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1. Introduction

Historical rates of return are often used in investment analysis. Estimates of moments of
returns based on historical time series provide information useful in selecting portfolios,
evaluating investment performance, and investigating models of asset pricing. In many ap-
plications, the lengths of available histories differ across the assets being analyzed, especially
when the assets are traded on separate exchanges or in different countries. For example,
substantial differences in lengths of histories are likely to occur, virtually by definition, when
the universe of assets includes investments in emerging markets. A typical approach to this
problem, especially in applications of multivariate methods, is to base the historical analysis
on a sample in which all return histories begin at a common date. That is, the longer return
histories of the “developed-market” assets are truncated, so that any returns observed before

the available history of the emerging-market investments are simply discarded.!

In many cases, it is neither necessary nor desirable to discard returns. Suppose, for
example, that the researcher or decision maker would use some of those discarded returns
if the shorter-history assets were not included in the analysis.? Then, in general, those
discarded returns contain information that is useful in an analysis that includes the shorter-
history assets. Not only do those discarded returns provide additional information about
the longer-history assets, but they generally provide information about the shorter-history

assets as well.

This study investigates multivariate methods that use a “combined” sample in which the
lengths of return histories differ across assets. Although such methods could be developed
under a variety of assumed probability distributions for returns, the i.i.d. multivariate Normal
model assumed here permits closed-form analytic results that simplify the essential ideas.
Moreover, that assumption is often employed in studies that propose multivariate methods
for samples of equal-length return histories.® It is hoped that the results obtained here in

the standard setting motivate extensions to richer stochastic frameworks.

1See Harvey (1995) for a recent example.

%In other words, those returns would not be discarded due to a concern that the stochastic framework
assumed for the longer-history assets does not hold for any period longer than that used in the truncated
sample. One might note that such a concern is not evident in previously published empirical work: empirical
studies that do not include emerging markets, for example, seldom if ever choose a first sample date that
happens to coincide with the beginning of an emerging-markets data set.

3Examples include the likelihood ratio test of a portfolio’s mean-variance efficiency in Gibbons, Ross, and
Shanken (1989) and the Bayesian analysis of a portfolio’s degree of inefficiency in Kandel, McCulloch, and
Stambaugh (1995).



The paper is organized as follows. Maximum-likelihood estimates (MLE’s) of first and
second moments are presented in section 2, and the combined-sample MLE’s are compared
to the more common truncated-sample estimates. When the parameters of the return dis-
tribution must be estimated from a finite sample of returns, then the imprecision in those
estimates presents an investor with additional uncertainty, or “estimation risk.” This es-
timation risk is reflected in the Bayesian predictive distribution of future returns. Section
3 derives the first and second moments of that predictive distribution, conditioned on the
combined sample. In order to focus on the essential concepts, the analyses in sections 2 and
3 are limited to the case where each asset’s history begins at one of only two possible dates.
In practice, starting dates are often more heterogeneous, and section 4 extends the results

in sections 2 and 3 to an arbitrary number of different starting dates.

Sections 5 and 6 illustrate the empirical methods using monthly data in portfolio problems
involving emerging markets. Section 5 analyzes a mean-variance optimization problem with
an asset universe consisting of one-month U.S. Treasury bills (assumed riskless) and three
risky index portfolios: (i) Standard & Poor’s composite index, (ii) Morgan Stanley Capital
International’s index for Europe, Australia, and the Far East, and (iii) the International
Finance Corporation’s (IFC) composite index for emerging markets. Returns beginning in
1970 are used for the first two indices, whereas the emerging-market returns begin in 1985.
An optimal portfolio constructed using the combined sample and accounting for estimation
risk can be compared to a portfolio that is constructed using only the post-1985 data. If
the latter construction ignores estimation risk as well, then an investor with relative risk
aversion equal to 3 would value that suboptimal portfolio less than the optimal portfolio by

about 23 basis points per month, in terms of certainty-equivalent return.

Section 6 considers the problem of constructing the minimum-variance portfolio from a
universe of 22 emerging-market index portfolios. Each index portfolio is designed by the
IFC to reflect the portion of a given country’s equity market that is accessible to foreign
investors. For the 22 countries included in this example, the first month of available data
ranges from January 1989 to November 1993. To an investor who uses the combined sample
of all available histories and accounts for estimation risk, the minimum-variance portfolio has
a standard deviation of about 3.8 percent per month. That same investor assigns a standard
deviation of at least 6.1 percent to portfolios constructed using methods that either ignore

estimation risk or discard returns on the longer-history assets.

The examples in sections 5 and 6 illustrate the conditional Bayesian decision approach,
wherein the investor bases decisions on the predictive distribution that is conditioned on the



single observed sample. As those examples demonstrate, the predictive distribution can also
be used to assess the costs associated with various suboptimal choices, such as portfolios
formed by methods that truncate the sample or ignore estimation risk. An alternative “fre-
quentist” approach to evaluating the relative merits of various portfolio selection methods
is to compare their performances in repeated hypothetical random samples, where perfor-
mance is evaluated using “true” moments of returns. Section 7 conducts such investigations
in settings similar to those of the examples in sections 5 and 6. The results confirm the
potentially substantial costs associated with truncating the sample or ignoring estimation

risk. Section 8 concludes the study with a brief discussion of possible extensions.

2. Maximum-Likelihood Estimation

2.1. Stochastic Setting

Let the vector R;; contain the returns on N; assets in period ¢, and assume there are T
observations of these returns for periods 1,...,T. The T observations of R;; are assumed

to be independent realizations from a multivariate normal distribution with
E{Ry:} = F, (1)

and

cov{Ry, Ry} = Vi1 (2)

Let the vector Ry contain the returns on another set of N, assets in period ¢, and assume
that these returns are observed only for periods s, ..., T, where s > 1. For any period ¢ > s,
let R; = [R}, R;,]’ denote the combined vector of N = N;+ N, returns, and let S = T—s+1
denote the number of observation of this combined vector of returns. It is assumed that,
given the starting period s, the S observations of R; are independent realizations from a

multivariate normal distribution with
Ry, E,
E ' = =F 3

Rl,t 7 ! _ ‘/11 ‘/12 -
COV{[Rz,tJ’[ 1,t 2,t]}"‘|:‘/21 ‘/22]_Vv (4)

where V' is nonsingular. It is also assumed that S > max(/N;, No + 2). When, as in the

and

examples presented later, the historical data are used for investment decisions, the above

distribution is also assumed for the N returns in period T + 1.
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The starting period s for the short-history assets is assumed to be either non-stochastic or
drawn from a distribution that does not depend on E or V, conditional on the long-history-
asset returns R, ¢, t = 1,...,T. This assumption permits some randomness and endogeneity
in the starting period, provided that s does not contain information about £ and V' beyond
that contained in the sample of observed returns. This assumption is satisfied, for example,
in the simple case where a function of the observed sample history of R, determines s: high
realized returns on existing assets might give rise to more assets.* If, however, s also depends
on realizations of returns on the short-history assets prior to s, returns not included in the
sample, then the assumption made here is generally not satisfied.’

In some applications, it may be that the second set of N, assets existed before period
s but their returns are not included in the sample. In other cases, it may be that those
assets did not even exist before period s. In any case, it is not assumed that those assets’
actual returns, if the assets did exist, or their hypothetical returns, if they did not exist,
obey the same joint distribution for all N assets assumed after period s. If the moments of
all N returns prior to period s are given by (3) and (4), but with E,, V}, and V5, replaced
by additional free parameters, such a change does not affect the likelihood function for F
and V based on the sample of returns used in the analysis. In fact, one might exclude the
returns on the NV, short-history assets before period s, even when such returns are available,
because one suspects they are nof drawn from the same joint distribution as those beginning
in period s.° What s assumed regarding stationarity of distributions is that the marginal

distribution of returns on the N; long-history assets is the same across all T periods.

One final point to be emphasized about the stochastic setting is that the inclusion of any
asset in the sample is, by construction, conditioned on the survival of that asset through
period T'. If there exist periods during an asset’s history in which there were non-zero prob-
abilities that the asset would disappear, then the asset’s sample moments include “survival”
effects, which generally increase with the probability of disappearance.” The methods ex-
plored in this study do not incorporate survival probabilities. In that sense, the normality
assumption must be viewed as characterizing an asset’s return distribution for any period ¢,

conditional on the asset’s surviving that period.® Of course, relying on such a conditional

4] am grateful to Jay Shanken for suggesting this example.

5Goetzmann and Jorion (1996) argue that the IFC’s decision to add a country to its list of emerging
markets depends on previous returns on that country’s stock market. This type of endogeneity in the
starting dates of short-history assets would violate the assumption made here.

51 am grateful to Ross Stevens, of Goldman Sachs Asset Management (GSAM), for suggesting this
possibility. The Quantitative Research Group at GSAM has applied this paper’s methods in such cases.

"See, for example, Brown, Goetzmann, and Ross (1995).

8Note that such a result does not obtain, for example, if the return’s unconditional distribution is normal



distribution for inference or decision making without also incorporating the probability of
disappearance could be unwise, especially if that probability is substantial. An interesting
direction for future research would be to extend the methods presented here to incorporate
survival effects and more general endogeneity in the starting and stopping times of asset

histories.

2.2. Likelihood Function

Define the S x N matrix

! !
Rl,s 2,8
14 f
1,541 2,5+1
Ys=| Y1s Yos ] = . . (5)
, /
1T 2T
and the T x N; matrix
/
1,1
/
1,2
Yir= (6)
/
1.7

The joint density for Y7 r and Y s, given E; V, and s, follows directly from the assumed

multivariate normality and independence across periods:

= 1 1
p(Yir, Yas|E,V,s) = [] (WIVIII—UQ exp {*E(Ru - E))'Vii (R — E1)})
. t=1

<11 <<z,$~/z VIV exp { ~5(R, ~ BYVA(R, - E)}) NG

t=s

When viewed as a function of the parameters, given s and the observed returns, (7) is the
likelihood function for F and V.

To see that the likelihood function in (7) obtains even when s is stochastic in the sense
described earlier, let { denote a vector of parameters, in addition to E and V/, that enter the

joint density for returns and s. Then the latter joint density can be written
p(Yl,T') }/2,57 SlEa ‘/v C) = p(}/l,T? lea V; C) ) p(Y'ZSI)/l,Ta s, E) ‘/7 C)
= p(SlYLTy E7 ‘/7 C) : p(Yl,TIE, Va C) ) p(Y2,SD/1,T7 S, E7 ‘/7 C)
= p(sYi7, Q) - p(Yar, Yo s|E,V,5), (8)

and survival is determined by a minimum-return threshold.




where the last equality follows from the assumed normal distributions of returns, which do
not depend on ¢, and the assumption that, conditional on Y; 7, the distribution of s does not
depend on E or V. The likelihood function for £, V', and (—the joint density in (8) viewed
as a function of those parameters given the sample—involves F and V only in the second
factor, which is the joint density given in (7). The proportionality constant, p(s|Y:r, (),
plays no role in obtaining the maximum-likelihood estimators of £ and V.

2.3. Estimators

A common approach to estimating £ and V is to compute the “truncated-sample” maximum-
likelihood estimators based on the S periods in which returns on all NV assets are observed.
These truncated-sample MLE’s of E and V' are given by

. | Bus 1

= S —Y,
ES i E2,S S sts (9)

and

Ve = Viis Vigs | _ 1
1/21,5 ‘/22,5 ] S

where 15 denotes an S-vector of ones and the partitioning in (9) and (10) follows that of Y
in (5).

