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Urban Growth'!
Duncan Black and Vernon Henderson

Brown University

This paper models and examines empirically the evolution of cities in an economy.
Key features of economic expansion are population growth and human capital accumula-
tion. To illustrate, in the USA from 1900-50, a period of rapid urban evolution, national
population grew at an average annual rate of 1.4% and urban population at a 2.2% annual
rate. The percent of the 17-year old population completing high school rose from 6.3 to
57.4%.* Population growth and human capital accumulation interact with the urbanization
process to raise two sets of issues. The first involves the nature and efficiency of the evolution
of the spatial organization of an economy. The second concerns the relationship between
urbanization and evolving income inequality.

For the first set of issues, consider that each economy has a size distribution of cities.
National popula.tio.n growth can be accommodated by increases in the sizes of existing cities,
formation (“entry”) of new cities, or both. As either or both occur, the relative size distri-
bution of cities can remain stable or exhibit a tendency to collapse (“converge” to a common
city size) or spread. Apart from intellectual curiosity about our geography, these issues
have public policy relevance. For example, whether population growth is primarily absorbed
through expansion of existing cities or creation of m;,w ones has implications for the efficient
intercity allocation of public infrastructure investments. Governments in developing coun-
tries such as Thailand, Mexico, Indonesia, and Bangladesh focus infrastructure investments
on just one or two mega cities, fueling top heavy urban development. If, in fact. markets
would tend towards more parallel development of existing cities along with increases in num-

bers of cities instead of tending towards mega city development, these governments should

"The authors acknowledge gratefully support of the National Science Foundation for this research.

!The average annual number of days students attend school annually also rose from 99 to 158. Adult
illiteracy fell from 10.7 to 2.7%. All numbers are from Historical Statistics of the US: Colontal Times to
1970, U.S. Bureau of the Census.



be spreading investment out across many cities. A mega-city development poiicy may lead
to inefficient crowding of tens of millions of people into tiny areas, with resulting deplorable
living conditions.

In thinking about the tendency of markets towards urban population distribution,
traditional urban analysis suggests two important considerations. First, underlying the city
size distribution, at any point in time, there are different types of cities where urban models
predict that different types and sizes of cities have different industrial bases. Such models
may be based on Henderson’s (1974) model of city specialization derived from the nature and
extent of urban scale economies or on spatial hierarchy models of cities (Fujita, Krugman, and
Mora (1995)). Later in the paper we will present evidence on urban specialization. Second,
the efficiency of the urbanization process and the possibility of excessive urban concentration
depend on the role which land developers and autonomous local governments play in the
national city formation and growth process (Helsley and Strange (1993), Krugman (1993),
and Becker and I{e;lderson (1996)). Both considerations will be incorporated into our model.

Human capital accumulation and endogenous growth introduce additional key con-
siderations in the analysis of spatial evolution. Urbanization involves economies of scale in
production, as Alfred Marshall wrote about so cogently in 1890. Individual human capital
accumulation and localized knowledge spillovers will accentuate the scale benefits of urban-
ization, with spillovers creating a stock of what could be labelled localized “trade secrets.”
By emphasizing the local nature of knowledge spillovers in an endogenous growth context,
as suggested in Lucas (1988), we will show that human capital accumulation fuels urban
growth, bearing directly on the question of whether a developing economy grows with bigger
or more cities.

Human capital accumulation and localized knowledge spillovers in an urbanization
context also have other implications. Given that different technologies are used in the in-
dustrial sectors of different types of cities, private returns to human capital investment and

the magnitude of knowledge spillovers will vary naturally across city types. Consequently,



the equilibrium levels of per person human capital and contemporaneous real incomes will
vary across different types of cities.

That fact suggests the second set of issues concerning the interaction between urban-
ization and national growth: evolving income inequality in an economy. We will see that
an economy grows at least with measured income and educational inequality across different
types of cities for otherwise identical people, although in our formulation per person con-
sumption levels will be equal. In extensions we will ask, under what formulations parental
human capital and locational choices of initial generations can lead to inequality in per per-
son consumption levels in later generations. In future work underway, by examining the
interplay of ability levels, given either by nature or influenced by the choices of prior gener-
ations, with endogenous location and education choices which determine how heterogeneous
agents sort themselves out spatially in an economy, it will be possible to further examine
how the evolution of inequality can be affected by urban choices.

The empirical side of this paper is related to work by Dobkins and Ioannides (1995)
examining USA urban evolution from 1900 to the present. On the theoretical side, apart from
late 1970’s urban exogenous growth models, summarized in Henderson (1988), the paper is
most closely related to Eaton and Eckstein (1994), who consider human capital spillovers
within and also transmitted across cities, an exciting extension. However, in Eaton and
Eckstein, the number of cities is fixed and the endogenous growth model is not fully specified.
In this paper, we step back and solve a fully specified growth model, focusing on issues of
city formation and the effect of endogenous growth on changes in city sizes, numbers, and
human capital levels over time. In terms of evolving income inequality, the work in this
paper and extensions on the interplay between inequality, ability differences, human capital
accumnulation and urbanization are most closely related to that of Benabou (1993, 1996),
with his rich specification of peer group effects and parental choices. However, Benabou is
not concerned with national spatial evolution per se, and does not allow for city formation

and growth, multiple numbers and types of cities, transformation of local industrial bases



and other key considerations in this paper.

In section 1 of the paper, we present and analyze a simple growth model of an urbanized
economy, experiencing exogenous population growth, in which endogenous growth occurs
through human capital accumulation. In section 2, we present empirical evidence on the
evolution of cities in the economy, urban speciaiization, and the transformation of local
industrial bases. Section 2 establishes basic information about cities. Over time, in the
USA, with national population growth and human capital accumulation, the numbers and
especially the sizes of cities have grown each decade. Despite this growth the relative size
distribution of cities has remained remarkably stable, showing no tendency to collapse or
spread. We will show that, as noted above, underlying this size distribution are different
types of cities, which appear to differ significantly in typical size and educational attainment.
In addition, the relative educational distribution of cities appears to also be stable over time.
Section 1 develops a model of national urban growth which is consistent with these facts and

gives us a framework to start to discuss issues of efficiency, institutions, and inequality.

[. AMODEL OF EVOLUTION OF AN URBANIZED ECONOMY

The growth model of an urbanized economy consists of two components. First is the
urban part which describes the spatial organization of production and population. In this
paper, the economy consists of two types of cities, each performing different functions and
having different equilibrium sizes, per worker human capital levels and incomes. While hav-
ing two types of cities does not make for a very sophisticated size distribution, it is sufficient
to establish basic principles. Type 1 cities in the economy produce the numeraire good, an
intermediate input (e.g., materials, disposable machines), that is purchased by firms in type
2 cities. Firms in type 2 cities specialize in production of the economy’s consumption good,
priced at P relative to the numeraire. This characterization of cities as being absolutely
specialized in traded good production with no costs of inter-city trade begs questions about

the role of fairly diversified mega-cities in an economy. Again we are simplifying to establish



principles about growth, avoiding some of these broader issues analyzed in Henderson (1988).
Finally as characterized below, there is a city formation process in national land markets,
involving either land developers or autonomous local governments.

The second component to an urban growth model involves family migration and human
capital investment decisions. Workers are members of dynastic families. At the end of this
section, we will show that our basic results — allocations of people and human capital across
cities — hold in a simple overlapping generations model. For dynasties, each family starts
with the same per person human capital and each family’s size grows at the same rate, g.
Each family discounts the future at a rate p, where p > g to help ensure well-behaved
solutions. At each instant, dynasties choose how much total family income to allocate to
per member consumption, ¢, and how much to allocate to increasing the family’s human
capital stock. Families must allocate also their members across city types and decide on the
per person human capital investments for members by the type of city in which they live.
For existing family.members, current own human capital endowments are nontransferable,
except to newborns. Family decisions govern human capital accumulation, in the absence of
formal markets for human capital which we rule out under the usual “no slavery” constraint.

For any dynasty, using a common form to utility of per person consumption, c, the

optimization problem is (without subscripting for t)

o fcl=0 ]
—(p—9)t 44 1
s.t. PH =zeS'l + (1 — 2)est ], — Peest (a)

H = zeS*h) + (1 — 2)edh, (b)

H > 0; hl/hl +920, hz/hz+920 (c)



In equation (1), given an initial normalized family size of 1, family size at time ¢ is e%. H
is the family’s human capital stock. z proportion of family members are assigned to type
1 cities and (1 — 2) to type 2 cities. [y and I, represent net per worker incomes earned
by workers living in type 1 and type 2 cities respectively, with h; and h, representing their
human capital levels.

Constraint (a), the equation of motion, states that the value of family human capital
growth (PH) is the difference between total family income (ze?*l;+ (1 —z2)estl;) and value
of consumption Pce? . In (a) it is assumed noncritically that human capital is formed by
conversion of the consumption good produced in type 2 cities and sold at price P. Constraint
(b) states that total family human capital is the sum of individual human capitals (2, and h;)
of members in type 1 (ze*) and type 2 ((1 — z)e?*) cities.

