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The Pricing of U.S.
Catastrophe Reinsurance

1. Ihfroduction

The price of catastrophe reinsurance in the U.S. has fluctuated markedly in recent years. These
fluctuations are commonly associated with the pattern of catastrophe occurrences. For example,
catastrophe losses during the 1992-1994 period totaled $38.6 billion in 1994 dollars, exceeding the
cumulative total of losses during 1949-1991 of $34.6 billion. During this three-year period, prices on
catastrophe reinsurance cover more than doubled, and then began to decline thereafter. What drives such
changes in price? Does the demand for reinsurance shift, does the supply of reinsurance capital change,
or do both occur?’

If catastrophe losses lead to a decrease (leftward shift) in supply, then we would expect to see
increases in price coupled with declines in quantity after an event. Of course, a decline in supply is
possible only in the presence of some form of capital market imperfection. If capital markets were
perfect, the supply curve for reinsurance would be perfectly elastic. In this case, regardless of losses, the
price of reinsurance would be fixed, where the “price” of a contract is best thought of as the ratio of
premiums to actuarially expected losses covered under that contract. Capital market imperfections
would imply that the marginal cost of producing reinsurance is increasing in the quantity supplied. Thus,
these imperfections lead to an upward sloping supply curve, which (all else equal) can shift back as a
result of reinsurer losses. Such a supply shift increases price and reduces quantity. As with price, it is
best to think of this “quantity™ as the actuarially expected loss covered by reinsurance.

On the other hand, catasirophe losses may lead to increases in demand. Rightward demand shifts can
be thought of as the result of an actual or perceived increase in actuarial losses covered by a given
contraci. We call this “probability updating.” Naturally it would seem possible to identify such demand

shifts from the fact that they lead to an increase in price and quantity. Thus, conditional on a loss, an

[ A number of papers have investigated these cycles, attempting to identify supply versus demand shocks in insurance markets.
Cummins and Outreville (1987) show that lags in data collection or price regulation can generate cycles in property-casuaity
underwriting margins. Gron (1994) presents evidence that, assuming there are no marketwide demand shocks, the cycles in
property-casualty margins are due to varjation in the supply of insurance capacity, rather than institutional lags or reporting
practices. Gron and Lucas (1995) investigate why these cycles appear to be 5o persistent. They find that when the net worth of
insurers declines, the total amount of capital raised through security issues is small. See also Winter (1988) and Cummins and
Danzon (1991).
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absolute decline in the quantity of reinsurance purchased would be evidence of important leftward shifts
in supply, even if there were also positive increases in demand.

We look for such absolute declines in quantity, but in addition, we pursue the probability updating
hypothesis further. While it is impossible to distinguish between probability updating and capital market
imperfections based on the behavior of aggregate price indexes over time, it is possible to distinguish
between them based on the behavior of cross-sectional changes in reinsurance prices. Specifically,
probability updating ought to vary across contracts, with larger price increases associated with contracts
for which more probability updating occurs. We therefore examine cross-sectional price increases in
response to an event, and determine the extent to which they are explained by relative contract
€Xposures.

To see how this works, consider a catastrophe loss caused by a winter freeze in New England. We
might expect such a loss to affect strongly (and positively) the distribution of prospective losses due to
freeze and/or the distribution of prospective losses from other perils in New England. After all, the event
may cause people to recognize how much damage a freeze can do, or to learn about the replacement
costs of certain physical assets in New England. However, such updates in knowledge would have little
or no import for the distribution of catastrophe losses outside of New England where freezes do not
occur. Specifically, little would be learned about loss exposures in California (which faces primarily
earthquake risk), the Southeast (which faces primarily hurricane risk), or Texas (which faces primarity
windstorm risk}). Under probability updating, it follows that contracts with relatively little exposure to
freeze and/or to the Northeast region ought to have relatively small price increases. In this way, we are
able to further distinguish between capital market imperfections and probability updating.

Our identification strategy is made possible through the use of a unique and detailed data set from
Guy Carpenter & Co., by far the largest catastrophe reinsurance broker for U.S. catastrophe exposures.
These data include all U.S. catastrophe reinsurance contracts brokered by Guy Carpenter between 1970
and 1994. They allow us to measure prices and contract losses, and to go about the complex process of
estimating each contract’s exposure to different event types and regions.

To preview our results, we find that supply, rather than demand, shocks are more important for
understanding the effect of losses on reinsurance prices and quantities. Capital market imperfections
therefore appear to be the dominant explanation. There is limited evidence for probability updating, and
what evidence there is suggests that the effect is of a small magnitude. The magnitudes of the supply

effects are large: after controlling for relative contract exposure, a $10 billion catastrophe loss raises
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average contract prices by between 19% and 40%, and reduces quantity of reinsurance purchased by
between 5% and 16%.

The rest of the paper is organized as follows. Section 2 sets out our identification strategy and the
structure of our empirical tests. Section 3 describes our data sources. In Section 4, the calculation of
contract exposure and price is discussed in detail. We devote considerable attention to the calculation of
exposure, which requires a number of involved steps. Section 5 provides a brief graphical analysis. The

empirical testing is carried out in Section 6. Section 7 summarizes and offers our conclusions.

2. The price and quantity of reinsurance

We examine the equilibrium prices and quantities of single-event, excess-of-loss reinsurance contracts.
These contracts help reinsure insurance companies against losses resulting from natural catastrophes in
the US, such as windstorm or earthquake.

To understand how such contracts work, consider an insurer which purchases a layer of reinsurance
covering $100 million losses in excess of $200 million. These terms imply that if the insurer’s losses
from a single catastrophic event during the contract year exceed $200 million (the “retention™), the layer
is triggered. The reinsurer pays the insurer the amount of any losses in excess of $200 million, with the
maximum payment—the “limit”—capped at $100 million.? By purchasing this contract, the insurer cedes
its exposure to single-event catastrophe losses in the $200-$300 million range. In return for assuming
this exposure, the reinsurer receives a payment, known as the “premium.” If the insurer wishes to cede a
broader band of exposure, it could purchase additional layers—$100 million in excess of $300 million,
$100 million in excess of $400 million, and so on.

The price of a reinsurance contract is best measured as the premium per unit of exposure. In the
marketplace, premium is usually expressed relative to limit (the ratio is called “rate-on-line™). However,
limit is a poor proxy for contract exposure—it ignores the level of the contract’s retention, for example.
To remedy this, we measure price by premium per unit of actuarially expected loss. Indeed, we use
actuarially expected loss as our measure of the “quantity” of reinsurance purchased.

In Section 4, we describe how historical data on catastrophe losses and company specific market
share information can be used to measure the actual exposure of each reinsurance contract. It is

important to emphasize that we measurc actuarially expected loss from a loss distribution that is time-

2 To guard against moral hazard, excess-of-loss reinsurance contract typically require coinsurance. In practice, this effectively
means that the insurer provides 5-10% of the reinsurance.



Froot and O’Connell, Pricing of Catastrophe Reinsurance 5

invariant. We cannot condition our measures of expected loss on previous losses. To the extent that loss
distributions shift in response to recent loss history, we measure both quantity and price with error. These

potential mismeasurements are important for the way we specify our tests and hypotheses.

2.1 ldentifying capital market imperfections

As noted in the introduction, we investigate two channels by which catastrophe losses affect reinsurance
prices and quantities. First, “capital market imperfections” may impede the flow of capital into the
reinsurance sector. There may be several sources of such imperfections, One is that existing reinsurers
may find it costly or undesirable to raise additional external capital. These costs could result from
information asymmetries between managers and owners (which implies equity-sale announcements drive
down share prices) or from dilution of managerial control (which implies managers are averse to
expanding the capital base). Another potential source of imperfection is that it is costly to carry equity
capital. These costs may accrue from foregone tax shields, agency problems, or, in the case of reinsurers,
frictional collateral costs.’

