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1 Introduction

The prices of assets traded by forward-looking agents offer a rich source of
information about the expected future. Financial markets summarise the
disparate and largely unobservable expectations of asset holders and reveal
them in the coded form of observable prices. The challenge to economists is
to break this code by modelling the relationship between individuals’ expec-
tations and market prices. In this paper we use a simple asset pricing model
to convert the prices of nominal and index-linked UK government bonds into
implied expectations of future real interest rates and inflation.

Implied market expectations are useful in many ways. Investors can use
them to identify the points at which their own expectations diverge from
the market consensus, adjusting the balance of their portfolios to take ad-
vantage of what they may regard as the market’s errors. There is a similar
role for market expectations in public-sector debt management, where the
government may wish to minimise its funding costs.

Another important application is to monetary policy. Information about
inflation expectations offers the monetary authorities a measure of the credi-
bility of their commitment to low inflation, and may be used to inform their
decisions about the setting of short-term interest rates. The nominal yield
curve alone cannot be used for this. For example, an increase in nominal
yields may be due to an increase in expected inflation, in which case policy
should be tightened; but it may also be due to an increase in real interest
rates driven by real factors, in which case tighter monetary policy may be
entirely inappropriate.

To the casual observer the daily activities of government bond markets
can be summarized by the ‘yield curve’. The only real data to emerge from
the markets, however, are in the form of bond prices. There are many meth-
ods, of varying degrees of sophistication, that may be used to convert these
prices into a curve.® Similarly, there are many ways of drawing inferences
about agents’ expectations from the estimated curves. Our approach is to
perform these two exercises simultaneously. We use simple time-series models
to represent agents’ expectations, and obtain bond-price equations in which
the effects of changing expectations are intuitive and easily estimated.

Once we have estimated market expectations of real interest rates and in-

3A useful review of estimation methods is provided by Deacon and Derry (1994b).



flation, we study their properties over the period January 1985 through Octo-
ber 1994. We describe the risk and return characteristics of real and nominal
bonds—important information for investors making portfolio decisions—and
the ability of the bond market to forecast future inflation—important infor-
mation for policymakers formulating monetary policy.

The organisation of the paper is as follows. The next section briefly
explains why the task of extracting implied real interest rates from UK index-
linked bond prices is not as simple as it may seem: Index-linked bonds have
significant indexation lags, and so they are not pure real bonds. To handle
this problem, in Section 3 we lay out a general framework that relates nominal
and index-linked bond prices to expected future inflation rates and bond
returns. We then impose the log pure expectations hypothesis of the term
structure to obtain a bond pricing model that is suitable for estimation.
Section 4 discusses our data and econometric methodology, summarizes the
recent history of nominal and real interest rates in the UK, and describes
the risk and return characteristics of real and nominal bonds in our sample
period. Section 5 studies the ability of the bond market to forecast future
inflation, and tests the expectations hypothesis as applied to the nominal,
real, and expected-inflation term structures. Section 6 concludes.



2 Indexation lags in UK index-linked bonds

Economists seek to construct yield curves from real bonds in order to measure
the term structure of real interest rates. Unfortunately, UK index-linked
bonds are not pure real bonds. A perfectly indexed bond would pay a nominal
coupon equal to the coupon rate announced at the time of issue multiplied
by the proportionate increase in the general price index between the issue
date and the time of payment. UK index-linked bonds, however, pay nominal
coupons equal to the coupon rate announced at the time of issue multiplied
by the proportionate increase in the price index from a ‘reference level’ dated
eight months before the bond’s issue date to a date eight months before the
coupon payment occurs. The same indexation lag applies to the repayment
of principal. Thus nominal payments on UK index-linked bonds are left
unprotected against inflation occurring in the last eight months before the
payments are made.*

This feature of index-linked bonds creates technical difficulties in ex-
tracting implied real interest rates from index-linked bond prices. Observed
changes in the price of an index-linked bond may reflect changes in inflation
expectations, albeit with a sensitivity well below that of a purely nominal
bond (see Barr and Pesaran (1995)).