In our formulation of the dynasty’s problem in equation (1), we make two important
assumptions that merit some discussion. First, we assume that human capital is transferable
to a limited degre;. Specifically, the first constraint in (c) (H > 0) states that families
can neither borrow nor consume their human capital; conversion of the consumption good
to human capital is irreversible. The second constraint in (c) states that once installed,
human capital is only transferable as an endowment to newborns in the same city type.
}.Ll'/hl' + g > 0 states that the maximal percentage drop in per member human capital in
a city type is the growth rate of their offspring. Neither of these constraints is binding in
equilibrium and this formulation is also consistent with an additional constraint that human
capital is specific to either a city or an industry, partially or fully non-transferable through
migration across cities (see later).

Second, given that family members will generally earn different incomes 1, and I
by city type, there must generally be intra-family transfers across cities to maintain equality
of per member consumption, c¢. Although in many countries transfers from residents in
large cities to relatives in smaller towns can amount to 10% of family income, in modern

economies people may not think in these terms. The rigidity of this formulation can be



relaxed in several ways. First, the need for income transfers can be avoided if all members of
a generation are born with identical initial endowments of wealth which can be invested in
personal human capital or in the human capital of siblings; individuals born in low human
capital cities can “invest” informally in the human capital of family members in high human
capital cities and receive the returns. That is, rather than a family matriarch stating “George,
give Harry $2,000 every year,” as implied by (1), George can promise “Harry, if you lend
me money for education, I will reimburse you at an (appropriate) rental rate.” Secondly,
dynasties can splinter as long as each splinter starts with the same per person stock of human
capital (H/e®). Third, following from the first, if there were a formal market for human
capital, each family or family splinter could reside entirely in one type of city or the other,
borrowing/investing in the human capital of workers in the other type of city.

In order to proceed with optimization problem in (1), it is necessary to determine the
expressions for net real incomes, I; and I;, which family members can earn in city types 1
and 2. To solve for these, as well as to detail the nature of local human capital spillovers, we
need to turn to an analysis of production in cities, determination of city sizes (which affect
the returns to human capital investment), and the like. Given that analysis, we can then
return to the problem in (1) to study investment and migration decisions of families. Those
will determine the evolution of overall human capital levels, the formation of cities and their

growth, and the size distribution of cities.

The Structure of Cities

Contemporaneous city formation and size determination involves a tradeoff within
cities between the benefits and costs of changing city sizes. We assume production in a city
occurs under “localization” economies of scale — own industry local external economies of
scale. Contemporaneous efficiency of each firm is enhanced by having more firms in the same
industry in a city, with whom the firm communicates about what inputs to buy from whom,

what product lines to emphasize, or how to organize production. This variant of a commu-



nications model may involve exogenous spillovers (Fujita and Ogawa, 1982) or endogenous
information exchange (Kim, 1988). Other externalities may also be at work (Helsley and
Strange, (1990)), (Abdel-Rahman and Fujita, 1990), or (Becker and Henderson, (1996)).
Over time, firm efficiency and the benefits of larger cities will be enhanced by local human
capital accumulation. In achieving contemporaneous equilibrium city size, scale benefits are
traded off against the higher per person internal commuting (and potentially congestion and
pollution) costs of supporting larger cities. We start by examining the structure of type 1
cities.

Production in Type 1 Cities

Consider a representative city of type 1. Each firm in the city is composed of one
worker. Each period that worker decides how much to produce and how much to invest in
private human capital accumulation. Having single worker firms is a convenience, so that
human capital spillovers only exisi across firms, not within firms.? Output of firm ¢ of the

numeraire intermediate input X; (to be sold to type 2 cities) is given by
Xy = Dr[ny' A" |A1} (20)

where

Wli = Xh'. (Qb)

In (2a), n, is employment in industry 1 in this city, h; 1is the average level of human
capital of workers in the city, and h;; is the human capital of the worker in firm :. 6,
represents scale economies arising from the total volume of local communications which are
proportional to nj. ¢y 1s the elasticity of firm output with respect to total local employment
(holding own firm inputs nxed). ; is elasticity of firm i’s output with respect to the

average level of human capital in the city, which represents the spillover benefits of local levels

2If firms are multi-worker, of course, in theory the firm could solve the internal coordination problem of
each employee’s investment decisions by imposing employment requirements. We didn’t add that complica-
tion here, because it is not relevant to the problem.



of human capital, or knowledge accumulation.?

We use the average local level of human
capital, rather than total local human capital, since scale economies are already captured in
the n® term. AY could be thought of as representing the “richness” of the information
spillovers n%'. Equation (2b) tells us that a worker i’s wage in a type 1 city, W), is simply
the output of that worker.

Given all workers are inherently identical in a symmetrical equilibrium as developed

later, within city type 1, hy; = h;. Total city output then is n; * X;; or
Xl - Dlni+61hf1+\b1 (3)

The specification of technology assumes human capital spillovers and scale externalities are
purely localized. In addition, scale externalities are own industry, meaning that the presence
of a different industry in the locality would not benefit the X; industry. In the analysis
to follow, since agglomerating people into cities is costly on the commuting side, developers
will form specialized cities, as in Henderson (1974). For the same population and commuting
costs, a specialized city with greater per industry scale will have greater output per worker

than a diversified city where each separate industry operates at a lower scale.®

Commuting. All production in a city occurs at a point, the Central Business District [CBD].
Surrounding the CBD is a circle of residences, where each resident lives on a lot of unit size,
and commutes to the CBD (and back) at a constant cost per unit distance of 7 (paid in units
of type 1 city output). Adding in considerations of infrastructure investments, congestion,

pollution and the like is critical for analyzing some features of urban growth but not the

3In specifying X: technology in equation (1), we use the simple specification in Romer (1986), where
the effect of human capital on productivity is treated as a black box. One couid aiso adapt the elaborate
structure in Romer (1990) in specifying the technology in city type 1. One method of doing this would be
to retain X, as an inter-city traded, competitive good, but have it produced with nontraded machinery
inputs, as well as labor and private human capital investment. Nontraded machinery inputs enter in X,
production in Dixit-Stiglitz (1977) fashion, generating local economies of scale (Abdel-Rahman and Fujita,
1990), and sold locally under monopolistic competition. However, the local span or degree of diversity of
these nontraded machinery inputs would increase with local human capital accumulation.

10Of course, with inter-industry spillovers of communications that argument is weakened, although not
actually eliminated provided §’s (applied to, say, all industries’ total local employment) vary by industry.
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ones in this paper. For tractability, without loss of generality, we use the simplest standard
version of the internal spatial structure of cities. In this version, equilibrium in the land
market 18 characterized by a rent gradient, declining linearly from the CBD to the city edge
where rents (in the best alternative use) are zero. Standard analysis gives us expressions for

total city commuting costs and rents in terms of city population where®

total commuting costs = bn®/? 4)
Y
total land rents = §bn1 (5)
b= 271.—1/27.

Equation (4) is a critical resource cost to the city, where average commuting costs (bn}lz)
rise with city size, with an elasticity of 1/2. That is the force limiting city sizes. Equation

(4) constitutes the gross rental income of the city developer.

City Developers. Type 1 cities form in the competitive context of a large economy with

many type 1 cities in the national land market. Each city is operated by its developer who
collects urban land rents, offers inducements to firms to locate in the city, and specifies
city population (although people are free to move in equilibrium). Nationally, there are
an unexhausted number of potential identical sites upon which cities can form, and each

developer controls only one site. The resulting solutions can be obtained in other ways. In

®An equilibrium in residential markets requires all residents (living on equal size lots) to spend the same
amount on rent, R(u), plus commuting costs, ru, for any distance u from the CBD. Any consumer then
has the same amount left over to invest or spend on all other goo . At the city edge at a radius of u, rent
plus commuting costs are Tu; since R{u;)=0; and elsewhere they are R(u)+ 7u. Equating these at the
city edge with those amounts elsewhere yields the rent gradient R(u) = r(u; — u). From this, we calculate
total rents in the city to be ['' 27ruR(u)du (given lot sizes of 1 so each “ring” 27udu, contains that
many residents), or %m’u?. Total commuting costs are fou' 2ru(Tu)du = %wrui’. Given city population of
n, and lot sizes of 1, ny = 7u? or u; = #~/2n!/2. Substitution gives us equations (4) and (5).



a static context, Henderson and Becker (1996) show this solution (1) is the only coalition-
proof equilibrium and (2) will occur also in a model with only “self-organization” where each
existing city is governed by an autonomous local government. In a growth context, they show
an equivalent formulation is that deveiopers start, or set up new cities to maximize profits,
while existing cities are taken over and governed by local autonomous governments seeking
to maximize incomes of existing residents.

