate.

% A Hausman test rejects the equivalence of random effects and fixed effects models. The Hausman test is
distributed Chi-square with two degrees of freedom. The p-value of our test statistic of 13.52 is on the
order of 0.0012.

* These results are robust to the inclusion of a measure of firm size, such as the log of capital stock or the
log of employment.

0 The positive, significant impact of particpation remains even after controlling for the possible effects of
Japan’s “bubble economy” of the late 1980s. Even after the inclusion of a full set of time dummies, which
sweeps out the common *“within” variance as well as the cross-sectional variance, the effect of participation
remains positive and “marginally” significant (the p-value is approx. .07).

41 For example, there is anecdotal evidence that researchers in consortia frequently communicate with their
parent companies, sometimes daily. When an consortium is formed as a dispersed organization whose
research facilities are located at participants’ research labs, this communication can be even more frequent.
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The alternative to a fixed effects approach is to use instrumental variables. In Table 7 we present
results based on the 2SLS model we developed in equations (9)-(11). The table presents results using both
the log of patents registered by Japanese ﬁrms in the U.S. and results using firms’ patent applications to the
Japanese patent office. The results are qualitatively similar to the fixed effects results, though the
magnitudes are larger. The R? from our first stage regression of research consortia on our vector of
exogenous variables and instruments is slightly more than .7, indicating a reasonably good fit. In our
results, we used 7, 8, and 9 period lags of counts of project-years as instruments. Note that the point
estimates of the impact of an additional consortia on research productivity arc,‘in the case of the regression
using Japanese patent applications, more than twice as high as those which we obtained in our fixed effects
model. These estimates imply that an increase in intensity of participation on the order of two projects per
year would increase research productivity (as measured by patents per R&D dollar) by between 10% and
16%.* We found that the 2SLS results do not qualitatively change when time dummies are included. We
also found that the results do not qualitatively change when we use two-period lagged measures of
participation rather than a contemporaneous measure of participation.®

The linear model has a great advantage in that the estimation of fixed and random effects is quite
straightforward. However, the linear model has a serious drawback in estimation. Not a few firms take out
no patents in any given year. The alternative to this is to use a model in which 0’s are a natural and
predicted outcome. The canonical modet is the Poisson model and its generalizations, which are developed
further in the Technical Appendix. Results based on these models, using Japanese patent applications are

presented in Table 8. Regressions run using U.S. patents were qualitatively similar.*

“2 We used a Lagrange Multiplier test to test the validity of our instruments by regressing the residuals from
the second stage of our two-stage least squares regression on the instruments used in the first stage. The
null hypothesis that our instruments were valid is strongly supported by the data.

*3 The results of this and other supplementary regressions mentioned in the text are available from the
authors upon request.

# The results of the Poisson models are robust to the inclusion of time dummies.
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It is possible to exploit panel data to run “fixed effect” versions of the Poisson model and more
general models based on it. The results of such an estimate are presented above in the fourth column of
Table 8. As we can see, this result is completely congruent with both the linear fixed effect results and the
Poisson pooled results and indicates that, even in the “within™ dimension, participation has a reasonably
strong and robust positive effect on research output even after controlling for private research input.

Of course, we do not include in these regressions measures of the government subsidies provided
to the firms. An alternative interpretation of our results is that we are simply picking up the output effects
of unmeasured subsidies. A “back of the envelope” calculation strongly suggests that this interpretation is
unlikely to be true. While we do not have precise data on the subsidies offered per firm per project per
year, we can roughly approximate it. There are 131 consortia in which the firms in our sample participated
during the years 1983 to 1989. If we allocate the total project budgets for these consortia equally over the
planned duration of the projects, we obtain a figure of 503,484 million yen (in constant prices} in
government subsidies for these projects over the seven years of our sample period. In order to obtain a
subsidy figure per firm per year, we divide this sum by the number of firms which participated in these
projects in each year (including participating firms for which we do not have R&D or patent data). Thus,
the average per firm per project per year government subsidy is only 68.3 million yen.* In contrast, the
average level of R&D spending for our 226 firms is 13,211 million yen. Since the average firm in our data
set is involved in slightly less than one project per year, on average, the government subsidy per firm per
year only accounts for about 0.52% of annual firm R&D expenditure.*® This magnitude is much smaller
than the estimated effect of participation on innovative output, which ranges from 3% to 8%.* Though the

government subsidy increased the effective R&D input for firms, the much more substantial increase of firm

% Even if we assume that subsidies were given entirely to the larger, listed firms that participated in the
project, the per firm per project per year subsidy rises to only 95.2 million yen. This adjustment raises the
per firm per project per year subsidy to 0.72%.