It is common practice to calculate the yield to maturity on an index-
linked bond conditional on a profile of inflation throughout its remaining
life. Quoted index-linked yields typically assume a constant 5 per cent in-
flation rate and are presented as a ‘real’ rate. This creates a temptation to
subtract this real rate from the nominal yield on a nominal, or conventional,
bond of equivalent maturity (or duration) to generate a figure for average
expected inflation over the remaining life of the bonds. The potential in-
consistency between the derived inflation profile and that assumed at the
outset is obvious. This conflict can, however, be corrected by an iterative
process whereby the generated expected inflation is used to recompute the
real yield on the index-linked bonds, from which a new figure for inflation
can be obtained, and so on. This approach, which originates in papers by
Arak and Kreicher (1985) and Woodward (1988, 1990), generates ‘break-even
inflation rates’, so called because these are the rates that equate the yields

4See Bootle (1991) for a description of institutional features of the UK index-linked
bond market.



on conventional and indexed bonds.

The break-even method suffers from two problems. First, it does not
generate a complete term structure of inflation, since it can be applied only
to those maturities where there are equivalent pairs of real and nominal
bonds. Recent research at the Bank of England has attempted to address
this problem (Deacon and Derry (1994a)).

Second, the break-even method takes no account of risk or liquidity pre-
mia on real or nominal bonds. This problem is hard to handle without
specifying a complete equilibrium model of the term structure such as the
Cox, Ingersoll, and Ross (1985) model used by Brown and Schaefer (1994)
in a study of the index-linked bond market. Brown and Schaefer estimate a
real yield curve allowing for real term premia, but do not look at nominal
bonds and therefore do not model inflation risk premia. They also assume
that UK index-linked bonds are perfectly indexed. In future work we plan
to fit an equilibrium model of both real interest rates and inflation to UK
nominal and index-linked bond prices, but in this paper we follow most of
the literature and assume that risk premia on all bonds are zero.



3 A pricing model for nominal and index-
linked bonds

In this section we develop a framework relating the prices of government
bonds to expected future log real returns and inflation rates. We then use a
specific model of expected bond returns, the log pure expectations hypothesis,
to derive an empirically implementable bond pricing model.

A general equation for bond prices

We consider a claim to a single real payment to be made at time ¢t 4 n.
We write the log of the real payment as v,,,, the log real price of the claim
at time ¢ as p;, and the log real return on the claim from ¢ to ¢t + 1 as r¢y;.
Log price and log return are related by

Tt+1 = Pt+1 — Pt - (1)

Inverting this equation, and taking expectations conditional on information
at time t, gives a first-order difference equation which can be solved forward
to time t 4+ n to give

Pt = — Z Eirips + Evpgn - (2)

s=1

This equation relates the log price of the claim at time ¢ to expected future log
returns and the expected future real payment on the claim. It applies directly
to zero-coupon bonds, while for coupon-bearing bonds one can calculate the
prices for each coupon payment and the repayment of principal, and then
add up across payments.

Equation (2) illustrates two problems that must be overcome before any
empirical analysis can proceed. First, asset prices depend on expected values
of v and r, for which we have no data. We deal with this by assuming that
both variables follow simple time-series processes. Second, the expectations
may be asset-specific if the dividend and return processes are unique to each
asset. Since this generates more coeflicients than can be separately identified,
we assume that there are common factors that drive the relevant movements
in expectations.



Real values of nominal and indez-linked payments

In contrast to equities, real payments on bonds are driven by a single
common factor, inflation. The precise way in which the real payment depends
on inflation is determined by the extent to which the bond is indexed. This
distinction between bonds requires some new notation; we denote claims
to individual nominal payments by a subscript j = 1,...,J, and claims to
individual index-linked payments by a subscript ¢« = 1,...,I. For simplicity
we normalize the declared bond payments to one, so the log of the declared
bond payment is zero.

In the case of nominal bonds, since there is no indexation, the real pay-
ment is the nominal payment deflated by the general price index. Working
in logs, and writing z for the log price index, we have

Vit+n = —2t4n » (3)

since the declared nominal payment has log zero.

For index-linked bonds, we define an indexation lag parameter, {, which
is 8 months for UK government index-linked bonds. The log nominal pay-
ment on an index-linked bond is the log declared payment adjusted for the
difference between the log price level [ months before payment, z;;,_;, and
a reference log price level z; which is specific to each particular bond and is
determined before the bond is issued. The real payment is again the nominal
payment deflated by the general price index:

l
Vit4n = (Zt+n—1 - 5:‘) — Ziyn = —2Z; — Z Tttn+l—s 9 (4)
s=1

where 7, = z, — z,_, is inflation from time ¢ — 1 to t. Hence whenever
indexation is imperfect (I > 0), the real value of the payment depends on
inflation during the period of the indexation lag.