If we could accurately measure, at each point in time, the distribution of one-year-ahead losses
conditional on all information, then it would be relatively simple to test the capital-market imperfections
story. In the presence of such imperfections, capital depletion associated with event losses constricts the
supply of reinsurance, driving up the price of all contracts. If, for example, the event were a hurricane,
the supply of hurricane reinsurance capacity would fall. So would the supply of non-hurricane
reinsurance capacity, since both exposures are borne by the same capital base. Figure 1 below shows the
impact on equilibrium prices and quantities for contracts that are exposed to hurricane risk—Panel (a)—
and those that are not—Panel (b). Note that the exposure supply curves are upward sloping. This is due
to the capital market imperfections, which raise the marginal cost at which reinsurers are able to offer

successively greater exposure protection to insurers.*

3 See Froot (1996) for a survey of these costs and their impact on financing patterns. Froot and Stein (1997) study the
implications for financial intermediaries of costly equity finance.

4 See Froot and Stein for a model of the reservation price a financial intermediary such as a reinsurer is willing to offer
marginal units of risk exposure.



Froot and O’Connell, Pricing of Catastrophe Reinsurance 6

Price Price
Capital market
B imperfections B
S8 Y
A A
DD DD
Ss ARy
Quantity Quantity
(a) Hurricane-exposed contracts (b) Non-hurricane-exposed contracts

Figure 1: Capital market imperfections

Figure 1 suggests that capital market imperfections generate a negative correlation between prices
and quantities, since loss shocks lead to shifts in the supply curve. If losses lead to demand curve shifts,
on the other hand, a positive correlation between price and quantity results.

Since negative correlation would seem to be evidence in favor of supply shifts (and, therefore,
capital-market imperfections), it seems useful to ask whether prices and quantities are in fact negatively
correlated. Figure 4 and Figure 5 show our measures of quantity and price, respectively, for the sample
period for which we have contract data.” More specifically, Figure 4 shows an index of the total quantity
of catastrophe exposure that was ceded in the U.S. reinsurance market from 1975:1-1993:4. The series is
calculated by summing all the exposure embodied in the excess-of-loss contracts in each quarter, and
dividing it by the total market share represented by the contracts. Figure 5 plots the industry price series
quarterly from 1975:1-1993:4. Each observation is the exposure-weighted average of the price of all
contracts that are in force in that quarter.®

A number of features of these figures are noteworthy. First, it appears that quantities rose and prices
fell for much of the late 1970s and 1980s. Second, a startling rise in prices and decline in quantities took
place beginning in the mid-1980s through the end of the sample. Indeed, in 1993, price was between 5
and 7 times its historical average. This will come as no surprise to industry observers. It is common to
relate this price rise to the occurrence of a number of large events during this period, notably hurricane
Andrew ($20 billion in losses) in August 1992, hurricane Hugo in 1989 and several windstorms in 1985—

1986. Figure 6, which plots total catastrophe losses by quarter from 1970:1-1994:4 as measured by

5 For a description of our data and the computation of prices and quantities, see Section 3.
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Property Claims Services, lends support to this view.” In the period since 1994 (for which we have no
data), the price of reinsurance has declined and quantity increased somewhat, notwithstanding the
occurrence of the Northridge earthquake in January 1994. From these observations, it is clear that there is
considerable negative correlation between prices and quantities at frequencies of several years,

Figure 7 and Figure 8 provide further evidence of the apparent negative correlation between
equilibrium prices and quantities. Figure 7 plots industry price-quantity pairs. It is interesting because it
suggests the existence of two regimes in catastrophe reinsurance pricing. The 1970s and early 1980s saw
strong expansion in the quantity of risk ceded coupled with a moderate decline in per-unit prices. The
late 1980s and early 1990s were characterized by ballooning prices coupled with quantity declines. One
interpretation of these patterns is that the 1970s and 1980s were a period of expanding reinsurance
demand, while the 1990s exhibit a contraction of reinsurance supply. Figure 8 plots each contract’s price
against its exposure. Both variables have been demeaned by insurer. As indicated by the linear fit to the
plot (slope -0.32, standard error 0.04), when a contract embodies less-than-average exposure, it tends to
be priced above average. Taken at fa.ce value, the points appear to lie on firm-specific reinsurance
demand schedules. Or put another way, strong evidence of negative correlation between price and
quantity, suggests that shifts in the reinsurance supply curve have been important.

Taken by itself, this evidence would seem to support the hypothesis of capital market imperfections.
However, it is important to see the imnplications of demand shocks, or what we call “probability
updating.” Probability updating holds that the occurrence of a catastrophe may raise the real or perceived
distribution of losses above what we measure with our time-invariant loss distribution. For example,
after Hurricane Andrew in 1992, some insurers were surprised that the construction methods used for
houses in Homestead, FL performed so poorly in high winds. Andrew might have aiso led to upward
shifts in agents’ subjective distributions.

To see the effects of probability updating, suppose that after a particular event, say, a hurricane,
agents update positively about the likelihood of hurricane losses. Then even if the premium per unit of
actual exposure stays constant, the ratio of premium to observed exposure rises. This is because we
measure exposure from a time-invariant loss distribution. Figure 2 traces this effect on supply and
demand. Suppose that capital markets are perfect—the supply of capital to the reinsurance sector is

infinitely elastic at a given price. In the aftermath of the hurricane, the observed supply curve shifts up as

¢ These industry series are based on the contract prices and exposures for four insurers that purchased reinsurance through Guy
Carpenter & Co. in every year from 1975 to 1993. The series are representative of the behavior of prices and quantities for the
other insurers in our database.

7 See Section 3 for a description of this loss series.
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shown in Panel (a). To understand what happens to the demand schedule, consider an insurer which, at a
given price, wants to cede the same amount of exposure before and after the hurricane. Since the
perceived risk of hurricanes increases, the terms of this insurer’s contract must be rewritten to keep
exposure constant. For example, the retention on the contract could be raised. Any such change that
keeps actual ceded exposure constant causes measured exposure to fall and concomitantly measured
price to rise. Thus the entire observed demand schedule shifts upwards and to the left. All of this assumes
that there is no actual change in demand. However, the demand curve may exhibit further changes as
agents alter the amount of reinsurance they are willing to demand at a given price. For example, the
demand schedule may shift out if homeowners learn from the hurricane that they are underinsured.
Alternatively, the schedule may shift in if coastal homeowners who sustain severe damage from the
hurricane elect to move to a less-exposed inland region rather than to rebuild in situ.

Consequently the overall effect on the observed demand curve is ambiguous. If the observed DD
curve experiences no net shift at all, the equilibrium moves from point A to C, which resulis in an
increase in price and a decrease in demand. Thus, demand shifts combined with probability updating can
duplicate the finding that prices increase while quantities decrease. We therefore cannot conclude that
such negative correlation is evidence of capital market imperfections. On the other hand if the observed

DD curve shifts out on net, as shown in the figure, the equilibrium shifts from point A to B.