Within a representative city, the developer’s profits are residential land rents (eq. (5))
less any transfer payments, 7j, to each worker/firm. The developer faces a free migration
constraint that each worker’s net income (after paying rents and commuting costs) equals the
prevailing net income available in national labor markets to workers in other type 1 cities,
I,. The developer chooses city population, n;, and transfer payments, Tj, to maximize
current profits. Since there is only private human capital in the model, developers cannot,
for example, invest in capital accumulation of residents. Later in the section on efficient
growth we will rel&x this assumption (also, cf. Deo and Duranton, 1995). For now, each

developer

1
max I, = =bn¥? — Tyn, (6)

where from (1a) W; = Dinf'A{**¥' | given symmetry within the city. In the constraint the
first term is per worker firm income and the third term is per resident rent plus commuting
costs anywhere in the city from (4) and (5).

Solving (6), substituting for T} back into II; (6), setting II, = 0 (through folk
theorem free entry of developers/cities in national land markets), together yields two key

traditional results:
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1
Ty = —tn}/? | (7)

ny = [6,2671 D)5 p2a (8)

for

b, 6
1-26" "' 126

CIE¢1+ < 1.

Equation (7) states the “Henry George Theorem” (Flatters, Henderson, and Mieszkowski
(1974) and Stiglitz (1977)), that total transfers to firms (7in,) equal total urban land rents
(%bn?n). The per worker transfer closes the gap between private marginal product (eq. (2))
and social marginal product due to enhanced scale benefits when a worker/firm enters a city,
where the gap i1s 6, Wi.

Equation (8) tells us equilibrium city size is a function of scale and other parameters
and per worker human capital. Second-order conditions and equation (8) reveal the param-
eter restriction 8; < 1/2, necessary to have multiple type 1 cities in the economy. Equation
(8) shows city sizes increase as the scale elasticity, 6&;, rises towards the commuting cost

elasticity, 1/2, from equation (4). For & > 3,

all X, production would occur in just one
city, because marginal scale benefits of increasing city size would always outweigh marginal
costs.

In terms of the relationship between city size and human capital, 2¢, defines the
elasticity of city size with respect to per worker human capital, which is increasing in the
private (6,) and external (1) elasticities of productivity with respect to human capital.
€1 is decomposed into a private return portion ¢;, and an externality return portion I‘%E’
according to the private, 6,, and spillover, t;, returns to human capital. Regularity (see

later) requires ¢; < l. ¢ rises as the degree of scale economies, §,, rises towards the

commuting resource cost elasticity, 1/2. Scale benefits augment human capital returns. As

12



we will see next in equation (9), € 1is the elasticity of net income in a city with respect to
average human capital levels. With human capital accumulation not only do incomes rise,
but so do city sizes.

For later use, we solve for wages, Wj, and net income, I; by substitution of (7) and

(8) into (5) and (2), as well as city output X;. For @, a parameter cluster,®

Il - (]. - 261)W1 = thil (9)

Type 2 Cities
Type 2 cities specialize in production of the economy’s consumption good, sold in

competitive national markets at a price, P. A single worker firm’s output is

ng = D2 [ng’h;h] hgi-:z:};“ (10)

Corresponding to equation (2) for Xy;, in equation (10) for X,; are external scale (ng’)
and human capital (h¥?) terms. hj; is worker j’s human capital. z,; is the jth firm’s
use of imported intermediate inputs of type 1 cities. Profits for a firm are PX,; — z;;.
Maximizing and substituting in PX,; — z,; for the choice of z,; gives the residual return
to the worker-firm:

W, = ol — C!)I_TGD;/GPl/a(ngzhz‘/’z)l/ahg;/a a1

As for type 1 cities, developers of type 2 cities choose T; and n, to max II; =
%bng/z—Tgng s.t. Wo+ Ty — %bn;/2 = I,. W, isgivenin (11) for hy; = hy under symmetry,
and commuting and rents for a representative type 2 city are derived as for type 1 cities.
Note commuting costs and rents are paid and enumerated in units of X;, the numeraire

good. We solve this problem as before, maximizing, setting II, equal to zero, and solving for

5Q1 = (6:26=1D, ) b(26,)~1(1 — 26,) and X; = [(Q1/(1 — 26,)) %" Dy PR3

13



the Henry George result, T, = %bn;/ %, With substitutions, we have equations corresponding

to (8) and (9) defining equilibrium city size and income:”

ny = Cy P &R 6, < % (12)
where
egz¢2+;¢22—52, ¢25af—2252<1.
L = (@ — 26)a" W, = Q, PFa 2 (13)

While these expressions have similar properties to those for type 1 cities, they contain the
relative price P. We need first to determine migration and human capital investment
decisions based on the family’s problem in (1) which we are now ready to solve, given we
know I, and Ig.. Then we can solve for P in national output markets and proceed to

growth properties.

Investment and Migration Decisions

Given the family’s dynamic optimization in (1), we form the Hamiltonian, ignoring for
constraints (c), which we show in the Appendix are never binding. A representative family’s

problem 1s

1l~c
L= C_ie—(p—g)t (14)

max
C,I,hl vher 1 — g

+ M[ze* L P74+ (1 — 2)eS* L P! — cedt

+ A[H — ze%hy — (1 — z)e%hy)

TFirm level z; = (1 — a)Qa(a — 26,) "' Po=HhS C, = [(1 — a) 5™ 6,2b-1 DY/ *)a7=%

le—a

and @, = [(1 — @) =" 8,26~ DA/ |57 b(26,) ! (a — 263).

14



In (14), as perceived by family :, for workers in city type 1, based on equations (6) and
(2a), L= Wi+ T —3/2bn)/? for Wi = Di(nfh")A® and Ti,h, and n; perceived as
fixed by the family. Thus 8I,;/8hy; = 6;Wy;/hyi. Then imposing symmetry (hi; = k1) and
using equations (8) and (9), in equilibrium, the value of 85;/0hi; = BT = ¢ LA

1-26,
Similarly in city type 2 01/0hy; = ;:azz-a—zlzh;l = ¢,1h;t. The first-order conditions for
(14) imposing symmetry after differentiation are
g—f = ¢ % (P9t _ )\ et =0 (a)
g—f— - Bgt[Al(IlP_l - IQP—I) + Ag(—hl + hz)] = 0 (b)
%ﬁ' = Ze‘qt[Alllhl—lP_l ¢1 - Az] =0 (C) (15)
e = ze=Mgalihy P71 4 Xg) =0 (d)
TR Y ©
The transversality condition requires
lim [M()H(®)] = 0 ) (15)

In (15) (c) and (d), families allocate human capital across city types to equalize private
returns on investment. Combining the two yields /1, = (¢2/é1)h1/h2, which then, when
combined with the result from solving A,/A; in (15b) and (15c) yields

— $1(1—¢2)
o= Lbiu-qsf)] ha (e)
(16)

L o= (=20 (b).

Note the time invariant ratios of h;/hy and I,/I;. To proceed further to solve for =z,
the relative allocation of family members by city type, we need to examine equilibrium in

national markets.

National Market Equilibrium

Equilibrium in national output markets requires a balance of trade among cities, or

national demand and supply of X, to be equalized. National supply of X, is m;X, where

15



m; 1s the number of type 1 cities. The m, type 2 cities import X; as an intermediate
input z; and X; is used to produce commuting (equation (4)) in both types of cities.
Trade balance requires m1 X; = manezy +m1(bn?/2) + mg(bngﬂ). Then imposing symmetry
across dynasties nationally, so each dynasty sends the same proportion of workers to each
type of city, we then know at any instant, z = m;n;/N and 1 — z = mn;/N, where N is

national population. Combining all relationships yields®

_ (1 - 4)(1 — a+ 26)
T (1= ¢0)(I —a+62) + (1 — d2)(cx — 263) (17)

z

Any family’s proportion of workers 2z, going to type 1 city in equilibrium is invariant to
h(hy or h;) and is constant over time. All workers once assigned a city type never need to
change that type. Migration typically only involves assignment of newborns, especially to
new cities (see below). Equation (17) together with z = myn;/N tell us the number of

cities of each type at any instant. Specifically,
my = zNny!; my= (1 —2)Nnj'. (18)

Having solved for z which reflects migration decisions, we can solve for capital usages,
hy and hs, as functions of per person family stock, h. Given h = He % f{rom (1b),

h = zh; + (1 — 2)hy. Substituting in (16) and (18) yields®

__¢$ ¢
by = 120 Kby by = g Kb (19)

8Rearranging demand equals supply, my(X; — bn?/z) = many(z;/n2 + bn;/z). From (6), (1) and (7),
nl = X, — bn?lz. From (11), (12) and footnote (9), we know z,/n; + bn;/2 = L(1 -« +262)/(a — 263).
Combining these relationships gives myn;I; = manalo(l—a+26;)/(a—26;). Substituting this and equation
(163 with the expressions for z and (1 —z) gives (17).

- #1(1 — a + 283) + $aa — 263) ‘
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Equation (17) directly gives us an unchanging relative allocation of family members
by city type. Below we will show that the constraint H>0 is generally satisfied along
equilibrium growth paths. From (16) and (22) by time differentiating, hy/hy +g = ha/hs +
g= h/h +g¢ = H/H > 0. Human capital grows in parallel at the same rate in the two types
of cities. The only capital transfers need be from each worker type to their own children. In
our equilibrium human capital can be nontransferable across existing people and specific to
a technology (either X; or X3). In (1c) constraints are never binding.

