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1 Introduction

Auctions are among the oldest market mechanisms for price discovery, dating back at least
two millenia. The list of commodities sold by auctions today is long; it includes, among
other things, artwork, agricultural produce, antiques, and mineral rights. Our focus in this
paper is on one of the largest and most important auction markets in the world, that for
US Treasury bills (T-bills).

US Treasury Auctions

For several decades now, the US Treasury has used auctions as a means of testing the pulse
of the short term interest rate market. A large number of auctions are conducted every
year. Three- and six-month T-bills are auctioned every Monday, while one-year T-bills are
auctioned every four weeks. Longer-term securities such as T-notes and T-bonds are also
auctioned: for instance, two-year and five-year T-notes are auctioned every month, while
other maturities (such as three-year, ten—year, and thirty—year securities) are auctioned
quarterly.! The total annual volume of Treasury securities auctioned has increased steadily
from a level of $670 billion in 1981 to $1.70 trillion in 1991, and reached $2.0 trillion in
1995.2

From an analytical standpoint, Treasury auctions share a number of features in common
with other auction markets. The asymmetry of information between buyer and seller is, for
instance, central; without this, the auctioneer could simply sell to the buyer with the highest
valuation. However, Treasury auctions are also characterized by a number of institutional
features that distinguish them from other auction markets, and that may render many of
the standard analyses inapplicable.

First, Treasury auctions are preceded by forward trading among potential buyers in
the security to be auctioned. Trading in this forward market commences on the date the
auction is announced, with settlement taking place on the date the securities are issued.
The presence of this forward market (known as the “when-issued” market) implies that
traders could enter the auction with prior short or long positions. In turn, this could affect
their bidding strategies and, thereby, the outcome of the auction.

Second, Treasury auctions are followed by trading in an active resale (or “secondary”)
market. As Bikhchandani and Huang [2] argue, this creates an important information
linkage that affects bidding behavior and prices in the auction. How does this linkage work?
The majority of bidders in the auction are primary dealers and large financial institutions
whose information about interest rates is typically better than that available to investors
in the secondary market. However, the public information available to buyers in the resale
market includes information from the Treasury on the bids submitted in the auction. To
the extent that these bids are relective of the bidders’ private information, the resale price
will be affected by the bids. This now creates an incentive for participants in the auction
to signal their private information to secondary market participants through their bidding
strategies.

! Although our discussion in this paper is couched in terms of T-bills, it also applies equally to these
longer-term instruments.

?Treasury bills are also auctioned in other economies, but in some cases they are issued at a fixed discount.
Without exception, however, T-bills are issued for 3 and 6 month maturities. (To be precise, in the US dollar
markets they are issued for 91 days and 182 days respectively.)



Third, academic theory has mostly focussed on single-unit auctions, or on multiple-
unit auctions in which each bidder is entitled to at most one unit of the commodity being
auctioned. As pointed out by Wilson {33] and Back and Zender [1], it is not at all clear to
what extent the intuition gained in this case can be be profitably transferred to the study
of divisible-good auctions, such as the treasury auction.

Fourth, T-bill auction markets are characterized by the presence of two different classes
of bidders, called “noncompetitive” and “competitive” bidders, respectively. Noncompeti-
tive bidders, who are usually individual investors, submit sealed bids that specify only the
quantity they desire. Competitive bidders, who are designated primary dealers and large
financial institutions, submit sealed bids that are price-quantity pairs. Since multiple bids
are permitted, each competitive bidder effectively submits a demand schedule. Noncom-
petitive bidders are guaranteed the quantity they bid for. The total quantity submitted by
the noncompetitive bidders is subtracted from the amount offered by the treasury, and the
remainder is distributed to the competitive bidders on the basis of their bids. The price
charged the noncompetitive bidders is the quantity-weighted average of the price paid by
the competitive bidders.

The Main Questions

The behavior of bidders in an auction is obviously affected by the rules governing the auction
(the auction “form” or “mechanism”). A principal aim of auction theory is to identify the
auction mechanism that maximizes the expected reveue of the seller. This problem is usually
stated in a more constrained form. As with optimal contracts in principal-agent models,
optimal auction forms sometimes have very complex and unintuitive forms. Therefore, the
aim is often only to identify the best of a given set of auction forms.

In the case of Treasury auctions, two auction forms are usually considered: discrimi-
natory auctions (DA’s) and uniform-price auctions (UPA’s). In a DA, winning bids are
filled at the bid price; that is, the demands of the bidders are met by starting with the
highest-price bidder down, until the entire quantity is exahausted. In a uniform-price auc-
tion, winning bidders pay a flat price, called the stop-out price for each unit they receive.
The stop-out price is simply the lowest winning price, i.e., the maximum price at which the
aggregate demand® equals or exceeds the available supply of T-bills. Since the 1970’s, the
Treasury has relied almost entirely on the DA format; however, begining in 1992, it also
began experimenting with the UPA format in the sale of two-year and five-year notes.

Since bidders will alter their behavior depending on whether they are facing a DA or
a UPA, it is not immediately apparent which auction form will generate higher expected
revenue for the Treasury. Going back at least to Friedman [6], one strand of academic
opinion has argued strongly in favor of the UPA format. The early (informal) arguments
offered in support of this position were that discriminatory auctions discourage relatively
uninformed bidders because the “winner’s curse” becomes more severe.? Bidding therefore
becomes concentrated among a few large bidders; in turn, this makes collusion easier and
more profitable.

3Recall that each of the competetive bidders submit a demand schedule. The aggregate demand schedule
is simply the sum of these schedules plus the total quantity demanded by the noncompetitive bidders.
1See section 2 for a description of the winner’s curse.



In the early 1980’s, game-theoretic models of auctions provided formal support to this
position. Milgrom and Weber {17] showed that in the auction of an indivisible good, the
expected revenues of the seller were higher in a UPA than in a DA. The Milgrom-Weber
model has subsequently been extended in many directions but the basic result appears quite
robust. For example, Bikhchandani and Huang [2] show that the same result obtains even
if a secondary market, with a non-trivial information linkage to the primary market, is
appended to the model.

Recently, however, Back and Zender [1] have shown that the assumption of indivisibility
of the good being auctioned is critical to the Milgrom~Weber result. Back and Zender
analyze a very general divisible good auction model and demonstrate that uniform-price
auctions can have very undesirable equilibria; and that as a consequence, the UPA is no
longer unambguously superior (theoretically speaking) to a DA.®> Building on this work,
Wang and Zender [32] show that a ranking of the two auction forms in divisible-good
auctions is, in general, impossible: they consider a class of divisible-good auctions, and prove
that in this class, there always exist equilibria of the DA that dominate some equilibria of
the UPA, and vice versa. Empirical studies of the debate have also been ambiguous in their
conclusions; some studies of Treasury (and foreign exchange) auctions have indicated that
the UPA may be superior to the DA, but this is contradicted by other studies.

In summary, the one clear conclusion to have come out of the recent theoretical studies is
that no useful lessons on Treasury auction format can be gained from the study of auctions
of indivisible goods. Much work, however, remains to be done. The identification of the
“better” auction format is obviously harder than was originally realized, but may not be
as hopeless as the Back—Zender and Wang-Zender results indicate. For one thing, not all
of the equilibria in these papers are equally plausible. Thus, one can ask if there exists a
strategically salient class of equilibria that could be used as the basis for comparison of the
two auction forms. Second, the auction market is only one in a chain of linked markets;
as we have explained above, it is preceded by the when-issued market, and followed by the
secondary market. From a theoretical standpoint, the importance of the when-issued market
and its effect on bidding behavior in the auction market is little understood.® Finally, the
presence of noncompetitive bidders in the auction process creates “noise” that affects the
actions taken by the competitive bidders; it is yet to be analyzed if this noise is a good
thing, from the Treasury’s viewpoint.

The Structure of this Paper

The remainder of this paper is organized as follows. In section 2, we describe the auction
framework involving a single unit of an indivisible good, and provide a detailed summary
of the basic results in this area. There are at least two good reasons for begining with this
model. First, many of the modelling issues and analytical techniques involved in Treasury
auctions also arise in indivisible-good auctions; however, the latter framework is a simpler
one and, therefore, offers a better setting for understanding these. Second, the results
on the ranking of different auction forms are unambiguous in the case of indivisible-good

®That divisible and indivisible good auctions are very different from the seller’s viewpoint was pointed
out as early as 1979 by Wilson [33]. However, Wilson was not concerned with Treasury auctions, and did
not analyze the UPA vs. DA issue in a divisible-good auction framework.

®However, see Vishwanathan and Wang [30] for a recent contribution in this direction.



auctions. To fully appreciate the difference between divisible and indivisible good auctions,
it is necessary to understand why this is the case.

In section 3, we examine the extension of the basic model undertaken by Bikhchandani
and Huang [2]. The most important generalization Bikhchandani and Huang consider is
the addition of a secondary market. Their main result (from our perspective) is that this
leaves unaltered the ranking between UPA’s and DA’s.

Section 4 turns to an examination of divisible-good auctions. The material presented
here focusses on two papers: Wilson [33], who first pointed out the difference between
divisible and indivisible good auctions, and Back and Zender [1].

Section 5 presents a brief review of the empirical work that has been done on Treasury
auctions. Section 6 concludes.