(YS - LsEé)l(Ys - LSE,/s)» (10)

The above truncated-sample estimators do not use the first s — 1 observations of Ry,
which appear in the first factor in (7). Maximizing (7) with respect to the elements of E
and V is complicated by the fact that F; and Vj; appear by themselves in the first factor
but as submatrices of E and V in the second factor. Following Anderson (1957), however,
an analytic solution to the maximization is obtained by performing a change of variables
and rewriting the joint density p(Y)r, Ys2s) as the product of the marginal and conditional
densities, p(Y1.7)-p(Ya,s|Yi.r).® In order to state the resulting “combined-sample” estimators,
first define the coefficient matrix from a multivariate regression of R,y on R;., estimated
using the truncated sample,

C= [ g, } = (X'X)'X"Y,s , (11)

where & is Ny x 1, Bis N, x Ny, and

X=|ws Yis|. (12)

9The details are presented in the Appendix.



The sample residual-covariance matrix from the regression is

~ 1 - N
£ = 5(Yas = XY (o5 ~ XO). (13)
Proposition 1. Given the likelihood function in (7), the mazimum-likelthood estimators of

E and V are given by

- El
b= [ A } , (19)
and . R
¥ Vll V2’1 J
V=] - - , 15
[ Var Vg ! ( )
where
. 1 L
El = '7_-,— Z Rl,ty (16)
t=1
Ez = Ez,s + B(El - El,s), (17)
. 1L . .
Vi = T Z(Ru — Ey)(Rys — By, (18)
t=1
Var = BV, (= V) (19)
and
Vao = + BV, B (20)

Proof: see Anderson (1957) and the Appendiz.

It is easily verified that, if Vn and ¥ are positive definite, then the above combined-
sample MLE of the covariance matrix, V, is positive definite as well.1® This property is
obviously desirable in an estimator of a covariance matrix, but it is not necessarily satisfied

by alternative estimators that use the combined sample. For example,

U W |
vie | Yu Vs 91
[ Vais Vaus (21

10This follows by using (18) through (20) to rewrite V as

o [ Im g . 00
V=[ g }VH[IN1 B]+[0 i:]

Observe that, for any non-zero real 1 x N vector z = [z; z3], where the partitioning conforms to that of v,
zV2' > 23325 and the latter quadratic form is greater than zero unless 2z is the zero vector. In that case,
2V =z V12] > 0.



need not be positive definite. Estimators of correlation matrices that use the combined
sample can confront similar difficulties. For example, if ¥;; denotes the sample correlation
matrix constructed from V;;, and \ils denotes the (equivalently partitioned) sample correla-
tion matrix constructed from Vs, then

¥ v
gt= | ¥ Yis 29
[ Uois Uos (22)

need not be positive definite. Of course, since V is positive definite, the corresponding

combined-sample MLE of the correlation matrix is positive definite as well.

The combined-sample MLE’s of expected returns can also be interpreted in terms of
the Generalized Method of Moments (GMM) of Hansen (1982). Specifically, E is also the

solution to

ming'Wyg, (23)
where $o- (R E) .
T-8 S 1t — 1
g= [ e } , (24)
S Zt:s(Rt - E)
and i "
we | 75 O (25)
0 Vs

In other words, E is the GMM estimator based on the moment conditions in (24) and the
weighting matrix in (25). Each diagonal block of W~! corresponds to the usual covariance
matrix for a vector of sample means, where the covariances are estimated using the trun-
cated sample, and the zero off-diagonal blocks reflect the assumed temporal independence of
returns.’! The second subvector of g contains N just-identifying conditions that, by them-
selves, would simply give Es as the GMM estimator. The first subvector of g contains an
additional set of N; over-identifying conditions for E, based on the first s — 1 observations
of R;;, and those over-identifying conditions affect the estimation of both F; and E.

2.4. The Role of the Longer Histories

As noted earlier, the truncated-sample estimators in (9) and (10) ignore the additional infor-
mation in the other 7' — S observations of R;,. Not surprisingly, this additional information

is useful in estimating F; and Vj;. More interesting is that this additional information is

111t can be shown that E is also the GMM estimator when the weighting matrix in (25) is constructed
using the combined-sample MLE’s Vi; and V in place of the truncated-sample estimators Vn s and Vs.
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also useful in estimating F,, Vi, and V5. Using the above results, the combined-sample

estimators of these quantities can be written as

Ey=Eys— B(Ey s — E), (26)

Vao = 1722,5 - B(Vll,s - Vn)B/, (27)
and
Var = Vous — B(Viy,s — V). (28)

In general, if Ry and R»; exhibit nonzero correlations with each other, as reflected in the
matrix of estimated regression slopes, B, then differences between the combined-sample and
truncated-sample estimates of the moments of R;, produce corresponding differences in the

estimated moments of Ry ;.

The basic ideas can be seen most clearly with only two assets (N} = N, = 1), since all of
the quantities in equations (26) through (28) are then scalars. The additional information in
the first s — 1 returns on asset 1 enters the estimation of asset 2's expected return in a fairly
obvious manner. Suppose, for example, that asset 1 experienced a higher average return
during the more recent S periods than over the entire T-period sample, i.e., Elyg ~E >0
The assumed i.i.d behavior for the returns on asset 1, coupled with the information from
asset 1’s T-period history, implies that the average return over the recent S periods, El,s,
is too high an estimate of expected return when compared to the value of the more precise
estimator, E\. If the returns on assets 1 and 2 exhibit positive sample correlation over their
common histories, so B > 0, then E’z,s is also judged to be too high an estimate of asset 2’s
expected return, and that truncated-sample estimator is adjusted downward by the amount

B (El‘s - E’l) This adjustment follows the same form as the relation,
E; = E{Eas|Ey s} — B(Eys — E), ' (29)

implied by the regression function under normality, where B = Vj;V;7'. The right-hand
sides of (26) and (29) are similar, with E{Eg,lel,S}, E,, and B in (29) replaced by the
estimators Eg,s, E,, and B in (26). Note that such an adjustment could even reverse the
relative estimated expected returns on the assets. That is, £, — E; can have a different sign
from E2,S — Elyg.m

Asset 1’s longer history also provides additional information about the variance of asset
2’s return as well as the covariance between returns on the two assets. Suppose, for example,

that asset 1 experienced higher volatility during the most recent S periods than over the

12]f in the example discussed, B > 1, then one could observe Eg_s - E‘l,s >0but By — B, < 0.

9



entire sample, i.e., 1711,5 —~ Vi1 > 0. In other words, 1711,5 is too high an estimate of Vi3
when compared to the value of the more precise estimator, Vi;. That information suggests
that \722,5 and Vm,s are also too high (in absolute value) as estimates of V5 and V5. The
adjustments in (27) and (28) reflect the property that, if returns on the two assets are
correlated, then high ex post variance of R;; in the most recent S periods is likely to be
accompanied by high ex post variance of R, and high ex post covariance (in absolute value)
between R;: and Rp;. This statement follows from the properties,

Var = VaI{Rz,t | (Rl,t - 51)2} - 32[(R1,t - E1)2 - Va, (30)
and
Vap = cov{Ryy, R2,t | (Rye — 31)2} — B[(Rye - Ey)* - Vul, (31)
which are implied by the joint normality of R;; and Ry;.!* Note that the relations in (27)
and (28) are direct analogs of (30) and (31).

In the two-asset case, if asset 1 experiences higher ex-post variance during the more recent
S periods than during its longer history, then the combined-sample maximum-likelihood

estimator of the correlation,

) Var
P2 = Gt %
is less (in absolute value) than the truncated-sample estimator,
R Vais
P12,s = —_—(%1‘3‘722,5)1/2. (33)
Specifically, (27) and (28) imply
v -1
Plo = Plas |Plas + E/; ;s(l —Pias)| o (34)

18Let § = Ry, — E1, and observe that, under normality, E{6{62} = 0. Then, by standard rules of variance
decomposition, .
E{var{R2,|6}|6°} + var{E{Rz|6}|6%}
E{Va; — B*V41|6%} + var{E; + Bé|6%}
[Vag — B*V11] + B26?
= Var+ B}8% - V),

var{ Rz |52}

and
cov{Ri1s, R2.|6%} = E{cov{Ris, R2.:6}|6%} + cov{E{R,.|6}, E{R2.|6}16°}
= E{0|6?} + cov{E, + 6, E, + B5|6%}
= (BV; — BVy;) + Bé?
= Vo + B(8% - Viy).

10



so Vu' s=Vi1 >0 <= ﬁ%z, s > P?, (unless p1o s = 0). In other words, the above observations

about variance and covariance also apply to the correlation.

3. Portfolio Analysis with Estimation Risk

3.1. The Bayesian Approach

The sample information observed through time T consists of &7 = {Yj r,Yas, s}, the re-
turns data and the starting period of the short-history assets. Comnsider an investor with a
one-period investment horizon who, after observing this sample, must make an investment
decision at the end of period T'. It is assumed that the investor finds the historical evidence
useful and assesses the characteristics of potential investments in terms of the conditional
distribution p(Rr+1|®r). In the multivariate normal setting, if the historical sample were
infinitely long, or if the investor somehow otherwise knew the true values of £ and V, then
p(Rpy41|®7) would simply be the multivariate normal density with those parameters. In
practice, the sample ®1 contains information that is useful to the investor, but, even af-
ter observing that sample, the investor does not know the true values of F and V. Thus,
part of the risk that the investor rationally perceives arises from parameter uncertainty,
or “estimation risk,” which would be neglected if the investor were simply to view, say, the
maximum-likelihood estimates as if they were the true parameters. Moreover, in the presence

of estimation risk, p(Rr+1|®7) is generally not a multivariate normal density.

As illustrated by Zellner and Chetty (1965), Klein and Bawa (1976), and others, portfolio
opportunities can be assessed in a Bayesian framework, wherein the conditional distribution
p(Rr41|®7) is obtained using standard Bayesian principles. First consider the case in which
s is non-stochastic. Before observing the sample &1, the investor has beliefs about F and V

represented by the prior density p(E, V). The prior density is specified here as
p(E,V) o [V[7F, (35)

which is the standard diffuse prior used to represent “noninformative” beliefs about the
parameters of a multivariate normal distribution.!* The likelihood function in (7) is the
density p(Y1,1, Yas|s, E, V), and the investor uses this likelihood function along with ®7 to
form updated beliefs about £ and V, represented by the posterior density,

p(E,V|®7) < p(E,V)p(Y1i1,Yos|s, E, V). (36)

14Gee, for example, Box and Tiao (1973).

11



When s is stochastic, it is assumed that {, the vector of additional parameters in the

joint distribution of returns and s, is independent of £ and V in the joint prior:

p(E,V,¢) = p(E, V) p(C). (37)

In that case, the product of the prior in (37) and the likelihood in (8) gives the joint posterior
for E, V, and (. Since ¢ appears only in the first factor in (8), integrating that joint posterior
with respect to { gives '

p(E,V|®r) = /< p(E, V,¢|®r)d¢
[ P(B.V,O)p(¥iz, Yos.slE, V. e |

= ([#(OP(sar,Od6 ) P(E V) p(Yr, Vasls, E,V)
& p(E’ V)p(yi,T7Y2,S‘Sa E’ V)a (38)

which is the same posterior for £ and V as in (36).