Finally, by combining various relationships we get!®

P = Qhla—a)(a=25) (20)

In (20) as h grows, the relative price of the consumption good rises if ¢ > €. Not
surprisingly, P rises so the consurﬁption good becomes more expensive, if the elasticity
of income in the numeraire good city with respect to human capital exceeds that in the
consumption type .city.

The results in this section are summarized in

Proposition 1. Over time, the equilibrium allocation of resources across cities

involves the following characteristics:

(a) The ratios of per person human capital and income, hi/n; and I /I, are
time invariant. This implies persistent measured income inequality where
I, > [<]I; and h, > [<]hy iff @) > [<]@2, where ¢; is the private return

on income to human capital investment in city type .

10We combine (16) with 2 = myn;/N and 1 -~z =mgyny/N, and do substitutions.

1-¢1 € —e3

T | 42Q2 (l—_g;)"‘l

0= [£:0 GH)7 o
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(b) The relative allocation of population across cities is time invariant.

(c) The price, P, of X,, the consumption good rises [falls] with human capital
accumulation iff €; > [<]e;, where ¢ is the social return to human capital

investment in city type t.

We can now solve for urban and economic growth features of the economy.

Urban Growth

Although the per person human capital levels employed in each type of city differ at
any instant, as we just saw, human capital in each type of city grows at the same rate, or

%J; =h _ % Then in the city size equations (8) and (12) combined with (20) for P, we

2= D = 96, —. 21
n, n, Elh (21)

Individual city size% grow with human capital accumulation at a rate 2¢; times the rate of
human capital accumulation. Recall ¢; is the elasticity of income with respect to human
capital levels in city type 1. Below we will distinguish two cases. One is where the economy
experiences steady-state growth, in which case ¢; is generally close to one. Then city sizes
grow at approximately twice the rate of human capital accumulation. Through external-
ities raising the marginal benefits of adding population to cities relative to the marginal
costs, human capital accemulation enhances per worker productivity directly and indirectly
sufficiently to cause cities to grow at about twice the rate of capital accumulation.

What about growth in the number of cities, m; and m;? From (18) defining m,
and m,, for example, r,/m; = N/N —n,/n;, where national population growth ((N/N)
is ¢ and n;/n; is given by (21). Thus

i _ iy h

=2 =g 27
my mo I ! h

(22)

City numbers increase with human capital accumulation, if the rate of individual city size

growth fueled by human capital accumulation is not high enough to accommodate the ex-
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panding national population growth rate. Regardless, equations (21) and (22) imply by

inspection

Proposition 2. Urban growth across city types is parallel, maintaining a constant
relative size distribution of cities. That is, relative sizes and numbers of the two

types of cities are time invariant, with all cities growing in size 2t the same rate.

While this urban growth process seems simple, the underlying institutional and econ-
omy reality can be quite complex. Formation of an appropriate number of new cities at
any instant conceptually seems to require “large” agents such as developers who set up new
cities in a conducive institutional framework (Henderson and Becker, 1996). Absent such
agents, cities in general will tend to be too large and too few in number. In fact, part of
the problem of top-heavy urban development in some developing countries may be central
government hindrance of effective functioning of land markets and local governments. Fortu-
nately, the existen;e and widespread operation of developers who set up new cities seem, at
least for the USA, to be a fact (e.g., Garreau, 1991). Formation of new cities in and of itself
efficiently limits the contemporaneous sizes of existing cities; and, in theory, autonomous
local governments in existing cities have the incentives to offer appropriate local subsidies,
T1 (equation (7)) and the corresponding 73, to local businesses (Henderson and Becker,
1996). In summary, the process works if new cities are started by developers and existing
cities have traditional USA-style local governments.

From equations (21) and (22) it appears once type 1 cities are set up they stay and
grow as type 1 cities and the same for type 2. At each instant, new type 1 and type 2
cities form with newborns. However when we turn to the data in section 2, we will see that
this does not appear to be the way the process actually works. If, say, type 1 cities are
smaller than type 2 cities, empirically, new cities coming into existence then appear to all be
smaller type 1 cities. Additional type 2 cities arise by type 1 cities transforming into type 2

cities. Given type 1 and type 2 cities operate with different per person human capital levels,



that means converting type 1 cities must upgrade or downgrade human capital levels. With
specific human capital, transforming the human capital base would require migration - exit
of type 1 workers from transforming type 1 cities to new type 1 cities and entry of type 2
workers (who could be newborns).

The big question is why do type 1 cities transform to type 2 cities to accommodate
growth in numbers of type 2 cities, rather than entirely new cities of both types forming?
There seem to be two potential explanations. The first is conceptual and goes beyond the
formal scope of this paper. We assumed all potential city sites in the economy are identical
— offer identical (unspecified) natural public amenities such as climate, coastal location,
harbor facilities, etc. In reality, there is a spectrum of site qualities. Models that start to
deal with this problem (Upton, 1981 and also Henderson, 1988, pp. 71-73) appear to have
two features to equilibrium. The best sites are occupied first and the best sites go to bigger
types of cities, which can bid more for the amenities. Here that means as the number of
cities grows, additional bigger type 2 cities outcompete existing type 1 cities (who initially
got reasonable quality sites) for the sites they are on, and new type 1 cities form on the
lowest quality sites occupied to date. The second explanation is institutional, although it
can be specified to have market foundations (Helsley and Strange, 1993). Developers who
start new cities have either or both limited financial resources and ability to assemble large
pieces of land. It is thus “easier” for them to start new smaller types of cities. Later with
growth these initial smaller types may transform into bigger types of cities. In both cases of
the site quality and the limited size developer models, an issue concerns the transformation
process. To enact mass conversion of production in a city to another type involves large scale
movement /conversion of firms, which is not readily attained through atomistic behavior.
With scale economies, local developers and/or local governments are needed to facilitate

timely transformation (see Rauch, 1993).
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Economic Growth

The final part to urban evolution is to solve for growth paths in the economy. Once
in place, the analysis is fairly standard and our treatment is brief.

We need to study the representative family’s evolution of consumption and human
capital. For consumption, we first time differentiate (15a) and combine with (15c) and
(15€) to get ~° = f = 1 [¢ A7 P~' — p|. For the human capital growth path, we focus
on the average level of human capital per member, h, where % = % ~ g, so from (14a)
7= % =z P7'A™ + (1 — 2)ILbP7'h™Y — ch™! — g. Into these equations we substitute for
I and I, from (9) and (13), for h; and h; from (19), and for P from (20). The results

are

c

v =

(AR — ) (23)

oo
Q| =

=

> >

=Bh ! —chl—g (24)

where -

e=€ — (& —€)(a—268)>0

€ -1
) K™, B= Alh(l - o+ 26) + do(a - 26)]
A> B!

In the analysis to follow we distinguish between two cases: steady-state growth where
e =1 and steady-state levels where ¢ < 1. Details of proofs and analysis of global stability

and uniqueness are given in the Appendix A. The basic proposition is

Proposition 3. If ¢ = 1, the economy achieves steady-state growth, where

consumption and human capital grow at the rate (A—p)o~?

and city sizes grow
at 2¢; times this rate. If € < 1, the economy converges to steady-state levels

of consumption and human capital and cities achieve a stationary size.

NBJ/A = [¢1(1 — a+ 262) + ¢2(a — 265)]71 > 1, given z > 0. z > 0 requires 1 > ¢1(1 — a + 262) + ¢o(a —
263), because the denominator of z can be written as 1 — [¢1(1 — a + 262) + ¢2(a — 267)).
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If € =1, by inspection of (23) the steady-state growth rate of c¢ is {A —p)/o. By
differentiating (24), for 7" to be constant, the steady-state growth rate of ~ must equal

that of c. Denoting the steady-state growth rates as 5° and 7", then

=7 = (1), (25)

o

Positive steady-state growth with bounded utility and satisfaction of transversality condi-

tions require!?

A-p>0 (a)
(26)
SrA+g-£<0 (B)

With steady-state growth, from equation (21) city sizes grow at a rate 267" indefinitely.
City numbers increase as long as the individual city population growth rate is less than the
national populatior growth rate.

If € <1, to solve for steady-state levels, we set " = 4° = 0 and solve

1

(4)~
(4)™ (% -9).

Positive consumption requires %ﬂ — ¢ > 0, which is guaranteed given B > A and p > g.

Rk

il

(27)

al
1

In the Appendix we show h,¢ exhibits local saddle path stability and convergence is along
a globally stable arm. Along the stable arm H>0. Moving upward along the stable arm,
h is increasing and hence so are city sizes. However at steady-state levels, since h growth

ceases, city sizes stagnate.

