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Abstract

This paper deals with processes that require several complementary inputs subject
to improvements in quality. If one of these inputs requires a period of learning after a
quality upgrade before it can be used effectively, then in general it will pay to purchase
the inputs at different dates — the purchases will be asynchronous. That is so because
it is wasteful to tie funds up in the other inputs which will be underutilized until the
date learning is over.

1 Introduction

In a typical industry, the typical user of a technology has not developed it himself. Instead,
he has adopted someone else’s invention. Most users therefore improve their technologies
not by invention, but by adoption. Zeckhauser’s (1963) prototype adoption model assumes
that the user must use one technology at a time. That is, to adopt a new technology the
user must drop the old one. This assumption holds in a variety of situations. Many types
of equipment (cars, computers, machine tools) are hard to modify — e.g., one can only use
one type of chip in a computer.

The typical new technology also involves a period of learning and productivity growth.
Output can fall right after adoption takes place, and it takes a while before productivity
under the new method exceeds peak productivity of the old one. This foregone output is an
implicit cost of switching, and in Zeckhauser’s model. this cost of acquiring the technology-
specific expertise prevents users from upgrading at a maximal rate. There are also explicit
costs of switching technologies. To use a new method, one typically must buy some capital
goods specific to that technology. Zeckhauser does not consider such costs, but in his model
that would be a routine extension.

We extend Zeckhauser’s model by assuming that the operation of a technology requires
not one, but two complementary inputs, whiclf we think of as two capital goods — e.g., hard-
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ware and software, or designs and manufacturing equipment. Our model contains human
and physical capital costs of technological switching.

1.1 Explanations of synchronized behavior with complementari-
ties

Many technologies divide into components each of which is embodied in a different durable
good. But can we, for most purposes, still treat them as a single composite capital good?
Since these inputs are complementary, can’t we aggregate them and treat them as one
input? The literature might indeed lead us to conclude that the answer is ”Yes”. When
inputs in production are strong complements, it has been argued that these quantities will
move together over time and space — in sync:

(i) Milgrom and Roberts (1990) argue that when a plant retools, or when a firm reorga-
nizes, its complementary inputs should be readjusted at the same time.

(ii) Cooper and Haltiwanger (1993) say that complementarity causes agents’ actions to be
positively correlated, and investment to be “bunched” at certain dates.

(i) Matsuyama (1995) argues that complementarity implies that various sectors of an
economy will tend to develop at the same time.

(iv) Aghion and Howitt (1996) say that the adoption of general purpose technologies will
be delayed until complementary technologies become available.

(v) Kremer (1993) says that when different tasks are complements in production, plants
will segregate on the basis of the qualities of all their inputs.

(vi) Sheshinski and Weiss (1992) say that when two products are complements in the firm’s
profit function, their costly price changes will be synchronized.

The general thrust of these claims may be valid, but our paper will show that there is
an important exception: When an input’s productivity grows through learning or training,
it may pay to economize on other inputs until the input in question is "up and running”.
That is, learning creates asynchronization.

1.2 Evidence of asynchronous use of technology

Here are two examples of complementary inputs upgraded asynchronously:

(a) Designs and manufacture can be treated as complementary inputs: A given manu-
facturing process is capable of supporting only up to a certain number of designs in
production. The quality of output is measured by the variety of the models offered
to the consumer. In contrast to the old mass-production technology, an efficient lean-
manufacturing automobile factory can quickly shift to a new model without absorbing
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a productivity drop. But it can take 10 years for a plant to master the lean man-
ufacturing technique, and U.S. plants that have adopted it are not yet at the same
level of mastery as the Japanese plants: The U.S. plants started switching to lean
manufacturing in the mid 1980’s, but as late as 1990, the Japanese auto industry was
still producing twice as many models as the Americans did (Womack pp. 119-120). It
apparently will not pay U.S. firms to produce that many models until they master the
new technique.

Programming quality and broadcast quality are the two complementary inputs in the
TV industry. The quality of output can be measured by its entertainment value.
Before electronic TV there was mechanical TV which could not support high-quality
programming because of low resolution. The development of electronic TV began in
the early 1930’s, when mechanical TV was largely abandoned - a technological switch
took place even before the new technology was perfected. TV stations chose not to
invest in high-quality programming. Instead, they switched to audio broadcasting
(lower output) and used their video equipment for research. Apparently it did not pay
to raise programming quality until high definition electronic TV was fully developed.
(Udelson, 1982, p. 78).

The same logic works for asynchronized introduction of complementary products. Learn-
ing implies that it does not pay to introduce the second complementary product until the
first one has been learned. Again, learning creates asynchronization. Here are two more
examples, but this time of the asynchronous introduction of complementary products:

(c)

(d)

Street lighting (supplied at night) and industrial electrification (supplied during the
day) are complementary products for an electric utility. A big component of cost
is their shared capacity — the power plant — which serves to produce both outputs.
During the early years of electrification, utilities took a long time to gain expertise in
efficiently transporting electricity to the user. In the late 1890’s and early 1900’s, they
supplied mainly street lighting. Only by 1910 did the utilities became efficient enough
to start supplying factories too. (Nye 1995, pp. 235 - 236). So street lighting service
and factory electrification were introduced at different dates. It could not pay utilities
to supply electricity to factories until they had learned to do it efficiently.

Passenger service (needed during the day) and freight service (which can be supplied
at night) are complementary products for a railroad. A big component of cost is their
shared capacity — the railway track or the locomotive — which serves to produce both
outputs. Freight train operation by itself is harder to master (Pollins 1971, p. 61,
Sherrington 1928, p. 172). As a result, English railroads in the early 19th century
primarily transported passengers until around 1840, by which time the technology had
improved enough to accommodate freight. It did not pay railroads to move freight
until they had raised their efficiency.
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Other explanations of asynchronous behavior

We will use learning to explain asynchronous use of technology. But there are other ex-
planations of asynchronous behavior generally, and possibly even of asynchronous use of
technology. Not all are formally worked out in the literature, but they deserve mention.

1)

3)

In a two-sector model, Benhabib and Nishimura (1985) find that if the consumption-
goods sector is more capital-intensive than the capital-goods sector, the sectors move
asynchronously. If we have a lot of capital goods today, the resulting abundance of
capital next period will make it optimal to produce a lot of the (capital-intensive)
consumption good tomorrow. But then there will be less capital the day after. It
then becomes optimal to focus on capital goods, and so on. The force here is not
learning, but rather an off-diagonal weighting in the input-output matrix. This theory
works at the aggregate level, however, and it can not explain the above examples of
asynchronous behavior.

Internal costs of rapid adjustment other than implicit learning costs can also make it
optimal to stagger the introduction of complementary inputs. This argument may in
part explain example (a), where one might argue that a team of designers can either
design new models, or help with the layout of the factory, but not both. But it is
hard to argue this for the TV example, in which it seems instead that the costs of
adjusting the two inputs were unrelated, and that costs depend on quality, and not on
the relative timing of introduction. It is even harder to argue this for examples (c) and
(d), where creating the capacity to produce one product in fact clearly lowers the cost
of supplying its complement, though not significantly enough to warrant immediate
production.

Financing constraints can make it optimal to stagger the introduction of complemen-
tary, but expensive capital goods. This hypothesis says that profitable investments are
staggered — i.e., delayed — until they can be financed. The argument implies, however,
that a big company would move earlier to introducing profitable opportunities that
are, for financial reasons, unaffordable to smaller companies. That is, a big firm should
adopt technologies synchronously. But this fails in all four examples. All automobile
manufacturers are big companies, yet they all moved asynchronously. Railroads, elec-
tric utilities, and some TV companies are all big companies, and yet they too all moved
asynchronously.

Time to build is similar to our learning hypothesis in that there is a waiting time
between the date at which investment in a new technology begins, and the date at
which it can yield (higher) output. In such a model, it is possible, and optimal to
continue using the old technology while the new one is under installation. Then when
the new technology is ready, it is optimal to invest in its complementary inputs. This
argument works well at the aggregate level, but not so well at the micro level when
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simultaneous use of two different technologies is infeasible. For instance, in an auto-
mobile plant, it is not possible to run mass production alongside lean manufacturing,.
In the TV example, programming stopped around 1933, and the video equipment was
used instead for research. And it is hard to think what (other than expertise) it took
decades to build in the electricity example. The hypothesis may explain part of the
railway example, however, in that the movement of freight requires not only track and
locomotives, but also different cars, warehouses and other local infrastructure.

No doubt that these hypotheses, and other considerations besides, may illuminate some
aspect or other of each example. At this stage, we wish only to establish that learning is
an additional hypothesis that can improve our understanding of asynchronous behavior in
various contexts.