To obtain the conditional density p(Rr,1|®r), known as the Bayesian “predictive pdf,”
the posterior in (36) is first multiplied by p(Rr41|E, V, @) to obtain

p(Rr+1, B, V|®7) = p(Rr+1|E,V, &7) p(E, V|®1). (39)

Integration of the joint density in (39) with respect to E and V then gives the predictive
pdf, ‘

p(Rrs1l®r) = [ [ p(Rrs1, B, Vi@r)dEaV. (40)
This predictive pdf can be used to determine the portfolio that satisfies a given investment
objective, such as maximizing the expected value of a utility function. The Appendix pro-
vides the predictive pdf for Rr,; that follows from the prior in (35) and the likelihood

function in (7).

3.2. The Mean-Variance Setting

The examples presented in this study are confined to investment objectives involving only the
first and second moments of returns. As is well known, a mean-variance characterization of
investment opportunities is often a somewhat arbitrary simplification. For example, a mean-

variance objective function is not necessarily consistent with expected-utility maximization.!®

15Indeed, except for the case of quadratic utility, a mean-variance objective is likely to provide only
an approximation in this framework. In particular, the predictive distribution p(Rr11|®7), given in the
Appendix, does not appear to belong to the class of elliptical distributions, for which mean-variance analysis
can be given an expected-utility justification (see Ingersoll (1987)).

12



A mean-variance framework is used here simply as a familiar setting in which to illustrate

the essential aspects of investment analysis when assets’ histories differ in length.

These first and second moments of the predictive pdf for Ry,
E = E{RT-HIQT} (41)

and
‘7 = COV{RT_H, Ré"+1l@T}a (42)

are given in the following proposition.!®

Proposition 2. Given the prior density in (35), the likelihood function in (7), and the
sample &1 = {Y11,Ya s, s}, then

~

E=F (43)
and
g _ 1.t / 7 _ ‘/11 ‘/12
V= cov{[ Roe J ,[ 1t Ry ] |<I>'r} = [ Vor Voo ] ) (44)
where T41
- + -
V= (7 ) Vi (45)
- T+1 \ .,
Vis = (7 ) Via (= V), (46)
. T+1 \ an =,
V= S+ (s ) BV B, (47)

< = (5m=s) (14

] T+1 o L
5 [1 + (T———JV_:§) tr (Vi) + (1?1 ~ Ey5) ViTs(Er — El,S)D . (48)

and “tr” denotes the trace operator. Proof: see Appendiz.
Observe from (43) that estimation risk does not affect expected returns, in the sense that

the mean of the predictive pdf is simply the maximume-likelihood estimate of E. Uncertainty
about the true expected returns does contribute to the estimation risk incorporated in the

1$Barry and Brown (1985, pp. 409-410) give moments of the predictive pdf in the case where the true
covariance matrix V is known and the prior for E is diffuse. They state that E then contains the sample
averages of each asset’s return, but such a result would appear to hold only in cases where the histories of
returns on the first IV} assets do not overlap with the histories of the N, assets (contrary to the authors’
notation) or where all elements of Vi, are assumed to equal zero.
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predictive pdf. Estimation risk is reflected in the covariance matrix of the predictive pdf,
in the sense that V exceeds the maximum-likelihood estimator V by a positive-definite
matrix.}” Estimation risk also affects the shape of the predictive pdf, in that p(Rr1|®7)
is not a multivariate normal density, although this effect does not enter the mean-variance

portfolio setting assumed here.

4. Multiple Starting Dates

Although the analyses in the preceding sections allow an arbitrary number of N assets,
each asset’s history is assumed to begin at one of only two possible dates. This section
generalizes those analyses to include a larger number of J starting dates; the empirical
examples presented in the next section includes such a case. Readers who are uninterested
in the details of the methodology can skip to the next section.

For j = 1,...,J, let the vector R;, contain the returns on N, assets in period ¢, and
assume that the overall sample ®r includes S; observations of these returns for periods
T —-S5;+1,...,T. The assets are ordered such that 5; > S, > --- > S, and we assume,
as before, that the first observation of R corresponds to period 1, so Sy = T. The total

number of assets is given by N = ZJJ-zl N;.

Let the vector R[;, contain the returns on the first N = Ny + Ny + --- + N; assets in
period ¢,

Ej],t = [ ’1,t R’2,t R;',t ] , ‘ (49}

for t > T — S;. As in the previous analysis, it is assumed that, for j = 1,...,J, each

observation Ry;; is drawn independently from a multivariate normal distribution with

E{Ry:}=Ey=|". |, (50)

17This follows by using (45) through (47) to obtain

o= ()5 ot 3108 8],

Since k > 1, V —~ V is positive definite if V is positive definite.
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and

Viim Vig - Wy
Var Vag oo Wy
cov {RU],t, Rb]’t} = V(J] = . : .. . 3 (51)
where the moments for the entire set of N assets are denoted by E = Ejj and V = V-
For the most recent S observations, S < S, define
! /
.,i,T—3+1 RP’].T—5+1
R r_ AT
)/j,s = J,T: S+2 y Y[j]ys = (J]:T S+2 , ] e ]_, ey .] (52)
5T ks
Let s = [sg,53,...,5s] denote the vector of starting periods, where s; =T — S; + 1. As

before, s is permitted to be stochastic, where the joint distribution of returns and s depends

on a vector of additional parameters (. It is assumed that, conditional on the returns on

longer-history assets, the distribution of a starting date for shorter-history assets does not

depend on F or V:

p(sj+1lY1,T:" . 7Y_;,Sj1E7 V’C) =p(sj+1|},1,T" : "Yj,SjaC)a ..7 =1,.. "J_ 1,

(53)

The joint prior for F, V, and ( is again assumed to obey the independence property in (37).

Under these assumptions, the results given below continue to apply when s is stochastic, for

reasons that are straightforward extensions of those given for the two-date analysis in the

previous sections.

The likelihood function can be written as

Pp(Yis; i =1,...,d|s, E,V)

j=1 [t=T-5;+1

where, for notational convenience, S;.1 = 0.

A s 1 1/2 1 1
= 11| 1I (W%ll‘/ exp{—g(Rm,z—Em)V[ﬁ (Rm,t—Em)})

, (54)

As before, the analysis is facilitated by a set of regression statistics. A regression of R;,

on Rpj_y):, estimated using the most recent S; observations, produces a coefficient matrix

A _ &
Ci = (X{.5,Xu1.8) " Xij.8,Yss, = [ B } ’
2
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where &j is Nj X 1, BJ' is Nj X (Nl + N2 +-- 4+ Nj—l)a and
X[jlvsj = [ LSJ' Y{j_llvsj :| ) (56)

The disturbance covariance matrix estimated using the fitted residuals is

N 1 A A
2 = 5 (s, = Xij)5,C) (Yis, — Xip,C)- (57)
V)

The matrices 5; and (X{i],stm,sj) are assumed to be nonsingular, which requires that
S; > max(Nj, Nj;_y)). For the Bayesian analysis, it is assumed also that S; > N—Nj_y+2,

so the requirements for S; can be summarized as

S; > max (Nj;_y, N — Njg+2), j=1,...,J (58)

The statistics &;, BJ-, and A\:jj, computed for 7 = 2,...,J, are useful in computing the
maximum-likelihood estimates of E and V as well as the moments of the Bayesian predictive
pdf of Rp,;.

Proposition 3. Given the likelihood function in (54), the mazimum-likelihood estimators -

of E and V are

E:l {:/11 1:/12 N 1{1J
R E. - . Vs V- e Vo
E = .2 and V = ,21 _22 . ?J ) (59)
£, U Vi e Vi
where I
El = E[l] = T 1,‘TLT1 (60)
. R 1 . .
Vin=Vy = T(YI,T —uwrE)' (Yir — v EY), (61)
and, for 7 =2,...,J, :
Ej=a;+ Bij—I]a (62)
-~ -1
Eg=| 7", (63)
7] E
and N R .
Vi Vi Vi . . .
] Vor V. V. Vjj— V-1 B;
V= | T P =] e s (64)
Pl BiVii-n Ej+ B;V;_yB;

Vi Vie -0 Wy
Proof: see Appendiz.
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In addition to the statistics defined above, a set of truncated-sample moments is used in

the computation of the moments of the Bayesian predictive pdf. For j =2,...,J , define
- 1
Ej-1,s, = M&L__mx@ (65)
and )
Vii—s, = mluﬁxcns,mu_ — 5By ys,) (Yious, — s, Efj_ys,) - (66)

Proposition 4. Given the prior density in (35), the likelihood function in (54), and the
sample ®r = {Y;s,,j =1,...,J, s}, then

E = E{Rr,1|®7} = FE (67)
and - - -
Vi Vip - Wiy
~ , Vor Voo -0 Vo
V=cov{Rry, Replory=| . 2 (68)
Vn Vi Vi
where i
- - + .
Vn=Vy = T-N_32 wd\:, (69)
and, for j=2,...,J,
- M\: M\s M\:
- , Var Vo Vs
Vi) = cov{ Ry r+1, Ry paa| @1} = ” ’
L ﬂ\t &w ﬂ\t
I ZE Vij-1B; (10)
| BiVii-y #3555 + BV B;
where
S; 1 ~ 1 -
+ (By-y = Epyon,s,) Viyy s, (Biy-1 — Bjjon.s,) C : (71)

Proof: see Appendiz.

17



5. Example 1: Mean-Variance Efficiency

5.1. The Optimization Problem

Assume that R; denotes the vector of the returns on the N risky assets in excess of the
return on a riskless asset (denoted hereafter as “excess” returns). Let w denote the N-vector
of weights invested in the risky assets, so that the excess return on the investor’s overall

portfolio p in period T + 1 is given by

Ryri1 = w' Ry (72)

The fraction 1 — ¢yw of the overall portfolio is invested in the riskless asset. The investor’s

optimal portfolio w* is assumed to be the solution to

A
m‘f)xx (E{Rp,T+1|‘I)T} - -é- V&I‘{R ,T+1l(I)T}) . (73)

Thus, the optimal portfolio is assumed to be mean-variance efficient. Grauer and Hakansson
(1993) present evidence suggesting that (73) can provide a reasonable approximation to an
expected-utility maximization over short investment horizons.'® The parameter A will be
referred to as the investor’s relative risk aversion, defined with respect to the investor’s utility
of wealth at the end of period 7"+ 1.1°

The solution to (73) is easily verified to be

W= I A, (74)
where . o
(b ay A (75)
and -
A= 7,'~E . (76)
YVy

As is well known, the N-vector v contains the weights in the portfolio of risky assets hav-

ing the maximum Sharpe ratio, the “tangent” portfolio, and A is the ratio of the tangent

18 Although such scenarios arc not cncountered here, Klein and Bawa (1977) observe that, for assets
with short enough histories, so that the estimation risk for those assets essentially becomes very large, an
expected-utility maximizer will, under certain additional conditions, choose to invest nothing in those assets.

190f course, such a characterization is also only an approximation, given a mean-variance approximation
to the expected-utility objective. This point is also discussed by Grauer and Hakansson (1993).
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portfolio’s expected excess return to its variance, or the “price of risk.”?® The overall opti-
mal portfolio is constructed by investing the fraction A/A in the tangent portfolio and the
fraction (1 — A/A) in the riskless asset.