2 A Brief Review of Auction Theory

This section provides a brief review of the main concepts and results of auction theory.
Our exposition here draws on the work of McAfee and McMillan [14], and Milgrom and
Weber [17]. Although T-bill auctions are more complex in some important ways than the
standard models we examine here, there are sufficiently many similarities in the modelling
and analytical issues involved that this constitutes an excellent starting point for further
study.

Two assumptions will be maintained throughout this section. First, we will treat the
auction as a mechanism for selling. Second, we will assume that the object being auctioned
is a single unit of an indivisible good. The first assumption is made solely for expositional
convenience; in practice, auctions are also widely used as mechanisms for buying, and with
minor (mostly notational) changes, the results reported here apply equally to this case also.
The second assumption is, on the other hand, a much more serious one. Its principal virtue
is that it simplifies analysis considerably. However, it also means that the seller cannot
auction “shares” in the good; in particular, it leaves open the question of how much of the
intuition gained here can be legitimately transferred to the study of T-bill auctions. We
will return to this issue again in a later section.

Auction theory is concerned primarily with answering two questions. First, why is an
auction used instead of some other selling or buying procedure? Second, there are a great
many varieties of auctions that one sees in practice. What determines which auction form
is chosen in a given situation? It is these questions that we shall be concerned with in the
sequel. Our analysis proceeds in several steps.

We begin in subsection 2.1 with a discussion of the key feature of auctions—the ability
of the seller to pre-commit to a set of rules and thereby to extract maximal gains from
trade—that make them attractive mechanisms from the seller’s viewpoint. Following this,
in subsection 2.2, we provide a categorization of the most commonly used auction forms.

The remaining subsections are devoted to the second of the two questions raised above:
what determines the specific auction form used in a given circumstance? Of course, the
answer to this question will depend on the maintained background assumptions concerning
the environment in which buyers and seller interact. In subsection 2.3, we list the alterna-
tives facing the modeller in this situation. Subsection 2.4 sets the ball rolling by considering



a specific set of assumptions that we call the benchmark model. The subsections that follow
then examine the impact of weakening or otherwise altering these assumptions.

2.1 Pre-Commitment and Informational Asymmetry

Classical economic theory regards as indeterminate outcomes in markets in which there is
monopoly on one side of the market (a single seller) and oligopoly on the other (a small set
of potential buyers). Auction theory, which is concerned with the same setting, resolves the
indeterminacy by viewing the seller as essentially a Stackelberg leader who has the ability
to pre-commit to a set of policies (i.e., the choice of auction form, rules of the auction, etc.).
Such pre-commitment is a key aspect of auction markets. Credible pre-commitment gives
the seller a first-mover advantage; in particular, it enables the adoption of procedures that
induce the bidders to bid in desirable ways.

The ability to pre-commit does not, however, imply that the seller extracts all possible
gains from trade. The bargaining ability of the seller is limited by a second key aspect of
auction markets, viz., the fact that the seller does not know the buyers’ true valuations of
the object being auctioned. If such informational asymmetries were not present, the seller
could simply offer it to the bidder with the highest valuation at a price just below that
bidder’s valuation, and threaten to refuse to sell if this offer is rejected. Pre-commitment
would make this threat credible, so the seller would realize virtually all of the gains from
trade. When information is asymmetric, however, the seller’s ability to exploit competition
amongst the buyers is more limited. Certainly, the seller cannot always drive the price
up to the highest valuation, because he is not aware of this valuation. The question of
which auction form is “optimal” from the seller’s viewpoint is, therefore, non-trivial, and
the central one that auction theory attempts to answer.

2.2 Categories of Auctions
There are four basic types of auctions:

1. English Auctions: In an English auction, the price is raised successively until only one
bidder remains. Also sometimes called the oral or ascending-bid auction, the English
auction is perhaps the most commonly used auction form in practice.

2. Dutch Auctions: Dutch auctions are the converse of English auctions. In a Dutch
auction, the auctioneer calls out an initial high price and then lowers the bid succes-
sively until some bidder accepts the current bid. Dutch auctions are used in various
markets around the world, but are not as popular as English auctions.

3. First-Price Sealed Bid: Potential buyers in a first-price sealed bid auction submit
sealed bids. The item being auctioned is awarded to the buyer who submits the
highest bid at the price bid by him. First-price sealed bid auctions are commonly
used by governments in awarding procurement contracts.

4. Second-Price Sealed Bid: Once again, buyers submit sealed bids, and the item is
awarded to the buyer who submits the highest bid. However, the price the winner
pays is equal not to his own bid, but to the second-highest bid. Second-price sealed
bid auctions have useful theoretical properties, but are not widely-used in practice.



A number of variations on these basic forms are commonly employed. For example, the
seller may impose a “reserve price” and discard all bids below this price. The seller may
also charge the bidders an entry fee for the right to participate in the auction. The price
to be paid by the winning bidder may depend not only on the bids received in the auction,
but also on something correlated with the true value of the item (such as royalties).

2.3 Modelling Issues

Whether a particular auction form emerges as optimal will depend at least in part on how
uncertainty is modelled, and there are at least four separate decisions that the modeller is
faced with in this context.

First, there is the question of the various players’ attitudes to risk. Should the buyers
be modelled as risk-neutral or risk-averse? What about the seller?

The second decision concerns the relationship between different buyers’ valuations of
the object. Is it reasonable to model them as being independent, or as being correlated in
some degree? Two polar extremes can be identified:

o The Independent Private-Values Model: In this model, it is assumed that bidder ¢’s
valuation v; is a draw from a probability distribution F;. Only bidder i observes the
value of v;, but the distribution F; is itself common knowledge among all the players.
Any one bidder’s valuation is statistically independent of any other bidder’s valuation.
This model is a good approximation of situations in which bidders are buying for their
own use and not for resale (for example, antiques or artwork).

o The Common-Value Model: In the common-value model, it is assumed that the item
being bid for has a single objective, but unknown, value V. The bidders’ valuations
v; are independent draws from a probability distribution G(-|V'), which is presumed
to be common knowledge. The common-value model may be applied to markets in
which the commodity is being purchased primarily for resale (for example, the auction
of mineral rights or Treasury bills).

Of course, many real-world auctions may consist of aspects of both models simultaneously.
To handle such possibilities, Milgrom and Weber (1982) develop a general model of which
the independent private-values model and the common-value model are both special cases.
Their model, which uses the notion of affiliated distributions, is described in a later subsec-
tion.

Thirdly, there is the question of whether bidders may be modelled as essentially identical
(up to informational differences), or whether one should admit the possibility of of different
“types” of bidders. The first case, the case of symmetric bidders, is significantly easier to
handle analytically. The second, that of asymmetric bidders, allows for a richer scenario
such as the existence of systematic cost differences between bidders.

Finally, there is the issue of whether payment by the winning bidder to the seller should
be made to depend on variables other than the bids themselves. In some situations where
the only observable variables may be the bids themselves, this is not a relevant issue. In
others, it is an important consideration. In auctions of publishing rights, for example, the
final payment typically depends on the winning bid, as well as royalties based on the actual
sales of the book.



2.4 The Benchmark Model

Our analysis of the optimality of different auction forms begins in this subsection with
what is perhaps the simplest framework for the analysis of this question. It is based on the
following four assumptions:

1. All the bidders are risk-neutral, as is the seller.

2. The independent private-values model holds: Bidder i’s valuation v; is a draw from a
distribution F;, and the draws are statistically independent.

3. The bidders are symmetric, so F; = Fj for all ¢,j. Denote the common distribution
by F.

4. The final payment from the winning bidder to the seller depends on the bids alone.

Following McAfee and McMillan (1987), we will refer to this model as the “benchmark
model.” Subsequent to the analysis of the benchmark model, we will examine the impact
of weakening or otherwise replacing each of the four assumptions in turn.

Throughout this paper, we use the concept of a Bayes-Nash equilibrium to analyze any
given auction model. That is, it is presumed that all of the following are common knowledge
among the seller and the bidders: the rules of the auction chosen by the seller, the number
of bidders n, the probability distribution governing the valuation v; of each player ¢, and the
attitude to risk of each player. In addition, each player also knows his own true valuation.
Based on his information, each player ¢ chooses a “strategy” o;, i.e., a rule that decides
the amount o;(v;) that should be bid by player ¢ as a function of his valuation v;. An
equilibrium is a vector of strategies (o4, ...,0,) such that for all 7, given that players j # ¢
have adopted the strategy o;, player ¢ can do no better than to adopt o;.

One final observation is useful in simplifying the material that follows. Under all circum-
stances (i.e., regardless of assumptions concerning risk-aversion or the relationship between
different players’ valuations, etc.) the outcome under a Dutch auction must necessarily be
identical to that under a first-price sealed bid auction. This follows simply because bidders
in either of these auction forms must choose how high to bid without knowing the others’
~ decisions; in either case, moreover, the winning bidder pays an amount equal to his bid. In
the formal analysis that follows, therefore, we ignore the Dutch auction altogether.

Returning to the main question: Which auction form—English, Dutch, first-price, or
second-price—should a seller use if the conditions of the benchmark model are met? The
surprising answer is: It does not matter. Under some weak technical conditions, all four
auction forms have the same revenue implications! This result is called the Revenue Equiv-
alence Theorem:

Theorem 2.1 (Revenue Equivalence Theorem) Suppose that the assumptions of the
benchmark model hold. Then, under some technical conditions on the distribution F, the
expected revenue lo the seller is the same under all four auction forms.