1.4 Plan of the paper

Throughout the paper, we shall model the optimal policy of a firm that produces one output
with two inputs. This means that formally, we will be addressing examples (a) and (b) only.
However, the same force - learning — will also explain the phenomena in examples (¢) and
(d). To show this, we shall, at the end of the paper, show how with minor modifications, the
model can be transformed into one with one input and two outputs. One of the inputs is
subject to a learning curve after it is installed, and its purchased quality is bounded above by
frontier quality that grows exogenously. The other input can be upgraded any time, without
limit. When learning is relatively unimportant, it is optimal to upgrade both inputs at
the same time, in sync. But when learning matters enough, it is optimal to stagger the
upgrading of the two inputs, as examples (a) and (b) show, and as management scientists
emphasize.’

We will show that whenever upgrades make output drop, it is better to upgrade the
inputs asynchronously. Baloff (1970) argues that output drops are especially prevalent in
machine-intensive manufacturing. Furthermore, for a non-degenerate subset of parameter
values, the producer optimally chooses to incur the drop in output, deriving benefit from
rapid growth associated with more frequent upgrading.

Our other result concerns aggregation. When the two inputs are optimally upgraded
together, in sync, then the two input problem degenerates to the one-input case. But when
the parameters are such that the optimal upgrading policy is assnchronous, then the two-
input case is genuinely different.

The next section presents the model. Section 3 contains the ageregation result, section 4
compares synchronous and asynchronous upgrading policies, and section 5 discusses optimal
policies. Section 6 asks if our conclusions are robust to various changes in the assumptions.
In particular, it introduces the two-output variant of the model. Finally section 7 contains
the Bellman equation specification of the model.

For instance, Attewell (1992, p. 1) advances the thesis that "Firms delay in-house adoption of complex
technology until they obtain sufficient technical knowhow to implement and operate it successfully”
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2 The Two-Input Model

Until section 6, we shall deal exclusively with the two-input model. A firm’s production
function is Leontief with two inputs z and z:

y(t) = min{z(¢), 2(¢)}.

We think of z and z as the services provided by two complementary capital goods — say,
computer hardware and software. We assume that there is a fixed input of labor, and
that y(t) is labor productivity. Under this interpretation, a worker is assigned to the two
machines, and machines can not be shared. We assume that the size of the firm is exogenous
so that the labor input is equal to 1. Then z and z are the qualities of the two inputs that
the firm’s only worker is using to produce output.

2.1 Feasible input choices

Only one unit of each input can be used in production at any time, and x, z measure quality,
rather than quantity of inputs. A new quality of each input can be purchased at any time.
It is not possible to add to the old levels of z or z — only one unit of each may be used at a
time, and when a new input is purchased, the old one is useless.

The producer can purchase any quality of input . More formally, suppose that new
z is purchased at times s;, j = 0,1,..., and the quality of z purchased at time s; is z;.
Likewise, let new z be purchased at times 7; and the quality be z;. Then the time paths
for input qualities z(t) and z(t) will be fully determined by the sequences of (nonnegative)
numbers{z;, s;}72 and {z, 7:};Z, respectively:

a:(t) = .’Ej,t € [Sj,8j+1) ,j € N,

_ 92,‘ te [Ti,T,;+T) .
Z(t)—{ Zi tE[T5+T,T,'+1) ZEN’

where z; < Z(7;) = Z(0)e’"i for every %, where Z and 6 will be defined presently.
Note two asymmetries in what is assumed about feasible choices of inputs z and z:

1) While any quality of input z is a feasible choice, the quality of input z is constrained
by the frontier Z, which grows exogenously at rate g: Z(t) = Z(0)e?. This exogeneity
premise is appropriate at the micro level, where most innovation consists of adopting
someone else’s invention. But it is not appropriate at the very aggregate level: Because
the advance of the frontier is exogenous to the decision unit, this unit must be small
in relation to the sector that produces the growth in Z. A team, a plant, a firm, or
even a small open economy all satisfy this criterion.
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Figure 1: The time path for the frontier Z(¢) and input productivity z(t)

2) For T periods after each upgrade of z, only a fraction § € [0,1] of its quality can
be used in production. This captures the idea that after each purchase of new z the
producer has to learn how to use it, and while he is learning, his productivity is lower.
In contrast, z has no learning.

These assumptions simplify the analysis but do not affect the main results. The following
subsection addresses learning in more detail.

2.2 Nature of learning

To explain the nature of the learning process, we portray a typical time path for input z in
Figure 1. Here input z is purchased at times 0, 7;,and 75. Levels 2, and 2, are shown to be
at the frontier, but 2, is below the frontier. Productivity of z; for the first T periods after
its purchase is 6z;.

The time path z(t) consists of a sequence of learning curves. Each learning curve is
L-shaped so that there is a well defined learning period, or ”start-up” period of the kind
emphasized by management scientists (Baloff 1970), and found in plant-level productivity
by Bakh and Gort (1993). L-shaped learning is an extreme form of the S-shaped learning
curves that can arise when an activity is complex (see Jovanovic and Nyarko 1995 figure 1).

Another source of L-shaped learning is analyzed by Stolyarov (1996). When learning
draws effort away from production, and when the returns to effort are linear, it is optimal
to use a ”bang-bang” policy: All effort goes to learn the technology for some initial time
interval [0,7], and then effort switches to production. During the start-up phase [0, 7],
output will be low (say 8 < 1), and after that, output will be high (say 1).
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L-shaped learning vastly simplifies the analysis. Our result that asynchronous upgrading
sometimes dominates synchronous upgrading, by continuity, remains valid when L-shaped
learning is approximated closely enough by continuous learning. We now note some specific
properties of this learning process:

(i) Learning is measured by § and T. Relative to peak productivity, output "lost” to
learning is (1 — @)T. If 8 is close to 1 or if T is small, learning is unimportant.

(ii) After an upgrade in z, output may drop.

(iii) Learning is not transferable between technologies: Learning the current technology
does not depend of how many grades were learned previously. In this respect, our
model is like Zeckhauser’s and not like Parente’s (1994).

(iv) Once in place, a technology’s productivity depends only on time, and can not be
hastened by spending or by speeding up production. As Bakh and Gort (1993, p. 563)
put it, ”...learning may simply depend on time...[because of] intertemporal substitution
in which costs are reduced by later delivery.”

(v) Learning z is not interactive with z. For instance if z is a machine tool and z is a raw
material, this says that you can debug the tool using any quality material.

(vi) If a factory can make only one product, one can interpret 7 as "lead time” - the time
elapsed from the start of work on the new product to market introduction.

(vii) This is not a ”T-period time to build z” model even when § = 0. In such a model, one
could order the new z input T' periods before dropping the old 2, and hence suffer no
fall in output. Here one must install the new z before learning can start.

The capacity constraint — only one z and only one z per user is more realistic at the
micro level. At the aggregate level, many technologies are used simultaneously, and our
model does not apply.

2.3 Prices and the maximization problem

Let the input prices per unit quality be constant and equal to p. and p,, respectively. The
price of output is constant and normalized to unity. Then, lifetime profit is given by:

V{zj, s}, {z:,m:}) = /Ooo et min{m(t),_z(t)}dt — ée_rripzzi — ie"”jpij (1)

[N

The first term is present value of revenue, the second term gives the total cost of input z.
The third term represents the total cost of input . The producer maximizes his lifetime
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profit, given by (1), with respect to z(¢) and z(t), with the initial conditions z(0) = Z,
z(0) = 2:
max V{{z;,s;},{z,7:})
{zi,ri}, 585
st. Vi, j oz < Z(1)
;20,220
Sj 2 0, T 2 0

Note that we assume that prices of inputs are unchanged only relative to output. This helps
in two ways: First, it enables us to discuss the issue of aggregation in Section 3. And second,
it leads to a stationary solution, which shortens the proofs without losing any insight.

3 Aggregation of Inputs

In general, inputs z and z cannot be aggregated into one capital good. However, this can
be done for a special case of perfectly synchronized upgrading, and this section provides the
necessary and sufficient conditions for input aggregation.
Let Z(t) be the time path for the level (i.e., potential productivity) of input z

Z(t) = 2z, t € [15,7i11) -

Note that for any level time path Z(¢) the productivity time path 2(t) is uniquely defined by
z(t) = 6(¢)2(2),
0, te[r,n+T) :
6 t — ) LI > 0
®) { 1, te[r+T, ) ' =

(if =1 or T = 0, the two are identical), so that the pair (z(t), 2(¢)) fully determines the
producer’s policy. For a particular policy, the time path for the cost is given by

Pz Tj, t=s;and Vi s; #7;

C(t) = D2Zi, t=r,and Vj 7; # s
DPzT; + D2z, t=7,and3j:71;,=38;
0, otherwise

Definition:We will say that the inputs  and z are aggregable with respect to the policy
(z(t), Z(t)) if there exists a price index P = P(p,,p.), a quantity index X (t) = G (z(¢), 2(t))
and a production function F'(X(t),t), such that the resulting time paths for cost and output,
expressed through (z(t), Z(t)) and through X (¢), are identical. That is to say, for every ¢

C{t) = P(ps,p.)X(t)
y(t) = F(X(t),1).