If all N assets have return histories of the same length T, then

~ T+1 ~
V= (7= "

T—-N-2 (77)
which be can obtained using (43)~(47) and then setting S = 7. In that case, x in (48)

simplifies to?!
T+1

TT-N-2
With (77), v in (75) can be rewritten in terms of the maximum-likelihood estimators £ and
v,

(78)

K

vl _yg (79)
NV-IE WV-1E

In other words, when all assets have equal-length histories, allowing for estimation risk does

’Y:

not affect the weights in the tangent portfolio: treating the maximum-likelihood estimates
as the true parameters gives the same weights as using the Bayesian predictive distribution.
This special case corresponds to the setting in Klein and Bawa (1976), who make the same
observation about the irrelevance of estimation risk in computing . As those authors ex-
plain, allowing for estimation risk simply lowers the fraction invested in the tangent portfolio,

since the price of risk in (76) can then be rewritten as

A=

7E=<T——N—2> v E (80)

'V T+1 5! V’y.
In the more general setting, where assets have histories of different lengths, both v and A

are affected by estimation risk, since V is then no longer simply V multiplied by a scalar, as
in (77).

5.2. The Sample

The above optimization problem is illustrated here for an asset universe consisting of U.S.

Treasury-bills, assumed riskless, and three risky index portfolios (N = 3): Standard & Poor’s

20Gee, for example, Ingersoll (1987). A portfolio’s Sharpe ratio is its expected excess return divided by its
standard deviation of return. Technically, v gives the portfolio with the highest absolute Sharpe ratio, and
it is also assumed that (4, V~1E # 0.

'When T = S, then Ey = Ey s and tr(V]’sV11) = N — Na.
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composite index (USA), Morgan Stanley Capital International’s index for Europe, Australia,
and the Far East (EAFE), and the International Finance Corporation’s composite index for
emerging markets (EMERGE). The returns on each index portfolio are computed as monthly
U.S.-Dollar returns in excess of the return on a one-month U.S. Treasury-bill.?? The IFC
emerging-market returns are available beginning in January 1985, whereas the data for the
S&P and EAFE indices are available earlier. The EAFE returns are available beginning
in January 1970, and, in order to simplify this example, that month is selected as the first
observation for returns on the S&P as well, even though returns on the latter index are
obviously available well before that date. Data. for all three series are included here through
December 1995. Thus, in this example, N} = 2 and T = 312, as determined by the sample
period of 1/70-12/95 for the S&P and the EAFE indices, while N; = 1 and S = 132, as
determined by the sample period of 1/85-12/95 for the emerging-markets index.

5.3. Parameter Estimates

Table 1 reports the means, standard deviations, and correlations for the Bayesian predictive
pdf. Maximum-likelihood estimates of those parameters are also reported. As discussed

previously, the means of the predictive pdf are identical to the maximum-likelihood estimates. |
When the truncated sample is used (panel B), the correlations for the predictive pdf are also
identical to the maximume-likelihood estimates, since the variance-covariance matrix of the
predictive pdf is then simply a scalar multiple of the maximum-likelihood estimate, as given
in (77). In that case, the weights in the tangent portfolio v, shown in the last column of
table 1, are the same under the two sets of parameter valués, as noted previously (equation
(79). With the combined sample (panel A), the correlations from the predictive pdf differ
from the maximum-likelihood estimates, so the weights in the tangent portfolio differ as
well. In general, however, we see that the parameters and tangent-portfolio weights from the
Bayesian predictive pdf are quite close to the maximum-likelihood estimates. In other words,
with only three assets, where the shortest history is 132 months, the effects of estimation risk
do not appear to be substantial. In general, as will be illustrated in the example presented in
the next section, estimation risk becomes more important as the number of assets increases

relative to the lengths of the assets’ histories.

This example serves primarily to illustrate the potential effects of including additional
information provided by the longer-history assets. That is, the differences in table 1 between

the combined-sample and truncated-sample results are more substantial than the differences

22The data for this study were obtained from CRSP and Datastream.
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due to estimation risk. Observe that, for the both the USA and EAFE indices, the truncated
period from 1985-95 (panel B) produces higher estimates of mean excess returns than does
the longer 1970-95 period (panel A). Next observe that the same statement holds for the
emerging-markets index (EMERGE), keeping in mind that the data for that index do not
exist before 1985. Incorporating the additional data prior to 1985 results in lower means of
USA and EAFE than obtained with the post-1985 data, and, given the positive association
between EMERGE and those two indices, the pre-1985 data produce a similar revision in
the mean of EMERGE.

The manner by which the pre-1985 data on USA and EAFE supply information about
the expected return for EMERGE follows the earlier discussion (section 2) of the differences
between the combined-sample and truncated-sample maximum-likelihood estimates in equa-
tion (26). Based on the quantities reported in panel B of table 1, it is easily verified that, in
a regression of EMERGE on USA and EAFE, the estimated slope coefficients are

B=[0344 0234]. (81)

Given that, during the 1985-95 period, R2; (EMERGE) exhibits this positive association
with R;; (USA and EAFE), the negative differences between the combined-sample and
truncated-sample estimates for the means of USA and EAFE produce a corresponding neg-

ative difference between the combined-sample and truncated-sample mean for EMERGE,

0.55

By—FBys=—B(Eys— Er)=—[ 0344 0.234 ] [ 071

} = —0.24, (82)

using equation (26).

5.4. Portfolio Implications

Portfolio optimization provides an economic basis for comparing the various methods of
estimating the first and second moments of the return distribution. Figure 1 displays
the minimum-standard-deviation boundaries for portfolios that combine USA, EAFE, and
EMERGE. The higher means for the truncated-sample are evident in the relative positions
of the boundaries for that period. For both the truncated and combined samples, the bound-
aries based on the maximum-likelihood estimates (dashed curve) are close to those based
on the Bayesian predictive pdf (solid curve), which again reflects the relatively minor role

played by estimation risk in this three-asset example.

The last column of table 1 reports the weights in the tangent portfolio v implied by the
various sets of parameter estimates. In the combined sample, the values for v based on the
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Bayesian predictive pdf differ slightly from those based on maximum-likelihood estimates,
but both approaches give portfolio weights of about 30% for USA, 41% for EAFE, and 29%
for EMERGE. As noted earlier, when all return series are of the same length, as in the
truncated sample, then computing v using the Bayesian predictive pdf produces the same
result as using the ML estimates. In the truncated sample, the weights are 53% for USA,
30% for EAFE, and 17% for EMERGE. Thus, an investor who uses the truncated sample
instead of the combined sample would place more weight in USA and less weight in EAFE
and EMERGE.

The tangent portfolio possesses the maximum Sharpe ratio within the universe of invest-
ments considered. Panel A of table 2 reports the value of the maximum Sharpe measure
as computed under the various sets of parameter estimates. The maximum Sharpe ratio is
0.240 (Bayesian) or 0.245 (maximum likelihood) using the truncated-sample estimates, but
the maximum Sharpe ratio is only 0.146 (Bayesian) or 0.148 (maximum likelihood) when
using the combined-sample estimates. Thus, an investor using the truncated sample would
perceive a higher maximum Sharpe ratio than an investor who uses the combined sample.
Suppose, however, that we compute Sharpe ratios for all portfolios from the perspective of
the latter investor, and that investor also accounts for estimation risk (i.e., uses the Bayesian
predictive pdf). Panel B reports the Sharpe ratios perceived by that investor for the tangent
portfolios constructed by investors using other samples or estimation methods. Note that the
portfolio thought to have a Sharpe ratio of 0.245 by an investor using the truncated-sample
MLE’s is instead thought to have a Sharpe ratio of only 0.141 by the combined-sample

Bayesian investor.

With the mean-variance objective function in (73), the optimal portfolio combines in-
vestments in the tangent portfolio and the riskless asset, where, as discussed previously,
the proportion in the tangent portfolio is equal to A/A. (Recall the discussion surrounding
equations (74) to (76).) Panel C of table 2 reports this optimal proportion in the tangent
portfolio, where the tangent portfolio’s composition (v) and price of risk (\) are computed
using the various samples and estimation methods. Results are presented for three values
of A—one, three, and five. Recall from figure 1 that, in this example, the truncated-sample
means are substantially higher than the combined-sample means, whereas the truncated-
sample volatilities are fairly similar to the combined-sample volatilities. As a result, the
optimal proportion in the tangent portfolio is substantially higher when the truncated sam-
ple is used. For example, an investor with A = 5 invests 128% in the tangent portfolio when
using the truncated sample MLE’s, whereas an investor with the same risk aversion who
instead uses the combined-sample Bayesian predictive pdf invests only 72% in the tangent
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portfolio.

The value to the investor of including the pre-1985 data and accounting for estimation
risk can be assessed at time 7 in terms of the objective function in (73). Define the “certainty

equivalent” associated with any given portfolio ¢ as

Co = B{Ryrl®r} — 5 var(Byraaltr). (83)
That is, portfolio ¢ achieves the same value for the objective function as does a portfolio
providing a riskless excess return of C,. If the combined-sample Bayesian investor optimally
chooses portfolio p, then that investor assigns a certainty-equivalent loss of C, — C; to a
suboptimal portfolio q. These certainty-equivalent losses, as perceived by the combined-
sample Bayesian investor, are reported in panel D of table 2, where the suboptimal portfolio

q is constructed using the truncated sample and/or maximum-likelihood estimates.

When the combined sample is used, the certainty-equivalent losses associated with using
the maximum-likelihood estimates instead of the Bayesian predictive pdf are very small, less
than 0.1 basis points per month. These results are consistent with the earlier observations
about the modest role of estimation risk in this three-asset example. Substantially larger -
losses are associated with portfolios constructed using the truncated sample, ranging from 11
basis points per month (A = 5, Bayesian predictive pdf) to over 67 basis points per month
(A = 1, maximum likelihood). Mbreover, when the truncated sample is used, a failure to
account for estimation risk adds nontrivially to the certainty-equivalent losses: the differences
between the Bayesian and MLE losses range from about 2.3 basis points (A = 5) to nearly 12
basis points (A = 1). In this example of mean-variance optimization, truncating the sample
and then ignoring estimation risk results in a portfolio choice that is rather undesirable when

evaluated by an investor who uses the combined sample and accounts for estimation risk.

6. Example 2: Variance Minimization

The previous example illustrates how the the longer histories of some assets can provide
useful information about expected returns on all assets. In that example, the estimated
covariance matrices of returns are fairly similar across the combined and truncated sam-
ples, and, in either sample, estimation risk produces relatively small differences between the
covariance matrix of the predictive pdf and the maximum-likelihood estimate of V. This

section considers an investment problem in which the optimal portfolio depends only on the
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covariance matrix of returns. Moreover, in this example, the estimation risk included in the

covariance matrix of the predictive pdf plays an important role in the investment decision.

6.1. The Optimization Problem

As in the previous example, R, denotes the vector of excess returns on the N risky assets
and w denotes the vector of weights on those assets, so R,r+1 = w'Rry1 again gives the

portfolio’s excess return. In this example, the investor is assumed to solve

min var{ R, r+1|®7}, (84)

s. t. thyw = 1. (85)

The solution to this problem is the minimum-variance portfolio of the N risky assets—the

constraint in (85) excludes the riskless asset from the optimal portfolio. Since

vaI{Rp,THl(DT} = w’f/w, (86)

the solution to the optimization in (84) and (85) is easily verified to be

1 -

wt= ——-V . 87
LQVV_IL N N ( )

Thus, unlike the previous example, in which estimated expected returns play a key role, the

optimal portfolio in (87) involves only the covariance matrix.