Price Price

Probability DD

updating
S8 A\

Quantity Quantity

(DD

S8

N

(a) Hurricane-exposed contracts (b) Non-hurricane-exposed contracts
Figure 2: Probability updating

Probability updating, then, complicates the process of identifying capital market effects. To
overcome this problem, consider the following identification strategy. Assume that hurricane losses may

lead to probability updating for hurricanes, but not for other types of events in other regions. The idea
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here is simple: if a hurricane occurs, it may not alter the perceived frequency or severity of non-hurricane
events. Accordingly, probability updating from a hurricane should produce no change in prices or
quantities for contracts that have little or no hurricane exposure. However, if there are capital market
imperfections, then prices tend to increase and quantities decrease on non-hurricane exposed contracts.
Figure 3 illustrates. A hurricane loss that raises the perceived likelihood of future hurricane loses will
simultaneously shift the observed demand and supply curves upwards and to the left.. These effects are
shown as movements in the schedules from DD to DD’ and SS to SS' in Panel (a), which together
produce an increase in price. There are no such probability-updating effects for the contracts that are not
exposed to hurricane risk in Panel (b). However, if the catastrophe loss depletes the pool of capital that is
available to the industry for all types of reinsurance, then the supply schedule for both types of contracts

shifts back to SS"'. In these circumstances we can expect the price of both to increase.

Price Price
falal S8 Capital market Ss”
| imperfections [
DD C
B
B S5 sS
x e .
: \\ * Probability | A\
\ . updating |
S AN et : DD
DD’
Quantity Quantity
(a) Hurricane-exposed contracts (b) Nen-hurricane-exposed contracts

Figure 3: Capital market imperfections and probability updating

A natural way to implement this identification scheme is to regress changes in price and quantity on
lagged losses by type, and lagged losses by type interacted with contract exposure by type. If there are K

types of catastrophe, the conditional expectation functions takes the form

K K
Aln(p, Y=o + D B8, L)+ v,ow,, 8, ()+ €, (D
k=1 k=1

K IS
Aln( Qj,t) =0 +Z 8.&91(1#)+Z ¢’kwj,k.r9r(lk)+ €, @)
k=1 k=1
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where p;, and ¢, are the price and quantity, respectively, of insurer j°s contract at time £, © ,(/;) is a
distributed lag of losses of event type k, w;;, is the exposure of insurer j to catastrophes of type £ at time

t,andg; isa disturbance term. The relative exposure term, w,,,, is defined as

ik

_..I—K——,
(E);qj,k,f

where g, is the absolute exposure (the actuarially expected loss) of insurer j to catastrophes of type k at

w 3)

Jokot

time £. B, (8;) measures the response of contract prices (quantities) to losses of type k independent of
contract exposure. The parameter v, (¢,) detects the exposure sensitivity of the price (quantity)

responses. In estimating (1) and (2), we restrict attention to simple lag structures, such as®

er(lk) = lk 2T lk 3t lk P lk 4-5" 4)

To the extent that capital-market imperfections are responsible for price and quantity changes, we
expect B, > 0 in (1) and 8, < 0 in (2), with the null hypothesis of perfect capital markets being 8, = 0 and
8, = 0. Conditional on a loss from a particular event type, prices tend to rise and quantities to fall equally
across all contracts if there are capital market imperfections. The composition of contract exposure only
matters for price changes if probability updating is present. Thus, with no probability updating, vy, = 0 for
all &, and with probability-updating y, > 0 for all k. Of course, if both capital market imperfections and
probability updating are important, we expect B, > 0 and y, > 0.

It is of interest to consider several modifications of the basic specifications (1) and (2). For instance,
if the average effect of a dollar of losses is the same across catastrophe types, as the capital market
imperfections view would suggest, then we expect B, = 3, = ... = By. This restriction can readily be
imposed in the estimation. A second worthwhile modification is to allow the average and marginal
effects of losses to differ. If the supply schedule is nonlinear, for example, then it may be true that large
losses have proportionately bigger effects than small losses. Indeed, this is true in most models of capital
market imperfections, as discussed in Froot and O’Connell (1997). A convenient way to allow for this

possibility is to include higher-order terms in the distributed lag of losses.

* Losses in the quarter immediately preceding contract inception appear to have no influence on prices. The most likely reason
for this is that there can be a delay in the assessing the extent of catastrophe losses. Accordingly, losses lag prices by two or more
quarters in all of our analysis.
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2.2 Differentiating among catastrophe types

We differentiate exposure along two dimensions: by geographic region and by catastrophe type.
Distinguishing events across regions is appealing because regional market share data are available for
many reinsurance contracts. These market share data provide a ready measure of relative contract

exposure. Thus w;,, can be defined as

W = (ljm’x—" : )
- Z .
K& My
where my;;, is the market share of insurer j in region k. We estimate (1) and (2) using this measure of
exposure in the empirical analysis in Section 6.

There are two drawbacks to this approach, however. First, market shares are typically built up from
the share of total catastrophe premiums in a region that go to insurer j. To the extent that premiums are a
poor proxy for true exposure, w;;, will be subject to measurement error. Second, it is clear that the
catastrophe occurrences in one region may reveal important information about the distribution of losses
in other regions. For example, hurricane losses in the Southeast are likely to lead to probability updates
in the distribution of hurricane losses in both the Northeast and Southeast. As a result, price increases
(and quantity decreases) in the Northeast in the aftermath of a Florida hurricane could be due to either
probability updating or inelastic capital supply to the industry, and identification may be tenuous.

These two shortcomings motivate us to differentiate catastrophes by type as well. Here, the exposure
of each contract to distinct classes of events such as earthquakes, hurricanes and winter storms is
calculated. This strategy avoids the second shortcoming above. Losses from a particular type of event
(e.g. windstorm) are likely to generate little updating in the distributions of other event losses (e.g.
earthquake). Thus separate identification of probability-updating and capital market imperfections is
more dependable. The cost is that calculating exposures catastrophe type and region entails considerable
computational effort. First, the frequency and severity of each type of catastrophe must be estimated by
region. Then these distributions must be used to derive the distribution of losses on each contract by
simulation. The calculation of contract exposure by catastrophe type is taken up in Section 4, after a

discussion of the data and construction of our main variables.




Froot and O’Connell, Pricing of Catastrophe Reinsurance 12

3. Data

Our data is built up from four sources. The basic information on catastrophe reinsurance pricing is
provided by Guy Carpenter & Co. Information on the regional market share of insurers is developed
from A. M. Best data on insurance premiums written by company. Qur estimates of catastrophe
frequency and severity are based on Property Claims Services (PCS) data on U.S. catastrophe losses
since 1949. Finally, interest rate and CPI data are collected from Ibbotson and Associates and the IMF

respectively.

3.1 Guy Carpenter catastrophe treaty data

Our basic data come from Guy Carpenter’s proprietary database of catastrophe reinsurance contracts.
Guy Carpenter & Co. is by far the largest U.S, catastrophe reinsurance broker, with a market share of
between 30% and 80% during our sample. The contracts brokered by Guy Carpenter cover a variety of
natural perils, including earthquake, fire, hurricane, winter storm and windstorm.

We examine a total of 489 contracts brokered for 18 national and 19 regional insurers over the period
1970-1994.° The duration of coverage is typically one year. Most contracts have a single mandatory
reinstatement provision.' Data on contract inception date, retention (i.e., the retention of the lowermost
layer in the contract), limit (i.e., the sum of the limits of all the layers in the contract), and premium (i.e.
the sum of the premiums paid for the layers in the contract) are employed. All of the contract inception

dates are at the start of a quarter.