Three remarks may be made about this definition:
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(a) It is motivated by Varian (1992), where the counterpart of our policy (z(t), 2(t)) (i.e.
the firm’s demand for intermediate goods) is consumers’ demand for final goods.

(b) This is a relatively weak concept of aggregability, because the functions P, G and F'
are allowed to depend on a particular policy. And yet we will show that even such a
weak condition will generally not be met in our model.

(¢) By allowing the production function F to depend on time, we allow the possibility of
learning the aggregated input X.

Proposition 1: Inputs z and z are aggregable with respect to the policy (z(t), 2(t)), if
and only if for every ¢ > 0 s; = 7; and x; = az; for some positive constant .

This states that we can aggregate if and only if all upgrades are perfectly synchronized
and the levels of inputs are proportional.

Proof: Since we can arbitrarily rescale the units of measurement, it suffices to prove
the statement for & = 1, which is assumed to be the case without loss of generality. First,
observe that when z and z are both constant, X must also be constant. Therefore, X should
change only when at least one of the inputs is purchased. That is to say that

X(t) =G (:E(t)i é(t)) = Xk) te [tk)tk+1) 7k 2 0
where t; is the time, when at least one of the inputs is purchased, defined recursively by

to = min{So,To},

tk+1 = min {m_in {s; > tx},min{r; > tk}} :
7 1
Then, the cost time path for input X must be given by

o PXk, t= tk
clt) = { 0, otherwise

Sufficiency: Assume that for every ¢ > 0 s; = 7; and z; = z;. Then, set G (z(t), 2(t)) =
Z(t), P = p; + p, and F(X,t) = 6(t)X. Checking that output and cost paths for X(t) and
(z(t), Z(t)) are identical is now straightforward.

Necessity: Assume first that the inputs are not always upgraded in synch, and when
they are, the levels are not equal. That is to say that there exist ¢ and j, such that s; < 7;
and there are no upgrades in between. Set ¢, = s;. It follows that

Xk = X(tk) =G (Jij, 25_1) N
C(ty) = C(sj) =p.z; = PXy

But then, we have
pzmj - G (ij, Zi—l) )
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which means that either G(z, z) does not depend on z or ; = z;_;. This can be expressed
as p,z; = PG(z;). Since there are no upgrades between s; and 7;, tyq = 7;. It follows that

G(zj41), sy =1s
X — T\~j+1) i+l 1
. { G(z;), i sjp1 > 7

Cltrs1) = C(1:) = PXyyy = { ﬁzzjfl + P22, 1? 2:1 N :
For z and z to be aggregable, it is necessary that either p,z;41 + p,2z; = Pé(a:j+1) or
p.zi = PG (z;). The first equality cannot hold, because z;; # z;. Then the second equality
must hold, but if it does,this implies p,z = PG (z;) = pzx;, which means that such P does
not exist. It is left to consider the case, when upgrades are synchronous, but the levels are
not equal. The proof directly follows from the above argument. Q. E. D.

Evidently, then, we can not aggregate most of the policies, which strongly suggests that
the two input case has possibilities that are absent in the one input case.

4 ”S-policies” vs ” A-policies”

This section contrasts synchronous (S) and asynchronous (A) upgrading behavior. When
the following two assumptions are met, synchronous behavior is not optimal.

Assumption 1
0
> —(l—eT).
Pz = T ( )
This assumption says that the revenue during the learning period is too low to cover the
purchase cost of input z.

Assumption 2
O+e T <1

This assumption says that learning effects are important (low 8, big T').
Consider the set S of policies where z and z are upgraded together every time. That is,

S ={z(t),z(t) : Vi € N s; = 1;}.
These policies describe the most extreme form of synchronous behavior. Define the S-policy

as the optimal policy in the set S. The S-policy is fully characterized by the following result.

4.1 Inferiority of the S-policy

Lemma 1 Let the initial level of inputs at time zero be z(0) = %, 2(0) = 2 and let
Assumption 1 hold. Then, beginning from time 7o > 0, the S-policy has both inputs
upgraded periodically, with a constant period 7. The level of both inputs at the time of



To: December 4, 1996 Page: 12

upgrading is equal to the frontier at that time. That is, for every ¢ > 0, s; = 7; = 7¢ + 71,
z; = x; = Z(7o + 7). The value of the S-policy is

V() = Vo(2,8,70) + e T 90Vs(r) =

_ min{#, £} (1- e7770) 4 970 Z(O)g (1 —e7) +1%~(‘:Z_;) f"”) ~ Pz — Pz

r
Proof: In the Appendix.

Theorem 1 Under Assumptions 1, 2 any policy (z(t), z(t)) € S is strictly dominated
from any initial conditions.

Proof: To prove the theorem it is enough to show that the S-policy is strictly dominated
beginning from time 7. Then, without loss of generality, assume for the rest of the proof
that 7o = 0.2

Suppose that 6e9” > 1. That is to say that a brand-new z technology immediately
becomes more productive than the new one. Consider an alternative policy, which still has
z; = Z(1i) = Z(0)e9™, for every i. Set z(t) to be identically equal to z(¢t). That is to say
that . [ 7

2i t € T’I:, Ti + .
2(t) = { n telri+T,ri+1) €N

This policy has the same output, but lower cost. Its value for any fixed 7 is given by

g (1 . e—rT) + 1 (e—rT _ e-—r'r) - p, — pz(e + e——rT)

r

V(r) = 2(0) > Vs(r).

1 —e=(r—g)7
Consider the case, when #e9” < 1. This is the case, when a brand-new z technology is
initially less productive than the old one it has replaced. Define another alternative policy,

which we will call the A-policy (where ”A” stands for ”asynchronous”) by setting z; =
Z(7i) = Z(0)e and

2(t) = 8z, te[0,T)
lz te[ri+T,7G+1)+T),i>0

This policy also gives the same output as the S-policy. but is less costly. Its value is

V) — 20y L) F (T =) R0+ ) 4 b

> Vs(’l‘).

1 —e(r-9)~
Since the S-policy is always dominated, so is any policy in S. Q. E. D.

Theorem 1 applies if 8 is sufficiently small, or if T is sufficiently large. That is, if the
effect of learning on productivity is sufficiently strong, upgrading both inputs at the same

2Given the same initial conditions, an alternative policy can mimic the S-policy for ¢ € [0, 7p), and yield
strictly bigger profit on {7o,00). Since 74 is finite, as shown in proof of Lemma 1, this is sufficient for the
S-policy to be strictly dominated.
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Figure 2: Relative gain from use of the A-policy instead of the S-policy

time every time is not optimal. When fe” > 1, the dominant policy has perfect comovement
between the inputs, and seemingly argues in favor of total synchronization. However, the
initial productivity of the brand-new technology need not exceed that of the one it has
replaced. That is, if every upgrade of z involves a drop in output, the condition fed” < 1 is
satisfied, implying that the A-policy is dominant. As we will show in the following section,
when 6 is small, the producer’s optimal choice will be to incur the drop in output. Indeed,
with small @ it takes bigger values of 7 to satisfy 8e?” > 1, and if it does not pay to delay
the growth (i.e. increase 7) for that long, then the A-policy dominates both the S-policy
and the policy with perfect comovement.

4.2 The Gain from the A-policy

To measure the gain from the A-policy relative to the S-policy, we can use the difference in
total costs relative to the (same for both policies) lifetime output. Let Cs and C4 be the
total cost for the S-policy and the A-policy, respectively, and Y be lifetime output (the same
for them both). Then, we have the following result:

Proposition 2

Cs — Cy . TPz (1 — e T —9)
Y 0(1—eT)+e 7
Proof: In the Appendix.
Figure 2 plots on its vertical axis the fraction of output saved from using the A policy.

This is just the left-hand side of the inequality in Proposition 2. The figure is drawn an the
assumption that » = 0.04, and p, = 1. Amortized, the cost of z is then equal to » % of
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sales, which, if anything, is on the low side given that the share of capital is some 25% of
sales.