 When all N assets have return histories of the same length T, then the resulting simpli-
fication of V in (77) allows the solution in (87) to be rewritten with V replacing V. In other
words, estimation risk does not affect the weights in the minimum-variance portfolio when
all assets have equal-length histories, which corresponds to the same property for the tangent
portfolio observed in the previous section. As also observed there for the tangent portfolio,
estimation risk does affect the composition of the minimum-variance portfolio when assets

have histories of different lengths.

6.2. The Sample

The above variance-minimization problem is illustrated here using a universe of country-
specific index portfolios for 22 emerging markets (N = 22). The returns on each country’s
index are constructed by the International Finance Corporation (IFC) to reflect the portion

24



of the country’s equity market that is accessible to foreign investors.?®> In this example,
the returns data for all 22 of these “investable” country portfolios extend through 12/1995.
All returns are U.S.-Dollar returns in excess of the one-month U.S. Treasury-bill rate. The
first sample month for 10 of the country portfolios is 1/1989; the starting months for the
remaining 12 countries range from 9/1989 to 11/1993. Thus, these emerging-market return
histories range in length from 84 months to 26 months.?* Table 3 lists, for each of the 22

countries, the first month of data and the number of observations.

6.3. Parameter Estimates

Table 3 reports, for each country’s monthly excess return, the standard deviation computed
using five different methods (labeled I through V). Methods I and II use the combined-sample,
wherein the lengths of return histories differ across assets. Each of the standard deviations
from the Bayesian predictive pdf (method I) exceeds the corresponding maximum-likelihood
estimate (method II). The differences, which reflect estimation risk, often run several hundred
basis points or more. In the case of Peru, for example, incorporating estimation risk produces
nearly a two-thirds increase over the maximum-likelihood estimate of standard deviation
(23.4% versus 14.2%). Methods (III) and (IV) use only the most recent 26 months of |
data for each country, so that each country’s return history is truncated to be the same
length as the return histories of China and Zimbabwe. When the investor’s information
about this set of 22 investments is confined to this relatively short period, estimation risk
becomes the dominant source of volatility perceived by the investor. The Bayesian predictive
standard deviations in that case (method III) are 3.7 times the corresponding maximum-
© likelihood estimates (method IV).2> Method V computes, separately for each country, the
univariate maximum-likelihood estimate of standard deviation using the history available for
each country.

Methods II, IV, and V do not incorporate estimation risk, so differences in estimated
volatilities across these methods simply reflect differences in ex post variances (and co-
variances) across the various sample periods. By construction, methods II and V produce
identical estimates for the first 10 countries (Argentina through Thailand), which all have

return histories of 84 months. For the remaining 12 countries, which have shorter return

23See International Finance Corporation (1993).

24A few countries in the IFC universe with even shorter histories were excluded because their inclusion
would have produced violations of (58).

25Recall that, when all assets have histories of length T, the difference between the covariance matrices
from the two methods is given by (77).
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histories, method II produces higher estimated volatilities than method V in all but one case
(Turkey). Similarly, for the 12 shorter-history countries, method II also produces higher
estimates than method IV in all but one case (Taiwan). For the shorter-history assets, the
higher estimates produced by method II reflect information about volatility provided by the
longer-history assets. Many of those longer-history assets experienced less ex post variance
during the more recent years than during the earlier years. This general pattern can be
seen in a comparison of the estimates from methods II and IV for the longer-history assets.
Thus, for many of those assets, the ex post variance of the more recent years is too low an
estimate of true variance when compared to the estimate based on the total period. Given
that the returns on many of the 22 countries exhibit positive correlations with each other
(over periods of common recent history), the ex post variances of the shorter-history assets
are also judged to be t00 low as estimates of the true volatities. This reasoning, which is
necessarily fuzzy with many assets and start dates, follows the more precise argument given

earlier in section 2 for the two-asset case.

The upper-right portion of table 4 displays the correlations ( x 100) based on the combined-
sample Bayesian predictive pdf. The lower-left portion displays, for each pair of countries,
the difference (x 100) between the Bayesian predictive correlation in the top portion and the
bivariate truncated-sample maximum-likelihood estimate computed using the jointly avail-
able history for a given pair (so the length of the joint history is equal to the shorter of the
two countries.) A simple approach to estimating the variance-covariance matrix might be
to combine the latter “available-history” correlation estimates with the variance estimates
based on each country’s available history (reported under method V in table 3). Aside from
other properties of such an approach, one potential problem is that the correlation matrix
estimated in this fashion, and thus the corresponding covariance matrix, can fail to be posi-
tive definite.?® Indeed, that is the case in this example. Thus, this approach is not included
here among those used to construct the minimum-standard-deviation boundary or the global
minimum-variance portfolio.?” The differences between the combined-sample Bayesian pre-
dictive correlations and the available-history correlation estimates are equal to zero for all
pairs from the ten countries (Argentina through Thailand) that have data beginning in 1/89,
the earliest month of the combined sample. Recall from (77) that, for those countries, the
Bayesian predictive covariance matrix is simply a scalar multiple of the maximum-likelihood

estimate of the covariance matrix, and thus the correlations, are indentical under both meth-

Z8This “available-history” estimator of the correlation matrix is essentially that given in (22), generalized
to multiple starting dates.

27If the symmetric matrix A is not positive definite, then the solution to miny, «'Aw s.t. w’c = 1 need not
exist and, in general, is not given by w* = (1// A1) A 1.
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ods. For many of the remaining assets, especially those with the shorter histories, the values
in the lower-left portion of table 4 are negative, indicating that the Bayesian predictive cor-

relation is less than the maximum-likelihood estimate based on the jointly available history.

6.4. Portfolio Implications

The rightmost three columns of table 3 display the weights in the minimum-variance portfo-
lio, where the covariance matrix is estimated using methods I through IV. Methods I and II
both use the combined sample, but the differences in weights between these two methods re-
veal that the estimation risk not incorporated in the maximum-likelihood estimates (method
IT) plays a significant role in computing w* in (87). In this example, the weights based on
the Bayesian predictive pdf (method I) take less extreme values than the weights based on
the maximum-likelihood estimates. The Bayesian weights range from —14% to 45%, with
only one weight exceeding 25% in absolute value, whereas the maximum-likelihood weights
range from —53% to 82%, and 12 of the weights exceed 25% in absolute value. Estimation
risk does not affect the weights computed using the truncated sample (methods III and IV).
In that case, the Bayesian predictive covariance matrix is simply a scalar multiple of the
maximum-likelihood estimate, as explained previously, and the solution in (87) is unaffected
by a scalar multiplication of V. The weights produced here by methods III and IV also
take more extreme values than those in method I. In this example, those truncated-sample

weights happen to resemble fairly closely the weights produced by method II.

Table 5 reports the global minimum standard deviation computed using the various
methods. For each method, the standard deviation is computed two ways. The first, shown
in panel A, computes the minimum standard deviation using the covariance matrix obtained
under the given method. For example, suppose the combined-sample maximum-likelihood
estimator V is used (in place of V) to compute the minimum-variance portfolio (87), and
the vector of resulting weights is denoted & (given earlier in table 3). Then ('V&)'/2 equals

2.31%, as reported in the second column of panel A.

Each value in panel A of table 5 corresponds to the leftmost point on the minimum-
standard-deviation boundary constructed with the moments obtained by the given method.
These boundaries are displayed in figure 2.2 When maximum-likelihood estimators are used,

the boundary based on the combined sample (II) lies close to that based on the truncated

28Note that, although estimated expected returns are not used elsewhere in this example, they are used
here to plot the boundaries.
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sample (IV), but the leftmost points of both boundaries lie at least 150 basis points to the
left of the minimum standard deviation of 3.8% for the combined-sample Bayesian predictive
pdf (I). Thus, in this example, estimation risk has a larger effect on volatility than does the
inclusion of the additional data in the combined sample. When only the truncated sample
is used and estimation risk is incorporated, then the resulting minimum-standard-deviation
boundary (III) lies quite far to the right, with a global minimum standard deviation of
about 7.5% per month. Unlike the minimum-standard deviation boundaries computed in
the previous example (figure 1), the vertical locations of all four boundaries in this example
are similar. In other words, whereas the first example served principally to illustrate how
perceived portfolio opportunities can be affected by differences across methods in estimating
expected returns, such differences exert less influence on the opportunity sets constructed in

this example.

Panel B of table 5 displays the standard deviations of the same portfolios constructed for
panel A, but the standard deviation of each portfolio is now computed from the perspective
of the combined-sample Bayesian investor. If, for example, & still denotes the vector of
weights obtained when V is used in (87), then the value in the second column of panel
B, 6.09%, is equal to (&'V@)Y/2. The results in panel B again reveal the dominant role
of estimation risk in this example. To the combined-sample Bayesian investor, the global
minimum standard deviation is less than 4 percent, but the portfolios constructed using
the other three methods have standard deviations between 6 and 7 percent. This second
example differs in many respects from the first but reaches a similar overall conclusion: the
portfolios constructed by the other methods are viewed as substantially suboptimal by an

investor who uses the combined sample and incorporates estimation risk.

7. Performance in Repeated Samples

The examples in the previous two sections illustrate the conditional Bayesian decision ap-
proach, wherein the predictive pdf of returns, and thus the investor’s portfolio decision, are
conditioned on the single observed sample. As demonstrated in the examples, the predictive
pdf can be used by the conditional Bayesian investor to assess the relative merits of various
alternative portfolios, such as portfolios formed by methods that truncate the sample or

ignore estimation risk.

Another approach to comparing portfolios formed by various methods is to view each

method’s portfolio selection as a function of the sample and then to compare the perfor-
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mances of the methods across repeated random samples. In that approach, the typical
performance of each method across repeated samples is computed based on one or more
assumed true sets of return moments, a computation that essentially yields the frequentist
“risk” function.?® In practice, the true moments of returns are unknown, and an investor
engaged in asset allocation might observe only one sample per lifetime (although that sam-
ple would get updated). Nevertheless, studies of portfolio-selection methods often report
repeated-sample comparisons, and such an analysis is included here in order to provide a

broader perspective on the proposed methodology.3°

This section reports two repeated-sample experiments, each corresponding to one of
the two examples presented earlier. In each experiment, the starting periods (s) for the
shorter-history assets are held constant across the randomly generated samples. In the first
experiment, excess returns for three risky assets are generated by a multivariate normal
distribution whose moments are set equal to the combined-sample maximum-likelihood es-
timates reported in table 1. Each generated hypothetical sample of monthly returns has the
property that, as in the actual sample in example 1, the first two assets have 312 observa-
tions (corresponding to the period 1/70-12/95 for USA and EAFE), whereas the third asset
has only 132 monthly observations (corresponding to the period 1/70-12/95 for EMERGE).
For each generated sample, the weights in the optimal portfolio are computed under each
of the four methods analyzed previously (cf. table 2), but the certainty equivalent for each
portfolio is computed based on the assumed true F and V used in generating the returns.
For example, let w* denote the weights in the optimal combined-sample Bayesian portfolio
p, which is the solution to (73) where ®r denotes the generated sample. Then, rather than
using the predictive pdf to compute the certainty equivalent for w*, as in (83), the certainty

equivalent excess return is instead computed as

A
Cp = E{Ry:} - gvar{RW}
= Ww'E- gw"'Vw', (88)

where E and V denote the assumed true moments. In this experiment, relative risk aversion
(A) is set equal to 3. These calculations are repeated in each of 5000 independently generated

samples.