* This may explain why Saxonhouse (forthcoming) has failed to find robust evidence of a strong effect of
project announcements on participating firms’ stock prices. The subsidies provided to the firms are small
enough and the nature of research done within consortia far enough removed from commercialization that
the immediate impact on stock prices is not large relative to day-to-day fluctuations in stock prices.

4T Recall that the estimated innovative output elasticity of own R&D spending is less than 1. This implies
that our estimate of the incidence of the government subsidy would have to underestimate the “true’
incidence by a factor of 4 to 6 in order to fully explain even the lower bound of our range of estimates of the
effect of participation on innovative output.
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R&D output implies the presence of an effect of consortia participation that is greater than a simple
“subsidy effect.”
D. Patents and Spillovers

Finally, we present indirect estimates of the impact of consortia on knowledge spillovers. We do

not have enough degrees of freedom to allow ¥ to vary with the number of project-years. Instead, we

divide our sample into nonparticipants/infrequent participants and frequent participants and allow the

parameter Y to vary across the two subsamples. Then we construct a Chow test to identify whether or not

the parameters are significantly different. In practice, this is done by running a regression including an
interaction term in which the spillover term is multiplied by a dummy variable signifying whether or not the
firm is a “frequent” participant. An F test on the significance of the coefficient of the interaction term is
equivalent to a Chow test of a difference in that parameter, holding others constant. In some specifications,
we also allow the intercept terms of frequent participants to differ from those of other firms.

In the regression results presented in Table 9, it does seem that the patent output elasticity of
spillovers, as we measure them, is much higher for the frequent participant subsample. We interpret these
results as suggesting that it is indeed through the channel of augmenting spillovers that research consortia

raise both R&D levels and R&D productivity. We estimated
by = B+ B freq, + Bor, +Vok, + ik, * freq, + zadDid + Ky
d

which is the econometric analog of equation (18). The results reported in Table 9 are representative of our
findings. In the OLS mﬁdel, the interaction term is positive and significant, but small in magnitude. In
general, allowing the constant term to vary as well as the spillover parameter results in very large
differences in the innovation output elasticity of the spillover term in the subsample. Allowing a separate
constant term does have a useful interpretation. The managerial literature suggests that there are substantial
“coordination costs” associated with the management of research consortia.”® Research personnel must
invest considerable time and energy in coordinating research activities across firm boundaries and
overcoming the natural tendency to free-ride on the efforts of other participants. It is quite likely that the

separate intercept term for frequent participants is picking up the effects of these coordination costs. The
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sign and magnitude of the coefficient suggest that these costs are quite substantial, a finding completely in
accordance with the view of the managerial literature.*” Furthermore, as we mentioned, firms were not
generally permitted to apply for patents on research conducted within the consortia. Instead, those patents
were frequently assigned to the consortia. This may have lead frequent participants to lower their
propensity to patent.

Finally, we note that, in a fixed effects version of (18), the interaction term is positive and of
reasonably high magnitude, but is statistically insignificant. This result is not surprising, given our small
sample size and the fact that our spillover term is certainly measured with error, a problem which is
exacerbated when we use fixed effects models. These results suggest that participation is associated with

increased impact of spillovers, but the evidence is not conclusive.

TFP Growth and Spillovers
Here the equation being estimated is a modification of the general model in which spillovers, as
proxied above, enter directly into a Cobb-Douglas production function. As in the patent equation, however,

the impact of spillovers is a function of participation in research consortia. Thus, we estimate

qir — 40 = 0, + 6, freq, + a(K; —K) + ﬁ(li?” — L)+ 0y — 1) +

Qo (eiy = ki) + @y (kip — ki) * freg, + (A = A) + 1y —

based on equation (21), where we allow the parameter on the change in spillover stocks to vary between
nonparticpants/infrequent participants and frequent participants. The results are summarized in Table 10.
We find results very consistent with the previous results from the patent equation. Furthermore, these

results are less vulnerable to the problem of reverse causality, since the fixed effect is differenced away.