The gain is positive when Assumption 2 is met. The gain is proportional to p,, because
the A-policy saves on the cost of input x. But the gain depends also on how much learning
matters, i.e., 8, and T. Generally, T often is big and 8 often is small: Bakh and Gort (1993,
p. 577) find that the productivity of capital grows significantly until the fifth or sixth year
after the birth of a plant. Now let us see what examples (a) and (b) of the introduction
indicate about the possible magnitude of this gain:

(a) According to Toyota executives at the Georgetown, Kentucky plant (Womack 1990),
T is about 10 years. If U.S. plants make more models (higher z) before they have
mastered the new lean manufacturing technique (z), they will lose money.

(b) Mechanical TV was abandoned by 1933, whereas electronic TV was commercially
introduced in the 1940’s, T' was about 10 years. In the interim, there was no TV
broadcasting, so § must have been small. (Of course, had there been no war, and
no depression, 7' may have been lower). If TV stations had invested in programming
quality (higher z) before high definition electronic TV (z) was fully developed, they
would have lost money.

These examples show that when the new technology is complex, T is likely to be large,
and 6 is likely to be small, so that the relative gain from using the A policy will be significant.

4.3 Investment Patterns

Under the S-policy investment is (i) more lumpy, because both inputs are purchased at the
same time, and (ii) negatively correlated with output, since when investment is made, output
is below its mean. Under the A-policy, investment may be positively or negatively correlated
with output, depending on prices of inputs. Under the A- and S- policies, y(t) = z(t).
Detrended output is given by

1€ N.

] <
y’(t+ri)=z'(t+7i)=z_(ti’f_"_):{ 6, 0<t<T

Z(ri) 1, T<t<r '

For the S-policy, detrended investment is

. +p, t=711 .
Zs(t)——‘{gz p t £ 73 ,t € N.

Under the A-policy it is

pz+0pza t=20
. ) P, t=7i+T .
’LA(t)— D, t=7’(’i+1) ,LEN

0, otherwise
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Remark: Investment is more spiked under the S-policy. Clearly, i5(¢) is more spiked, since
there the producer pays for two inputs at a time.

In the S-policy all investment occurs at the point in time when the firm'’s post-investment
output is below its trend. As a result, ig(t) is negatively correlated with output. On the
other hand, 74(¢) can be either positively or negatively correlated with output. This is the
content of the next proposition.

Proposition 3

(i) Synchronous investment is negatively correlated with output and

cov(y,is) = —(1 = 0)(p= +p.) (1 - L) < 0.

(ii) Asynchronous investment’s correlation with output depends on relative prices of

inputs and cov(y’,i4) = (1 —6) (ng —p, (1 — 7;*))
Proof: In the Appendix.

These results are intuitive since investment leads output by more when we use the S-
policy. Let us compare the results of this proposition to related ones in the literature.

Since Zeckhauser’s single capital good also implies switching when the post-investment
output is below trend, part 1 of the proposition merely replicates his one-input case, and is
really implied by the aggregation result of section 4.

Caballero and Hammour (1996) also generate technological switching that is negatively
correlated with productivity. But the reason is different. In their model, a technological
switch must be accompanied by intervening unemployment of labor. Firms want to switch
when productivity is low because the opportunity cost of the unemployed resources is then
the smallest.

Klenow (1993) generates switching that is positively correlated with output volume in
a one-capital good model because he assumes learning that is a function not of time, but
of cumulative output. Firms like to switch technologies when the demand shock is high
because high demand affords faster learning.

Benhabib and Nishimura (1985) get an asynchronous activity of sectors in an optimal
two-sector growth model. This corresponds to our A-policy under which investment alter-
nates between the two inputs.

5 Optimal Policies

Section 4 has contrasted A-policies and S-policies, and shown that when learning is suf-
ficlently important and when upgrades in z make output drop A-policies do better than
S-policies. However, there may be some other policy which is even better than the A-policy.
To determine whether this is true, we will state conditions on the primitives of the model,
under which the A-policy is globally optimal.

Without any additional statements, we can provide a simple intuitive explanation of
why synchronous upgrades cannot be optimal when 6, the fraction of z utilized during the
learning period, is small. Consider the extreme case, when 8 = 0. Since 8 = 0, the output
during [7;,7: + T) is equal to zero, regardless of the level of x and z. Then if we were to
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purchase z at the same time as z but before the firm has learned to use z, the x would sit
idle throughout the learning period. That is, by purchasing z; at time 7; 4+ T instead of
7:, we delay the cost of z; leaving output unchanged, thereby increasing profit. This shows
that when 6 = 0, the optimal solution will not involve synchronous upgrading.

To prove the global optimality of the A-policy, we need additional assumptions. In
particular, assume that € is small, so every upgrade in z involves a drop in output. That is
to say that in the optimum for every 4

Z;

>0 2

Zi+1 @
Although this condition involves endogenous variables, it will automatically hold in the
optimum for a subset of primitives, which will be defined later.

Assumption 3
1

e 9 < =,
This assumption is made to ensure that the growth rate is sufficiently large, enough that it
does not pay to keep inputs constant for a long time.? Then we have the following result on
relative frequency of upgrades:
Lemma 2 Let z(t), z(f) be the optimal solution to (1). Then, under Assumptions 1, 3
and condition (2), on any interval between two successive upgrades of z, there is at most
one upgrade of z. That is to say, for every j there exists at most one 7, such that

8; < Ti < 8j41- (3)

Proof: In the Appendix.

5.1 Optimality of the A-policy

Finally, using the result of Lemma 2, we can provide sufficient conditions for the global
optimality of the A-policy, given by

Theorem 2 Let 2 be the set of all (g,7,8,T,p,,p.) satisfving

(i). e79T < 3

(i). 0<p, <L(1-e7T)

(i) 0< 8 <e®T/(1—eT+ L)

r—g

(V). 0<p.—&(1—eT) <lemT —p,(0+e7T) - L.

Then, for any (g,7,6,T,pz,p.) € Q the A-policy is the optimal solution to (1) with initial
conditions z(0) = 0, z(0) = 0.

Proof: First note that any vector of parameters from ) satisfies Assumptions 1-3, so
we can apply all the results proved above (condition (2) will be satisfied automatically for

3This assumption can be relaxed. See Section 6.
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any point in ). Let 7o = min {¢ : z(t) > 0} be the time of the first purchase of z. If 7 is
infinite, the lifetime profit must be equal to zero. Since we assume (and further on, check)
that positive profit is feasible, this cannot happen. Then, it is optimal to set 79 = 0. As
before, let {7;} be the sequence of times, when new 2’s are purchased. If z(t) = 0 for
t € [0,7,), then the profit on this interval is strictly negative (output is zero, and cost is
p.29 > 0), which cannot happen in the optimum. Then z must either be purchased at time
0, or at time T, or both.

First, prove that z is always purchased at time T. If not, it must be purchased at time
0, ie. so = 0. By Lemma 2, s; € {71, 71 +T}. Under condition (2), maxyg,)2(-) =
max(or,+7) 2(-) = 20 < Z(0). Therefore, by Claim 2, it must be true that zo < Z(0).
Since z(t) is constant on [0,7;), Claim 3 gives o = zo. Note that there are no gains from
purchasing z at time 7, which is why s; = 7, + T. Since § + e~"7 < 1 (Assumption 2), it
is always less costly to purchase zy = 6z, at time 0 and z; = zy at time 7.

Since z is always purchased at time T', then any zy purchased at time sy = 0, will be
used on [0,7") only. From Claim 2 it follows that zo = 0 or z¢ = 825. Let z; be the level of
z purchased at time 7', and let s; = 7. By Lemma 2, s, € {71, 71 + T'}. Since it must also
be true that z; < z, the profit on [0, 7,) is given by

max {O’ % (1 —eh - Tpa:)} — P20+ % (e""T —e 71 — rpxe“rT) =

= —0zyp; + ? (9 (1 - e_TT) — rpz) + % (e"T —e 1 — rpze_’"T) .