Sketch of Proof The following notation will come in useful. Recall that F denotes the
common distribution from which the n bidders’ valuations are drawn. Let f denote the



density of F'. Let v;,...,v, represent the actual vector of valuations, and let »],... v}
denote the valuations arranged in a non-increasing fashion.” In statistical terminology, v*

is called the i-th order statistic,i = 1,...,n. Finally, define
J(]) = v] - — 5 (2.1)

It will be assumed in the proof that J(-) is a strictly increasing function (the meaning of
this assumption will become clear shortly).® The Revenue Equivalence Theorem will be
proved by showing that under all four auction forms, the expected revenue to the seller is
precisely the expectation of J(v]) with respect to the distribution of vj.

Consider the English auction first. In this case, the second-to-last bidder drops out of the
auction as soon as the item exceeds his own valuation. Consequently, the highest-valuation
bidder receives the item, but pays an amount equal to the second-highest valuation. Thus,
the expected revenue of the seller is equal to the expectation of v3. This expectation can
also be expressed in terms of v} as follows. The winning bidder earns a rent of (v} — v3).
It can be shown (see McAfee and McMillan [14] for references) that the expected value of
this rent is given by the expectation, with respect to the distribution of v}, of

1— F(v})
f(o))

The amount the seller receives is, by definition, the valuation of the winning bidder minus
the rent of the winning bidder. This difference is precisely expression (2.1).

Now consider the second-price sealed bid auction. We claim that in this case it is a
dominant strategy for each bidder to simply bid his true valuation. To see this, note that
the amount bid only affects the probability with which the bidder wins; the amount the
winning bidder pays in a second-price auction is beyond his control. If bidder ¢ were to bid
less than his true valuation, then the auction outcome is affected only if the new bid is lower
than the bid submitted by another bidder, say j, and as a result § wins the auction. Since
rents from winning are non-negative, lowering his bid below his valuation clearly cannot
make bidder i better off. If bidder ¢ were to bid more than his true valuation, then the
outcome of the auction changes only if there is another bidder (say j) whose bid is above
t’s valuation, but below the new bid. In this case, the new higher bid causes ¢ to win, but
now he also has to pay more than the item is worth to him. Consequently, this also cannot
make bidder ¢ better off than simply bidding his true valuation. Of course, if all bidders bid
their true valuation, then—for the same reasons as in the English auction—the expected
revenue of the seller is again given by the expectation of (2.1).

The proof that the seller’s expected revenue under a first-price sealed bid auction is also
equal to (2.1) is more complex. Unlike the case with English and second-price auctions, Nash
equilibria in a first-price auction are not dominant strategy equilibria, and are therefore more
difficult to identify. Let B(-) be the (common) bidding strategy used by all bidders j # ;

"That is, v} is the highest valuation, v} is the second highest, and so on.

8The technical conditions referred to in the statement of the theorem are precisely that £ admits a
density f, and that J(-) is a strictly increasing function. For sufficient conditions on F that will result in
J(-) being a strictly increasing function, see McAfee and McMillan [14].



that is, bidder j bids B(v;) is his true valuation is v;. Assume that B(-) is a monotonically
increasing function (i.e., that bids increase if the valuation is higher). Consider bidder #’s
best-response. If ¢ bids b,, then the probability of winning is given by

Prob [b; > B(v;), j # i = [F(B~Y(b))"!
Thus, bidder i’s expected surplus from bidding b; is given by
mi(v) = (v = b)[F(B™ (b)" " (2.2)

Bidder i’s optimal bid b; must therefore satisfy dn;(v;)/3b; = 0. It follows that when we
differentiate m; with respect to v;, we obtain
dri(v;)  Omi(v;) + Bwi(v;)gﬁ _ Omi(vy)

dv; O b, dv; 0w [F(B~} (b:))*! (2.3)

At a symmetric Nash equilibrium, player i’s optimal strategy will be the same as the strategy
B(-) chosen by j # i. If B(-) represents a Nash equilibrium strategy, therefore, we must
have b; = B(v;). Substituting this in (2.3), we obtain the condition that
dﬂ.i(vi) n—1

N~ : . 2,

) = [F(w) (2.4)
Let v; denote the lowest possible valuation. A bidder who has the valuation v; must earn
zero surplus (i.e., we must have 7;(v;) = 0). Using this boundary condition, and integrating
in (2.4), we obtain:

m) = mo)+ [ IF@Pe = [T F@r e (2.5)

l

By equating (2.5) with the definition (2.2) of 7, and invoking the Nash equilibrium condition
b; = B(v;), we finally obtain:

[J " [F@)]" e

e (26)

B(v)) = v; —

Note that B(-) is indeed an increasing function as was assumed earlier in the proof.

Since B(-) is increasing, the bidder with the highest valuation v} wins the auction. From
the point of view of the seller, thereore, the expected revenue from the auction is equal to
the expected value of B(vy). It can be shown (see McAfee and McMillan [14] for references)
that for any v, B(v), as given by (2.6) is actually the expected value of the second-order
statistic, conditional on the first-order statistic being v. Therefore, the expected revenue
to the seller is simply the expected value of the second-order statistic, which, as we have
already mentioned, is simply the expectation of the expression (2.1).

Since the Dutch auction is strategically equivalent to the second-price auction, the proof
of the Revenue Equivalence Theorem is complete. O



It is very important to be clear about what the Revenue Equivalence Theorem asserts.
The theorem claims only that the ex-ante expected revenue to the seller is the same in all
four auction forms. It does not suggest that the realizations themselves always coincide.
In the notation of the theorem, the revenue of the seller under the English or second-price
auctions is equal to v}, whereas under the first-price auction, it is equal to B(vy). Of course,
B(v}) need not coincide with v;. However, the expectation of B(v]) equals that of v, so
that on average the seller’s revenue is the same.

Building on this point, Vickrey [29] shows that the variance of the seller’s revenue
is smaller in an English or second-price auction than in a first-price or Dutch auction.
Therefore, if the seller were risk-averse (rather than risk-neutral as we have assumed), he
would prefer the English or second-price auctions to the first-price or Dutch.

Several other remarks are in order before moving to extensions of the Benchmark model:

1. The Revenue Equivalence Theorem is devoid of any empirical content, since it asserts
essentially that “anything is optimal.” We will see in the subsection following that
this is no longer the case when we alter the assumptions of the benchmark model.

2. Auction outcomes in the benchmark model are always Pareto-efficient, since the bidder
with the highest valuation receives the object.

3. An increase in the number of bidders increases the revenue of the seller on average.
This is intuitive: when the number of bidders increases, the second-highest valuation
also increases on average. Indeed, it can be shown that as n becomes unboundedly
large, the price approaches the highest possible valuation.

2.5 The Optimal Auction in the Benchmark Model: A Comment

The Revenue Equivalence Theorem only compares the expected revenue across the four stan-
dard auction forms. It is a natural question to ask whether there are other (perhaps more
complicated) auction forms that yield a higher expected revenue under the assumptions of
the Benchmark Model. The answer is a qualified yes. Using the Revelation Principle, it can
be shown (see, e.g., Harris and Raviv [9]) that if the seller’s own valuation of the object is
given by vg, then the auction that produces the highest expected revenue has the following
implications:

If every bidder’s valuation v is such that satisfies J(v) < vs,!9 then the item is
not sold to anybody. Otherwise the item is sold to the bidder with the highest
valuation v at a price of B(v).

Thus, the optimal auction involves the seller effectively setting a reserve price of J~!(vs).
Since J(v) < v, this reservation price raises the possibility that the outcome of the optimal
auction could be Pareto-inefficient: it is possible that for all ¢ we have J(v;) < vs, but
there exists j such that v; > vs. Note, however, that if the reservation price is not binding,
then the optimal auction has the same outcome on average as all the auction forms of the
previous section, and is also therefore, Pareto-efficient.

19J(-) is the function defined in (2.1).
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2.6 Beyond the Benchmark Model

In this section, we examine the effect of dropping in turn three of the Benchmark Model’s
four assumptions. The last assumption—that of independent private-values—is the subject
of the next subsection. It is presumed throughout this subsection, that when the mod-
ification of one assumption is being discussed, the Benchmark Model’s remaining three
assumptions continue to hold. We begin with the assumption of risk-neutrality of the buy-
ers.

Risk-Averse Buyers

Regardless of his attitude to risk, it is optimal for a buyer in an English auction to remain
in the bidding until the price exceeds his personal valuation. Since the seller can always
choose to sell using an English auction, it follows that, ceteris paribus, the seller is no worse
off if the buyers are risk-averse rather than risk-neutral.

In fact, the seller can do strictly better. It can be shown that, with risk-averse bidders,
the first-price sealed bid auction generates higher revenues on average than the English or
second price auctions. The reason is not far to seek. Under the strategies described in
the Benchmark Model, a typical bidder earns a positive rent if he wins, and zero rent if
he does not. By increasing the size of his bid by a “small” amount, he can increase the
probability of winning. Although this will decrease his rent if he wins, a risk-averse bidder
will nonetheless find the trade-off worthwhile since it smooths his utility.