3.2 A. M. Best market share data

To determine the catastrophe exposure of each contract, we must calculate the distribution of contract
losses, a random variable for each contract. To do this, we assume that, within each region, each
company’s exposure is proportional to insurance industry exposure within the region. We therefore first
determine a distribution for insurance industry losses for each region (by event type), and second

multiply this aggregate distribution by an individual insurer’s market share to determine the distribution

¥ Seven very small regional insurers were dropped from the original Guy Carpenter & Co. data. In some of the computations
below, we focus in on a smailer number of national reinsurers, for whom data are available in every year.

' The reinstatement provision stipulates that, conditional on an event which triggers losses on the contract, the limit is to
mandatorily reinstated (one time only) by the reinsurer after payment of a reinstatement premium by the cedent. 1t appears that
this provision has had only a modest effect on prices, and we ignore its effects. Conversations with brokers suggest that observed
prices are approximately 10% lower than they would have been without the reinstatement premium. This seems surprising
(forward contracts are usually priced at zero), but if anything leads us to underestimate what premia would be in the absence of
reinstatement provision.
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of insurer-specific faced by that company. Using this information, we can calculate the company-specific
distribution of losses under each contract.

Our estimates of insurer market shares are developed using data from A. M. Best on insurance
premiums written by company, by line-of-business, by state, and by year. We reduce these multiline
market shares to regional catastrophe market shares by applying a modified Kiln Formula, which assigns
regional weights to premiums in each line of business based on exposure to catastrophes of that line in
that region.'" For example, depending on the region, anywhere between 50 and 95 percent of
homeowners premiums are considered as funding catastrophe exposure. The five US regions used for
insurer market shares are the Northeast, Southeast, Texas, the Midwest, and California."? We apply this

market share data to all 489 reinsurance contracts selected from the Guy Carpenter & Co. treaty
database.

3.3 Historic catastrophe loss data from Property Claims Services

As mentioned above, we need to determine the distribution of industry-wide losses to calculate the
catastrophe exposure of ¢ach contract. To do this, we estimate the distributions of catastrophe frequency
and severity using data from Property Claims Services (PCS). PCS has catalogued all catastrophe losses
on an industry-wide basis since 1949 by type and U.S. region. The PCS data are widely used as an
industry standard.

Prior to estimating the parameters of the frequency and severity distributions, two adjustments are
made to the PCS data. First, the losses are converted to 1994 dollars using the CPI. Second, they are
modified to take into account shifts in the portfolios of property exposed to loss over the period. A key
component of the latter adjustment is the demographic shift towards California, Florida, and Texas that
has characterized recent decades. These two adjustments are carried out by Guy Carpenter & Co. Both
adjustments are important. Indeed, the second adjustment implies that the same size event in real dollars

causes damages which have grown on average by 5% per year over the sample period.

U This is a common industry practice. The specific weights used in our Kiln formula are from Guy Carpenter & Co.

2 The regions are comprised as follows: Northeast—Connecticut, Delaware, Maine, Maryland, Massachuseits, New
Hampshire, New Jersey, New York, Pennsylvania, Rhode Island, Vermont; Southeast—¥lorida, Georgia, Mississippi, North
Carolina, South Carolina, Virginia, West Virginia; Texas—Texas, Midwest—Illinois, Indiana, Kentucky, Missouri, Tennessee;
California—California.
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3.4 Interest rate and CPI data

For the purposes of calculating the net present value of payment flows, we use Ibbotson and Associate’s
index of the return on 30-day U.S. Treasuries. This is collected monthly from 1970:1-1995:4. The U.S.

CPI is taken from the IMF’s, International Financial Statistics. The frequency is monthly, from 1970:1—
1995:3,

4. Calcaulation of exposure and price

4.1 Exposure

In this section, we describe our method of estimating the catastrophe exposure embodied in each excess-
of-loss contract. The estimation is carried out in three stages. First, the frequency and severity of each
type of event and region are estimated by maximum likelihood for particular families of distributions.
Second, a simulated event history is generated by repeatedly drawing from the fitted frequency and
severity distributions. Finally, the payouts under each contract in each year of event history are
calculated. The mean of the distribution of these payouts is our estimate of the “quantity” of reinsurance,

q;» mbedded in that particular contract.

4.1.1 The frequency and severity of catastrophes

The first step towards calculating contract exposure is to estimate the frequency and severity of
catastrophes using the adjusted PCS loss data. Altogether there are over 1,100 catastrophes recorded by
PCS. These events are classified into 10 categories: earthquake, fire, flood, freeze, hail, hurricane,
snowstorm, tornado, thunderstorm and windstorm."” Many of these events are relatively minor: only 557
have adjusted losses in excess of $15 million, and only 107 have losses in excess of $100 million. Four
categories of losses are well-represented in the set of large losses: earthquake, fire, hurricane and
windstorm."* As our primary interest is in exposure to large losses, we confine attention to these types.
Examination of the data reveals that there is some heterogeneity in the losses that arise from windstorms.

In particular, a number of the windstorms refer to winter storms (“Nor’easters”) in New England.

1* PCS classifies many events into more than one category. For instance, winter storms in New England, which have on
occasion caused substantial damage, are ¢lassified first as windstorms, and second as hail, freeze or snowstorm.

¥ During the 1949-1994 sample period, there were no floods, snowstorms or thunderstorms with losses in excess of $100
million. Only one freeze had losses in excess of $100 million, a $307 million freeze in Texas in 1989. Three hailstorms and three
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Accordingly, we split the windstorm category into two subcategories: winter storm, defined to be a
windstorm in New England in either the first or fourth quarter, and windstorm, defined to be all other
occurrences of a windstorm.

Having defined these five categories of events, we need to make some assumption about regional
effects before we can estimate frequency and severity distributions. The simplest assumption would be
that, for each catastrophe type, event occurrences are drawn from a single nationwide frequency
distribution while loss sizes are drawn from a single nationwide severity distribution. Given the relative
paucity of loss information, this approach helps by pooling the available data. However, the assumption
of equal regional distributions is likely to be incorrect. For instance, hurricanes are much less likely to
occur in California than in Florida, and the majority of earthquakes occur in California.

As a result, we make specific assumptions regarding frequency and severity on the basis of a careful
examination of the 1949-1994 catastrophe data. These assumptions are summarized in Table 1. A
catastrophe is defined as an event that gives rise to $15 million or more in insured losses. Column 2
summarizes the event history for each type. Column 3 reports the regions in which each event type is
assumed to occur. Columns 4 and 5 indicate the number of regional frequency and severity distributions
estimated for each type. Some of the constraints, such as the assumption that winter storms do not strike
California, seem entirely reasonable. Others, such as the assumption that earthquakes do not strike
outside California or that winter storms do not hit the Midwest, are less tenable (though see Footnote 15),
and are dictated largely by data availability.

With the assumptions described in Table |, there are 33 frequency distributions to estimate. We
assume that the frequencies are Poisson distributed, and estimate the Poisson parameters by maximum
likelihood (the estimates are equal to the mean number of events that occur per quarter). Tabie 2 presents
the frequency results in four quarterly arrays, by type and region. The estimated frequencies accord with
what one might expect. For example, hurricanes are most likely to occur in the third quarter.

Next we consider severity. There are six severity distributions, one for each of the catastrophe types
identified in Table 1. We fit two alternative density functions to the empirical severity distribution of
each type. The first is a lognormal distribution, with density function for losses / given by f (/) = exp{-
[In()-pJ20* }/[loN2nr)], I > 0. The second is a Pareto distribution, with density function f (/) = af"/!