The last equality here is implied by (ii). Because the profit on [0,7;) must be positive
(otherwise, zg = 0), the second term in the above expression is strictly positive, which gives
z; = zp. Since zg = maxr, +1) 2(+), there are no gains from purchasing z at time 74, so
sy = 71 + T. Repeating the above argument on the interval [7;, 7;11), we get the following
expression for the profit on this interval:

—rr. | %i —r Tit1 ¢ _ —rAT, —r
e i [?(0(1-—6 T)—rp,)-{-—:—-(e T _ e ™ATi —rpLe T)]
Similarly, we get that 2,4, = 2; and s;y; = 7; + T for every 7« > 0 . Summing over ¢, we
obtain the expression for the lifetime profit:

V) =—fp+ ge—'n% [9 (1 - e_TT) —Tp: + (e"T — e AT v‘pxe"TT” :

In the optimum every term of this sum must be strictly positive, which implies that z; =
Z(1;) = Z(0)e?": for every i. This allows the lifetime profit to be rewritten as

e o]

V() = =Z(0)9p. + Z(0) Z"l [6(1=eT) = rp, + (67T — &% — rp,e=rT)]
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Using the same argument as in Lemma 1, we can now show that the maximum value of
lifetime profit will only depend on A7ty = 7. Therefore, the optimal policy is given by

2z =7Z(1i), t € [ri,7(1+1)),i >0
. 0z tE[O,T) .
x(t)-{ 2z ten+T,7G+1)+T) 120

By definition, this is the A-policy.
We will now show that condition (2) is always satisfied. Since z; = Z(71) and z;;, =
Z(7(i + 1)) for every 4, condition (2) is just

eI > 6,

which we must check for 7 = argmax V4(7). It is sufficient to prove that condition (2) is
satisfied for some 7 > 7*. The lifetime profit under the A-policy is given by:

) _ 1T 1({ —rT _ —-r7) _ -rT _
w(f)zz(o)r(1 )l e ) e o

1 —e(r=9)7
e d Z(0)e” "9 (1)
0)e~t\r—9im [ Val(r
- _—— ar _ —_ — -
dT VA(T) 1 _ e—(r-—g)'r (6 Z(O) (T g) (T g)pxg)

If we set 7 to satisfy

exp(—g7) = ‘2((0?)) (r—9g)

then the derivative dV4(7)/dr will be negative, implying that 7 > 7*. Since Vy(7) is
decreasing for all 7 > 7%, it follows that

exp(—g7) = A r—9) > tim 0L g)

If the RHS of this expression is bigger than 4, condition (2! will hold for 7 as well as for
7*. This can be rewritten as

1 T 0 0
s =T a:9 —rTy _ > , — — 1-— —rT
—e p(0+€e™ ) r—g_p T( e ),

which is the same as (iv).

It is left to see why the set {2 is not empty. Fix r > 0 and g < r. Next, fix T > 0,
satisfying (i) for the given g. With r, g, T fixed, the RHS of inequalities (ii), (iii) are strictly
positive numbers, so we can easily find r, g, T, 8, p,., satisfying (i)-(iii). It is left to show that

4This also enough to ensure that the profit on every interval [i,7(i — 1)) is indeed strictly positive and
that 7* is finite.
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(iv) defines a non-empty interval for p,. Evaluating the RHS of (iv) at the biggest admissible
value of p,, and taking (iii) into account, we have:

g —rT 1 —rT —rT 0
e~ _p (6 Ty _ 7 5 Z _ 2 f1-e"TY (0 Ty _ =
—e p(0+e) — e r(l e )( +e ™) P

1
—(e‘QTT—Q(l—e_’T+ r )) > 0.
T r—g

It follows that the interval for p, is not empty, and thus £2 is not empty. Q. E. D.

5.2 Stability of the A-policy

We will now show that the A-policy is uniformly asymptotically stable.

Let (z(t), z(t)) be the optimal solution to (1) from the initial conditions Z = z(0),
2 = z(0). We will say that the A-policy is uniformly asymptotically stable, if for any (£, 2)
there is a finite time #(&, 2), such that for every t > £(%, 2) (z(t), 2(t)) follows the A-policy.

First, we prove the important corollary to Theorem 2.

Corollary: If (z(t), z(t)) is the optimal solution to (1) from the initial conditions z(0) =
£, z(0) = 2 and there exists t, such that

1. £ =7, for some i > 1
2. z(f) = 2,
3. z(f) > 0Z(t),

then the optimal solution follows the A-policy beginning from time 7, + 7.

Proof: Since z(7;) = 2z;—; and z(r;) > 8Z(7;), there are no gains from purchasing = at
time 7;. Therefore, by Lemma 2, x must be purchased at time 7, + 7. Now we can directly
apply the argument presented in the proof of Theorem 2 to get

k20

£(t) = 0Z(r;+1k), te€[ri+7k,7i+7k+T))
| Z(ri+7k), te[rit+Ttk+T,mi+7(k+1))

t(t)=Z(ri+7k), t€[ri+tk+T,7i+7(k+1)+T),k>0

By the same argument, the present value of the policy (z(t), z(t)) beginning at time 7; is

e 97 Z(0) ée‘(’"g)” [g (1-eT)+ % (e —e) —p. - e“erz] -
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This result implies that if the above conditions 1-3 are satisfied, then the A-policy is
stable.

Proposition 4: If conditions (i)-(iv) of Theorem 2 are satisfied, the A-policy is stable.

Proof: The idea of the proof is to show that for any initial conditions the optimal solution
must reach the point , where conditions 1-3 of the Corollary are satisfied. Condition 1 is
satisfied if z is purchased at least twice.> Suppose that condition 2 is not satisfied. This
means that for every i either z(7;) < 2z or z(7;) > 2z;—1. If the former inequality holds,
then purchasing z at time 7; is suboptimal. If the latter inequality holds for every i, take
T; > so° and observe that Claim 2 is not satisfied. Therefore, there exists a finite time 7;,
such that z(7;) = z;_;.Finally, condition 3 holds automatically in the optimum. Indeed, if
it holds, the lifetime profit can be expressed as

Va(7)
2(0)

V()= /0 " e~ min {z(t), 2(£)} dt + eI Z(0) [ + epr .

The F.O.C. for maximization with respect to 7; is

z(7;) = €77 Z(0) ?(((;r)) +68p.| (r — g).
The RHS can be rewritten as
e?"iZ(0) [2((5)) + Hpa:] (r—g)=2Z(r:) ?(((;r)) +0p.| (r—g) = Z(r:)e”? > 602Z(r;),

where the last equality follows from the F.O.C. for maximization with respect to 7, presented
in the proof of Theorem 2. This shows that in the optimum z(7;) > 8Z(7;). Q. E. D.

6 Robustness of Results

6.1 Incremental Upgrades

Here we will focus on the case of incremental upgrades of input x only, because doing so for
input z would entail an entirely new specification of the learning process.

Allowing input z to be upgraded incrementally enables us to make a stronger case for
the A-policy in Theorem 1. Indeed, with incremental upgrades 7 will fall,” and, all other
things being equal, the inequality 8e9” < 1 will be easier to satisfy, making the A-policy the
dominant one for a bigger set of parameters.

51t is shown in the proof of Lemma 1 that for any initial conditions z is purchased at least once, at time
7o. Repeating the same argument for & = z(7¢) and 2 = 2(7y), it can be shown that z is purchased at least
twice, and, in fact, countably many times.

SIf s is infinite, then x(t) = %, and by Claim 3, the inequality will be voilated beginning from some finite
time.

"Incremental upgrades have the same effect as a decrease in p,, since now the input is not scrapped
after an upgrade. Quite intuitively, the decrease in p, will make the upgrades more frequent. Note that the
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Incremental upgrades also enable us to interpret the optimality result of Section 5 more
broadly. Indeed, it may seem that Assumption 3 is overly restrictive, and the values of T
satisfying it are so big that the optimality result cannot apply on the level of the individual
firm. However, with incremental upgrades we no longer need Assumption 3 to prove Lemma
2. Intuitively, the producer now can make upgrades more frequently without ”repurchasing”
the same level of input over and over again. Since he is interested in delaying the costs, he
has nothing to gain from creating the idle stock of input z to be used later, which implies
that he follows the upgrading pattern described in Lemma 2. Moreover, Assumption 3 is
not needed for the results in section 4 on the superiority of the A-policy over the S-policy.

6.2 The two-output model

This subsection modifies the two-input model. To explain the phenomena in examples (d)
and (e) of the introduction, we now transform it into a two output model. The products will
be complements in the firm’s profit function.