Even the first-price auction is not the optimal auction in this case. It is possible to
design auctions with even greater expected revenues. Unfortunately, the optimal auction
with risk-averse bidders lacks the simple form that obtains when bidders are risk-neutral;
instead it involves a complex scheme which requires subsidizing high bidders who lose and
penalizing all low bidders (see Maskin and Riley [12] for details).

Asymmetric Bidders

In the Benchmark Model, we assumed that bidders were symmetric, so that we had F; = F
for all i.!! If we allow for asymmetric bidders, then the F;’s need no longer coincide; as a
consequence, it turns out once again that revenue equivalence also breaks down.

To understand why this is the case, note that the effect of asymmetry on bidders in an
English auction is minimal. It remains optimal for a bidder to stay in the bidding until
the price exceeds his private valuation. Thus, the revenue the seller obtains is equal to the
second-highest valuation;!? moreover, the bidder with the highest valuation receives the
object, so that outcomes in an English auction remain Pareto-efficient.

In a first-price sealed bid auction, it continues to remain an equilibrium for each player
to bid his estimate of the second-highest valuation conditional on his information (which is
his own valuation). However, the situation is no longer symmetric: bidder ¢’s estimate uses
the distribution functions F} for j # i. Therefore, two bidders who have the same valuation
v could differ in their estimate of the gap between their valuation and the second-highest

11Recall that F; denotes the distribution from which bidder i’s valuation is drawn in the independent
private-values model.

120f course, the expectation of this second-highest valuation is more difficult to compute when the F\’s
differ.
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valuation. In turn, this implies that the winner in a first-price sealed bid auction need not
necessarily be the bidder with the highest valuation, so outcomes could be Pareto-inefficient
in this case. It also implies that the revenue implications of the first-price auction could
differ from that of the English auction.

Unlike the earlier cases, however, no ordering between these auctions is possible in
general. There are examples in the literature in which the expected revenue under the
English auction is higher than under a first-price auction, and examples in which it is lower.
Nor are any of the basic auction forms optimal. Myerson [18] has shown that the optimal
auction with multiple types of bidders is a discriminatory auction in which the seller sets a
different reserve price for each type of bidder.

Payments that do not depend only on the bids

There are many real-world auctions (such as book publishing, the music industry, and in
some mineral-rights auctions) in which payment by the winning bidder to the seller depends
(usually via a royalty), on information about the value of the good that is revealed after
the auction. Notationally, we can represent the total payment by the winning bidder as

p = b+rp, (2.7)

where b is the winning bid, r is the royalty rate, and ¢ the value of the commodity that is
unknown at the time of the uaction, but that is revealed subsequently.

If the distribution of ¢ is exogeneous to the model (in particular, if it cannot be affected
by actions of the seller or the winning bidder), then it can be shown (see, e.g., McAfee and
McMillan [13]) that the expected revenue of the seller is an increasing function of the royalty
rate r. The optimal royalty rate is therefore 100%. In reality, however, the distribution of @
is not likely to be exogeneous, but to be influenced by the winning bidder’s actions. (Book
sales, for instance, depend on the publicity and other promotion provided by the publisher.)
In this case, the optimal royalty rate is less than 100%.

2.7 Affiliation and the Common-Values Model

What happens if the assumption of independent private values in the Benchmark Model is
replaced by the other polar extreme, the common-value model? As in any auction model,
bidders in a common-value model base their bids on their estimate of the item’s value. This
raises the paradoxical possibility that winning could be bad news: a bidder wins if and only
if every other bidder estimated the common value to be lower. This phenomenon has been
labelled the winner’s curse.l3

A rational bidder in a common-values auction anticipates the winner’s curse effect, and
takes this into account in deciding his bidding strategy. Milgrom and Weber [17] describe
the equilibrium strategies for a common values model under each of the four basic auction
mechanisms.!? They show that of the four auction forms, the English auction now provides

13Ty express the winner’s curse in statistical terms, suppose that the signal z; about the common value v
has the property that a larger signal z; implies a larger true value of v. (This would be the case, for instance,
if the distribution of signals f(z;|v) possessed the monotone likelihood ratio property.} Let z; denote the
largest of the n signals z1,...,2,. Then, it is the case that E(v|z]) > E(vlz1,...,z,).

' We do not describe equilibria of the common-values model in this section, since the next section (on the
Bikhchandani-Huang paper) is concerned with a similar, but more general, model.
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the highest expected revenue, followed by the second-price auction, and then by the Dutch
and first-price auctions. (The last two, of course, continue to remain equivalent.)

These results are not unintuitive. The process of bidding in an English auction, for
instance, provides information to the bidders, and the incorporation of this additional in-
formation into the bidding strategy reduces the impact of the winner’s curse. There is no
corresponding effect in the other three auction forms.

The full model considered by Milgrom and Weber is actually significantly more general

“than either the independent private-values model, or the common value model; indeed, it
contains both as special cases. Since their model forms much of the basis of modern auction
theory, we shall describe it in a little more detail here.

The valuation v; of bidder ¢ in the Milgrom-Weber model is a function of n “information
variables” r = (zi,...,2,) and m other variables s = (81,...5m):

v, = vi(s,z).

Bidder i observes the realization of z;, but may not observe the realization of z; for j # 1,
or the realization of any of the variables s1,...,s,. Thus, it is possible that player ¢ does
not know with certainty the true worth (to him) of the object prior to the auction.

All bidders are assumed to be risk-neutral. In addition, bidders are symmetric: there
exists a function v: R>**% — R such that

vi(s,z) = v(s,zi,(x;)j%i)-

Finally, let z = (s,z), and let G denote the joint distribution of z. The most important
assumption of the Milgrom-Weber model lies in the assumption that the random variables
z are affiliated. In mathematical terms, affiliation means that the density g of G satisfies
the condition that!®

g(zVv 2)g(z A 2') > g(2)g(2")  forall 2,2 (2.8)

Affiliation implies that valuations are positively correlated, i.e., that a high valuation by one
bidder makes high valuations by other bidders more likely. Densities exhibiting affiliation
possess a number of strong properties. For instance:

Theorem 2.2 (Properties of Affiliation) Let y1,...,yx be a vector of affiliated random
variables.

1. Let hy,...,hy be non-decreasing functions. Then, the variables hi(y1), ..., hi(yx) are
also affiliated.

2. Let H:R"' — R be non-decreasing. Let constants (a;,b;) be given for i = 1,...,k,
where a; < b; for all i. Then, the following function h* is itself a non-decreasing
function of its arguments:

h*(a1,b1;...;ak,0k) = E[H(y1,...,4) | ai <y < b; for alli]

1>The notation V and A stand for coordinate-wise maximum, and coordinate-wise minimum, respectively.
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For a list of the many other properties of affiliated random variables, we refer the reader to
Milgrom and Weber (17].

It is not very hard to see that both the independent private-values model and the
common value model are actually special cases of the Milgrom-Weber framework. To
obtain the former, we take

1. m=0.
2. vi(s,z) = z; for each i.
3. G(z) = Flxy)x -+ x F(zy).

(The last condition is the statement of independence in values.) It is not very hard to check
that the distribution G, thus defined, is affiliated.
Similarly, to obtain the common-value model, we define

1. m=1.
2. vi(s1,21,...,2n) = 8 forall i.

Thus, the common value v is given by s;. Sufficient conditions for the joint density of
(s1,21,...T,) to meet the requirement of affiliation are that (i) conditional on s;, the signals
z1,...,Z, be independent, and (ii) the conditional density g(z|s;) have the monotone
likelihood ratio property.

Two results that Milgrom and Weber [17] prove in this model are of particular interest
for us. First, they show that the ranking

English > Second-Price > First-Price = Dutch

continues to hold in this more general setting. The inequalities are typically, though not
always, strict: we already know that equality obtains throughout for the special case of the
independent private-values model. Second, no matter what the auction form chosen, the
seller’s expected revenue increases if he releases any private information he possesses about
the item’s true valuation (assuming that this can be done in a credible fashion). The basis
for both results is the effect on the winner’s curse. If buyers are uncertain about their true
valuation, then any information they obtain from observing the bids of others will reduce
the winner’s curse; thus, the English auction does better than the others. The credible
release of private information by the seller also reduces the winner’s curse; this encourages
bidders to bid more aggresively, increasing the seller’s revenues on average.

2.8 Lessons for T-Bill Auctions?

Treasury Bill auctions share several features in common with the auction forms discussed
above. They are common value auctions, in which (to a first approximation) bidders can
be regarded as symmetric and risk-neutral. Moreover, payments to the seller in Treasury
Bill auctions depend only on the winning bids.
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However, there are also differences. As we mentioned in the Introduction, the T-Bill
auction market is actually the middle of three linked markets; it is preceded by the when-
issued market in which potential bidders can trade forward in the security that will be
auctioned, and is followed by an active secondary market. Moreover, even when viewed in
isolation, T-Bill auctions are essentially divisible good auctions, whereas the material of
this section has focussed on auctions of an indivisible good. Bids in a T-bill auction are not
just prices, but are price-quantity pairs; each bidder specified the amount he is willing to
buy at different prices. Thus, effectively, bidders in a T-Bill auction submit demand curves.