Real prices of nominal and indez-linked zero-coupon bonds

Substituting (3) into (2), the real price of a nominal payment becomes

n n
Pjnt = —2¢t — E, ZTj,t+s - F, Z Titntl—s » (5)

s=1 s=1



while substituting (4) into (2) the real price of an index-linked payment is

n !
Pint = —2i — £y Z Titys — B Z Ti4ntl-s - (6)
s=1 s=1
When there is an indexation lag (I > 0), the last { months of inflation affect
the real value of the bond payment. If [ < n only expected inflation is
relevant whereas if [ > n some of the last { months of inflation has already
occurred at time ¢. Equation (6) gives the same price as equation (5) if we
set the indexation lag equal to the length of time since the reference price
index was set.

Term premia and the inflation risk premium

Equations (5) and (6) incorporate expected returns that may be asset-
specific. Since this gives rise to more coefficients than can be identified, we
assume that expected log returns on nominal and index-linked bonds of all
maturities equal the one-period interest rate. The assumption that expected
long-term bond returns are equal to the short-term interest rate is known
as the log pure expectations hypothesis, while the assumption that expected
nominal bond returns equal expected real bond returns is an assumption that
the inflation risk premium is zero. In the conclusion we discuss alternative
assumptions that we plan to apply in future work.

Ezrpectations processes for inflation and returns

In order to obtain equations suitable for estimation we have to replace
all of the expected future values in equations (5) and (6) by functions of
information available at time ¢. To do this we assume that log expected
inflation follows a trend-stationary AR(1) process:

Emivs = gor + Gin(s — 1)+ gards'. (7

Similarly, we assume that the expected real interest rate, which equals the
expected real return on any bond of any maturity, also follows a trend-
stationary AR(1) process:

Eips = gor +91,(5 = 1) + 92,677 (8)

At time ¢ there are four parameters to be estimated for each process: gg, g1,
g2 and the adjustment parameter @.



In principle, one might expect the real interest rate and inflation processes
to be stationary around a fixed mean rather than a trend; this would imply
g1 = 0. However we found that in some periods the real or inflation term
structures have a significant slope even at very long horizons. This causes
numerical problems for a model with g; = 0, since such a model can fit the
data only by setting ¢ extremely close to (but not equal to) one. Accordingly
our general specification is the one given in equations (7) and (8).

Implied nominal prices of nominal and indez-linked zero-coupon bonds

The expectations terms in equation (5) can be replaced by repeated sub-
stitution from equations (7) and (8). We can add the current log price index
to get the log nominal price of a claim to a log-zero nominal payment:

1—¢7 1 —¢7
r . - o = . 9
9 (1—@) 9 (l—m) ©
The same process can be applied to equation (6) to yield a pair of equa-
tions for the nominal prices of claims to index-linked payments (again normal-

ized to have log zero). For payments that are of a sufficiently long maturity
that their nominal value has still to be determined, i.e. for n > [,

P;S;n - - n(gO,r + gO,W) - (gl,r + gl.w) (

nom

_ n(n —1) (1-1)
Pint — <t — <2 — nNgo,r — lgO,n — g1, —-2— — 9.z )

1 - ¢1T'l n—l 1 - ¢£"
- G925 (1 _¢T) —92,7r¢7r (1____(5;) . (10)

For index-linked payments that have exhausted their indexation, i.e. for
which n < [, the equation becomes

2

1 — o™ 1 — ¢n
- 92,r(1_z:>—92,ﬁ(1_z:> . (11)

n(n —1
Pt = zggn—t — 2z — n(gor + gor) — (10 + g1,7) (—(—-—l>




Since indexed payments become nominal when their maturity falls below that
of the indexation lag, equation (11) is identical to equation (9) for nominal
bonds, except for the indexation that has already taken place by time &.

Nominal prices of nominal and indez-linked coupon-bearing bonds

We calculate nominal prices of coupon-bearing bonds by adding up the
nominal prices of their coupon payments and final repayments of principal.
For a nominal bond with log coupons ¢; and nominal principal normalized
to zero, we have

peom = log[d>_ exp(pia™ + ¢;) + exp(phai)] + €5¢ - (12)
s=1

For an index-linked bond with log declared coupon rate ¢; and log declared
redemption payment normalized to zero, we have

Peime = log[D_exp(pig™ + ¢;) + exp(piy)] + €ar - (13)
s=1

The error terms ¢;; and ¢;; represent pricing errors, since our model will not
fit all observed nominal bond prices perfectly.