There are two outputs with quality levels  and z, which can be adjusted at any time.
Only one quality level of each output can be produced. The producer can choose to make
any quality of output z. More formally, suppose that producer switches to new z at times
55, 7 = 0,1, ..., and the corresponding quality is z;. Likewise, z is adjusted at times 7; and

optimal frequency of upgrading is implicitly defined by

dVa
& Y
which 1s equivalent to
_ Va(r)
g7 __ —_ =t
e (Z(O) +0pg ) (r—g)=0

Performing comparative statics on this equation is quite simple:

dr 1 gT< 1 9Va e~ T

lg_r .
_ma—pz—g)(’r—g)zge (9+m—9)(1—g)>0

—_ = [ =4
dpr g

dr 1 1 9V, 1 1
—_ 9T A _ _ loo7 B
dp: 9" ( Z(0) 31’:) r=9)=3e ((1 _ e"("-g)T)) o920

So, as inputs get cheaper, upgrades become more frequent.

dr 1 1 8Vy 1 (1-e"T)
—— — 9T _ — 97 N .~
@ g ( Z(0) 9 pg‘) (r=g)=ge (p" T —eGary P9 <0
dr 1 1 0Vy 1 . —fe T 4T _pp e T
—_— = 9Ty .~ 4 _ — 97 .-
ar ~ ¢° ( Z(0) 0T ) (r—g)=7e 1— e G=9)7 (r=9)>
1 e T (1 —e T g+ e""’)
58T . o
> ge pp—— (r—9)>0

Also, when learning is easier (bigger 8, smaller T') upgrades become more frequent.



To: December 4, 1996 Page: 22

the quality is z;. Then the time paths for z(¢) and z(t) will be fully determined by the
sequences of (nonnegative) numbers{z;, s;}7, and {z;, 7:};2, respectively:

Z(t) = .’Ej,t S [Sj,8j+1) ,j € N,

_ 92’,’ tE[Ti,Ti+T) .
) = { zi t€[ri+T,Ti1) el
where z; < Z(r;) = Z(0)e?": for every 1.

As before, the quality of z is constrained by the frontier Z(t) = Z(0)e?* and for T periods
after each upgrade of z, only a fraction 8 € [0, 1] of its quality can be used in production,
because of learning.

The cost of quality adjustment is asymmetric. Adjusting the quality of z is always costly.
It costs c,z; to switch to quality level z;. In contrast, quality of  can be costlessly adjusted
to any level at or below the current quality of the other output z(t). But if the producer
chooses a quality level of z above z(t), he pays ¢, per each additional unit. That is, the cost
function for z is given by

C(x;,5;) = c;max {0,z; — z(s;)} .

The motivation for this cost function is that the two products share the production
capacity. For example, once the power plant is built for providing street lighting at night,
capacity is automatically created for industrial lighting during the day. Or, once the railway
line is built for transporting passengers during the day, capacity is automatically created for
hauling freight at night. The form of this cost function is the reason why the two products
are complements in the profit function. In terms of quantity of output, production capacity
is restricted to one unit of each output per unit of time. So for example, there is a single
railway line and one train, and the speed of service represents quality. The capacity is
shared, because a better engine, say, will haul transport passengers faster during the day,
and it will haul freight faster at night. This is the analog of the assumption that only one
unit of each input can be used in the two-input model, but that the quality of each input is
variable.

Let p; and p, be producer’s markup above marginal costs of z and z, respectively. Then,
lifetime profit is given by

V({:vj,sj},{z,-,ri})=/ooe_”(pm:v(t)+pz (8)) dt — Ze’iczzl Ze 0z, 55) =

JO

— Z (/TH—I rtpzZ(t)dt —e 7 1Cz21)+2 (/ ™ rtpz-'rjdt — e—rsjca: max {O’xj N Z(Sj)}) .

Assume that p, < rc,. Then choosing z; > z(s;) yields strictly negative profit. That is to
say, adjustments of x will be made only when they are costless. A costless adjustment can
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be made only if z;_; < 2(s;). In the optimum, s; must be the earliest time when this is
possible, i.e.,
s; =min{s: z(s) > z;_1}.

Quality increases are asynchronous: The optimal quality of z will be z; = 2(s;) for every
4. Then, if z(t) drops after each upgrade (the analog of condition 2 in Section 5), quality
adjustments in = and z are necessarily asynchronous: It does not pay to adjust the quality of
z when it is above that of z, but once z is fully learned, z is adjusted immediately. Formally,

8o = To, Sj=Tj_1+T, ]21

The rest of the problem is solved in the usual way: positive optimal profit implies that z
will always be upgraded to the frontier, and upgrading frequency will be constant.

6.3 Changing Prices

Our model assumes that the price per efficiency unit of each input is constant relative to
the price of the output. That is, the cost function is linear in z and z. If the relative input
prices changed over time, we would not have a constant T policy in the limit.

Two kinds of departures from the constant price assumption are possible. First, p, and
p, can be declining functions of z and z, and indeed of time as well. In this case, the
frequency of input purchases rises over time under both S- and A- policies. But producers
still choose to upgrade z to the frontier.

Second, p, and p, can be increasing functions of z, 2, and time. The dependence of prices
on z and z means that the cost function becomes convex. In this case the results change a
bit more. A producer now may not want to upgrade to the frontier, and the frontier ceases
to be a binding constraint, which also happens in Parente’s model.

If p, and p, depended on time but if their ratio remained fixed, our results on the
comparison of A-policies and S-policies should remain basically unchanged.. But if the
inputs prices were to vary relative to each other, synchronous policies would be less likely
to be optimal.

7 Dynamic Programming Representation

The maximization problem can also be represented as a dynamic programming problem.
The state space is:

a - the present age of input z

z - the present stock of input z-technology

z - the present stock of input z, 2 < Z '

Z - the "base” frontier, i.e., the frontier at the time of the last upgrade in 2. Z is not a
function of time. The current frontier is given by Ze?®.

The control variables are:

a’, 2 - future stocks of inputs
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s - waiting time until the next upgrade.
If the amount z of input z is used at time ¢, its productivity is given by z6(a +t), where

6(-) represents the learning curve:

g, t<T
5(t):{ 1, t>T

Let V(a,z,2,Z) be the optimal value function. Given the states, one of the following
happens after time s, whichever is more profitable:
1) = is upgraded, giving the continuation value of e ™ (V(a + 5,2', 2, Z) — pyz’)
2) z is upgraded, giving the continuation value of e™"* (V(O, x, 2, Zed0+s))y —p 2 )
3) both z and z are upgraded, giving the continuation value of
e’ (V(O,a:’,z’, Zed(a+s)) — p o —pzz’) :
Then, the Bellman equation is
V(a,z,2,2Z) = max {max (/Os e " min[z,6(a+t)2]dt +e " (V(a+s,2',2,2) — pmx')) ;

z',s

max (/s e " min[z,6(a+t)z]dt + e (V(O, z, 7', Zed@t)) pzz')> ;
0

z's

max (/s e~ min [z,6(a + t)z] dt + e (V(O, 2 7, Zeg(a+s)) ol pzz')) } |
0

z’,z' s

Value function V is homogenous of degree 1 in z, z, Z. Indeed, the operator in the RHS of
the Bellman equation, maps linear homogenous functions into linear homogenous. If there
is a fixed point of this operator {(which is V'), it should also be linear homogenous. Then

we can define the reduced state space (a, Z -;—) = (a, u,w), with controls (s, v, w’) and the

optimal value function v(a,u,w), given by
1
v(a,u,w) = —Z—V(a,m, 2,2)=V (a, —;—, %, 1) :

The Bellman equation for v(a,u,w) will take the form

u,s

v(a,u, w) = max {max (/ e " min{u,8(a + t)w]dt + e " (v(a + s, v, w) - pmu')) ;
! 0

max (/ e~ " min[u, 8(a + t)w] dt + e e+ (’U(O, ue™9@+) 4y — pzw’)) ;
! 0

w',s

max (/ e~ " min [u, §(a + t)w] dt + e e (v(0,v, ') — p,u’ — pzw’)>}
0

[
v W,

As shown in Corollary to Theorem 2, there is a subset A of the (reduced) state space and
a subset of the set of parameters €, such that for (a,u,w) € A and (¢,7,6,T,p.,p.) € Q,
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all the upgrades are asynchronous. That is to say that upgrading z only or z only is always
preferred to upgrading both inputs. Formally,

max {max (/ e " min [u, 6(a + t)w] dt + e (v(a + s,u’. w) — pxu')) ;
' 0

u ,s

max </ e " min [u, (a + t)w] dt + e "9+ (11(0, ue™9@+s) ) — pzw’)) } >
0

!
w ,s

> max </ e~ min [u, §(a + t)w] dt + eI (v(0,u, w') — pou — pzw’)>
0

for (a,u,w) € A, (g,7,0,T,pz,p:) € §L.

To characterize the set A, we must express conditions of the Corollary in terms of the state
variables. Condition 1 translates into a > T2 condition 2 gives u = w, and condition 3 will
hold automatically for all parameter values from 2. Thus

A={(a,uv,w):a>Tu=w}.