{*) I> B, Once again, the estimation is carried out by maximum likelihood. The fitted distributions are

tornadoes did produce losses in excess of $100 million, but these are all dated prior to 1970, and so do not appear in our
regression analysis below.
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reported in Table 3. For earthquake, winter storm and windstorm events, the likelihood ratio test selects
the Pareto distribution as the better fit, while for fire and hurricane events, the lognormal distribution is
preferred. However, because the Pareto distribution tends to place a large amount of probability in the
right-hand tail of the distribution, it does not perform well in attaching reasonable probabilities to large
losses. For example, using the estimated Pareto density, the probability that a hurricane in the Southeast
generates $15 billion in losses (given that a hurricane occurs) is almost 10%, which appears somewhat
high.' It might be preferable, therefore, to use the lognormal fit as the baseline severity distribution for
all event types. This is the strategy we adopt. The fitted lognormal distributions are shown in Figure 9 for
losses in the range $0-$3 billion.

4,1.2 Simulated event history

Using these frequency and severity distributions, we are able to simulate an “event history” of
catastrophes. From this event history the distribution of payments under each excess-of-ioss contract can
be obtained.

Of course, it is not necessary to simulate the distribution of contract payments. In principle, it is
possible to determine contract payments analytically. However, analytical solutions are complicated
because a contract’s payment is triggered by only a single event, even though that event could be one of
five different peril types. The single-event clause is in effect a knockout provision, allowing the contract
to mature following the first event that generates losses in excess of the retention. For example, it may be
that earthquakes are the major large risk for an contract to trigger, but a large freeze in the Northeast in
early January could trigger the contract, thereby knocking out the carthquake risk for the remainder of
the year.

This knockout provision gives the contract a payment distribution that is very different from that
which would apply if the contracts were instead written to cover aggregate losses (i.e., the sum of losses
across events). It can also give rise to some paradoxical effects. For example, an increase in the
frequency of winter storms may actually reduce the total exposure embodied in a single-event contract,
since it may increase the probability that it matures following a winter storm rather than a devastating

hurricane, We look briefly at the value of the knockout provision in the Appendix.

13 The assumption that winter storms do not afflict the Midwest may seem strange. The reason is that our regional market share
data is calculated for the Midwest using only five states: Illinois, Indiana, Kentucky, Missouri, Tennessee. The Dakotas,
Michigan, Minnesota, Wisconsin and other characteristically Midwestern states are excluded.

18 Using PCS data, Cummins, Lewis and Phillips argue elsewhere in this volume that the Pareto distribution tends to
overestimate the probability in the tail of catastrophe severity distributions, and that the lognormal fit is to be preferred on these
grounds.
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We simulate a 1,250-year event history. For each quarter, the following steps are performed:

1. The number of events of each type that occur in each region is randomly drawn from the relevant
Poisson frequency distribution (Table 2);

2. For each event that occurs, a loss amount is randomly drawn from the relevant severity
distribution (Table 3);

3. All the events that occur in the quarter are randomly sequenced in time.

The random sequencing of the events throughout the quarter is an approximation, at best. It is likely, for
example, that winter storms occur more frequently in January than March. While it would be preferable

to sequence the cvents on a time scale finer than quarterly, too few events that have occurred since 1949

to allow estimation of this.

4.1.3 Contract exposure

The exposure of cach excess-of-loss contract in our data can be calculated by examining its loss
experience in each year of the simulated event history. To take an example, suppose we are considering
a contract brokered by a national insurer with an April 1 inception date. Let L and R be the contract’s
limit and retention, and let m;;, k € { NE SE TX MW CA } be the jth insurer’s market share in each of

the five regions. The contract’s exposure is measured as follows:
g P

1. Split the event history into 1,249 year-long periods measured from April 1 to March 31.
2. Consider each period in turn. If no event occurs in a periad, move to the next period. Otherwise
consider each event in sequence.
(a) Let the first event be in region £, and let insured losses from this event be /.
(b) If m;,J > R, the contract is triggered. Measure the reinsurance payment for this period as
min(L, m,,/ - R), and move on to the next period. The contract is no longer in force.
(c) If m;,J < R, no payment takes place, and the contract remains in force. Move on to the next

event, or the next period if there are no more events.

This algorithm generates 1,249 observations on the distribution of payments under the contract. The first
moment of this distribution is the expected exposure to catastrophe losses. It is easy to derive various

conditional loss distributions from the unconditional distribution, such as the distribution of hurricane

losses, or the distribution of losses from events in the Northeast.




Froot and O’Connell, Pricing of Catastrophe Reinsurance 18

4.2 Contract quantity and price

We label the expectation of the unconditional distribution ¢, the exposure embodied in company ;s
contract at time ¢. This is interpreted as the quantity of reinsurance purchased. By considering only those
reinsurance payments that occur following particular types of catastrophes, it is possible to use the same
algorithm to calculate the contract’s exposure to each of the catastrophe types listed in Table 1. These
exposures by type form the inputs to the calculation of loss weightings in Equation (3).
To calculate contract price, we begin with the premium paid for each contract. This is simply measured
as the sum of the premiums paid for each layer. Typically, the premiums are paid on a quarterly basis
over the duration of the contract. We discount these premium flows back to the contract inception date
using the three-month Treasury Bill rate. By using the riskless rate, we are equating actuarial present
values with true value. Strictly speaking, this assumption holds only under risk-neutral pricing and in the
absence of insurer credit risk. However, given that catastrophe losses are uncorrelated with total wealth,
risk neutral pricing is not easily rejected. Furthermore, the use of a risk-adjusted discount rate would, in
practical terms, have little import for our results.

Once the NPV of the premiums is calculated, it is converted to 1994 dollars using the CPI deflator.
Our measure of price is the net present value (NPV) of premiums divided by contract exposure. Thus the

price of company j’s contract at time # is

NPV(Premiums
Dii= (q ums) (6)
j.t

5. Graphical analysis

We are now in a better position to understand the data and computations behind Figure 4 and Figure 3.
They plot, respectively, the industry quantity and price series quarterly from 1975:1-1993:4. The
quantity series is the simple sum of exposure across companies. The price serics is the exposure-
weighted average of the prices of all contracts in force in that quarter."” Note that Figure 5 shows that
risk was sometimes ceded at less than actuarial value (i.e. p;,, < 1) during the 1970s and early 1980s.
Hurricane Andrew is responsible for the largest catastrophe loss during our sample period. In light of

this, it is of interest to look at the time series of prices around the time of this event. In particular, we can

1 This industry series is based on the contract prices for four insurers that purchased reinsurance through Guy Carpenter & Co.
in every year from 1975 to 1993. It is representative of the behavior of prices for the other insurers in our database.
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differentiate between the price-quantity reactions of those contracts heavily exposed to hurricane
risk/Southeast risk and those with relatively less exposure. Table 4 contrasts the price and quantity
responses. From Panel (a), we see that even those contracts with zero market share in the Southeast show
large increases in price in the wake of Andrew. This is supportive of the capital market imperfections
view. However, as already discussed, even if there are no other losses occurring at this time, these price
responses may be the result of probability updating if the Andrew loss experience revealed new
information about hurricane exposure in other regions, Panel (b) investigates this by sorting contracts
according to their hurricane exposure. It turns out that it is those contracts least exposed to hurricane
losses that exhibit the largest increase in price. Taken at face value, this suggests that capital market
imperfections, and not probability updating, are the most important determinant of the price responses. In

order to shed more light on this question, we need to estimate the conditional expectation functions (1)

and (2).

6. Estimation

6.1 Exposure measured by regional market share

In this subsection we differentiate events by region, and estimate (1) and (2) using regional market shares
as proxies for regional exposure. Eight variants of the base specification are estimated, corresponding to
different assumptions about the functional form through which losses affect prices. The results are shown
in Table 5 and Table 6.