These equations ignore some practical issues that complicate the pricing
of coupon-bearing bonds. Coupons on UK government bonds are paid at six-
monthly intervals. We assume instead that they are paid in equal instalments
each month, to match the frequency of our observations. This creates a small
bias because monthly payment would make each coupon more valuable, since
the early payments could be reinvested. The effect of this is to bias our
estimated rates up by around 30 basis points.

Another issue we ignore is the tax treatment of UK government bonds.
Capital gains on these bonds are tax-exempt for nearly all holders. Coupon
income is taxed at a range of different rates. For a significant proportion of
holders the rate is zero, and the coupon tax rate for the marginal investor is
unknown. We assume a rate of zero despite the fact that the prices of some
of the bonds in our sample may be influenced by investors paying a higher
rate. Thus here again we probably overstate both the value of the coupons
actually received by investors and the yields available on both nominal and
index-linked bonds. For a discussion of tax effects see Deacon and Derry

(1994a,b) and Schaefer (1981).



Overall, our calculated expectations of nominal and real interest rates
are likely to have a small upward bias. This bias is probably fairly constant
over time, however, so the movements of rates over time are likely to reflect
the true movements of expectations. There is less bias in expected inflation,
which is the difference between two upwardly biased interest-rate estimates.

10



4 Data and estimation

Equations (9), (10), and (11) can be substituted into equations (12) and (13)
to get estimable equations for observed bond prices. We can then use the
cross-section of bond prices to estimate the parameter vector 1 = (gor, g1,
92.r, bry Goms G170y G2,m, $r). We use monthly data, treating each month’s
data set as a separate cross-section without imposing that parameter values
are constant across months.

Data

We use end-of-month data, supplied by the Bank of England, on clean
bond prices (that is, prices net of accrued interest). For each month the data
on conventional bonds include all those bonds used contemporaneously by
the Bank to construct its own yield curve. A number of bonds every month
trade ‘off the curve’ as a result of the differential tax treatment of capital
gains and coupon income, or of liquidity premia. The Bank’s estimation
procedure deals with the tax effects directly but retains the option to reduce
the weight attached to bonds that nevertheless appear to be outliers: We
omitted all such outliers at the start. The maximum number of conventional
bonds used in any month is 46, from a total of 81, and the minimum is 25,
from a total of 50. On average across months, we use 36 bonds out of 67. The
proportion of bonds used each month ranges from 45% to 59%, with a mean
of 53%. All of the available index-linked bonds are used each month; the
range is 10 to 14, with a mean of 12. We also include one- and three-month
interbank rates because the number of short-maturity (less than one year)
conventional bonds and bills in the UK market is very small.

Long-maturity index-linked bonds contain little information about medium-
term real interest rates, and there were no index-linked bonds of medium
maturity in the first few years after marketable index-linked bonds were in-
troduced in 1981. Accordingly we begin our estimation in January 1985.
In that month the remaining indexed maturity of the shortest index-linked
bond was 2.5 years (so the actual maturity was 8 months higher at 3 years
and 2 months). In all earlier months the remaining indexed maturity of the
shortest index-linked bond exceeded 2.5 years, while in all later months it
was less than this. Our sample period ends in October 1994, so we use 118
months of cross-sectional data.

11



Estimation method

We estimate cross-sectional equations for the log nominal prices of coupon-
bearing bonds. For each set of n end-month observations the equal-weighted
residual sum of squares €’e is minimized with respect to the coeflicient vec-
tor 1. Asymptotic standard errors, corrected for heteroskedasticity following
White (1980), are calculated from the asymptotic variance-covariance ma-
trix [g'g(g'{hg)~'g’g]~" where ¢, the gradient g = d(¢)/d+ and the estimated
error-covariance matrix Q = diag(ee') are evaluated at the optimum.

In some months there is insufficient information to identify both the trend
and the adjustment cocflicient, and our general model gives very large esti-
mated standard errors. These problems are apparent only when the adjust-
ment parameter exceeds 0.996, and in these cases we abandon the general
model in favour of one in which either the trend or the AR(1) term is omitted,
the selection being based on the residual sums of squares of the competing
specifications. The chosen model has a residual sum of squares approximately
equal to that of the general model in these months, and the change of model
has little or no effect on the fitted processes since the problem only arises
when alternative processes are almost impossible to distinguish.