*® See the cited works by Doz (1987), Hladik (1988), and Jorde and Teece (1990) for evidence.

* Sakakibara has found direct evidence of this in her interviews with Japanese R&D managers. She also
cites the work of other researchers which confirms the existence and importance of these costs in
Sakakibara (1997a).
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Here again a Chow test allows us to reject at the 1% level the equality of the spillover parameters
across the two subsamples when we also allow the intercept to differ across the subsamples. Otherwise, the
interaction term is statistically indistinguishable from zero.*® The spillover coefficient in the third column
seems implausibly high. We note, however, that the 95% confidence interval for this estimate is rather wide
and contains a substantial range of more plausibie values. We do not place too much stock in the exact
point estimate, but we note that we could still reject the hypothesis of equality across the two subsamples
even if the coefficient were substantially lower. Here the allowance of a separate constant term for frequent
participants also has a potentially plausible interpretation: frequent participants are, in fact, much larger
and more “mature” than nonparticipants, and can be expected to have, on average, lower rates of revenue
growth as we measured it (difference in logs of sales) for that reason alone.

VIIIL. Conclusions and Extensions
Our preliminary exploration of the data suggests that the predictions we made about the effect of

participation in research consortia on R&D performance find support in the data. Namely,

L Participation in R&D consortia tends to be associated with higher levels of R&D spending of
participating firms.

2 Participation in R&D consortia also seems to raise the research productivity of participating
firms.

3. Finally, our results suggest that at least oﬁe channel by which consortia have these positive effects

may be through effectively augmenting knowledge spillovers.

Rased on our empirical results we can assign numbers to these effects. The estimated elasticity of
participation in an additional consortia on R&D spending from our fixed effects and 2SLS estimates
suggests that if a firm participates in an additional project per year, it will raise its total R&D spending by
about 2% and its patenting per R&D dollar (i.e., its research productivity) by between 4% and 8%. These
sound like small effects, but the cumulative impact of a large increase in the intensity of participation in

research consortia could be substantial. Although we do not actually observe many such changes in our

50 Since the research consortia that are the focus of our study generally targeted “precommercial” research
projects, it generally took years for the innovations developed as a result of consortia research to be brought
to market. Because of these long and variable lags and because the typical firm in our data base has a
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data, we should point out that an increase of five projects per year will raise R&D spending by more than
10%, patenting per R&D dollar (adjusted for industry effects) by between 20% and 40%, and could more
than double the estimated elasticity of knowledge spillovers on the firm’s own innovation.

In addition to the benefits of consortia, however, we have also found evidence of their costs. The
managerial literature suggests that the coordination of research across firms can impose substantial
administrative burdens on the research personnel of participating firms. We have presented econometric
evidence consistent with this view in Table 9, which suggests that frequent participation in research
consortia increases the impact of R&D spillovers, but does impose other costs on the firms. The previous
paragraph suggests that the net benefits of participation are positive.

Viewed as an instrument of industrial policy, our results to date suggest that the consortia did have
the effect of stimulating innovative activity by the selected firms. We have not included a measure of the
cost of government subsidies or the administrative costs incurred nor do we yet have measures of the
patents assigned directly to the joint ventures, so that a true “social” cost/benefit analysis of consortia is
beyond the scope of the present paper. However, the finding of a positive effect of participation on
innovation is a necessary, though not sufficient, condition for demonstrating that subsidizing consortia was
a worthwhile social investment. Between 1960 and 1991, the average govemment contribution to
government sponsored R&D consortia accounts for only 1.1 % of total R&D expenditure in Japan,
suggesting the small magnitude of the costs incurred by the government.

This initial exploration of the data strongly suggests future directions for research. R&D consortia
tend to target technologies that are only a small part of a firm’s total research effort and one might not
expect to find clear effects of the consortia on the entire R&D and product portfolio of whole firm. We do
find small, but statistically robust, effects of participation on research inputs, productivity, and spillovers at
the firm level. Nevertheles_é, a better approach, and one which allows us more leverage over the nettlesome

issue of causal interpretation, would be to undertake our analysis at the project level >

diversified product portfolio, it is perhaps not surprising that the measured direct effect of participation on
revenue growth is small.