Turing to the price regressions first, the B, are positive and statistically significant in all
specifications. The y, are positive, but generally not very significant. This is prima facie evidence that
both capital market imperfections and probability updating play some role in determining the response of
price to catastrophe losses. However, in all cases the coefficient on unweighted losses is larger and more
statistically precise than that on exposure-weighted losses. This suggests that the supply-side capital
market channel is the more dominant of the two.

To get a sense for magnitudes, suppose that a $10 billion event occurs in a particular region. Using
the first price specification (which uses 2 quarters of lagged losses), the $10 billion loss increases all
contract prices in the next year by an average of about 19 percent. Notice that this price increase is
independent of contract exposure to the region. Higher exposure to the affected region leads to further,

but much smaller, increases in price. A firm that increases its share of the market of the affected region
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from 0 to 100 percent sees its reinsurance price increase by an average of 4 percent. Thus, much of the
increase in price appears to be due to a decline in the supply of reinsurance (or to increases in expected
losses outside of the affected region). Probability updating and capital-market imperfections both help,
but the capital market effects seem much larger.

Table 5 also reports results from Equation (2), where quantity reinsured is the dependent variable.
The results here are consistent with those above: the coefficients on unweighted losses provide strong
evidence of capital-market imperfections. The 5, coefficients are negative and statistically less than zero
at the 10 percent Ievel in all cases. As we expect from Figure [ through Figure 3, the ¢, coefficients on
market-share weighted losses are ambiguous in sign.

To calibrate, the first quantity specification suggests that a $10 billion loss in a particular region
leads to a decline in quantity 5.2 percent on average over the next year. Meanwhile, for the same size
loss, a company which has 100 percent market share in the affected region on average purchases 0.4
percent less reinsurance than if it had a 0 percent market share. Note, however, that this latter effect is
neither economically nor statistically significant. In other words, we cannot reject the hypothesis that
relative exposure levels have no effect on quantity purchased. But we can reject the hypothesis that
purchases do not decline on average subsequent to an event. The quantity results are therefore most
consistent with the capital-market imperfections story.

In Table 6 we relax the restriction that all the y, and ¢, coefficients are equal. This allows the
probability updating effect to differ by region. Indeed, there is some evidence for this in the coefficient
estimates, which differ substantially across regions. Here there is somewhat stronger evidence of
probability updating. The cumulative sum of regional losses over the last 4 quarters appears to impact
positively on price in ali cases. Nonetheless unweighted losses in each region continue to impact price

positively and quantity negatively. All but two of these estimates are statistically significant.

6.2 Exposure measured by actuarially expected loss

The specifications in Table 7 and Table 8 are analogous to those in Table 5 and Table 6. However, here
we use actuarial exposures to weight losses. As discussed earlier, probability updating may occur across,
rather than within, regions, and this complicates the identification of capital market effects using regional
market shares. By distinguishing losses by type rather than region, we can separately identify capital-
market and probability-updating effects on prices.

The results in Table 7 and Table 8 are in line with what we found in the previous two tables. First,

the unweighted losses in the price equations enter positive and significantly, the coefficients having even
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larger signs. Specification 1, for example, reveals that a $10 billion event tends to increase prices by over
40 percent in the following year. Moreover, the aggregated y coefficient on event-exposure weighted
losses is not positive in the price equations, suggesting that the unweighted losses account for all of
explainable price increases subsequent to events. Second, the unweighted losses in the quantity
regressions enter negatively, and statistically significant in 3 of the 4 regressions. This is again consistent
with capital-market imperfections. Indeed, the coefficient is large, suggesting that a $10 billion event
reduces the quantity of reinsurance purchased by between 8 and 16 percent. There is no evidence
supporting the presence of event-specific probability updating in Table 6.

Table 7 provides similar results. Unweighted losses influence prices positively and quantities
negatively (though not significantly). Squared losses do not seem to have the expected effects,
suggesting that large losses may not have proportionately as large effects as smaller losses in the data,

Taken together, these results provide evidence to support the existence of both imperfections in

capital supply and probability updating. However, it is the former that accounts for the bulk of price

movements in the wake of losses.

7. Conclusion

There are at least two candidate explanations for the sharp rise in catastrophe reinsurance prices and
retentions that occurred in the 1990s, a time of unprecedented catastrophe losses. The first holds that
capital market imperfections impeded the flow of capital into the reinsurance sector. In the presence of
these imperfections, prices are bid up and quantities fall due to the supply contractions that accompany
losses. The second explanation is that the changes in prices and quantities have largely been the result of
an increase in the perceived frequency or severity of catastrophes. If, after a loss, neither supply nor
demand shifts, but actuarial probabilities of losses tend to increase, then we would observe price
increases and quantity reductions since our quantity measure is derived from time-invariant loss
distributions).

To separate out the effects of capital market imperfections and probability updating, we consider two
specifications of how loss distributions are updated. First, we assume that probability updating occurs on
a region-specific basis, so that event losses in a given region may increase perceived future losses within
that region, but not in other regions. Second, we assume that probability updating occurs within (but not
across) event types, so that event losses associated with a particular peril may increase perceived future

losses from that peril, but not losses associated with other perils.
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We estimate these specifications using detailed reinsurance contract data from Guy Carpenter & Co.
Our findings suggest that, subsequent to losses, price increases and quantity declines are more pervasive
across contracts than they should be based on contract-specific exposures to event types and regions.
Since cross-sectional variation in exposures should explain changes in prices and quantities, but doesn’t,
it appears that price shocks are highly correlated across all forms of catastrophe exposure. This lends
support to the view that aggregate price and quantity shocks stem from shifts in the supply of capital to
the industry. Since reinsurers are financial intermediaries with relatively few fixed factors besides

financial capital, the existence of such shifts in supply is evidence of capital market imperfections.
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8. Appendix: The value of the knockout provision in single-event contracts

Using the simulated event history, it is possible to measure the value of the knockout provision that is
implicit in single-event contracts. This knockout feature stems from the fact that it is the first event
occurrence that triggers the contract.® Table Al illustrates how the knockout feature affects expected
payouts under various contract provisions. Panel (a), Columns (i) to (vi) consider contracts whose
payouts are contingent on the occurrence of particular types of catastrophes. For example, in Column (7),
the contract can only be triggered by earthquake losses in excess of the retention. Column (viii) gives the
expected payout on a contract that is structured in the same way as the Guy Carpenter & Co. treaties—
i.e., it pays out on the first event of any type that generates losses in excess of retention. The table shows
that the sum of the expected payouts on event-specific contracts (Column (vi7)) exceeds the expected
payout on the all-type contract. This is the familiar result that, with imperfectly correlated risks, it is
cheaper to buy insurance on a portfolio than it is to buy a portfolio of insurance policies. Panel (b} of the
table is structured in the same way, except that it distinguishes events by region rather than by type. Once
again, the sum of the expected payouts on the region-specific contracts exceeds that on the all-region
contract.

It is noteworthy that in both cases, the inception date of the contract has only a minor influence on

the distribution of payouts.

' The complexities introduced by the knockout provision form part of the reason why the catastrophe options that trade on the
Chicago Board of Trade are written as aggregate rather than single-event contracts.
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Table 1: Frequency and severity assumptions by catastrophe type

31

Type

Earthquake

Fire

Hurricane

Winter storm

Windstorm

Description of PCS data

10 events, all in CA. Frequency appears
throughout year.

19 events, 12 in CA, 2 in MW, 3 in NE, 2
in SE. Frequency higher in fourth quarter,
and different for CA. Severity comparable
across events.