The chief question in the study of T-Bill auctions is whether Uniform-Price Auctions
(UPA) generate a greater expected revenue for the seller than Discriminatory Auctions
(DA). In a UPA, each bidder pays the same price for the units he buys; this price, called
the stop-out price, is the maximum price at which total demand exceeds supply. In a
DA, each bid is filled at the bid price for that unit; the seller begins with the highest
price bidder and works down the demand curves till the entire quantity is exhausted. In
notational terms, if b;(p) denotes the quantity demanded by bidder ¢ at the price p, and p*
denotes the stop-out price, then the bidder in a discriminatory auction pays

por) + [ ),
p*

while the bidder in a uniform-price auction pays p*b;(p*).

A little reflection shows that the indivisible-good analog of the UPA is the second-price
auction, while that of the DA is the first-price auction. As we have seen above, the second-
price auction does strictly better than a first-price auction in common value auctions of
indivisible goods, since it reduces the impact of the winner’s curse. Thus, if we ignored
the differences mentioned above, we would conclude that a second-price auction (i.e., the
UPA) would generate greater revenues for the Treasury than the first-price auction (i.e.,
the DA). Indeed, invoking precisely this reasoning, a number of authors (e.g., McAfee and
McMillan [14], Bikhchandani and Huang [2], or Smith [24]) have recommended in recent
years that the Treasury switch from discriminatory to uniform-price auctions

The validity of this result clearly depends on the legitimacy of identifying T-Bill auctions
with the auction models studied here. In at least one direction, the difference may not
matter. Bikhchandani and Huang [2] show that when a secondary market is appended
to the auction market of this section, then—even in the presence of information linkages
between the markets that affect auction behavior in a non-trivial way—it is the case that
the UPA dominates the DA in terms of expected revenue for the seller.’® We review their
results in the next section.

Unfortunately, the decision to treat a divisible-good auction as an indivisible-good auc-
tion is not a legitimate one. That this could be problematic was pointed out a number of
years ago by Wilson [33] in his analysis of the auctions of shares. Wilson’s work has been
reinforced and extended recently by Back and Zender [1]. The main thesis of the Back-
Zender paper is that with divisible goods, the use of uniform-price auctions gives rise to the

% Bikhchandani and Huang actually consider the auction of k units of an indivisible good rather than one
unit as we have assumed here. This difference is not, however, very significant, since they assume that each
bidder is entitled to at most one unit of the good.
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possibility of implicit collusion among the bidders, and could lead to a drastic reduction in
revenue from the discriminatory auction scenario. We return to this issue in Section 4.

3 Auctions with Resale Markets

Bikhchandani and Huang (2] study a common-value model in which a secondary (resale)
market is appended to the primary auction market. They assume that bidders in the pri-
mary market have better information on average than investors in the secondary market.1”
Prices in the secondary market will, in such a situation, be affected by the information
revealed in the process of bidding in the auction, and this leads to interesting trade-offs
facing both the bidders and the seller in the auction market.

Consider the bidders first. The information linkage between the markets prompts bidders
to use their bids as signalling mechanisms with a view to increasing the secondary market
price. Thus, ceteris paribus, they would like to increase their bids (which increases seller
revenue). However, higher bids also exacerbate the winner’s curse effect, which could lower
expected profits for the bidders.

The seller faces a similar problem. From the material of the previous section, we have
seen that it is in the seller’s interest to reveal his private information concerning the item’s
true value, since this reduces the impact of the winner’s curse and therefore leads to higher
bids. However, when there is a secondary market whose price is affected by the information
contained in primary market behavior, the release of information by the seller reduces the
buyers’ incentive to send “high” signals and thus drives bids down.

The presence of these trade-offs makes the auction problem with resale markets materi-
ally different from those without such markets. In particular, the issue of which auction form
is superior from the seller’s viewpoint needs to be visited afresh; nor is it apparent whether
the seller should release any private information he has about the good’s true value. Under
some technical conditions, Bikhchandani and Huang [2] establish the following results:

1. In both the discriminatory (first-price) and uniform-price (second-price) auctions,
the seller’s revenues are higher in the presence of the information linkage with the
secondary market than when this information linkage is absent. Therefore, ignoring
the information linkage can cause an underestimation of the seller’s expected revenues,
regardless of the auction mechanism used.

2. The uniform-price auction generates greater expected revenues than the discrimina-
tory auction even in the presence of the information linkage between the primary and
secondary markets.

3. The release of private information by the seller could sometimes decrease expected
revenues. However, there are sufficient conditions under which expected revenues
increase with the release of private information.

In the subsections that follow, we turn to a more detailed look at the first two results.

'7This is a plausible assumption in the Treasury auction scenario, where auction market bidders are
primary dealers and large financial institutions.
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3.1 Structure of the Model

The Bikhchandani-Huang (henceforth, BH) model has n symmetric bidders and k identical
items for sale. It is assumed that n > k£ > 1. Although multiple units may be available for
sale, it is assumed that each buyer is entitled to at most one unit of the good. Thus, bids
continue to be prices, rather than demand schedules which specify the quantity demanded
at any price. The common-values model is operative. Finally, it is assumed that items are
for 100 percent resale.

Let v denote the true value per unit of the good. Seller ¢’s private information signal
concerning v will be denoted z;, i = 1,...,n. Let X = (z1,...,2,). It is assumed that
z; lies in some interval [zp,zp] for each i. After the auction market is over, but before
the resale market, additional partial information may become available on the good’s true
value. Let p denote this information. Finally, let f denote the joint density function of
(p,v, X). Two assumptions are made in this context:

1. The density f is affiliated in (p, v, X)), and is symmetric in its last n arguments.
2. E(v|p) # E(v|p, X). That is, given p, the bidders’ private information has value.'®

The strategy for a generic bidder (say, ¢) is, as earlier, a function B; mapping ¢’s private
information into a bid B;(v;). Since there are k items for sale, the k& highest bidders all
win. Bidders are risk-neutral: they choose their strategies to maximize their expected
profits from the auction. A symmetric Bayesian-Nash equilibrium is a vector of strategies
(Bi,. .., Bn) such that for each bidder i, given that bidder j # i is using the strategy B;,
it is optimal for ¢ to adopt the strategy B;.

To make the notion of an equilibrium more formal, we must define players’ payoff func-
tions in more detail. To accomplish this, we must first describe (a) the auction form under
consideration, and (b) the price formation process in the secondary market.

Concerning (a), we focus on two auction forms: first-price or discriminatory auctions
in which each winning bidder pays the amount he bid, and second-price or uniform-price
auctions in which all winning bidders pay an amount equal to the highest losing bid. Con-
cerning (b), it is assumed that following the auction, the seller releases information about
the k£ winning bids and the highest losing bid.

Some additional notation will be useful in what follows. Since the model is symmetric,
it makes sense to focus on symmetric equilibria, i.e., equilibria in which all bidders use
the common strategy B. We sharpen this further by restricting attention to strategies B
that are strictly increasing and differentiable. To identify and analyze such equilibria, we
examine the optimization problem faced by a typical bidder, say bidder 1.

Let y; denote the j-th order statistic of the signals z,,...,z, of the remaining (n — 1)
bidders. Suppose all bidders apart from bidder 1 are following the strategy B. Suppose
bidder 1 gets the signal z; = z, submits a bid 4, and wins. If investors in the secondary
market believe that ¢ is also using the strategy B, the secondary market price will be

T(B—l(b)vyla---vykyp) = E[lel = B_l(b)aB*l(B(yl))V' 'vB_l(B(yk))vp] (3 1)
= E[vlz1=B7'(0), 5, Ykl '

18This condition would be violated, for instance, if v = p, i.e., if observing p also revealed the true value
of v. If this condition is violated, the BH model reduces simply to the common value model of Milgrom and
Weber.

17



Finally, let 7*(z’,z,y) denote the expected resale price conditional on z; = = and yx = y,
given that secondary market buyers believe bidder 1’s signal was actually z’:

lr*(ml’z’y) = E[r(x,’yl,""yk’p) I l.l - z’ yk = y]' (3'2)
Note that, by affiliation, both 7 and r* are increasing in their arguments (see the second
part of Theorem 2.2).
3.2 Equilibrium in Discriminatory Auctions

The central result that Bikhchandani and Huang prove about discriminatory auctions is the
following:

Theorem 3.1 Under some technical conditions, there is a symmetric equilibrium in in-
creasing, differentiable strategies of the discriminatory auction. At each possible vector of
signals, the equilibrium bids are larger than they would have been in a standard common-
value auction.

Before describing the proof of the theorem, it is necessary to clarify the “technical

conditions” under which the result holds. The random variables zy,..., 2, are said to be
information complements with respect to another random variable w if it is the case that
0%¢ .
Z1y.c0y2m) 20 t£5,4j=1,...,m
aziazj ( b ) m) b b k] b k] ?

where ¢(z1,...,2m) = E[w|21,..., 2m]. The proof of the theorem requires that z;,...,z,,p
be information complements with respect to v. What does this condition achieve? The
responsiveness of the secondary market price to player 1’s submitted bid is measured by
r3(z’,z,y), the partial of r* with respect to its first argument. The condition of informa-
tion complementarity states that this responsiveness increases with a bidder’s information
realization. Thus, a bidder’s incentive to signal increases with his realization under this
circumstance.