12For bounded utility, lim¢_ oo °x1__'a_le"("")'dt = 0. Given from (25), ¢ = cpe 232t the limit requires
(26b). Similarly for transversality limg_o A;(¢)H(t) = 0 where H(t) = h(t)e* and A (t) = c™%e™*" from

(15a). Evaluating again requires (26b) to be satisfied.
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Efficiency of Urban Resource Allocation

The equilibrium outcome is not optimal. The problem lies with the externalities in-
volved in human capital accumulation decisions and with the corresponding population al-
location decisions made by families. The key is the gap between ¢ and ¢;, where
& = ¢ + 1_—!%8_1 and €; = ¢ + a——'b_zg. Families invest based on net private returns, ¢;,
rather than the net social returns ¢;, ignoring spillover returns 1;.

In Appendix A, we solve a national social planner’s optimization problem in equation
(1) for a representative family, where the planner accounts for overall social marginal returns
to human capital investment in cities. The solution to the planner’s problem has two key

aspects. First, the time invariant ratios hi/he, I/I;, 2/(1 — 2), and ny/n, all change;

and, secondly, the growth process itself also changes. Of particular interest is

Proposition 4. With an efficient allocation of resources, compared to the equi-

librium, steady-state growth rates (when € = 1) of consumption and capital
and steady-state levels (when € < 1) of per person consumption and capital are
higher. In terms of allocations to type 1 versus type 2 cities, h;/h, and I,/I,

rise [fall] respectively iff Jg_:J)> <] %% and (122) > (1#2),

Proofs are in Appendix A. But the intuition is easy. In Proposition 4, since the
social returns to capital exceed the private, the efficient solution involves greater capital
accumulation. In that solution, the ratios of incomes and capital in the two types of cities
depend on social not private returns. But whether, say, I,/I; rises does not simply depend

on just whether 1—_'{12‘5—‘ > but depends on the initial position of ¢; vs. ¢,. So I/I;

RO
rises if (1 —¢2)1255 > (1 — ¢1) ;%35 In comparing relative city sizes (see Appendix) what
happens to n,/n, involves a complex expression.

Is there a mechanism in a decentralized market economy to achieve an efficient alloca-

tion of resources? Here we present a hypothetical mechanism and then discuss its feasibility.

The key is for localities to account for the local human capital spillover benefits, represented
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by k¥ in production functions. If they do so, then market allocations will be efficient. In

particular, we have

Proposition 5. If city developers can invest in and claim the returns on local

human capital accumulation at the margin, they will internalize the local human
capital spillovers. Contemporaneous market allocations and the growth process

will both be optional.

Suppose any developer can “borrow” human capital in national markets, so her objec-
tive function is %bn?/ > _Tin; — rh;n; where the first term is local land rents, the second
tax/subsidies on local employees, and the third capital rental payments for r the human
capital rental rate in national markets. Families still accumulate and own human capital
stocks, now rented out in national markets. Each developer sees the same labor mobility
constraint as befofe, so for type 1 cities, I; = Dyn h'f”'o‘ + T — 3/2bn1/2; and each
developers chooses h; and 7; and specifies n;. Following the solution in Appendix A, we
continue to have the Henry George Theorem that local rents equal scale externalities; but
now T; = 1/2bn3/2 — rh;, where the first term is per person land rents and the second per
person human capital rents. Local worker-firms pay for the human capital borrowed by the
developer for their use.

In Appendix A, we show that the resulting allocation of human capital and workers
across cities is efficient and the accumulation process is optimal. However, due to the nature
of human capital it is unlikely that this result can be obtained. Decentralized achievement
of optimal growth depends on the ability of city developers (or local governments) to specify
and collect returns on local human capital levels. If human capital can only be used in the
city in which it is acquired, something which raises the specter of localities having monopsony
power in local labor markets, then local governments could provide schooling and/or finance
on the job training. Otherwise, if human capital is generally applicable across cities, then the

¢

no-slavery constraint makes it difficult to have a “market” for human capital. Individuals
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in whom a city invests are free to pick up and leave with their individuals k;’s, taking the

external benefits with them.

Extensions to an OLG Framework

Our results on the allocation of resources across cities extent directly to a simple
overlapping generations framework outlined here. Each generation lives two periods. In the
first period, each person lives with their parents and invests in human capital. In the second
period, they choose a city in which to live and work, receive their wage, consume, and make
bequests to their children. People have a “joy of giving” type bequest motive, with lifetime
utility given by B Inc+ (1 — B) Ing, where ¢ is consumption in the second period of life
and ¢ is the bequest given to one’s children. There are two constraints. First, total lifetime
income from working and from bequests received from parents must equal expenditures on
consumption, bequests, and human capital investment. Second, lacking a market for human
capital, first period investment is constrained by the level of the received bequest. If the
latter constraint isn’t initially binding for workers intending to locate in either type of city,
the economy immediately goes to steady-state levels, with allocations satisfying equations
(16) - (18). Ar in the dynastic family formulation, observed incomes vary by city type, but
in equilibrium the proportion of workers living in each city type adjusts to equate incomes
net of human capital expenditures, equalizing consumption and bequest levels as well.

In this context, the specification of intergenerational choices and preferences bears
critically on inequality issues. For example, if we modify the model in the previous paragraph
so that parents choose the educational level of their children investing in human capital
specific to their city type and parents care about their children’s income level (rather than
the joy of giving), the economy evolves with real inequality. The locational choices of the
equally endowed initial generation will lead to inequality in human capital levels, income,
and consumption of future generations by city type.

In a more general context, an OLG model with a simple bequest motive provides a
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framework to explore issues of how children’s initial characteristics — wealth, ability, and ed-
ucation are influenced by decisions of their parents and characteristics of their environment.
If we incorporate simultaneously endogenous location and education choices into a model
with parental and peer-group influenced human capital and ability differences, a richer pos-
itive analysis of evolving income inequality resulting from location choices will be possible.
The basic questions are: how do heterogeneous agents sort themselves out spatially in an

economy and how do these decisions affect future generations?

2. Empirical Evidence on Urban Growth

The model in section 1 predicts on-going growth of individual city populations, as long
as there is human capital accumulation. The model utilized has also a feature of parallel
growth — growth which maintains the same relative size distribution of cities. It leaves
open the question of whether, with national population growth, there is positive or negative
growth in the numbaer of cities or not. In this section we examine historical patterns of urban
growth in the USA in order to analyze the process of individual city growth, the evolution
of the size distribution of cities, and the entry and/or exit of cities.

To analyze these issues, we need a data set which utilizes a consistent sensible definition
of cities over time. Since we examine cities as economic, not political units, we want to use
a metropolitan area concept, where all contiguous urbanized economic activity in an area
is lumped together. In the USA metro areas are based on clustering contiguous urbanized
counties. Since counties can be very large, a second step is to define what portions of
these counties are urban versus rural, particularly for historical contexts when much of these
county populations were rural. Finally, a cut-off point defining the minimum size for a metro
area must be drawn.

The US Census Bureau didn’t start using metro area concepts until 1950. Since 1950
the definitions of metro areas and of urban versus rural have changed significantly several

times, so that comparisons of size distributions for years since 1950 are problematical. How-
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ever, Donald Bogue published a consistent data set in 1953 for the period 1900-1950, based
on the 1950 definition of metro areas. He takes the 162 metro areas in 1950 and follows them
back in time to 1900. For each decade he calculates their total and urban populations based
on a consistent definition of urban — the 1940 urban definition.

For the period 1900-1950 in the USA we analyze the evolution of cities. The population
in urbanized metro areas, quadrupled in the 50 years and there was rapid human capital
accumulation, as noted in the introduction. It is also a turbulent period, in which there are
rapid technological developments, a major economic depression, and two world wars. It will
be interesting to observe the evolutionary process of cities during such turbulence.

As an economy evolves, national output composition changes from decade to decade.
What cities produce and specialize in, and the numbers of different types of cities will change
with the introduction of new products or taste changes. While these items were not part
of the model in section 1, we did discuss the notion of transformation of individual city
industrial bases. I'bega.rdless, while there may be “parallel growth” in the sense that the
relative size distribution of cities remains constant over time, individually cities are going to
move around in that distribution.

The examination of Bogue’s data in the first part of this section will focus on both the
transitions and evolution of the distribution. In the second part of this section we establish
that (1) cities specialize to some considerable extent, (2) different types of cities tend to have
different sizes, and (3) transitions of individual cities are correlated with significant changes

in production patterns.

Evolution of the USA Urban System 1900-1950
Following Amemiya (1985), Quah (1993), and Dobkins and Ioannides (1995), we divide

the relative size distribution of cities at a point in time into cells, with cut-off points defined
for sizes relative to the contemporaneous mean. These cut-off points for six cells are listed

in Table 3. f; denotes the density distribution of the relative sizes n;/f;, of cities i at



time t, where ny = Y ;n;/m, for m; the number of cities at time ¢. This distribution

evolves over time according to

firi =1 — )M fe + 402, (28)

M, is the transition matrix of existing cities from time t to t+ 1. M, is hypothesized to
be a homogenous stationary first-order Markov process, so M; equals a common M. i, is
the overall entry rate of new cities between ¢t and ¢+ 1, and is the increase in number of
cities between t and t+1, divided by the number of cities at t+ 1. Z; is the distribution
of entrants across cells (the ¢+ 1 cells) — empirically almost all entry is in the extreme left
cell (cell for smallest city sizes).