48 events, 26 in SE, 22 in NE and TX.
Most in third quarter. More severe in
Southeast.

35 events, in NE in quarters 1 or 4

352 events, all regions. Frequency differs
across regions, but severity is comparable

Assumptions

Regions

CA

NE, MW, CA

NE, SE, TX

NE

NE, SE, TX,
MW, CA

Frequency

(# of regional
distributions)

1: Uniform
across quarters

2: CA and
NE/SE/MW/
TX. Both
uniform across
quarters
8:SE(
quarterly) and
NE/TX (4
quarterly)

1: uniform
across quarters
1 and 4

20: one for
each region
and quarter

Severity

(# of regional
distributions)

2: Southeast,
Northeast/
Texas

Assumptions for catastrophe frequency and severity distributions, based on catastrophe experience 1949-1994. A catastrophe is
defined as an event that gives rise to $15 million or more in insured losses. Column 2 gives a description of catastrophe
occurrence by type, 1949—1994. NE denotes northeast, SE southeast, TX Texas, MW Midwest and CA California. Columns 3, 4,
and S give the assumptions concerning the frequency and severity distributions. The number in the frequency and severity
columns represents the number of separately-estimated distributions for that type. For example, the number “1” implies that all
regions are pooled, and that 2 single, nationwide distribution is estimated.
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Table 2: Frequency of catastrophes, measured by their Poisson parameters, by quarter, type and region,

1949-1994
NE SE X MW CA NE SE X MW CA
January-March April-June
Earthquake 0.054 0.054
Fire 0.031 0031 0.031 0031 0.125 0.031 0031 0.031 0.031 0.125
Hurricane (SE) 0.000 0.043
Hurricane (NE/TX) 0.000 0.000 0.033 0.033
Winter storm 0.380
Windstorm 0652 0326 0500 0304 0.196 0457 1109 0935 0.000
July-September October-December
Earthquake 0.054 0.054
Fire 0.031 0.031 0.031 0.031 0.125 0.031 0031 0.031 0031 0.125
Hurricane (SE) 0.370 0.130
Hurricane (NE/TX) 0.283 0.283 0.033 0.033
Winter storm 0.380
Windstorm 0174 0065 0.152 0326 0.000 0283 0.326 0370 0.130

Poisson parameter is equivalent to the mean number of catastrophe occurrences per quarter by type and region. If the frequency
of each catastrophe type in each region is Poisson distributed — f{n) = e*A%n!, where n is the number of events that occur —
then the numbers in the table are the maximum likelihood estimates of L. NE denotes Northeast, SE Southeast, TX Texas, MW
Midwest and CA California. Blank elements of the arrays are 0 by assumption (see Table 1).
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Table 3: Fitted severity distributions by catastrophe type, 1949-1994.

Distribution Parameter Earthquake Fire Hurricane Hurricane Winter Windstorm
(SE) (NE/TX) storm

n 10 19 26 22 35 352

Lognormal p -2.100 -2.350 -1.233 -1.454 -2.440 -3.039
o 1.964 1.196 1.610 1.454 1.166 0.859
Mean log-L 0.006 0.752 -0.662 -0.340 0.867 L772
Pr(/> §5bn)% 2915 0.046 3.870 1.760 0.025 0.000
Pr{/ > $15bn)% 0.684 0.001 0.718 0211 0.000 0.000

Pareto o 0.476 0.54!1 0.337 0.364 0.568 0.862
p 0.015 0.015 0.015 0.015 0.015 0.015
Mean log-L 0.358 0.735 -0.854 -0.556 0.875 1.891
Pr(/ > $5bm)% 6.288 4.327 14,110 12.057 3.684 0.670
Pr(/ > $15bn)% 3.727 2.389 9.743 8.082 1.973 0.260

Results from fitting of lognormal and Pareto distributions to PCS event losses. PCS losses have been adjusted for inflation and
population movements by Guy Carpenter & Co. A catastrophe event is defined giving rise to insured. iosses in excess of $15
million. The density function for the lognormal is £ () = exp{-[In()-u}?/26* Y[IoV(2m)], { > 0, while the density function for the
Pareto is £ (1) = aff %1 ", I > B. The parameters |, ¢, and o (not B, which is a fixed scale parameter set equal to $15,000,000)
are estimated by maximum likelihood. For a given catastrophe type, estimated mean log-likelihoods for the two distributions are
comparable, and provide a means for choosing between them. The table also shows the probability that an event produces
insured losses in excess of $5 billion and $15 billion respectively.
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Table 4: Event study of hurricane Andrew

(a) Southeast exposure (b) Hurricane exposure
Mean Mean Mean Mean Mean Mean
exposure  Aln(p;)  Aln(g;) exposure  Aln(p;)  Aln(g;)
5 most-exposed insurers 0.707 0.310 0.085 0.654 0.270 -0.030
5 least-exposed insurers 0.000 0.334 -0.011 0218 0.557 -0.138

Comparison of price responses in the year after hurricane Andrew (8/20/92-8/19/93) for different insurers. Panel (2) contrasts
insurers which have high and low exposure to the Southeast (as measured by market share), Panel (b) contrasts insurers which
have high and low exposure to hurricanes, The table shows the mean exposure and the mean price change of the 5 most extreme
contracts in each case. The mean price change for the insurers with lesser exposure to the Southeast is calculated using all 14 of
the insurers that have zero market share in that region.
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Table 5: The response of price and quantity to losses, exposure measured by regional market shares

> S* i > >
g1 =51 o T A=s5-1 sl k=51 ol k-5

Ain(p;)  Aln(g,)  Aln(p) Aln(g;)  Alp,) Aln{g) Aln(,)  Alng;)

%0 () 1.865 0518 0103  -0028 - 1736  -0284 0109  -0.019
(0.449)  (0.300)  (0.027)  (0.018)  (0326)  (0.202)  (0.020)  (0.011)
Tond (1) 0372 0039 0014 -0.001 0519  -0.160  0.021 -0.006
(0.261)  (0.160)  (0.013)  (0.009)  (0.249)  (0.149)  (0.013)  (0.008)
R 0.140 0.012 0.096 0.008 0.263 0.019 0.230 0.015
N 435 435 435 435 435 435 435 435

OLS estimates of price and quantity response regressions. The dependent variables are 100 times the change in the natural
logarithm of contract price and 100 times the change in the natural logarithm of quantity. Losses are measured in billions of
dollars. Exposure to each type of regional losses (w) is measured by regional market shares, as in Equation (5). Each column
corresponds to a separate regression. Four different assumptions are made about the functional form of distributed lag of losses
that affects prices. In Columns 1 ard 2, the loss variable is simply the sum of two lagged quarterly losses, in Columns 3 and 4 it
is the sum of squared losses from two lagged quarters, in Columns 5 and 6 it is the sum of four lagged quarterly losses, and in
Columns 7 and 8 it is the sum of squared losses from four lagged quarters.