2Let w(P) denote a portfolio decision rule, a function of the sample &, and let L(6,w(®)) denote the
loss associated with a given sample ® and given parameter vector . The portfolio rule’s risk function r(8),
defined on the parameter space 6, is given by 7(8) = E{L(4,w(®))}, where the expectation is taken with
respect to the distribution of ®, given 6. Berger (1985) compares approaches based on frequentist risk to
those based on conditional Bayesian decision principles.

30Previous studies that investigate the frequentist risk of various portfolio-selection methods include Brown
(1979), Jorion (1986), and Frost and Savarino (1986).
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The results of the first experiment are summarized in table 6. Panel A reports, for each
of the four methods, the certainty-equivalent loss relative the optimal portfolio constructed
using the true £ and V. These results indicate, in a sense, the extent to which an investor
loses by not knowing the true £ and V. We see that, although such losses are fairly sub-
stantial across all methods, the combined-sample Bayesian method typically produces the
smallest losses. The mean loss for that approach is about 24 basis points (bp) per month,
and mean losses for the other methods range up to about 44 bp, for the truncated-sample
maximum-likelihood method. In panel B, the certainty-equivalent loss is computed relative
to the combined-sample Bayesian portfolio. That is, the loss is the certainty equivalent for
that portfolio minus the certainty equivalent for the portfolio based on one of the other
three methods, where the certainty equivalents for both portfolios are computed as in (88),
again using the true E' and V. The mean loss for the combined-sample maximum-likelihood
method is less than 2 bp, but the two truncated-sample methods have mean losses of 15.5
bp (Bayesian) and 19.4 bp (maximum likelihood). Thus, as observed previously for the pre-
dictive pdf based on the actual data, ignoring estimation risk in this example is not as costly
as truncating the sample. In fact, the mean losses reported in panel B, which are based
on certainty equivalents computed with the assumed true moments, are quite similar to the
certainty-equivalent losses reported in panel D of table 2, which are based on the Bayesian

predictive pdf for the actual sample.

The second experiment corresponds to the variance-minimization in example 2. Returns
are generated on 22 assets, and the lengths of histories for the assets are the same as those of
the emerging-market country indices in that example. As in the first experiment, 5000 inde-
pendent samples are generated from a multivariate normal distribution, and the true £ and
V for the 22 assets are assumed to be equal to the combined-sample maximum-likelihood es-
timates for the actual data. For each generated sample, the weights in the minimum-variance
portfolio are computed using the various methods, and then the standard deviations of the
portfolios are computed using the assumed true covariance matrix V. Panel A of table 7
reports the differences between these standard deviations and the true minimum standard de-
viation. The combined-sample Bayesian portfolio has a standard deviation that, on average,
exceeds the true minimum standard deviation by 2.91%. In contrast, the combined-sample
maximum-likelihood portfolio’s standard deviation exceeds the true minimum by 4.23%, and
the corresponding difference for the truncated-sample portfolio is 3.77%. (Recall that, for
the truncated sample, the Bayesian and maximum-likelihood weights are identical.) Panel B
of table 7 reports the difference between the standard deviation of the portfolio constructed
by the indicated method minus the standard deviation of the combined-sample Bayesian
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portfolio, where both standard deviations are based on the assumed true covariance matrix
V. The mean differences are 1.31% for the combined-sample maximum-likelihood portfolio
and 0.86% for the truncated-sample methods. Thus, as observed previously for the predictive
pdf based on the actual data, failure to account for estimation risk, even when the combined

sample is used, results in a substantially higher volatility.

8. Concluding Remarks

When some assets have shorter return histories than others, it is neither necessary nor
desirable to truncate the sample so that the lengths of all return series are determined by
the length of the shortest series. In general, the data in a longer-history asset can provide
information about the parameters of that asset’s returns as well as the parameters of other
assets’ returns. This point is illustrated here in the context of an i.i.d. multivariate Normal
model, but it is likely that the same concept can be demonstrated in other stochastic settings,

such as where conditional first or second moments fluctuate through time.

The basic factorization approach exploited here in deriving closed-form analytic results
(see Appendix) requires that the time periods covered by the various series can be arranged as
nested subsets.3! When this nesting property fails, such as when one series has both an early
starting date and an early ending date, then the return moments can be obtained numer-
ically using data-augmentation methods, such as the E-M algorithm (to obtain maximum-
likelihood estimates) or the Gibbs sampler (to obtain the Bayesian predictive pdf).*? With
more complicated stochastic settings, analytical results could be difficult to obtain at all,
whether or not the series are nested, and these numerical approaches could then be useful

in general.

The concept of using the combined (non-truncated) sample could also be extended to
the problem of making inferences about a pricing model or a given portfolio’s mean-variance
efficiency. In a frequentist setting, the likelihood function employed here could also be used
to construct a likelihood-ratio test (LRT) of the efficiency of a given portfolio, where the
parameter restrictions are the same as those investigated in previous studies. For example,
Gibbons, Ross, and Shanken (1989) derive the finite-sample distribution of the LRT statistic
when all assets have equal-length histories; the finite-sample behavior of the LRT in the case

31Gee Little and Rubin (1987) for a deeper discussion of maximum-likelihood estimation in this case, where
those authors use the term “monotone data” to denote the nested-subset property.
32Gee Tanner (1993), for example, for a discussion of such methods.
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of unequal-length histories presents a topic for future research.

Although the analysis and examples presented here rely on the diffuse prior distribution
for E and V in (35), an extension to an informative natural-conjugate prior distribution is
straightforward. A natural-conjugate prior for F and V can be interpreted as the posterior
distribution obtained by updating the diffuse prior using Ty hypothetical observations of R;.
Those hypothetical observations produce sample moments £ and V, where Ty, £, and V are
the parameters to be specified in the prior. The posterior distribution obtained by combining
this natural-conjugate prior with the actual data is the same as the posterior distribution
obtained by combining the diffuse prior with a sample that appends the hypothetical Ty
observations to the actual data. In other words, the actual data, where the IV asset histories
can have unequal lengths, is augmented by an additional set of NV histories of equal length
To. The relevant first and second sample moments from this new combined sample can be
computed from the moments of the actual and hypothetical data. In the case of two start
dates, for example, E; is simply replaced by a weighted average of E; and Ej, where the
respective weights are T/ (T + Tp) and Tp/(T + Tp). Similarly, Es is replaced by a weighted
average of Eg and E, where the weights are S/(S + Tp) and To/(S + Tp).

In a Bayesian setting, the posterior distribution of the parameters of the return distri-
bution (given in the Appendix) could be used to obtain the posterior distribution of a given
portfolio’s degfee of mean-variance inefficiency. Studies by Shanken (1987), Harvey and
Zhou (1990), and Kandel, McCulloch, and Stambaugh (1995) investigate this problem in
samples where all assets have histories of equal length. When one selects ex ante a portfolio
whose degree of inefficiency is of particular interest, then the diffuse prior should probably
be replaced by an informative prior constructed with attention given to the implied prior
beliefs about the degree of inefficiency in the selected portfolio. Otherwise, as demonstrated
by Kandel, McCulloch, and Stambaugh (1995), the implied prior beliefs about any given
portfolio are concentrated toward gross inefficiency, such that a very large sample is required

in order to infer that any portfolio is close to being efficient.

33The expressions for the second moments, as well as extensions to multiple starting dates, are more
complicated, but they involve only the statistics from the actual data required in the diffuse-prior analysis
and the parameters Ty, F, and V.
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APPENDIX

This appendix derives the Bayesian predictive pdf of Rr,; as well as the first and second
moments of that distribution. Proofs are given for the general setting with J starting dates
(proposition 4); the result for two starting dates follows directly as a special case (proposition
2). Also included is a summary of Anderson’s (1957) method for computing maximum-
likelihood estimates (proposition 1), which is straightforward to generalize to the setting
with multiple starting dates (proposition 3). The change of variables employed in that

method also facilitates the the derivation of the Bayesian results.

For j = 2,...,J, define the change of variables

B[V Vi Vi [V A
a; = Ej = B;Ejjy (A.2)

and
% = Vi — BiVi-yB; . - (A.3)

Let 8 denote the vector of original parameters in E and V, and let £ denote the vector of
parameters in £y, Vi1 and {¢;, B;,Z;;5 = 2,...,J}. The vectors 6 and € have equal numbers

of elements, and the Jacobian of the transformation is given by

o6
‘55 = [Vu|" V™ - - Vg™
- |‘/11|NJ+NJ—1+"'+N2|$2IN_]+N_]_1+"'+N3 . IEJ—2INJ+NJ._1 IZJ—IINJ
— |V11IN—N1 |22|N—N[2] . 1EJ_2IN—N”'2"EJ-ﬂN—NU—l}, (A.4)

which can be verified using equations (A.1) through (A.3) and the relation

Vil = V-l Vi — B;jV—yBjl
= |Vj-yl IZ], (A.5)

for j = 2,...,J, where the first equality in (A.5) uses (51) and (A.1) and applies a standard
result for the determinant of a partitioned matrix (e.g., Anderson (1984, theorem A.3.2)),

and the second equality uses (A.3). The relation in (A.5) can also be used to write

V] =1Vl |Z] -~ |24l (A.6)
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Using (A.4) and (A.6), the prior for 8 in (35) is translated into a prior for £ given by

0f
= p(f)|—
p(§) = p(f) 65'
o VT VM ”1|22|N Nt By |V Mo-a| T,y VN
= Vil T g ov-are (A7)

=2

Following Anderson (1957), the change of variables in (A.1) through (A.3) allows the
likelihood function in (54) to be rewritten as

p(Yj,Sjaj = 17 ceey J|S,§)

J
- p(}ll,Tlf) H p(yj’sf |YU_1]’S.'i—1’ S5 6)
7=2
J
= p(K,T'El, ‘/11) H p(Y},sj IYU—I],S_,-,SJ', a;, BJ, E])
=2
_'—“'1 -3 1 r\ Iy r—1
= (2 )N1/2 IVlll 2 exp {—'2"(21' (Yl,T - LTEI) (YI,T - LTEI)V11 } X
J B 1 , )
I_I2 271— N; /2'23 | _il exp {—itr (YJS Xm,sjcj) (}G,Sj — X[j],S,-'Cj)Ej 1} : (A.S)
J:

where
q:[g%]. | | (A.9)
J
Standard results for the multivariate normal model imply that maximizing the first factor
in (A.8) with respect to £y and Vj; gives the solutions in (60) and (61). Similarly, standard
results for the normal multivariate regression model imply that, for j = 2, ..., J, maximizing
the j* factor in (A.8) with respect to C; and T; gives the solutions in (55) and (57).

Reversing the change of variables in (A.1) through (A.3) then gives the maximum-likelihood
estimators in (62) through (64).