For a constant : and Z the steady-state distribution, f, is

f=-01-iM] iz (29)

If we start in 1900 with an arbitrary distribution fi900, the evolution of the system to 1950,

for constant M, :, and Z, is
frsso = (1 = 8)°M® figeo + [I — (1 = §)M] 7M1 = ((1 = e)M)°)iZ. (30)

We will perform both calculations, to compare these hypothetical distributions with the
actual 1950 distribution. For ¢« and Z, we use the overall entry rate and its distribution for
1900-50. These calculations, which result in predictions for 1950 of what should be found,
are also a casual test of our specification. If the assumption that the system is evolving
as a homogeneous first-order stationary process is justified, predictions should be close to
outcomes.

In application, there is the problem that the 162 metro areas of 1950 are based on
a cut-off point of 50,000 urban residents. In looking at these 162 metro areas in earlier
decades, we can either employ the same absolute cut-off point of 50,000 or use a relative

cut-off point. We focus on the latter. Since city sizes are increasing over time and since
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distributions are defined for current size relative to current mean, an absolute cut-off point
means effectively truncating the distribution at different (relative) points over time. Instead,
we choose to truncate at the same relative point: 50,000 to the 1950 mean of 417,000, or
0.12.13  For 1900, the cut-off city size is 23,600. A (reasonable) assumption throughout is
that in earlier decades, there exist no cities other than the future 1950 metro areas which

have urban populations above the cut-off points for our sample.

Results. Table 1 gives some basic facts about the evolutionary process in Column 1 contains
the decade percent increase in average sizes of metro areas (for all 162 metro areas, to avoid
enlarging the sample each decade). Except for the 1930’s, average sizes increase substantially.
Column 2 gives the smaller percentage increase in numbers of cities. Overall in the 50 years
while sizes almost triple (for all 162 cities),’* numbers increase by 41%. Column 3 gives the
increase in city numbers using an absolute cut-off point.

Column 4 logks at the subsample of cities which experience significant population
losses between decades. Column 4 is looking for “catastrophes” envisioned by Krugman
(1993) — high losses from cities splitting in two or dropping precipitously in population in
his city formation process. No cities drop from the sample, given cut-off points. Of the 693
city-decade points in the sample, only 40 have absolute urban population losses, most in the
Depression involving urban people moving back to rural portions of counties. The maximum
decade percent losses over the 50 years for 693 city-decades are 25%, 22%, 16%, and then
10%. Column 4 shows there are only 10 cases of losses over 5%.

In Table 2, we present maximum likelihood estimates, under stationarity of the transi-

13Tn choosing each decade’s cut-off point for the base 162 1950 metro areas, we rank cities by size, from
highest, 1, to lowest 162 in each decade: We then choose the first s cities as our city set for that decade,

such that
+1

min{s; n,41/ (Z ni/(s + 1)) > 0.12}.

i=l

14The 162 cities increase in average size by 290% from 1900 to 1950. The original 115 cities increase in
average size by 274%.
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tion matrix, for transition probabilities, p;i;. p;;, is simply the total number of cities moving
from cell 7 to cell j over the fifty years divided by the number of cities in cell ¢ in each
decade summed over all decades (1900-1950). Stationarity is tested against nonstationarity
(separate, decade-by-decade transition probabilities); and the restricted model (stationarity)
cannot be rejected.!®

In the transition matrix, as usual, the diagonal numbers are highest, being particularly
high for cell 6. There is little mobility from the largest size downwards (up in a column). In
terms of off-diagonal elements, there are significant probabilities of moving up a cell (down a
column) each decade for at least the four lowest cells. The reasor for this comes from the last
column, giving the entry rate per decade by cell. 95% of entries occur in the lowest cell. To
maintain a stable overall relative size distribution (see below), entrants push existing cities
in the lowest cell forward, creating a chain reaction as some cities in the next to lowest cell
are also pushed forward into a higher cell. This reaction gives the high upward transition
probabilities for the first four cells. Without entry, such high upward transition probabilities
would suggest the evolving distribution would end up more concentrated in the higher cells.
But with entry, this does not happen.

In Table 3, in column (iii), we show the predicted steady-state (equation (29)) and, in
column (iv), the predicted 1950 distribution as evolved from an arbitrary 1900 distribution
(equation (30)). Column (v) shows the actual 1950 distribution. Note how close the predicted
distributions are to the actual, especially the predicted 1950 distribution. This suggests that
analyzing urban evolution as a first-order homogeneous stationary Markov process is quite

reasonable.

5The y? statistic is

Bij mi;(¢)
—2log[II II;11; [A : ] ]
B
with (7' — 1)K (K — 1) degrees of freedom, where py; is the stationary estimate, p;;(t) are the decade-
by-decade estimates, my;(t) is the number of cities moving from i to j in decade t, T' is the total
number of years, and K the number of cells. The x? statistic is 77.1, where with 120 degrees of freedom

the critical value is over 146.6.



For comparison, we show two other predicted distributions. Column (vi) gives the
steady state using an absolute cut-off point to define metro area sizes. It tends to over-
emphasize concentration at the low end (given a much higher average rate of “entry” as
the relative truncation point shifts left over time). Column (vi) shows the steady-state, for
transition matrices calculated without entry, so each decade is all 162 metro areas, including
seven areas in 1990 with zero urban population (and excluding 1900 areas with positive
urban populations, which did not evolve into metro areas). Without entry but still fairly
high mobility transition probabilities in lower cells (since by definition, our included 1900
small/zero population metro areas are fast growing), we predict a more uniform steady state
with much less concentration of cities in lower cells. This is a poor prediction. If we are
drawing a sample by picking 1950 metro areas and looking back at their evolution (only), it
is critical to model entry. If one wants to model transitions without entry, the appropriate
alternative is to represent the entire US geography every decade, thus including all excluded
1900 cities which d’id not evolve into 1950 metro areas and model transitions for the entire

geography. Unfortunately, there is no existing data set to do this.

Urban Specialization and Transformation

There is no consistent data set on industrial composition of cities prior to 1950. How-
ever, from County Business Patterns, we have county data for recent years. We look at
current industrial composition of cities to establish the concept of relative urban special-
ization and look at changes in industrial composition as they relate to changes in cities’

positions in the relative size distribution of cities.

Typing of Cities. The common method of typing cities is to use cluster analysis on employ-

ment data (see Bergsman, Greenston, and Healy (1972) and Henderson (1988, pp. 12-30,;.
Prior cluster analysis based on data from around 1970 shows very clear typing of cities by
manufacturing activity. Since 1970, manufacturing has declined from over 28% of U.S. non-

government employment to under 19%, with many cities losing their manufacturing bases.
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So many cities are in transition and classifying the industrial base of transiorming cities at
a point in time is problematical. Nevertheless, clear patterns emerge.

We classify cities based on their degree of specialization by two-digit SIC activities for
private employment in all industries in 1992. We distinguish 317 metro areas using 1990
definitions (by county groupings) of MSA’s and PMSA’s. The degree of specialization in
a particular industry ¢ in city j is measured by the share of industry j in total local
private employment, s;;. There are 80 two-digit industries (after dropping the share of
the last (99-), non-independent industry). Cities are grouped on the basis of similarity of
production patterns, indicated by employment shares of different industries. In clustering
cities we use Ward’s criterion, grouping cities to minimize the error sum of squares within
clusters summed across all clusters. The criterion function is

n me 80 e 3:‘jc>2)
5. o &=1 i
S (S5 (=

j=1i=1 M
where m, is the number of cities in cluster ¢ and 6. takes a value 1 if the city is in
cluster ¢ and zero otherwise. The clustering algorithm is hierarchical (step-wise) and the
number of clusters is chosen in advance (there generally being no globally optimal number
of clusters, nor general algorithms that are non-hierarchical).

Table 4 summarizes the cluster results, given in Appendix B in more detail. We
originally specified 50 clusters, but broke apart three of the last five clusters formed (in the
hierarchy) to distinguish eight sub-clusters among those three, so as to better classify the
largest metro areas. In Table 4 there are 8 cluster groups, for the 55 clusters, arranged in
some rough product-city categories (not in hierarchical order). We conducted an F-test on
whether the clusters in Appendix B are indeed distinct from each other, and strongly reject

the null hypothesis that the clusters are similar.'®

15The F-test examines whether the model sum of squares increases significantly (relative to the overall
residual sum of squares) from a model where s;;’s differ only by industry compared to a model where they
differ by industry clusters. N = 317 %80 = 25360. For 4320 and 20960 degrees of freedom (noting there are
55 * 80 = 4400 industry-clusters), F = 11.3, with a critical value near 1.
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In Appendix B, for each cluster, where relevant, we list the dominant industry and
report its average s;;, compared to the national 3; for that industry. Given 60-70% of local
employment is in “nontraded” good activity, individual s;;’s over .05 represent significant
specialization. We illustrate with two cluster members for each cluster. Apart from that,
Appendix B and Table 4 are self-explanatory; but we make several comments. First, while
we focus on industries cities are relatively specialized in, many clusters are also based on
what cities don’t have in the cluster — e.g., an absence of heavy manufacturing. Second,
despite the national move away from manufacturing, some cities are still strongly specialized
in manufacturing activity (in particular clusters, 10, 11, 12, 15, 19, 26, 27, 31, 32, 34, 35, 36)
or oil and gas (cluster 28). There are a number of emerging or strengthened services centers
for health (e.g., clusters 1-4), insurance (46, 47), business (48), transport (49, 50), education
(51), hotels and recreation (7) and eating and hotels for military and government (5, 8, 9).
While large metro areas are diverse, some have a relative focus on industry (42, 43, 45, 53)
while others have a service focus (40, 41, 44, 52).