Table 6: The response of price and quantity losses, exposure measured by regional market shares

2 2 4 4
Zs=1 lk d~5~1 Zs=l li%,!—s—l =1 lk,f—s—l =1 llf,f—s—l
Aln(p,)  Aln(g;)  Aln(p,)  Aln(g)  Aln(y)  Aln(g) Al Alg,)
o () 1.759 -0.468 0.103 -0.029 1.164 -0.148 0.054 -0.005
(0.447)  (0286)  (0.028)  (0.018)  (0.345)  (0.212)  (0.023)  (0.013)
WagB () 6.621 -1272 4.681 -0.835 4514 -0.670 3.037 -0.592
(1.490)  (0.645)  (1.228)  (0.433)  (1.057)  (0.624)  (0.959)  (0.439)
Wb (Lse) 0.175 0.116 0.009 0.006 . 0.463 0.023 0.024 -0.000
(0215)  (0.140)  (0.012)  (0.008)  (0.221)  (0.118)  (0.012)  (0.006)
w0 () 3.830 0.895 2.622 0.404 4.595 0.241 3.293 -0.078
(2.606)  (1.287)  (2.199)  (0.763)  (2.105)  (1.101)  (1.833)  (0.590)
Wom® (L) 53.052 45808 95048  -135.190  34.090  -14479 72853  -12.393
(37.846) (25.460) (110.627) (84.527) (30.153) (21.793) (66.278) (53.118)
wed () 8982  -12.595  3.943 -5.589 6.589 -3.817 2.659 2978
(4.599)  (4.813)  (2444) (2754 (2571)  (2678) (0961)  (1.116)
R 0.220 0.048 0.197 0.035 0.306 0.060 0.283 0.047
N 435 435 435 435 435 435 435 433

OLS estimates of price and quantity response regressions. The dependent variables are 100 times the change in the natural
logarithm of contract price and 100 times the change in the natural logarithm of quantity. Losses are measured in billions of
dollars. Exposure to cach type of regional losses (w) is measured by regional market shares, as in Equation (5). Each column
corresponds 10 a separate regression. Four different assumptions are made about the functional form of distributed lag of losses
that affects prices. In Columns 1 and 2, the loss variable is simply the sum of two lagged quarterly losses, in Columns 3 and 4 it
is the sum of squared losses from two lagged quarters, in Columns 5 and 6 it is the sum of four lagged quarterly losses, and in
Columns 7 and § it is the sum of squared losses from four lagged quarters. NE denotes Northeast, SE Southeast, TX Texas, MW
Midwest, and CA California.
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Table 7: The response of price and quantity to losses, exposure measured directly by catastrophe type

2 2 4 4
Zs:l lk,.r-—s—l Zs‘:] l:.i—s—-l J=llk,.!‘—s-»l Zpllf,f—s—l

Aln(pj, ) Aln(g 7, P, Aln(Pj, ) Aln{g f P Aln(Pj, P)] Aln{g i B Alﬂ(p} J Aln(g, j.l)
o) 4.143 -1.644 0.172 -0.070 3.161 -1.617 0.180 -0.081

(1.097) (1.031) (0.056) (0.055) (1.004) (0.858) (0.052) (0,045)
Zowit (1) -0.897 0.505 -0.033 0.021 -0.418 0.523 -0.025 0.024

(0.445) (0.393) (0.023) (0.021) (0.448) (0.344) (0.021) (0.016)
R 0.136 0.018 0.101 0.013 0.238 0.023 0.222 0.022
N 435 435 435 435 435 435 435 435

OLS estimates of price and quantity response regressions. The dependent variables are 100 times the change in the natural
logarithm of contract price and 100 times the change in the natural logarithm of quantity. Losses are measured in billions of
dollars. Exposure to each type of catastrophe loss (w) is calculated directly by simulation. Each column corresponds to a separate
regression. Four different assumptions are made about the functional form of distributed lag of losses that affects prices. In
Columns 1 and 2, the loss variable is simply the sum of two lagged quarterly losses, in Columns 3 and 4 it is the sum of squared
losses from two lagged quarters, in Columns 5 and 6 it is the sum of four lagged quarteriy Iosses, and in Columns 7 and 8 it is
the sum of squared losses from four lagged quarters.

Table 8: The response of price and quantity losses, exposure measured directly by catastrophe type

4

2 2 4
S__'lllt_i—-s—l ZF! lk.r—s—l 9] lk,l—s—l anl kt—s-1
Alnp,)  Aing) Aln(p) Aln(g) Ahn(,) Aln(g) Alnz)  Aln(g)
O 1491 -0.771 0.091 -0.045 0.535 0.025 -0.035 -0.006
(1.137)  (1.097) (0055  (0.053)  (1.126)  (1.060)  (0.089)  (0.073)
Weob (V) 65.826 -30.015 44.099 -17.720 24.265 -35.153 26.740 -29.059
(50.672) (17.103) (37.030) (10.130) (16.375) (16.931) (11.852) (12.808)
Wed (L) 26.137 8489 6451  -11.843 36406 13440  -3.873  -1.220
(28439} (20256) (11.162) (6.311) (32.047) (21.315) (15.906) ~ (7.531)
Wi (e} 0218 0307  -0.015 0.016 0.266 0.010 0.028 0.004
(0.446)  (0.410)  (0.022)  (0.020)  (0.459)  (0.410)  (0.031)  (0.026)
Wys® (ys) 51084 13796  27.597  12.133  21.862 10452 5706  10.512
(25298) (9.816) (20.651)  (8.235) (21.868) (12211} (21.304) (14.074)
Wip® (lyp) 9.273 -3.362 5912 -1.883 5.905 -2.918 2.726 -0.881
(1771)  (1.200)  (0.762)  (0.399)  (1.226)  (1.088)  (0.622)  (0.415)
R: 0.249 0.038 0.264 0.032 0.301 0.056 0.291 0.039
N 435 435 435 435 435 435 435 435

OLS estimates of price and quantity response regressions. The dependent variables are 100 times the change in the natural
logarithm of contract price and 100 times the change in the natural logarithm of quantity. Losses are measured in billions of
dollars. Exposure to each type of catastrophe loss (w) is calculated by simulation. Each column corresponds o a separate
regression. Four different assumptions arc made about the functional form of distributed lag of losses that affects prices. In
Columns 1 and 2, the toss variable is simply the sum of two lagged quarterly losses, in Columns 3 and 4 it is the sum of squarcd
losses from two lagged quarters, in Columns 5 and 6 it is the sum of four lagged quarterly losses, and in Columns 7 and 8 it is
the sum of squared losses from four lagged quarters. EQ denotes earthquake, FI fire, HR hurricane WS winter storm and WD
windstorm. OLS standard errors in parentheses.
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Table Al: Value of knockout provision in single-event excess-of-loss contracts

Inception 0] (i) (iii) () ) (vi) (vif) (viii)
date
Panel (a)
Quake Fire Hurricane Hurricane ~ Winter Wind Sum All-type
: (SE) (NE/TX) storm storm
Jan, 1 1.9 27 6.5 7.8 1.7 9.3 304 223
July 1 1.9 27 6.5 7.8 1.7 99 304 229
Panel (b)
NE SE TX MW CA Sum All-
region
Jan. 1 6.1 89 7.8 37 39 304 . 223
July 1 6.3 8.9 1.7 3.8 39 30.5 229

Expected reinsurance payments (in millions of dollars) for a $100-million-excess-of-$500-million contract under various
contract payment provisions. In Panel (a), the contract is single-event, but payment is contingent on the type of catastrophe. Thus
in column (i), the contract matures on the occurrence of the first earthquake event that produces $500 million in insured losses.
Column (vii) gives the sum of the expected payments from the contracts in Columns (f) to (vi). Column (viii) is the value of
expected payments under an all-event contract that matures on the occurrence of any event producing $500 million in insured
losses. The difference between Column (vii) and Column (viii) is the value of the event knockout provision implicit in single-
event, all-event contracts. Panel (b) is structured in exactly the same fashion, except that it distinguishes events by region rather
than type. The five regions are: Northeast, Southeast, Texas, Midwest and California.