%! For a pioneering work which measures research productivity and identifies spillover effects at the
research project level, see Henderson and Cockburn (1996).

30



By classifying projects and patents by technological area and obtaining data on patent applications
submitted by the research joint ventures, we could examine the effect of participation in a particular project
on ex-post patenting in that area. Since we could observe the participating firms before and after
participation in the given project, it would be much easier to give our analytical results a causal
interpretation. It would also be much easter to compute the effective government subsidies accruing to each
participant. Finally, at the project level we would be able to analyze the important question of why some
projects succeeded in stimulating innovation and others did not. We could fully exploit the cross-sectional
and time series variation in the organizational design of the consortia, the industry and size mix of the
participants, the technological goals, and the level of government support to determine what factors are
predictors of success and what factors are predictors of failure. Updating our data set through the early
1990s is feasible, as is broadening it by increasing the coverage of firms and industries, and we are currently
engaged in such a data collection effort.

On the whole, our preliminary results suggest that this is a fruitful area of research. As all
advanced nations struggle to maintain growth and innovation in the face of changing technology and
increasing international competition, policies to enhance R&D spending and bridge the gap between the
social and private benefits of R&D offer one of the few methods governments have of promoting
sustainable growth. Qur review of the pelicy history in this area suggests that governments throughout the
advanced world will continue to resort to consortia. We may have much to learn from the successes and

failures of the Japanese experience.
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Technical Appendix Nonlinear Models for Patent Data
Poisson and Negative Binomial Models

Patent data are “count data” - non-negative integers - and in any given year a number of firms
perform R&D but generate no patents. The distribution of patents is highly skewed with most firms
generating far fewer than the mean number of patents in a given year. The linear model was not designed to
handle such data. Over the past decade a set of regression models have been developed expressly for the
purpose of hlandling this kind of data. A sketch derivation of the technique used here, a generalization of
the Poisson model known as the “negative binomial” estimator, is given below. For a more formal
development of this model, please consult Hausman, Hall, and Griliches (1984). Here, I summarize their
results, borrowing extensively from the presentation of these basic results found in Montalvo and Yafeh
(1994),

The Poisson estimator posits a relationship between the dependent and independent variables such that

e—l,-, Z'm'z i

'
!

prin,)=f(n,)= (23)

where 4, = e*if (24)
Econometric estimaticn is possible by estimating the log likelihood function using standard maximum
likelihood techniques. The negative binomial estimator generalizes the Poisson by allowing an additional
source of variance. We allow the Poisson parameter lambda to be randoemly distributed according to a
gamma distribution. Thus defining lambda as before

A, =e*f 1 g (25)
Using the relationship between the marginal and conditional distributions, we can write

PriN, =n,]= _[Pl‘[Ni, =n, A, 1f (A,)dA, (26)

If the density function is assumed to follow a gamma distribution, then the Poisson model becomes a

Negative Binomial model:
Ay =T(0t,0,) @n

where
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a, =e*F (28)

then
Y T QA ¢-l-[a-
Pr = it it r iy et "dl. -
(n) ‘{[ niz! r(q)ir)L ai: ] ¢ y 29)
where
o 2
EQA,y=0,V(4,)= j¢—'~ (30)

Integrating by parts and using the fact that
Moy =al (-1} = (o= D! 31)

yields the following distribution

Pl = r;i(,ni 1+)1?(<;) [aﬁ o .
with |

E(n,)=a, 33)
and

Vin)=a, +o,’ 19, (34)

This can also be estimated using maximum likelihood techniques. The log likelihood function becomes

L(f) = z Zlog (A, +n,)—logT(A,)—logT(n, + 1)+ A, log(8) — (A, +n,)log(1+ )

(35)
with
Vin,)=e""(1+6)/6 (36)
Thus, the coefficients are estimated using standard maximum likelihood techniques.

Fixed Effects Negative Binomial Model
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In this section I present a sketch derivation of the “conditional” or “fixed-effects” negative
binomial estimator. The derivation and the notation very closely follow Hausman, Hall, and Griliches
(1984) and is merely intended to be a summary of their analysis. For a more complete treatment of the
topic, the reader is referred to that paper.