Sketch of Proof Suppose all bidders apart from 1 are using the strategy B, where B is
strictly increasing and differentiable. If z; = z and bidder 1 submits a bid of b, his expected
profits are

n(blz) = E [(T(B_l(b),yl,m,ykm) - b) L>B(y) | 21 = z}

where 1,5, is the indicator function that takes on the value 1if u > v, and zero otherwise.
Let Fi(y|z) and fi(y|z) denote, respectively, the distribution function and density of yx
given z; = z. Some manipulation shows that we have

B~1(b)
wble) = [ (BB 2,9 - 8] Sulule)dy. (33)

L

For B to constitute a symmetric equilibrium strategy, it is necessary that the above function
be maximized at b = B(z). Taking the first-order condition with respect to b in (3.3) and
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evaluating it at b = B(z), we obtain the following necessary condition for a symmetric
equilibrium B:

0 = [(@.2.2) - B@)a(alz)B/()

—Fi(z|z) + [B'(z)]! /;L ri(z,z,y) fi(y|z)dy, (34)

where 7} denotes the partial of r*(2’, 2, y) with respect to its first argument. Rearranging
this, we obtain the ordinary differential equation (ODE):

B(@) = (@) - Bl + [ s e b, (3.5)

The boundary condition for (3.5) is B(zr) = r*(zL,zr,zL).!® Using this to solve the
ODE (3.5) , we obtain

h{u)
B(z) = r*(z,2,2) - / Lufa)di(u) + [ fk( oy dLule), (3.6)
where
t(u) = r"(u,u,u) (3.7)
hw) = [ riCu,u ) fluludy (3.8)
L(ulz) = exp{—/u ;,Z((?l':)) s} (3.9

Of course, expressions (3.6)-(3.9) have been derived using necessary conditions for an
optimum. To complete the proof, it remains to be shown that (i) the strategy B as defined
by (3.6)-(3.9) does, in fact, maximize expected profits for plyer ¢ when all the other players
use B, and (ii) B is an increasing function. Indeed, there is also a third condition: for B
to be an equilibrium bid, it must satisfy B(z) < r*(z,z,z) since the expected profit for a
bidder must be non-negative in equilibrium. All three conditions can be verified using the
condition of information complementarity. The details are lengthy and are omitted. The
interested reader is referred to Theorem 1 of Bikhchandani and Huang [2].

Finally, it is shown in Milgrom and Weber [17] that, when ¢t and L are defined exactly
as in (3.7)—(3.8), the strategy

B(z) = r"(:n,:z:,z)—/; L(u|e)dt(x) (3.10)

19Gince bidders must earn positive expected profits, we must have b(z) < r*(z,z,z) at all z, and in
particular at z. If b(z1) < r*(zL,zL,zL), then by raising the bid at = to b(x L} + € for € sufficiently small,
expected profit can be made strictly positive.
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constitutes an equilibrium of the common-value model with affiliated private signals. It is
immediate from a comparison of (3.6) and (3.10), that the former is strictly larger by the
amount

¥ _h(w)
L fk(ulu)
Note the intuitively appealing feature that the magnitude of this difference depends (through

h) on r}, the responsiveness of secondary market price to the submitted bid; and that if
r} = 0, we have 3(-) = B(-).) O

dL(u|z).

Bikhchandani and Huang also show that a stronger result than Theorem 3.1 can be
proved under strengthened hypotheses. Namely, if secondary market beliefs are monotone
in the sense that they are increasing in the bids submitted in the primary market, then
the strategies defined by (3.6)-(3.9) describe the only symmetric equilibrium in increas-
ing strategies. Appealing to this result, we will refer in the sequel to “the” symmetric
equilibrium of the discriminatory auction.

3.3 Equilibrium in Uniform-Price Auctions

In a uniform-price auctions, the k highest bidders win, and each pay an amount equal to the
highest losing bid. Bikhcahandani and Huang show that at any symmetric equilibrium of
the uniform-price auction, the seller’s expected revenues are greater than at the symmetric
equilibrium of the discriminatory auction. The intuition behind this result is simple. In the
standard common value problem (i.e., one without a secondary market), we have already
seen that the winner’s curse is weakened in a uniform-price auction leading to more aggres-
sive bidding and greater revenues for the seller. The presence of a secondary market only
intensifies this effect: the uniform-price auction format makes it cheaper to submit high
bids in order to influence the secondary market price.?°

What do the equilibrium strategies in a uniform-price auction look like? Suppose all
bidders but bidder 1 use the bidding strategy B. Continuing with the notation introduced
at the top of this section, if bidder 1 receives the signal z; = z and submits the bid b, his
expected profit is

o
o) = [ [F(B0),2,9)~ Bw)] fetalei (3.11)

L

For B to be a symmetric equilibrium strategy, it is necessary that b = B(z) maximize
(3.11). The first-order conditions for a maximum are

0 = ["(a,2,9) - B@fulale) + [ ri@z,0)uvle)dy. (3.12)

20This last point raises an interesting issue. The more responsive secondary market price to primary
market bids, the greater the incentive to bid high in a uniform-price auction. {The price a bidder pays in
such an auction is beyond his control, but a large bid can increase the profits from winning.) Bikhchandani
and Huang provide an example to show that equilibria may fail to exist altogether in uniform-price auctions
because of this problem.
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It is seen that the solution to (3.12) is given by

h(x) .
fi(zlz)

where h(z) is exactly as defined in (3.8). Therefore, if a symmetric equilibrium exists, it
must have the form (3.13). It must be stressed that we are only working with necessary
conditions. For the reasons mentioned in the last footnote, equilibria may fail to exist
altogether.

B(z) = r*(z,z,2)+ (3.13)

3.4 Comparison of Auction Forms

Since any symmetric equilibrium of the UPA must be of the form (3.13), the necessary
conditions suffice for the comparison of equilibrium revenues received by the seller under
the two auction forms. Taking expectations in (3.13) and (3.6), Bikhchandani and Huang
establish one of their central results (see their Theorem 4) that the uniform-price auction
remains superior to the discriminatory auction even in the presence of the secondary market.

The Bikhchandani-Huang paper clearly establishes the importance of including sec-
ondary markets in any analysis of Treasury auctions. Nonetheless, their result on the
superiority of uniform-price auctions is of limited value in the design of Treasury auctions.
As we will see in the next section, when the item being auctioned is a divisible good (as in
a Treasury auction) the intuition gained from the study of indivisible-good auctions is no
longer applicable.

4 Auctions of Divisible Goods

Treasury-Bill auctions are essentially auctions of divisible goods, in which bidders compete
for shares of the quantity being auctioned. It is a natural question to ask whether the
analysis of indivisible-good auctions has any implications for this case. In particular, is it the
case that uniform-price auctions (UPA’s), which are the analogs of second-price auctions,
always lead to greater expected revenue for the seller than discriminatory auctions (DA’s)
which are the analogs of the first-price auctions?

The answer, in a nutshell, is no. A significant difference between the second-price auction
of an indivisible good and the uniform-price auction of a divisible good, is that the latter
gives rise to the possibility of implicit collusion among the bidders, that could reduce the
seller’s revenues dramatically. This was originally pointed out by Wilson [33]. Building on
Wilson’s analysis, Back and Zender [1] have recently carried out an elaborate comparison of
UPA’s and DA’s in general divisible-good auctions. We present a summary of their results
here.

4.1 An Example

We begin with a simple, but elegant, example due to Wilson [33] that illustrates the possi-
bility of implicit collusion in uniform-price auctions. The example compares a uniform-price
auction for a divisible-good (Wilson calls this a “share auction”) to an auction where the
same good is treated as indivisible (a “unit auction” in Wilson’s terminology). The main
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result is that the revenue obtained by the seller in the former case could be as low as one-half
the revenue obtained in the latter case.

Example 4.1 Consider a common-value auction in which one unit of a good is being sold.
Suppose further that all n bidders and the seller know that the true post-auction valuation
of the good is v = 1. Finally, assume that if there are two or more bidders submitting
the highest bid, then the winner is chosen randomly with all of the highest bidders being
equiprobable.

Consider first the case where the item being auctioned is an indivisible good. It is easy
to see that in any symmetric equilibrium of a second-price auction, the selling price must
be b = 1.2! Consequently, the seller receives the full value of the good.

Now suppose the item being auctioned is a divisible good, and the seller uses a uniform-
price auction. Each bidder submits a demand schedule B;(p) which specifies the fraction of
the total quantity he is willing to buy at the price p. The sale price p* is then defined as
the price p at which 3%, Bi(p) = 1.22

We claim that it is a symmetric equilibrium for all n bidders to adopt the following
strategy:

1 2p

Blp) = n-—1 n(n-1)

(a.1)

To see this, suppose all bidders but ¢ adopt this strategy, and consider ¢'s best response. If
bidder ¢ submits the schedule B;(p), the resulting price will be the value p° which satisfies

Bi(p°) + (n - 1)B(p°) = 1.
The consequent profit earned by ¢ is

0 0 0 0 0 2p°
(1=p)Bi(p") = 1=p)1=(n-1)Bi(p)] = 1-p")—~

A simple calculation shows that bidder i’s profit is maximized at p° = 1/2. Another simple
calculation shows that p® = 1/2 is precisely the price that arises if ¢ also submits the
schedule B(p) given by (4.1). Therefore, the strategies in (4.1) describe an equilibrium; the
revenue the seller receives in this equilibrium is p° = 1/2. O

At first sight, it may appear that the driving feature of Example 4.1 is the assumption
of a degenerate distribution for the post-auction value v, but this is incorrect. Back and
Zender [1] have shown recently that even in a much more general setting, there always exist
equilibria in uniform-price auctions of divisible goods in which the equilibrium price is less

21Suppose some bidder (say, 1) faces a situation where the highest bid from the remaining (n — 1) bidders
is b* < 1. If i submits a bid b < b*, the mazimum surplus that could arise is (1 — 4*)/2. This can be
improved on by bidding b* + ¢ for ¢ sufficiently small. Incidentally, note that the selling price will be b =1
in an English auction or a first-price auction also.