Both the prior in (A.7) and the likelihood function in (A.8) are expressed as products of
J factors, where any given element of £ appears in only one factor. Therefore, the posterior
distribution for £ exhibits a similar property:

pl®r) < p(E)p(Yis;,d=1,...,J]s,§)

J
15,8 p(Ela ‘/11|Y1,T) H P(Cj, Z:_7'|Y_j,$'js Y[_7'—1],Sj7 Sj)! (A]'O)
=2
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where

Ly+Ny+1 1 s _
PELVilYir) o Val 5 exp {—tr ir — B (Vi - r DV}, (A1)

p(C;, Z1Y.s,, Yii-11.s,» 55)
Li4+N;+1

Y 1 , _
< BT exP{_itr(Yf,Sj - Xi,5,C5) (Y',s,»—Xm,stj)Zjl}’
j=2...,J (A12)

and
Li=S8;—N+2Ny—-N;, j=1,...,J. (A.13)

A useful property of the factorization in (A.10) is that each of the posterior distributions
in (A.11) and (A.12) is easily analyzed in a standard setting. For example, it is straightfor-
ward to verify that, for j = 2,...,J, (A.12) can be rewritten as

p(Cj’ Ejlyj,sj’ YU—l],Sj ’ SJ')
Li+N;+1

i+ 1 2\t A -
5T exp {—otr Qs + (G5~ G 4(Cy — GIS ) (A19)

where

. Aj = X[ij],SjX[.’i],sj (A15)

and

The right-hand side of (A.14) is identical to the posterior distribution for C; and L; in the
standard multivariate regression model where a sample of length L; generates (i) a matrix
of cross-products of the independent variables equal to A;, (ii) a matrix of least-squares
coefficient estimates equal to C;, and (iii) a matrix of cross-products of fitted residuals equal
to Q;.3% Therefore, known results for that standard model imply that the predictive pdf for

R; 141, conditional on Ryj_1)r+1, is a multivariate Student ¢ density:3®

35See Zellner (1971), pp. 224-227. The diffuse prior used in that standard model is

N;i+1
p(C,E;) < |57 77,
whereas, from (A.7), the marginal prior on those parameters is

N=2N1+1
p(C, ;) ox IEjI—fm_.
36See Zellner (1971), pp. 233-236.
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P(Rjr41|Rj-1,7+1, 1)
= p(Rjr+1|R-11+1,Yjs;, Yi-1.s,))
< [v; + (Rjr+1 — Bir1) Gi(Rirar — 1)) MiH)2 0 (A1T)

where
BT+ = é}$m,r+1, (A.18)
Gj = (1 = oy 741 (Aj + 2y r1 2] re1) T T )VQ5 . (A.19)
m/[j],T+1 =1 Rfj-l],TH], (A.20)
and

vi = Lj= Ny - N;
= Sj—N+NU_1]. (A.21)

The first two moments of the above conditional distribution are given by properties of the

multivariate ¢ distribution:3”

E{R;r+1|Ry-y7+1, 27} = fjr+1

= &;+ BjRj_yrm (A.22)
and
’ vy -
cov{R;r+1, Rjri1lRy-yre, @1} = ;._i——g_cjl
J
Sj 1 -
= = j ; (A.23
Vj_2(1+sj[1+uj])23, ( )
where
% = (Rg-1141 — Eu_llrsj)’f/[;—ll],sj(RU—I],T+1 - Eu—l],sj)- (A.24)

Similarly, the posterior for E) and V;; in (A.11) can be rewritten as
L1+N; 1 - “
p(Er, VulYir) « |[Vnl” T exp{—itr (@1 — (B1 — Ey) A1 (B — El)']Vﬁl}(A-%)

where

A =T (A.26)

37See Zellner (1971), pp. 331-332 and page 383.
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and

Q1 =TV (A.27)
As in the previous case, the posterior in (A.25) is identical to that obtained in the standard
multivariate regression model in which a sample of length L, generates (i) a matrix of cross-
products of the independent variables equal to A;, (ii) a matrix of least-squares coefficient
estimates equal to E’{, and (iii) a matrix of cross-products of fitted residuals equal to Q;.%8

Therefore, following the same analysis as before, we obtain

P(Ry141|®r) (11 + (Ri741 — E1)'Gi(Rir1 — By)]~N1+)/2, (A.28)
where
Gi=[1-(T+1)"nQr’, (A.29)
v = L1 - Nl, (A30)
and the first two moments of this predictive distribution are given by
E, =E{Rirn|®r} = £ (A.31)
and
- , v _
Vi1 = cov{Ri 141, Rl,T+1|‘I>T} = " i 2 11
T+1 -

The predictive pdf for Rr,, can be factored as

J
P(Rr1|®1) = p(Ry711|®7) [ P(Rjr41|Rij—1) 741, D7), (A.33)

=2
so this density can be obtained simply by multiplying the densities in (A.17) and (A.28).%°
This joint density’s first and second moments can be obtained progressively. At each step

381n this case, there is only one independent variable, and that variable does not involve Rj; for j > 1.
The diffuse prior used in the standard model is

Ny+1
P(Er, V1) o [Vu|7 77,
whereas, from (A.7), the marginal prior on those parameters is

p(E1, V1) x |V11|N—25N =

39The product of the normalizing constants is equal to

VP[0 + N )/2IGHM2 oy (v T (v + Ny /201G, 1M
aN/20 (v, /2) ; wNi/2 (v, /2)

o
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J, for j = 2,...,J, the moments of R;r+; in (A.22) and (A.23), which are conditioned on
Ryj_1),r4+1 as well as r, are combined with the moments of Rj;j_17+1 that are conditioned
only on ®7. In the first step, where j = 2, the moments of R; 1., conditioned on ®r are
given in (A.31) and (A.32). Applying this approach to obtain E',-, the mean of R, 14, gives

E{R;r1|®r} = E{E[R;141|R}j—17+1, P7]|®7}
= E{&; + BjRU—l],T+llq>T}
= G;+ BjE[j—l]- (A.34)

Applying (A.34) progressively for j = 2, ..., J and making use of (60), (62), (63), and (A.31)
establishes (67). The same analysis gives

Ey = E{Ryral®r} = Ey, j=1,...,J (A.35)

Computing the variance-covariance matrix of R, r;; relies on the variance-decomposition

rule,

Vi = cov{R;r1, R;,T+1|¢T}
= EB{cov[Rjr+1, Rjri1|Ri—1 141, Br)|Pr}
+ cov{E[R; 741 Rj-1,r+1, 1), E[Rj111| R 741, 1) | O} (A.36)

From (A.23), computing the first term on the right-hand side of (A.36) requires the expec-

tation of u;, which can be rewritten as

u = Vilys,(Ri-nre — Byen)(Ry-yra — By
+ 2 (Ey-y) — Ey-n,5,) Vi s, Ri-1.001
+ Ejj_ys, Vu__ll],sjELi—lLSj - Efj-uvb'—-lu,s,»Eb‘—l]’ (A.37)

and, using (A.35) and the definition of VU_I} in (70),

E{u|®r} = tr(Vlys,Vi-u) + 2 (Byoy — Eyoys,) Vi s, Eimy
+ Efns,Vitn s, Bo-ns, — EjogVitys, Eu-n
= tr (Vs Vi-1) |
+ (B — Eyon,s;) Vitys, (Buon — Ejoys,). (A.38)

Therefore, combining (A.23), (A.21), and (A.38) gives

E{cov[R;jr+1, Rjry1|Ry—1) 741, B1)|®r} = £;%;, (A.39)

J
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where «; is defined in (71). From (A.22), the second term on the right-hand side of (A.36)

is equal to

coV{E[R; 41| Rjj—1), 41, B1], E[Rj711|R}j1) 141, Pr)| D1}
= cov{B;R; 111, RY;_y 141 B ®1)
Combining (A.36), (A.39), and (A.40) gives
V= w85+ BV B, j=2,...,J (A.41)

The covariance between R;74; and Rjj_1),7+1 is computed as

cov{Rjj-1r+1, Rir1|®r} = cov{Rj_y1s1, B[Rjrs1|Rj—1 141, Or]'| @1}
= COV{RU—ILTH’ R’Lj—l],T+1B;'|‘1)T}
VieyBj, 5=2,...,/, (A.42)

Il

using (A.22). Finally, combining (A.41) and (A.42) gives the result in (70).
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Table 1
Parameter Estimates and Tangent-Portfolio Weights

The three return series are for (i) Standard & Poor’s composite index (USA), (ii) Mor-
gan Stanley Capital International’s index for Europe, Australia, and the Far East (EAFE),
and (iii) the International Finance Corporation’s composite index for emerging markets
(EMERGE). All returns are monthly U.S.-Dollar returns in excess of the one-month T-bill
rate. The combined sample (panel A) consists of monthly returns from 1/1970-12/1995 for
USA and EAFE and from 1/1985-12/1995 for EMERGE. The truncated sample (panel B)
consists of monthly returns from 1/1985-12/1995 for USA, EAFE, and EMERGE.

Standard Correlations Tangent
Index Mean Deviation EAFE EMERGE Portfolio

A. Combined Sample
Bayesian Predictive Pdf

USA 0.48 4.47 0.480 0.314 0.301

EAFE 0.59 5.04 0.286 0.413

EMERGE (.71 6.70 0.286
Maximum Likelihood

USA 0.48 4.43 0.480 0.318 0.297

EAFE 0.59 4.99 0.290 0.410

EMERGE 0.71 6.56 0.293

B. Truncated Sample
Bayesian Predictive Pdf

USA 0.89 4.35 0.429 0.306 0.528

EAFE 1.02 5.56 0.290 0.303

EMERGE 0.95 6.71 0.169
Maximum Likelihood

USA 0.89 4.25 0.429 0.306 0.528

EAFE 1.02 5.43 0.290 0.303

EMERGE 0.95 6.55 0.169
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Table 2

Combination of Tangent Portfolio and Riskless Asset

The three return series are for (i) Standard & Poor’s composite index (USA), (ii) Mor-
gan Stanley Capital International’s index for Europe, Australia, and the Far East (EAFE),
and (iii) the International Finance Corporation’s composite index for emerging markets
(EMERGE). All returns are monthly U.S.-Dollar returns in excess of the one-month T-bill
rate. The “combined sample” consists of monthly returns from 1/1970-12/1995 for USA and
EAFE and from 1/1985-12/1995 for EMERGE. The “truncated sample” consists of monthly
returns from 1/1985-12/1995 for USA, EAFE, and EMERGE. The parameter A denotes the
investor’s (approximate) coefficient of relative risk aversion.

Combined Sample Truncated Sample

Bayesian Maximum Bayesian Maximum
Pred. Pdf Likelihood Pred. Pdf Likelihood

A. Mazimum Sharpe ratio computed using the sample and
method as indicated:
.146 .148 .240

B. Sharpe ratio of the tangent portfolio, where the Sharpe
ratio is computed using the combined sample and the
Bayesian predictive pdf, but the tangent portfolio is
constructed using the sample and method as indicated:

.146 .146 141

C. Tangent portfolio proportion (%) in the overall port-
folio using the sample and method as indicated:

A=1 361 369 610
A=3 120 123 203
A=5 72 74 122

D. Monthly certainty-equivalent loss (basis points) asso-
ciated with the overall portfolio, where the loss is com-
puted using the combined sample and Bayesian predic-
tive pdf, but the overall portfolio is constructed using
the sample and method as indicated:

A=1 0 0.08 55.82
A=3 0 0.03 18.61
A=5 0 0.01 11.17

245

141

639
213
128

67.55
22.52
13.51
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Table 3

Estimated Standard Deviations and Weights in the Minimum-Variance
Portfolio for 22 Emerging Markets

The samples and estimation methods are denoted as follows;

I Combined sample (1/89-12/95), Bayesian predictive pdf.
II Combined sample (1/89-12/95), maximum likelihood
III Truncated sample (11/93-12/95), Bayesian predictive pdf.
IV Truncated sample (11/93-12/95), maximum likelihood
V Single-series samples (using the data available for each series), maximum likelihood
The data consist of monthly returns on each country’s “investable” equity portfolio, as

constructed by the International Finance Corporation. All returns are U.S.-Dollar returns
in excess of the one-month U.S. Treasury-bill rate.