Let the moment generating function for the negative binomial distribution be

1+8+¢ )
m(t) =| ——=— (37)

Now consider a simple case with two observations. If ¥ is common for two independent negative binomial
random variables w; and w,, then wi+w,=2 is distributed as a negative binomial with parameters
(y Y., é ) . This is due to the fact that the moment generating function of a sum of independent random

variables equals the product of their moment generating functions. We derive the distribution for the two

observations case.

pr(w)pr(z—w)
pr(z)

priw|z=w, +w,)=

F()/l +W1) (1+5)—(wl+w2)( o )T:-ﬂ’z F(’Yz +W2)
B I“(y,)r(w, +D I+6 I“(yz)l“(w2+1)
B Y1+72

Ly, +7,)T(z+1) 1+6

_ Iy, +w)I(y, +w )T (7, + 7,0 (w, +w, + 1)
(y,+7, +Z)F(T|)F(TZ)F(W1 + 1)F(W2 +D

(38)

Here each firm can have its own delta so long as this delta does not vary over time. The delta has been
eliminated by the conditioning argument. More generally, considering the joint probability of a given

firm’s patents conditional on the 4 year total, we can obtain the following distribution.

ry r n, +b
] F(Z 14" +2”ir

pr(ng,....ng (39)

_ I(y, +nir)
2= [Ht T(y,)T(n, +1)

?

Given this, we are able to do estimation of the following log likelihood function
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logL="Y Y log['(A, +n,)-logl(1,)—logT(n, +1) +1ogl'(> A, +

ogT'(Y n, +1)-1logl'(Y 4, + > ) (40)

A, =eXeP (1)
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Table 1 Number of Projects by Industry Cluster and Starting Year

Cluster Name 1960s 1970s 1980s 1990-92 Total
Materials/Metals 4 3 14 0 21
Petroleum/Chemicals 5 6 18 3 32
Semicon/Computers | 2 5 20 5 32
Transportation 2 6 8 2 18
Telecommunications 0 0 21 5 26
Food/Beverage | 1 14 12 28
Health Care 0 2 14 | 5 21
Power Generation 0 6 9 2 17
Other 4 7 25 6 42 |
Total 18 36 143 40 237
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Table 2 Project Budget (Government Contribution) by Cluster and Starting Year

(figures given in millions of 1985 yen)

Cluster Name 1960s 1970s 1980s 1990-92 Total
Materials/Metals 434 25,142 71,372 0 96,949
Petroleum/Chemicals 11,140 294,794 80,744 4,926 391,603
Semicon/Computers 29,520 212,596 136,585 30,253 408,954
Transportation 17427 44 659 93,738 1,204 157,028
Telecommunications 0 4] 75,169 29,254 104,423
Food/Beverage 16,427 102 6,200 5,487 28,216
Health Care 0 18,109 36,424 5,443 59,975
Power Generation 0 398,201 116,535 6,566 521,302
Other 419 51,580 118,386 36,804 207,189
Total 75,367 1,045,182 735,153 119,938 1,975,641
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Table 3

Summary Statistics for Infrequent/nonparticipants

Variable Observations Mean Median Standard dev.
Rnd/sales 1095 042 .034 030
Sales 1196 112,013 59,683 191,382
Japanese 1062 199.6 60 486.7
Patents
U.S. Patents 1196 15.4 3 39
Table 4 Summary Statistics for Frequent participants (Participated in more
than 11 project-years)

Variable Observations Mean Median Standard dev.
Rnd/sales 392 045 .040 025
Sales 414 742,200 375,012 1,073,775
Japanese 341 2,051.4 460 4,166.7
Patents
U.S. Patents 414 92 24 1714
Table 5 Estimation of R&D expenditure equation

| Variable Random Effects Fixed Effects
Constant -1.34 (.346) -1.13 (425)
log(capital) 975 (.030) 931 (.043)
ind1 -.145 (.212) n.a.
ind2 -.545 (.226) n.a.
ind3 .085 (.215) n.a.
ind4 -.645 (.223) n.a.
c 0215 (.006) 019 (.007)

Here the dependent variable is the log of real R&D spending by firms in the fiscal years
1983-89. Regression includes industry dummy variables.
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Table 6

Estimation of a “patent production function”

Variable Random effects Random Effects - Fixed effects
dummy

log(R&D) .605 (.0352) 622 (.0339) 507 (.044)

c 053 (.011) n.a. 0460 (.012)

freq n.a. 501 (.170) n.a.

cons -2.45 (.371) -2.66 (.371) -2.30 (.356)

indl -.886 (.1291) -.873 (.294) n.a.

ind2 -431 (311) -432 (314) n.a.

ind3 -.655 (.295) =571 (.297) n.a.

ind4 -.635 (304) -.629 (.307) n.a.