Average city sizes tend to vary by cluster. Within most clusters, cities have very similar
sizes with one or two outliers. Across clusters, if we use cluster 45 with 20 market centers in
diverse manufacturing having an average size of 1.3m as the base, all clusters with average
sizes under 350,000 (except for one isolette, Reno) have significantly smaller average city
sizes, and clusters 28 and 52 with average sizes of 965,000 and 556,000 also have significantly
smaller average city sizes.!” Correspondingly all clusters with average sizes over 2.7m have
significantly city sizes. Within broad industrial categories, larger city types appear to be
more diversified.

In Appendix B and Table 4, we see that education also varies by city type. Using
cluster 45 as the base again, it has a little higher than the national average percent of

adults with 47 years of college in 1990, or 21.5%. Seventeen other clusters have significantly

17This is based on a regression of log (1990 SMSA) population on cluster dummy variables, looking for
significant percentage variables.
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lower percent college, especially traditional manufacturers — food (38), primary metals (39),
furniture (41), and textiles (11), with only 11-12% college educated. Eight other clusters have
significantly higher percentages, especially high tech centers (electronics (12), instruments
(14), and computers (10)), as well as some of the bigger market centers, with up to 30%
college educated. Overall, there is a modest positive correlation between the natural log
of city population and educational attainment (simple correlation coefficients for 1980 and
1990 are .15 and .28), driven by the varying needs of different city types for skilled workers.

Education across cities seems to change slowly over time. A five cell transition matrix
of percent college educated for 1980 to 1990 has diagonal elements of .91, .73, .84, .67, and
.81 going from low to high, with zero off diagonal elements for cells not immediately adjacent.
to the diagonal. This matrix is for cut-off points (relative to the mean) of .65, .8, 1.1, 1.35,
and open with a 1990 distribution of .12, .18, .39, .17 and .13. At least for 80-90 transitions,
the ergodic distribution exhibits no tendency to collapse or go bimodal. This is consistent

with the model in section 1.

Urban Transformation. In the last 20 years, with the decline of manufacturing and rise

of services nationally, many cities have undergone transformation of their industrial bases.
While such cities may experience little change in size, there does appear to be some rela-
tionship between size and type. We specifically examine for a decade period, 1980-1990, the
correlation between changes in city sizes and changes in industrial composition.

We measure changes in industrial composition by the changes in employment shares,

so for each city, j, the index of composition change is

1

80
CC; =3 (s19%0 — sisy2
1=1

This index is based on the magnitude of absolute changes in shares; and, with squaring,

reflects whether there are significant changes in the major industries in a city. We can also



control for national composition changes. In that case we have

80
OT; = 3~ (6} - 51%) - (s — 51"
=1

To see correlations, we regress CC; and CC; on 1980-90 city population change,
controlling for initial city population and initial manufacturing base. Results are reported
in Table 5. First we note that initial population size detracts from composition change,
because bigger cities are much more diverse to begin with. Second, initial manufacturing
share encourages composition change, since manufacturing cities are subject to the national
trend decline in U.S. manufacturing. In terms of the key relationship between composition
change and population growth, the relationship is U-shaped with (1) slow growing cities
having large changes in mix, (2) the change in mix declining as growth increases achieving
a minimum at a growth rate of .29 (.27 for CC) and (3) very fast growing cities again
experiencing big changes in mix. This is almost exactly what we expect: the slowest growing
cities which are moving down the size distribution and the fastest growing cities moving up
experience the biggest changes in industrial composition. But there are complications.

In Table 5, column 2 identifies cities which transit up or down the size distribution
(based on Table 3 categories for 317 metro areas) between 1980 and 1990. The dummy
variable outcomes and plots of both CC and conditional residuals (residuals of a CC re-
gression on In (pop. 80) and manu share 80) against population growth rates suggest the
relationship on the downside (big changes in mix with slow growth) is stronger than on the
upside. Moreover, cities experiencing the least composition change (at the minimum point
of .29 population growth rate) are growing at least a standard deviation above the mean
growth rate. While our hypothesis is that cities moving up or down the size distribution are
changing type, there is also the notion that cities with historical industrial bases that, by
accident, reflect nationally high growth industries (national trends) will enjoy high growth

rates per se. Average growth cities are those with a healthy but not spectacular mix.
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CONCLUSIONS

Twentieth century urban evolution in the USA is characterized by parallel growth of
cities of different sizes and types, maintaining with entry of new cities a stable relative size
distribution of cities over time. Cities also appear to evolve with differing per person human
capital levels. This paper models these features in a context in which cities experience local
information (scale economy) and knowledge (human capital) spillovers. Cities grow in size
with human capital accumulation and in number if the exogenous national rate of population
growth is high enough. There is observed real income inequality across cities, but not net of
human capital costs. The human capital equilibrium levels or rates of accumulation are less

than the efficient levels or rates, given individuals don’t internalize spillover externalities.
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Table 1

Growth in City Sizes and Numbers

Growth in Growth in
Average Number of
Urban Population Urban Areas

sample: all 1950 (sample: Relative

Growth in
Number of
Metro Areas
(sample in

Number of
Metro Areas
Where %

Intra-Decade
Urban Population

metro areas) 0.12 of mean)  each decade: 50,000 Loss Exceeds 5%
urban population)
1900-10 39% 15% 31% 1
1910-20 29 9 24 1
1920-30 29 4 22 2
1930-40 6 1 1 4
1940-50 18 7 12 2
1900 level 143,000 115 72
1950 level 417,000 162 162
Table 2. Transition Matrix
Cell in ¢
Decade Rate”
Cell in 1 2 3 4 5 6 of Entry
t+1 1 .873 .058 0 0 0 0 .0649
2 123 .797 .082 O 0 0 .0029
3 .032 .101 .656 .083 O 0 0
4 0 .043 213 .750 .111 O 0
5 0 0 .049 167 .825 .031 0O
6 0 0 0 0 063 969 0

*The average decade rate of entry is ¢ * Z. ¢ is total entrants (47) over the sum of cities in

base years 1900-1940 (693). For Z, 95.745% enter in cell 1 and the rest in cell 2.
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Table 3

Predicted Distributions

() G) G @ ) () (vii)
Steady Steady
State: State:
Cell cut- 1900 Steady 1950 trans. 1950 absolute  transitions
Cell off actual state  from 1900 actual cut-off point  with no
point  distribution definition entry
f 3 452 .405 422 .401 .503 .245
fa R .209 217 225 .253 .240 216
fa .75 .096 .082 .079 .087 .087 .099
fa 1 .044 118 101 .093 .076 157
fs 2 104 110 .092 105 .055 .199
fs open .096 .068 .081 .080 .040 .084
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Table 5
Composition Change and Population Growth

ccC CccC cC
constant .0248* .0226* .0249*
(.0057) (.0058) (.0052)
In (pop. 80) -.0016* -.0016* -.0018*
(.0005) (.0004) (.0004)
manu. share .0126* .0128* .0112*
80 (.0042) (.0042) (.0038)
pop. growth -.0141* -.0101**
rate 80-90 (.0063) (.0057)
pop. growth .0239** .0204**
rate squared (.0125) (.0112)
dummye city .0229*
transitting (.0087)
down
dummy: city .0050
transitting (.0055)
up
N 317 317 317
R? A1 12 12

Mean and s.d.: In (pop. 80): (12.6, .997); manu share 80 (.276. .121); pop.
growth (.113, .147); CC (.0070, .0083); CC (.0052, .0075).

* Significant at 5% level. Standard errors in purentheses.

** Significant at 10% level.
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Appendix A
In this Appendix, we give more technical details on the steady-state solutions. We
start with steady-state levels.

Growth Paths

Steady-State Levels. To derive the phase diagram in Figure Al, we know from equations
(23) and (24)

h=0when c=Bh*—gh and hA=0

1

é:Owhenhz(%)l—:‘ and c=0.