Standard Deviation Minimum-Variance

First  No. (% per month) Weights (x100)
Country Month Obs. I. II I  Iiv \Y I 1T III&IV
Argentina~  1/89 84 348 29.2 389 106 29.2 0 2 5
Brazil - 1/89 84 275 23.1 489 133 231 6 26 21
Chile 1/89 84" 93 78 294 80 78 13 4 -16
Greece 1/89 84 156 131 204 55 131 -5 -23 -32
Jordan 1/89 84 67 56 145 39 56 45 68 69
Malaysia 1/89 84 89 75 339 92 75 24 - 66 66
Mexico 1/89 84 123 104 477 13.0 104 8 18 13
Philippines  1/89 84 128 108 39.0 10.6 10.8 18 82 67
Portugal 1/89 84 83 70 190 52 70 21 17 25
Thailand 1/89 84 108 9.1 332 9.0 9.1 -10  -42 -56
Turkey 9/89 76 23.8 195 59.8 16.3 19.8 0 -1 3
Venezuela 2/90 71 252 200 59.2 16.1 19.6 4 14 10
Indonesia 10/90 63 13.8 11.2 31.7 86 9.6 -11 -21 -2
Taiwan 2/91 59 152 11.7 444 121 111 -6 -35 -32
Colombia 3/91 58 16.6 127 31.8 87 114 14 46 50
Pakistan 4/91 a7 16.1 11.8 36.5 99 11.6 -4 -16 -16
Korea 2/92 47 125 85 227 62 7.2 22 73 72
India 12/92 37 16.0 11.2 30.0 82 8.1 -14  -53 -44
Peru 10/93 27 234 142 440 120 11.9 -10  -41 -34
Sri Lanka  10/93 27 269 199 352 96 98 4 15 4
China 11/93 26 213 149 386 105 105 -8 -42 -33
Zimbabwe 11/93 26 252 190 341 93 93 -10  -49 -38
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Table 4
Correlations Among 22 Emerging Markets

The upper right portion gives correlations (x 100) based on the combined-sample Bayesian predictive distribution. The lower left portion gives those
values minus the maximum-likelihood estimates based on the jointly available history for a given pair (so the length of the joint history is equal to
that of the shorter of the two countries). The data consist of monthly returns on each country’s “investable” equity portfolio, as constructed by the
International Finance Corporation. All returns are U.S.-Dollar returns in excess of the one-month U.S. Treasury-bill rate. The “combined sample” uses
all available returns through 12/95, where the data for 10 countries begin in.1/89 but the data for 11 other countries begin at various later dates.

: Arg Bra Chi Gre Jor Mal Mex Phi Prt Tha Tur Ven Ido Tai Col Pak Kor Ind Per Sri Cin Zim
Argentina -11 05 12 -17 -4 32 7 15 13 6 7 -34 6 -6 13 6 13 11 66 28 -8

Brazil 24 28 -6 3 20 13 27 4 9 9 33 2 3B -7 -29 36 11 -5 -10 13
Chile 10 6 16 20 23 16 28 -5 ~-15 23 16 -5 5 1 26 19 -1 -12 -18
Greece 9 5 3 17 46 13 36 10 40 27 38 -3 0 58 -6 18 16 -31
Jordan 16 -3 5 -1 15 10 1 27 4 1 18 5 -4 22 -21 3 4

Malaysia 29 52 21 64 22 -10 4 35 -5 21 6 6 2 -10 42 3

Mexico 29 5 30 -4 -1 14 14 3 19 17 12 26 20 27 11
Philippines 19 56 1 -8 54 49 24 26 -20 15 14 -13 16 21
Portugal ) 17 23 -2 35 22 16 4 -13 34 -18 0 17 -13
Thailand 17 -9 42 36 5 24 ) 14 -1 3 5 -28
Turkey 2 -3 -1 -4 0 -3 1 0 3 -2 6 24 15 2 4 16 30 -12 19 30 -24
Venezuela 14 -4 0 3 0 1 4 1 3 2 4 -16  -14 27 0 33 15 17 45 20 39
Indonesia -26 16 -3 8 11 -2 1 0 3 -8 -3 -18 39 26 4 -11 33 -156 -29 22 -7
Taiwan -7 15 0 8 3 -6 -1 1 6 -5 2 15 0 17 5 8 9 15 -18 0 -13
Colombia -6 15 4 23 0 -9 1 3 3 -3 -3 -7 6 6 31 -2 53 -10 35 22 39
Pakistan 7 8 -5 -3 o -3 -1 1 1 -3 -3 T -1 4 -8 1 2r 4 31 21 -3

Korea 3 27 -17 3 -2 -1 17 22 -5 -13 0 3 -16 -15 -5 -9 4 20 31 39 7

India 5 5 -30 37 -18 -12 -18 A4 o -1 1% -3 -2 4 23 -8 -18 -41 37 32 -10
Peru -8 -14 -34 -19 -3 -28 -47 -27 42 -39 8 -3 -36 -9 -20 -~17 -18 -50 4 -17 10
Sri Lanka 53 -22 43 &5 -22 -24 22 -27 -12 -14 4 1 48 -33 -6 -11 -6 -23 -24 43 8

China 12 -14 -49 10 -7 -54 -20 -56 5 -28 0 2 46 -57 25 -15 2 -5 -36 23 -6

Zimbabwe -19 0 -33 -26 -10 -10 -19 -1 -11 -33 9 7 -10 -5 10 -18 10 -10 -29 -25 -10
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Table 5

Minimum Standard Deviation of a Portfolio
Combining 22 Emerging Markets

The data consist of monthly returns on each country’s “investable” equity portfolio, as
constructed by the International Finance Corporation. All returns are U.S.-Dollar returns
in excess of the one-month U.S. Treasury-bill rate. The “combined sample” uses all available
returns through 12/95, where the data for 10 countries begin in 1/89 but the data for 11
other countries begin at various later dates. The “truncated sample” consists of monthly
returns on all 22 countries for the 26-month period from 11/93 through 12/95.

Combined Sample Truncated Sample
Bayesian Maximum Bayesian Maximum
Pred. Pdf Likelihood Pred. Pdf Likelihood

A. Minimum monthly standard deviation (%) computed using the sam-
ple and method as indicated:

3.80 2.31 7.48 2.04

B. Monthly standard deviation (%) of the minimum-variance portfolio,
where the standard deviation is computed using the combined sample
and the Bayesian predictive pdf., but the weights in the minimum-
variance portfolio are constructed using the sample and method as
indicated:

3.80 6.09 6.63 6.63
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Table 6
Performance in Repeated Samples: Mean-Variance Optimization

All values are true monthly certainty-equivalent losses (basis points) for portfolios con-
structed using the sample and method as indicated. Relative risk aversion (A) is set equal
to 3. Certainty equivalents are computed based on the true moments of the multivariate
normal distribution used to generate the 5000 hypothetical samples of monthly returns. The
number of assets, sample size, and starting dates correspond to those used in example 1, and
the true moments are set equal to the combined-sample maximum-likelihood estimates from
that example (table 1).

Combined Sample Truncated Sample
Bayesian Maximum Bayesian = Maximum
Pred. Pdf Likelihood Pred. Pdf Likelihood

A. Certainty-equivalent loss relative to the true optimal portfolio:

mean 24.20 25.93 39.70 43.59
std. dev. 22.88 24.86 34.98 38.61
10th percentile 4.29 4.48 7.52 8.08
20 7.47 7.88 12.77 13.96
30 10.44 11.15 17.81 19.37
40 13.83 14.62 23.62 25.61
50 17.44 18.62 30.06 32.83
60 22.17 23.44 38.17 41.79
70 27.93 29.90 47.02 52.05
80 36.13 38.50 60.21 66.45

90 52.04 56.10 83.71 91.16

B. Certainty-equivalent loss relative to the Bayesian combined-sample
optimal portfolio:

mean 0 1.73 15.50 19.40
std. dev. : 0 2.30 25.45 28.33
10th percentile —_ -0.11 -6.37 -4.71
20 — 0.15 -1.39 0.08
30 — 0.42 1.70 3.58
40 — 0.70 4.98 7.52
50 — 1.03 8.99 11.97
60 — 1.43 13.80 17.36
70 — 1.92 19.98 23.96
80 — 2.75 29.41 34.46
90 — 4.45 45.49 52.81
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Table 7
Performance in Repeated Samples: Variance Minimization

All values are differences in true monthly standard deviations (in %), computed based on
the covariance matrix of the multivariate normal distribution used to generate the 5000
hypothetical samples of monthly returns. The weights in the minimum-variance portfolios
are computed using the sample and method as indicated. The number of assets, sample
size, and starting dates correspond to those used in example 2 (cf. table 3), and the true
moments of returns are set equal to the combined-sample maximum-likelihood estimates
from that example.

Combined-Sample, Combined-Sample, Truncated-Sample,
Bayesian Maximum Bayesian Pred. Pdf &
Predictive Pdf Likelihood Maximum Likelihood

A. Standard deviation for the minimum-variance portfolio, constructed using the sam-
ple and method as indicated, minus the true global minimum standard deviation:

mean 2.91 4.23 3.77
std. dev. 2.02 2.92 2.39
10th percentile 1.16 1.73 1.62
20 1.46 2.20 2.04
30 1.76 2.61 243
40 ' : 2.06 3.02 2.82
50 2.39 3.52 3.22
60 2.79 4.04 3.65
70 3.26 4.70 4.21
80 3.96 5.69 5.03
90 5.21 7.42 , 6.49

B. Standard deviation for the minimum-variance portfolio, constructed using the
sample and method as indicated, minus the standard deviation of the minimum-
variance portfolio constructed using the combined-sample Bayesian predictive pdf:

mean 0 1.31 0.86
std. dev. 0 1.38 . 1.06
10th percentile — 0.26 0.02
20 — 0.42 0.18
30 — 0.57 0.31
40 — 0.73 0.46
50 — 0.92 v 0.62
60 — 1.16 0.81
70 — 1.47 1.05
80 — 1.93 1.40

90 — 2.74 2.02
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Figure 1. Minimum-Standard-Deviation Boundaries for Three Indices. The
solid curves and dots are based on the Bayesian predictive pdf, whereas the dashed curves
and circles are maximum-likelihood estimates. The three return series are for (i) Standard &
Poor’s composite index (USA), (ii) Morgan Stanley Capital International’s index for Europe,
Australia, and the Far East (EAFE), and (iii) the International Finance Corporation’s com-
posite index for emerging markets (EMERGE). All returns are monthly U.S.-Dollar returns
in excess of the one-month U.S. Treasury-bill rate. '
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Figure 2. Minimum-Standard-Deviation Boundaries for 22 Emerging-Market
Country Indices. The data consist of monthly returns on each country’s “investable” eq-
uity portfolio, as constructed by the International Finance Corporation. All returns are
monthly U.S.-Dollar returns in excess of the one-month U.S. Treasury-bill rate. The bound-
aries are estimated using four methods:

I Combined sample (1/89-12/95), Bayesian predictive pdf
IT  Combined sample (1/89-12/95), maximum likelihood
III Truncated sample (11/93-12/95), Bayesian predictive pdf
IV Truncated sample (11/93-12/95), maximum likelihood
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