22This definition is incomplete. If demand curves are discontinuous, it is possible that total demand at
any price below p* exceeds the available supply of one unit, while total demand at any price above p* is less
than unity. Moreover, p* may not be unique. These are important considerations in general, but are not
relevant for this particular example, since the equilibrium we study has p* uniquely defined.
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than the lowest possible post-auction price. Even more importantly, they show that there
may exist equilibria of the discriminatory auction which strictly dominate these equilibria
of the uniform-price auction. Thus, unlike the case with indivisible goods, uniform-price
auctions are not necessarily superior to discriminatory auctions from the seller’s viewpoint.
We describe the Back-Zender results in more detail below.

4.2 The Back-Zender Model

Back and Zender consider a model with the following structure. There are n > 1 buyers
and a single seller. The auction involves a quantity ¢ (normalized to unity) of a perfectly
divisible good. The post-auction value of the good is a random variable v that takes values in
the interval [vr, vy]. Prior to the auction each bidder observes a signal z; that is correlated
with v. The joint distribution of v and z = (24,...,2,) is common knowledge to all the
players in the game.

The seller sets a reserve price p;, > 0. After observing his signal z;, each bidder ¢ submits
a demand curve B;(-|z;), which specifies for each p > pr, the quantity B;(p|z;) demanded
by i. A strategy for player ¢ in the auction is, therefore, the specification of a demand curve
for each possible value of z;. Let B(-|z) = Y I-, Bi(p|z:) denote the aggregate demand
that arises under the vector of signals z.

The Stop-Out Price

The stop-out price p* is defined as the maximum price at which demand equals or exceeds
supply. Thus, given a vector of strategies ((B;(-]-)), the stop-out price that results from the
vector of signals z is

“(z) = PL if B(p|z) < 1forall p> pL,
p | max{p: B(p|z) > 1} if B(p|z) > 1 for some p > py,

Quantity Allocation

If total demand at the stop-out price p*(z) exactly equals the available supply of unity,
then each bidder receives the quantity he demanded. It is possible, however, that because
of “flats” in the demand curve, the total demand at p* may exceed supply. In this case,
the supply is distributed pro-rata among the bidders according to the following rules. Fix
z, and for notational simplicity, let p* = p*(z). Let

ABi(p*|lzi) = Bi(p*lz:) - },illgl_ Bi(plz:)
be the flat in bidder ¢’s demand curve at p*. The flat in the aggregate demand curve is

AB(plz) = ) ABi(plz:).
i=1

The fraction of the flat in the aggregate demand curve that cannot be filled is

/\(a:)‘ = max{%,o}.
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Since the available amount is issued pro-rata, the amount received by bidder ¢ is

B} (z) = Bi(plei) — Mz)ABi(p|z:).

Seller Revenues in UPA and DA

In a uniform-price auction, each bidder pays the stop-out price for each unit that he receives;
thus bidder ¢ pays a total of p*(z)B}(z). In a discriminatory auction, each bidder pays the
entire area under his demand curve out to p*; thus, bidder ¢ pays

p*(z) B} (z) + / f‘(’x) Bi(plz:)dp.

4.2.1 Egquilibria in the Uniform-Price Auction

The central result that Back and Zender derive concerning uniform-price auctions is that
there are a continuum of symmetric Bayesian-Nash equilibria in which the stop-out price is
less than vy, although vy is the lowest possible post-auction price. In order to appreciate
fully the difference between divisible-good and indivisible-good auctions, it is necessary to
understand intuitively how this result could be true.

The key lies in the best-response problem faced by bidders in uniform-price auctions of
a divisible good. The marginal cost curve facing such any such bidder is endogeneous: it
is determined by the residual supply curve after subtracting the total demand curve of the
other bidders. Now, if the total demand curve submitted by the other bidders is suitably
steep, then marginal cost escalates very rapidly for the last bidder. Thus, it is possible that
the equilibria which result from such strategies could also result in the auction price being
below the good’s value. The following result is proved simply by formalizing this intuition.
(See also the remark following the proof.)

Theorem 4.2 Assume that the seller’s reserve price py, satisfies pr, < vy. Then, for any
p* € [pL,vL), there is an equilibrium in which the stop-out price is p* regardless of the value

of x.

Proof Pick any p* € [pL,vL], and let p’ be defined by p’ = [(n — 1)vy + p*]/n. Consider
the following strategies:

1
pm—t prspsp
’_
Bi(elz)) = 7 _”p) fp_p,_, pr<p<yp (4.2)
0, p>7p.

Note that the right-hand side of this expression does not depend on z;, so the strategies
are effectively independent of z;. Note also that lim,|,+ B;(p) = 1/n, so the demand curve
has a flat of [1/(n — 1)] - [1/n] at p*.

Suppose all bidders j # ¢ adopt the strategy (4.2). The residual supply curve s(p) is
defined as the quantity bidder ¢ would obtain, if his demand were to make the stop-out
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price equal to p. This curve is easily defined at all points except at p*. At p*, the demand
curves specified by (4.2) have a flat, and so therefore, will the supply curve. Some messy
computation using the pro-rata rule shows that bidder i can obtain any quantity ¢ € [0,1/n]
at this price, and the residual supply curve therefore is:

S(p) - 0, - P<p*

s(p) € [0,1/n],  p=p (4.3)
('UH _p*) * / |

s(p) won—p) P <PSP

s(p) = 1, P>

Now observe the following:

Since the total quantity demanded by the remaining n — 1 bidders at the price p*
equals unity, no bid below p* can be successful.

At a price of stop-out price of p*:

1. The maximum quantity that ¢ can obtain is 1/n.

2. Therefore, if p* is the best price for bidder 7, he will want this maximum quantity.
3. In this case, his demand must satisfy lim,),+ B;(p) = 1/n.
4

. If the realized post-auction price turns out to be v, bidder i will receive a profit
of (v - p*)/n.

At any price above p*, no bidder j # ¢ has a flat. Thus, even if i’s demand were to
push total demand above unity, each bidder j # 7 would receive his full requested
amount (see the pro-rata rule). Therefore, ¢ cannot gain by pushing demand above
unity at any price above p*.

Finally, bidder ¢ can obtain the entire quantity available by submitting a demand of
unity at the price p’.2> For any realization v of the post-auction price, this would
result in a profit of (v — p’). A simple calculation using the definition of p’ shows
that, regardless of the value of v € [vr,vy], this profit is dominated by (v — p*)/n.
Therefore, by 2(d) above, it is suboptimal for i to make the stop-out price p’ or higher.

Summing up, bidder i’s best-response problem is to find the best stop-out price p € [p*,p'].
The quantity obtained at the stop-out price p € (p*,p] is

gi(p) = 2 (3;:_—_1)_)

n g —p

Therefore, if the realized post-auction price were v and bidder i chose the stop-out price p,
the profit realized by ¢ would be

n

(0= Patp) = o (R,

23Clearly any bid above p' is senseless.
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For p* < p, it is easy to check that—regardless of the value of v—this quantity is decreasing
in p. The quantity received by ¢ as p | p* tends to 1/n. Thus, the maximum profit ¢ could
receive by selecting p € (p*,p’) is (v — p*)/n.

Since this is preceisely the profit received by ¢ by submitting the demand curve (4.2)
(again, see point 2 above), it follows that (4.2) is a best-response for bidder ¢, when all the
other players are also using this strategy. Since this strategy does not depend on ¢’s signal,
by symmetry it is an equilibrium of the auction game. Of course, this implies that p* is an
equilibrium price.2 0O

4.2.2 Equilibria of Discriminatory Auctions

It is obvious that, ceteris partbus, a bidder in a discriminatory auction would wish to submit
a flatter demand curve than in a uniform-price auction. Back and Zender show that, under
relatively weak conditions, there is an equilibrium of the discriminatory auction in which
each bidder submits a totally flat demand curve, with each bidder bidding for the entire
quantity at a single price.

Theorem 4.3 Suppose that the first-price unit auction®® has a (possibly mized-strategy)
equilibrium (p1,...,pn). Then, it is an equilibrium of the discriminatory auction for bidder
i to demand nothing at any price above p;, and to demand the entire quantity at any price
below p;.

Proof See Theorem 2 of Back and Zender [1]. a

4.2.3 Comparison of the Auction Forms

Unlike indivisible-good auctions, divisible-good auction models have a large number of
possible equilibria. In the case of uniform-price auctions, we described a continuum of
equilibria (one for each p* € [pr,vr]), but it must be remembered that even these are
only one class of equilibria; other equilibria may also exist. A similar remark applies to
discriminatory auctions.