The dependent variable is the log of patents granted in the U.S. per firm classified by year
of application, 1983-89. Independent variables are the log of R&D spending, the number
of consortia the firm is affiliated with in a given year (c), a dummy variable signifying a

“frequent participant” (freq), a constant, and 4 industry dummies.

Table 7 Two-Stage Least Squares Estimates
Variables U.S. patent grants Japanese patent
applications

c .0492 (.0118) 0804 (.0099)
Irnd 7096 (.0254) 7838 (.0236)
ind1 -9122 (.1240) -.9702 (.1133)
ind2 -.3856 (.1334) -.1148 (.1219)
ind3 - 7155 (.1285) -.2036 (.1171)
ind4 -6561 (.1311) -.2608 (.1210)
cons -3.286 (.2278) -1.423 (.2093)

The dependent variables are log of patents granted in the U.S. per firm classified by year
of application (first column), and log of patent applications made by firms to the Japanese
patent office classified by year of application. Independent variables are the log of R&D
spending, the number of consortia the firm is affiliated with in a given year (c), and 4
industry dummies. R&D, industry dummies, and 7, 8, and 9 period lagged “c” values are
used as instruments in the first stage regression.
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Table 8 Estimation of Poisson/Negative Binomial Patent Production Functions

Variable Poisson Negative Binomial
fixed effects model

log(R&D) .948 (.001) .613 (.0042)

c 012 (.0001) .093 (.0104)

cons -2.05 (01D

ind1 -1.09 (.007) n.a.

ind2 -.263 (.007) n.a.

ind3 -.248 (.007) n.a.

ind4 -1.14 (.007) n.a.

Here the dependent variable is the count of applications to the Japanese patent office by
firm by year. The other variables are the same as in Table 6.

Table 9 Estimation of Spillovers Model with Patents as Dependent Variable
Variable OLS Model with Random Effects Fixed Effects with
interaction ferm with interaction & interaction term
dummy

log(R&D) 716 (.030) 591 (.049) 356 (.084))
Spillover pool .448 (.094) 570 (.141) 949 (.215)
Spillover*frequent | .027 (.008) ST71(.277) .139 (.400)
industry 1 -.556 (.167) -.390 (.296) n.a.

industry 2 ' -.122 (.176) - 118 (.310) n.a.

industry 3 -.538 (.163) -.580 (.296) n.a.

industry 4 =525 (.179) -.498 (.308) n.a.

Frequent (dummy) | n.a. -7.17(3.71) n.a,

constant : -9.47 (1.21) -8.06 (1.26) n.a.

The dependent variable is patents granted in the U.S. to firms by date of application.
Spillover variables are defined in section IV.

42




Table 10
Estimation of Spillovers Model with Revenue Growth as Dependent Variable

Variable Separate slope Separate slope and
term intercept terms

change in capital 220 (.072) 220 (.071)

change in labor A27 ((107) 383 (.112)

change in own R&D | .068 (.047) 079 (.048)

change in spillovers | .689 (.363) 362 (.393)

interaction term -092 (.076) 2.27 (1.05)

freq (dummy) n.a, -752 (.333)

constant -.101 (.116) -.000 (.124)

Adj R-squared 3553 3684
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Supplementary Tables

Table A-1 Number of Projects by Industry Cluster and Starting

Year for the Firms in Our Sample

Cluster Name 1960s 1970s 1980s 1990-92 Total
Materials/Metals 1 2 11 0 14
Petroleum/Chemicals 4 5 15 1 25
Semicon/Computers 2 4 17 5 28
Transportation 2 6 8 2 18
Telecommunications 0 0 15 5 20
Food/Beverage 1 1 13 10 25
Health Care 0 2 12 4 18
Power Generation 0 2 7 2 11
Other 3 6 21 6 36
Total 13 28 119 35 195
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