As an example, consider value function representation of the A-policy. Let 7 be the optimal
waiting time until z is purchased, that is, the maximum age of z. Then, since the producer
follows the A-policy, we can write

T

e "tdt + e ed" (v((), e 9,1) - pz)

(T, 1,1) =/

(4]

T
v(0,e797,1) = / Ge~"dt + e T (v(T,1,1) — p:).
0
Solving for v(T,1,1), we have
rT

o(T,1,1) = ¢ (.1_ (e—rT _ e—r'r) L

[ —eGar \ 7 (1-e7) = poe™Te =97 — pze‘("")T) .

This, not surprisingly, is equal to the value of the A-policy beginning at time 7.

8 Conclusion

We have analyzed processes that require two complementary inputs subject to improvements
in quality. We have shown that if one of these inputs requires a period of learning after a
quality upgrade before it can be used effectively, it can then pay to purchase the inputs at

8This is in fact stronger than condition 1. However, since z is not upgraded while z is constant, condition
1 is implied by a > T and u = w.
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different dates. The purchases are asynchronous because money is wasted when it is tied up
in the other inputs which are then underutilized until the date learning is over.

The intuition is simple, and we believe that this logic sheds light on a number of phe-
nomena, some of which we mentioned in the paper. In particular, we gave examples of
asynchronous behavior in a variety of contexts and our analysis suggests that the learning
hypothesis can help us understand such behavior, especially when the inputs or outputs in
question are complementary.

On a formal level, we have extended Zeckhauser’s model by assuming that a technology
requires not one, but two inputs. We showed that in most of the cases the two inputs cannot
be aggregated in one, so that the two input case is qualitatively different from the one input
case, especially when purchases are asynchronous.

9 Appendix

The following claims provide necessary conditions for (z(t), z(t)) to be the optimal solution
to the profit maximization problem.

Claim 1: If (), 2(¢) is an optimal solution to the profit maximization problem, then
{z;}2, and {2:};, are strictly increasing sequences.

Proof: To establish that {z;}7° is a strictly increasing sequence, we must prove that
for every j
Tj>ZTj-1

Suppose this is not true. Then, if the producer leaves z at its previous level z;_; on the
interval [s;, s;41), he thereby saves e i P, in cost, and there is no loss of output. Therefore,
downgrading = cannot be optimal. The argument for {z;},°, is quite similar. Q.E.D.

Claim 2: If in the optimum z is upgraded at time s; to the level z; > 0, then it must
be the case that

- min _2()<z; < max z()
[%"%‘H) J [sj"j+1)

Proof: If the right inequality does not hold, then on [s;, s;+1) z is a limiting factor
in production. Then if we purchase ¢ less of z, output remains the same, but the cost is
e “ipge less and upgrading to z; cannot be optimal. Suppose now the left inequality does
not hold. Then, on [s;,s;41) z is a limiting factor in production and, on this interval. profit
is a linear function of z;. Then, in the optimum z; = 0, which contradicts the assumption
of the claim, or for every z; < min ) z(+) an ¢ increase in z gives strictly bigger profit,
3 j‘sj +1
and therefore z; cannot be optimal. Q.E.D.

Claim 3: If 2(t), z(t) is an optimal solution and z(r;) > Z(7;), then z; = Z(r;). If z(t)
is constant on [7;, Tiy+1), z(7:) = z < Z(7;) and Assumption 1 holds, then z; = z.
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Proof: Since z(7;) > Z(7;), z; < Z(7;) and z(t) is non-decreasing (Claim 1), the present
value of profit on [7;, 7;41) is given by

B T )

T

If the term in brackets is negative, the profit on [7;, 7;4+1) is negative, and the producer can
do strictly better by not purchasing z at time 7;. If the term in brackets is positive, then it
is optimal to set z; to its maximum possible level, z; = Z(7;).

If z(t) is constant on [7;,7;41), and z(7;) = z < Z(7;), the present value of profit on
[Ti, Ti+1) is given by

- (min {z,02} (1—eT) pzzi> N min {z, zi}e_rTi (G_TT B e—r(TH_l—-rl.))
T

r

Under Assumption 1 the first term in this expression is always non-positive, so it does not
pay to set z; strictly above z. This leaves us with the case z; < z, for which we can directly
apply the first part of the proof. This gives z; = z. Q.E.D.

Corollary: In the optimum, for every 7, 7,4, — 7 > T.
Proof: If this is not the case, then, by Assumption 1, profit on [7;, 7;11) iS non-positive,
no matter what z(t) is. Q.E.D.

Claim 4: In the optimum, z is not upgraded in the points, where z(t) is constant. That
is, for every j, s; = 7; or s; = 7; + T, for some 1.

Proof: Suppose this is not true. Take an arbitrary interval [¢1,t2), where z(t) = z =
const. Suppose there is s; € (t1,t2). Then, the present value of profit on [t1,t3) will be given
by

min{z;_1,2 rs., min{z;. z —rs. - _
_{.]_1._’_} (e_rtl —e Tsj) + # (e Ts] —e TtZ) — pzm]e TSJ =
T T

T

e (mm {2j,2} min{z;,,2} prvj) , min {z;_y, z} vty min {z;, 2z} —
r T T T
This is a monotonic function of s;, which is why setting s; = t; or s; = t, is always preferred
to any s; € (t1,t2). To finish the proof, observe that when we exclude all the open intervals,
where z(t) is constant, this leaves us with the points {r;,7; + T}, Q.E.D.

Proof of Lemma 1: Let 79 be the time, when (both) inputs are purchased for the
first time. Then, for ¢t € [0, 7o), z(t) = &, 2(t) = 2. The special form of policies in the set S
allows us to dramatically simplify the expression (1) for lifetime profit:

V(éi z, {zi> Ti} ) {$j7 Sj})

(z,2)€S = %(2,.’%,7’0) + Vg({z,-,:ci, Ti}) =

T o0 T,
= / 0 gt min{Z, 2}dt + Z (/ et min{z;, z;}dt — e i (p,z; + pxa:i))
0 i=0 T,
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By Claim 2, for every 7 it must be the case that 62z; < z; < z, which allows us to rewrite
the expression for Vg as

Vs({zi,zi,7:}) = ieﬂni (ﬁ (9 (1 - e—rT) - sz) + % (6_'T - t‘Z_T(T“”_T"> - sz)>

i=0 r

Assuming that positive lifetime profit is feasible, every term of this sum, representing the
profit on [7;, Ti4+1), must be positive in the optimum, because otherwise {7;} cannot be the
optimal sequence of upgrading times (see proof of Claim 3). Combined with Assumption 1,
this gives

T _ e‘T(THl"'i) —rp, >0

which immediately implies that x; = z;. Then, from Claim 3 we have that z; = 2, = Z(7;) =
Z(0)e?": for every i. Without loss of generality, assume that 74 = 0. Define Ar; = 7,4, — 7.
Substituting this into the expression for Vg, we have

Vs({AT:}2,) = ZGXP { ZAW} (; (1-eT)+ % (7T —e787) —p, —.px> =

k<i

Z(O) (g (1 _ e—rT) + % (e—rT . e—rA‘rO) —p, _pz) + 6_(T—9)ATOVS({A7'1}:.;1)

r

Taking the maximum of both sides and cascading the maximization operator gives

Z(0) (g (1-e) + % (677" —e7470) —p. — Px> + e (r9)A7g {r?x?ﬁ Vs

max Vs = max
{ar;} ATo

The above expression shows that the maximum value of Vs will only depend on A7g. Thus,
beginning from time 7¢, the S-policy will have upgrades of inputs happening periodically,
with the constant period 7 = A7y. Now getting the expression for the value of the S-policy
is straightforward:

V() = Vo(2,£,70) + e "9 T0Vs(r) =

_ e—rT) + % (e——rT _ e—r‘r) ——

_ min{Z, 2}
o 1 —e (=97

[
(1 — &™) + 970 7(0) <1

"
It is left to show that 7¢ is finite. Indeed, F.O.C. for maximization over 7 gives:

av

e = e”""0 (min{%, 2} — e?"0Vs(7)).