If the comparison is limited to the classes of equilibria shown to exist in the two auction
forms, then (under some additional conditions concerning the signals) Back and Zender (1]
provide a parametrized family of examples where the discriminatory auction never does
worse, and sometimes does better, than the uniform-price auction.

There are at least two ways of interpreting these results. The less controversial is to
treat the central message of the paper as pointing out that there are important differences
between divisible-good and indivisible-good auctions, and that one should not use the latter
framework to draw conclusions about the former. A stronger interpretation would be that
discriminatory auctions are, in general, superior to uniform-price auctions in the case of
divisible goods. Although some have drawn such a conclusion, this does not seem war-
ranted. Even if it were true within the Back-Zender equilibria that discriminatory auctions

24 A persual of the proof shows that #’s best-response is forced to the point p* precisely by the way the
residual supply curve behaves for p > p*. The steep slope in this supply curve increases i’s marginal cost
rapidly; consequently a lower price works out better.

2 Recall that “unit auction” refers to the case where bidders are only allowed to bid for the entire quantity.
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dominated uniform-price auctions, one is still faced with the problem of explaining why
these equilibria are strategically salient. This is not an easy task; equilibria such as those in
Theorem 4.2 appear to require a considerable amount of coordination among the bidders,
most notably concerning the stop-out price p*.?6 More work appears to be needed to resolve
this issue.

4.3 Other Work

Wang and Zender [32] study a model similar to that of Back and Zender. Their focus is
on equilibria in continuously differentiable strategies.?’” They show that a continuum of
such equilibria exist under both the the UPA and the DA formats; however, all but one
equilibrium of the discriminatory auction format disappear when the seller imposes a reserve
price.

A comparison of the seller revenues under the two formats reveals an interesting picture.
When all bidders are risk-neutral, it is shown that the seller’s revenue in the unique surviving
equilibrium of the DA dominates all but one of the continuum of equilibria of the UPA
format. When bidders are risk-averse, however, the equilibrium under a DA dominates
some of the equilibria under a UPA, but it may also be dominated by some of the latter.
Thus, an unambiguous ranking of auction formats according to seller revenues is impossible.

5 Empirical Testing of Auction Models

Empirical examinations of Treasury auctions have tended to focus mostly on one of three
issues: (i) the revenue generation ability of the auction format (seller’s perspective), (ii) the
examination of whether bidders demonstrate rational bidding strategies (the buyer’s per-
spective), and (iii) the degree of manipulability of the auction, and the impact of auctions on
other market traded instruments (the market’s perspective). Our brief empirical summary
follows this framework.

5.1 TUniform-Price vs. Discriminatory Auctions

Bolten [3] represents one of the earliest tests of revenue generation. His analysis also
attempts to understand the effects of competitive and non-competitive bidding demand.
Bolten tests the the effect of the non-competitive bidders moving to the secondary market.
His results show that if the non-competitive bidders stay then revenue from the UPA in-
creases, but if they leave, then revenue declines. Given that the non-competitive bidders
are likely to stay, the practical implication of the test would appear to be that the UPA
would do better than the DA.

260f course, it could be argued that since Treasury auctions take place repeatedly, there is enough of
a time element to enable bidders to coordinate their strategies by trial and error. This is an inadequate
defence. If the time element is really important, then we should be analyzing the repeated game, not the
static game, and now new, more salient, equilibria could arise.

27 A recent paper by Viswanathan and Wang [30] studies a divisible-good auction model with when-issued
and secondary markets. Unfortunately, the paper came to our attention too late for a summary to be
included here.
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The auction process drew renewed attention recently when the Salomon scandal broke in
May 1991 (see Jegadeesh [10] and Jordan and Jordan [11] for a analysis of this episode). In
1992, this prompted the Treasury to experiment with the UPA as an alternative mechanism
in the issue of Treasury securities. A number of recent studies have since focussed on the
UPA vs DA question, but with mixed results.

Simon [22] argues that the UPA costs the Treasury money; he finds that the markup
of auction yields over when-issued yields is much higher when the Treasury used the UPA
rather than the DA. Umlauf [28] and Tenorio [27] study Mexican Treasury auctions and
Zambian foreign exchange auctions, respectively. The Mexican Treasury switched from a
discriminatory to a uniform-price format in 1990. Zambia’s auction of US dollars followed
a uniform-price format upto 1986, and a discriminatory format thereafter. Both studies
report higher seller revenues under the UPA. (Mester [15] also suggests that the UPA may
prove to be mildly better for revenue generation.) In addition, Umlauf asserts that the UPA
format lowered bidder profits substantially as it hampered collusion. However, the lack of
a competitive secondary market in either case, and the relative lack of sophistication in the
two markets, make it difficult to draw any conclusions concerning the US Treasury auction
format.

5.2 Tests of Bidder Efficiency

In one of the few tests of bidder efficiency, Scott and Wolf [21}] empirically examine two
dealers A and B. A is a small dealer in T-Bills and B is a big dealer. They assume that the
dealers have quadratic utility functions for wealth. The data used is 74 consecutive weeks
of forecasts and bids of the 2 dealers. Each dealer is asked to provide the following forecasts
before each auction: (i) a discrete probability distribution of stop out prices, and (ii) point
estimates of post-auction opening selling prices. Using this information, Scott and Wolf
solve for the bids that maximize the dealers’ utility. They also compute a mean-variance
efficient frontier of bids. They then compare the profits made from points on the efficient
frontier with actual profits. While the actual bidding was different from the computed
efficient bid, it was not significantly so. The evidence in favor of or against bidder efficiency
is quite inconclusive. Technically, a problem here is that both frontier and actual bids are
drawn from the same subjective decision maker. It is therefore even more surprising that
they are different. It is thus hard to justify either bidding efficiency or inefficiency.

Simon [23] undertakes a more recent study of bidder efficiency. Using intra-day quotes
he examines the risks and rewards of Treasury coupon auctions for bidders who face different
trade-offs between the winner’s curse and quantity risk. The data indicates that markups
of treasury auction average rates over bid when issued rates averages 3/8 of a basis point.
Bidders often established long positions in the security in the when-issued market when
they could have obtained the paper in the auction more cheaply, suggesting a degree of
bidder inefficiency and also a degree of information asymmetry prior to the auction.

Cammack [5] undertakes a study of the information aggregation properties of auctions
and bidder efficiency. She finds that bidders rarely agree on the value of the bill in the
auction, making the common value format particularly interesting. Auction prices are
lower than secondary market prices, reflecting information asymmetry in the absence of a
full market and the lack of agreement on price amongst bidders.
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5.3 Other Work

In a recent paper, Sundaresan [26] finds that the auction markets were very different in
the period 1980-83 as against the behavior in 1984-91. This is possibly on account of the
fact that the Fed had widely divergent methods of interest rate management during these
periods. In the earlier period, they managed money supply, leading to a sharp increase in
the volatility of interest rates. After 1983, they switched to managing the level of the short
rate by targeting the Fed funds rate. This has led to far less volatile interest rates.

A salient feature of the data appears to be that the bid-cover ratio (or the ratio of total
bids to the amount of the issue) bears an inverse relationship to the dispersion of winning
bids. This is not, perhaps, surprising. The greater the number of bids, the smaller the
percentage of bidders who win. This means that they are likely to fall under a smaller
portion of the distribution of bids, and therefore be bunched together. It is also noticed
that the dispersion of bids is related to the level of yields, which is, as is well known, related
to the volatility of the interest rate. The bid-cover ratios tend to be higher for auctions of
short maturity debt, and the percentage of the issue sold to competitive bidders increases
as the maturity of the debt increases.

Sundaresan also finds a strong relationship between the repo markets and auction ac-
tivity. Prior to the auction, substantial pre-trading of the issue occurs in the when-issued
market. As a consequence of this trading, several short positions are established, and are
often hard to fulfill on delivery date, resulting in short squeezes. This forces the shorts to
pay high premia for the security which is reflected in the repo market rates. Sundaresan
reports a significant jump in premia for borrowing securities in the 10 day window around
the auction.

Finally, Wachtel and Young [31] investigate the impact of auction announcements on
the interest rate markets, and finds little impact. Hence, the announcements of auctions
contain little information of surprise value to the market regarding the supply of treasury
securities.

6 <Concluding Comments

In summary, the implications of the theoretical and empirical work so far seems to indicate
that the following important issues are raised by the evidence from the auctions markets:

1. On a theoretical level, the modelling of T-bill auctions must account for several market
stages: the when-issued market, the auction itself, the repo market and the post-
auction secondary market. One model attempting to do so is the recent work of
Viswanathan and Wang [30].

2. Models of the auction with indivisible units or single units seem to give results that
are quite the opposite to those of multi-unit auctions. Hence, the only viable models
should be those permitting the submission of price-quantity schedules as bids.

3. In understanding the winner’s curse, a simple comparison of the prices pre-auction
with those post-auction will not provide correct results. This is because of price
distortions caused by different pre-auction positions, bidder risk heterogeneity, and
squeezes.
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4. Auctions are not completely ‘common-value’ in form. This is because the bidders
in the game have different objectives and prior positions off which they trade in the
auction. Understanding this aspect from a modelling view point is necessary, though
probably impossible to account for in any framework of the Treasury markets.

5. Finally, the liquidity effects of auctions are an important effect on the markets. Auc-
tions punctuate the time line of the debt markets by changing the mix of off-the-run
and on-the-run bonds.
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