In the phase diagram the ¢ =0 locus is a vertical line as illustrated. For the h =0 locus,

we note i
E|}l=o = [CB]h(C_l) -9
Selico = €(e—1)BA2 <0,
h =0 has a maxithum at ,
* Be\ -
h={ — Al
(5) (an

and h = 0 intersects the horizontal axis at 0 and

h(c=0, h=0) = (g)T (A2)

Note h in (A1) can be shown to be greater than the steady-state h in (27).
The motion in the system is shown by arrows, where to the right of ¢ =0 (for high
h) from (23) c is decreasing, while to the left ¢ is increasing. For h =0, above h =0
(high ¢) from (24) h is decreasing while below h is increasing. The stable arm leading to
h,€ is grap:ed. The point h,€ exhibits local saddle path stability given the Jacobian
8(hfh) B8(h/h)
3h 3¢
<0,
3(¢fe)  B8(¢/c)
8h dc

40



C 4

(2"

Y

Figure Al

2|

8\;‘:5 h

q
e



at h,c. Transversality is satisfied at h,¢, given
tlim[Al(t)H(t)] = tlim [c(t) 7™ h(t)e’] = tlim [c 7 he (790,
for p > g, as assumed.
To rule out paths other than the stable arm, we note to the right of the ¢ =0 locus,
arms converge to ¢ = 0, b = h(c = 0,h = 0) in equation (A.2). That point violates

transversality, where limg ,,o[A1(¢)H(t)] = 0 requires lim o [%}l + % + g] = 0. Evaluating
this limit, given (15a) and (24), we get

lim[(B — Ak — ¢/h].
At ¢=0 and h in (A2), this equals (B — A)%. Given B > A in (23) and (24),
transverality is violated at ¢ =0, h(c=0,h = 0).
Wktat about paths above the stable arm? In all cases, they hit the constraint in (1c)

that H > 0, which defines a boundary value of ¢, ¢®, where

¢ = Bh* (A3)
which lies above the h =0 locus (where ¢ = Bh®—gh). Once a path above tLe stable arm
hits ¢® in Figure A1, the path travels along ¢’ to origin. We note 8c?/0h > 0, 8*c®/8h* < 0,
and ¢ > c(h = 0)Vh. To show paths going to the origin violate transversality we must
examine the problem in a different space, multiplier, h space, showing that che redefined
transversality condition is violated as we approach the origin. The proof is in Black and

Henderson (1997).

Steady-State Growth. For steady-state growth, there are no transition dynamics: the

economy is always at the steady-state growth rate. What is that growth rate? For consump-
tion per person, consumer optimization implies ¢(t) = coe*7)t, However in the text, the

solution to equation (24) after substituting in the solution for ¢(¢) from (23) has the form

h(t) — Fe(B-9t + cO(B —g— (_’4;_”))-16@‘ (A4)
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In order for A(t) to grow at the rate (%>2) in equation (25) F must equal zero. The

transversality condition will require an A(t) path where F = 0. Transversality requires
tlirn MH®)] = tlim [c(t) e e [FeB=9t 4 (B~ g — é;e)“e“_;gl‘}
— 00 — 0 [og
after substituting H(t) = h(t)e?* and for A,(t) from (15a). Substituting for c(¢), yields
. —0 (B—A)t l—0o A - p -1 (L_—ZA-{—Q—E)t
Jim e5” FelPA1 4 ¢-7(B — g — (A22)tel5 vy,

Given B — A > 0 in (23) and (24), satisfaction of the transversality condition requires a

path where F =0 and imposes a parameter constraint given in (25b) that
1—
< 7 A +g9-— B) < 0.
ag ag

Note this inequality, along with B — A > 0, ensures in (A4) that B —g— % =(B-A)-
(g—2+124)>6.

Efficiency

For the planner’s problem, given mn; = ze, total X,; for use in production of
X, 1s (lenf’ pYrFe _ zbn}/2 —(1- z)bn;/z) e’* where the first term is total X; output
(equation 3) and the next two are national commuting costs. Then total output of X,

by pvatly [ X, \!7¢ e , -
equals mon,Don*hl (m——LG) where many, = (1 — z)e?*. The planner’s problem is

then

1—0o
c -1 _,_
max L =-———¢ (-9
nz»"lvh2yhl 1 —

+ Medt (1 — 2)%Dpn82 k2t (2 D8 R abn/? (1 — 2 bnl/P)e cl

+ A [H — ze%*hy — (1 — z)e%"hy).
The solution to this problem is stated below. An alternative way to proceed is to have a quasi-
social planner, who allows national output markets to operate but controls hy, kg, 11, 1, and z,

recognizing the effects on P. In this case, to solve for an efficient outcome, into the represen-

tative family’s dynamic optimization problem in (1), we substitute for /; and [, from (9)

I



and (13). We then substitute in P = {[Qi(e — 262)A{* 2]/[Q2(1 — @ + 28,)h32 (1 — z)]}>~26,

obtained by combining (17) with (9), (13), e%*z = myn;, and e%*(1—z) = mn;. Optimizing

with respect to h;,hs,c, and z yields with rearrangement

hy [ ha
h

.
z

L/I

[a6=]

e2(1~€1)

(1—a)(1-c+26;)
(-6 )(1—a+28)+(1-e2)(x—-262)

jl—-tg!

(l—C])

(1-¢)(1—a+28)+(1 -3 )}(x~26;)
€ (l ——a+262)+52 (a-—-282)

O hla-a)(a-28)

I:qu(l_c_L-)‘l—l » €1—€2 a—26;

ezQz(Ztl:<2 )T K

These equations, along with (17)-(20) give us the h]/hz,;u / ;;2, LIi/I,, and }1 / }2

comparison in Proposition (4) in the text, by inspection. By substitution of the new values

of hi into (8), (12) and (18) we can compare 7, / n, with n;/n, and corresponding

m /7'712 with m;/m, to obtain detailed expressions.

For the rest of Proposition (4), we combine first-order conditions corresponding to

(15a) and (15e) with the new equation of motion to solve for steady-state growth and levels.

For steady-state growth, when € =1, we have

T=r=%-"+ (A5)
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For steady-state levels, when ¢ < 1, we have

1_ é 1—¢
h= (p) (A6)

- (" (-
P A

-

B=Az(l—a+26)"(1-a) ' K.
In comparing the equilibrium and the optimum, for steady-state growth where ¢ =1,

we know ’;C> Y iof f A> A Similarly for steady-state levels where ¢ < 1,A> h iff A> A

With substitutions we get
A — éil(l—a-{&&)(l _ (51)(l—q)(1—a+252)(z;2(a—252)(1 _ (;2)(1—-:2)(0—262)

Q}—a-{—%;Qg—-Z&akc—l (AS)
where } N i
R: (1 “d’l)(l —a+252)+~(1 —¢2)(a+252) '
$1(1 — ¢ + 62) + ¢2( — 262)

In (A9), for A,¢; = ¢ and for A, @ = ¢:. A> A, if €, > ¢, and €2 > ¢,, with strict
inequality for one. This can be seen by noting that 08A/8¢; > 0 iff & > ¢, (where

8A 3K : :
5% 05, 20 by inspection).
Finally for ¢ vs. ¢ when € < 1, repeated substitution gives

1

t=1A4 3—252 %—a+253 l—e =% i} ) |
A ? e (1—¢1)(1—a+252)+(1_¢2)(a_252)j

- %(&1(1 — o+ 26;) + dola — 26,))]

where, for %, é: = ¢ and for ¢,¢; = ¢;. Differentiation tells us 585 >0 if p> ¢ and either

or both ¢; > ¢, or ¢ > ¢,. Thus, if p > g and either or both ¢; > ¢; or ¢ > ¢, >
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Implementation of an Efficient Solution.

If developers can control the per person level of human capital in their cities, under
the correct incentives, they will achieve an efficient outcome. Assume, for example, h; and
hy, are chosen by developers, who borrow in a national human capital market from capital
owned by families, at a prevailing rental rate of r. In city type 1, the developer’s problem
18 now

max -;— b'n.::/2 — Tiny — rhying + A(D1nf ISR p %bnilz —h).

In this problem Ty = Di&infh{"*" — rhy = 160} — rhy, so while the Henry George

Theorem still holds, T} 18 reduced by implied capital rental payments. Solving the problem

for city types 1 and 2, we get the text expressions for n, and n, and

r=6Qh9! = QP55 hi! (A9)

1
L=k (1 &) = I, = QP h (1 — ¢y). (A10)

Note since capital is here a freely mobile input, chosen by developers, labor incomes in
national markets must be equalized for families in allocating members. Now, in the family’s
optimization problem, H = [}P~1ze% + [L,P7Y(1 — 2)e?* + P~ lrhe’ — ce’, where capital

rent is paid in units of X; but new additions to capital come from X;. In choosing z, in

g1
-0

the family’s problem to maximize e~(P=9)t subject to (just) the equation of motion,
we get I, = I;. (Note now I’s are adjusted for T’s reflecting capital rental payments.)

Besides (A9) and (A10) we substitute into m X, = manaz, + ml(bn?/z) + mg(bng/z)

for zed* = myng, (1 — z)¢f" = myng, for X; and z; as before, and for F from
(A10) to get =zh?'Q; = (1 — z)QzP"-&“?wé’(l—;"fsfz). Combining this, (A9), (A10) and

h = zhy + (1 — z)h, gives the efficient outcomes listed above for }.Ll / }:,2 and z. Solving
the family’s optimization problem gives (A5)-(AT).
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