Since we assume that Vs(r) > 0, there exists a finite 7, such that the RHS is strictly
negative, implying that the optimal 7 is finite. Q. E. D.
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Proof of Proposition 2:
Cs—Cy Cs (1 - G_TT) — p.0Z(0) 3 Y2, er9)ip Z(0) (1 - e‘TT) — p0Z(0)

Y Y @, e~ (=97 Z(0) (g (1—eT)+ % (=T — e_rT)) =

_ P (1 -~ e‘TT) — p0(1 — e~ (r—9)7) S TDs (1 —e T — 9) Q. E. D.
8(1—eT)+ (e T — e ) f(l—eT)4e T

Proof of Proposition 3: Both /() and ig(t) are periodic functions with period 7, and
ia(t) is also periodic for t > T. We can use periodicity to define the covariance between 3/’

and 7 as - B
con(y/,3) = [ (v/(¢) - 9) () = ),
where ) T T
gz—/ y'(t)dt=0—+(1——),

T J0 T T

= = _Pz+Dp;

tA =15 = ’

T

and is given by

coulyf,is) = [ (0~5) (s(t) ~ D+ [ (1~ 9) (is(t) ~ e =
[0 9B - o9 - [u-0 ]
=(0-9) (P +p. — 1At — T +iA) ~i(1-9) (r = T) =
== +p) (1- 1)
couly'sia) = [ (09) Ga)) =D+ [ (1~ ) (ia(®) ~ Dt =
im0 (B e [Lo-pme [T (B e [ oo -

=0 =9) (- =)+ (1= 5) (=~ i = T) = (1-0) (>~ (1~ 7)) @ B D.

Proof of Lemma 2: The proof is done by contradiction. If the statement of the lemma
does not hold, it is always possible to construct an alternative policy, which will satisfy (4)
and give strictly bigger profit. Consider the interval [s],SJH) for arbitrary j. Suppose there
exists a number n > 1°, such that -

Sj<7'1<...<Tn<Tn+1SSj+1

INote that even if 541 is infinite, n must be finite, because once z; reaches the level of x;, it stays there.
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where 7; = min {7; : 8; < 7;} and 7,41 = max {7; : 7; < sj41}, with 2(¢) = z; on [74, Ti41).
From Claim 4, we have that s; = 7 or s; = 79 + T and $j41 = Tn41 OF Sj41 = Tay + 7T
Without loss of generality, assume that 79 = 0.

The fact that z(t) and z(¢) is the optimal solution on [s;, s;+1) means that there are
certain restrictions on the possible levels of z; and z;, implied by the necessary conditions
for the optimum. In particular, note that z(t) = z; is constant for all t € [s;,s;41). From
Claim 2 and condition (2) it follows that z; < Z(7,). Then, by Claim 3, 2z, = z;. Also, it
must be the case that z; > Z(1,_1), because otherwise z,_, = z;, and there is no gain from
purchasing z, at time 7,. It follows that z; > Z(7;), for all ¢ < n — 1. By Claim 3, then,
z = Z(1;), 1 <i < n— 1. Collecting all of the above gives the following profile for z(t) on
[71, Tne1):
0Z(T,~) te [Ti,Ti +T)
2(t) = Z(r) te[ri+T,1ip)

bz, t € [Tn,Tn +T)
Z; t e [Tn+T,Tn+1)

The level z; must be big enough to make the purchase of z, at time 7, worthwhile. That is
to say that buying 2, = z; at time 7, gives at least as much profit as not buying z at time
7 and using z,_; instead. This is the case if and only if

.’13]' 1— e—rA-rn

>
Zn1 01 —eT)+e T —rp, —e

—rAT_
n

The RHS of this inequality is decreasing in Ar, and positive, because profit on [7,, Trhi1)
must be positive. Therefore, it must be the case that

% > min L—e = !
Zny A7 |1 —eT)+e T —pp,—e ™| O1l—eT)+e T —rp,’

Consider an alternative policy (M (t), where

V() = { Zno1 t€([s;,Tn+T)

IL'J' t e ['T.n+T, Sj+1)

Since min {:c(l)(t), z(t)} = min {z(t), z(t) }, both policies give the same output and have the
same cost of z. The policy z(V(¢t) is less costly if and only if

—rT -rT —-rT
pze " (Zn1 + €T nx;) < pgeT T

or
IE]' 1

Znoi 1—e€en

For this inequality to hold, it is sufficient that
Z; > 1 ‘ > 1
Znor 0l —ey+e ™ —rp, " 1—e 'n
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This is equivalent to
01 —e ™) —rp,+e T +e <1

Taking into account Assumption 1 and corollary of Claim 3, this is satisfied if
2¢T <1

which is the case under Assumption 3. On the next step, we can dominate z((t) by

(2) _ Zn—2 t e [Sj, Tn-1— T)
.’E (t) { :c(l)(t) te [Tn—l +T. Sj+1)

By similar argument, the policy z(?(t) is less costly if and only if

Zn—-2 1—e¢

or
e -1 4 ¢ 9% n-2 < 2797 < ]

On the i-th step,
@) — ) Zn—i t €85, Tnoic1 +T)
:E (t) { :c(’_l)(t) t e {Tn—-i+1 +T, Sj+1)

The n-th step yields
zg t€[s;;m+T)
.’L‘(n)(t)= 23 tE[Ti—f-T,‘T,'_._l-}-T) i=1,...,n—1
z; te [Tn + T, Sj+1)

By construction, (™) (¢) satisfies property (3). Q. E. D.



To:

December 4, 1996 Page: 32

References

[1] Aghion, Philippe, and Peter Howitt, ”On the Macroeconomic effects of Major Techno-

2l

3]

[4]

[5]

(6]

[7]

[10]

[11]

[12]

[13]

[14]

logical Change,” unpublished, Ohio State University, 1996.

Attewell, Paul, " Technology Diffusion and Organizational Learning: The Case of Busi-
ness Computing,” Organization Science 3, no. 1 (February 1992): 1 - 19.

Bakh, Byong-Hyong, and Michael Gort, ”Decomposing Learning by Doing in New
Plants,” Journal of Political Economy 101, no. 4 (August 1993): 561 - 583.

Baloff, Nicholas, ”Start-up Management,” I.E.E.E. Transactions on Engineering Man-
agement 17 (November 1970): 132 - 141.

Benhabib, Jess, and Kazuo Nishimura,” Competitive Equilibrium Cycles,” Journal of
Economic Theory 35 (1985): 284 - 306.

Caballero, Ricardo, and Mohamad Hammour, ”On the timing and Efficiency of Creative
Destruction,” Quarterly Journal of Economics (August 1996): 805 - 844.

Cooper, Russell, and John Haltiwanger, ” The Aggregate Implications of Machine Re-
placement: Theory and Evidence,” American Economic Review 83, no. 3 (June 1993):
360 - 382.

Jovanovic, Boyan, and Yaw Nyarko, ” A Bayesian Learning Model Fitted to a Variety of
Empirical Learning Curves,” Brookings Papers in Economic Activity (Microeconomics
Issue) 1 (1995): 247 - 305.

Klenow, Peter, ”"Learning Curves and the Cyclical Behavior of Manufacturing Indus-
tries,” University of Chicago, September 1993.

Kremer "The O-Ring Theory of Economic Development,” Quarterly Journal of Eco-
nomics (Aug.1993):551-75.

Markoff, John, ”Despite Rivals’ Chip Speed, Intel Still Leads PC Market,” New York
Times, October 17, 1994.

Matsuyama, Kimonori, ” Complementarities and Cumulative Processes in Models of Mo-
nopolistic Competition,” Discussion paper no. 1106. Department of Economics, North-
western University, October 1994.

Milgrom, Paul, and John Roberts,” The Economics of Modern Manufacturing: Technol-
ogy, Strategy, and Organization,” American Economic Review 80, no. 3 (June 1990):
511 - 528.

Nye, David, Electrifying America, Cambridge: MIT Press, 1995



To: December 4, 1996 Page: 33

[15] Parente, Stephen, ” Technology Adoption, Learning-by-Doing, and Economic Growth,”
Journal of Economic Theory 63, no.2 (August 1994): 346 - 69.

{16] Pollins, Harold, Britain’s Railways: An Industrial History. Totowa, N.J.: Rowman and
Littlefield, 1971.

[17] Sherrington, C.E.R. The Economics of Rail Transport in Great Britain, vol. 2: Rates
and Services. London: Edward Arnold, 1928

{18] Sheshinski, Eytan, and Yoram Weiss, ”Staggered and Synchronized Policies under Infla-
tion: The Multiproduct Monopoly Case,” Review of Economic Studies 59, no. 2 (April
1992): 331 - 359.

[19] Stolyarov, Dmitriy, ” A Model of Skilled Labor Supply with Learning,” University of
Pennsylvania 1996.

[20] Varian, Hal, Microeconomic Analysis, New York: Norton 1992.

[21] Womack, James P., Daniel T. Jones, and Daniel Roos. The Machine that Changed the
World. New York : Rawson Associates, 1990.

[22] Zeckhauser, Richard, ”Optimality in a World of Progress and Learning,” Review of
Economic Studies 35 (1968): 363 - 365.