The general model, with both trends and both adjustment coeflicients, is
selected in 56 out of 118 months. We omit the inflation trend in 41 months,
and the real-rate trend in just one. The inflation and real adjustment terms
are omitted in 16 and 2 months, respectively, and they are both dropped only
twice. The trend coeflicients are very small, with averages of -0.0005% and -
0.00006% for real rates and inflation respectively (at annual rates), suggesting
that despite their presence the data can be characterized quite accurately by
stationary AR(1) processes. The equations fit the cross-section of log bond
prices with an average R? of 0.993, ranging from 0.939 to 0.9996. The average
equation standard error is 0.007, or 0.6% of the price in natural units, and it
ranges from 0.004 to 0.016.

Comparison with other term structure estimates

We use our estimated models to construct monthly fitted term structures,
and time series of expected inflation and interest rates. One way to judge
the plausibility of our estimates is to compare our fitted nominal term struc-
tures with alternative estimates. There may be minor discrepancies, but

12



there should not be large differences in the nominal term structures fit by
different methods. Figure 1 plots the zero-coupon nominal yield curve and
standard-error bands for the last month of our sample, along with the Bank
of England’s estimated zero-coupon curve. The figure shows that despite the
relative simplicity of our approach, it generates reasonable results.

Figure 1 compares two whole term structures at a particular point in
time. Alternatively, we can compare particular points of the term structure
across our whole sample period. Figures 2 and 3 do this for three-month
and ten-year nominal interest rates. Previous researchers have had particular
difficulty in modelling the short end of the UK nominal yield curve. Although
Figure 2 reveals some significant discrepancies between the estimated three-
month nominal rate and the actual interbank rate, the two seem to move
together reasonably well. Figure 3 shows that our estimated ten-year nominal
rates are very close to, and slightly smaller than, ten-year nominal rates
derived from the Bank of England’s estimation of the yield curve.

Average returns on nominal and real bonds

Our estimates of nominal and real ex-ante yields can be used to construct
notional excess returns for both nominal and pure real zero-coupon bonds.
Table 1 shows sample means and standard deviations of these returns for
bonds of 1-year, 5-year and 10-year maturities for the period 1985.1 to 1994.9,
and for four sub-periods: 1985 to the stock market crash in 1987.10; 1987
to sterling’s entry into the European Exchange Rate Mechanism (ERM) in
1990.10; the two years of sterling’s ERM membership, to 1992.8; and the
post-ERM period.

The most striking finding in Table 1 is that real bonds have tended to
deliver negative excess returns, while nominal bonds have delivered positive
excess returns. This is true over the full sample period and most of our
subperiods. Investors in nominal bonds have gained from generally declin-
ing inflation and nominal interest rates, while investors in real bonds have
suffered from generally increasing real interest rates. Over our full sample
period, the average difference between nominal and real bond returns is over
2.8% per year for investors in ten-year bonds.

Of course, this difference in sample average returns does not necessar-
ily mean that there is any difference in the unconditional mean returns on
these bonds. The difference in sample average returns may simply reflect

13



random events—specifically, unexpected declines in inflation—in this partic-
ular period. The log pure expectations hypothesis, and the assumption that
inflation risk is unpriced, imply that all bonds have the same unconditional
mean returns so that unconditional mean excess returns are zero; to test this
we can compare sample average returns with their standard errors, calcu-
lated from the standard deviations of excess bond returns and reported in
parentheses in Table 1. The mean excess returns on nominal bonds and on
5-year and 10-year real bonds are not significantly different from zero in the
sample as a whole, or in any subsample. The mean excess return on 1-year
real bonds, however, is significantly less than zero for the sample as a whole,
and marginally so for the first three subsamples.

Variability of nominal rates, real rates, and inflation

The right-hand side of Table 1 reports the standard deviations of monthly
excess returns on real and nominal bonds. These increase with maturity for
both types of bonds, but more rapidly for nominal bonds; thus the ratio
of nominal-bond to real-bond standard deviations, which is surprisingly less
than one at a horizon of one year, increases with maturity. For investors
with short holding periods, short-maturity nominal bonds are less risky than
short-maturity real bonds, but long-maturity nominal bonds are riskier than
long-maturity real bonds.?

This pattern is caused by a negative short-term correlation between real
interest rates and expected inflation. When the short-term real interest rate
rises, short-term expected inflation tends to fall. These two components of
the short-term nominal interest rate offset each other, reducing the variabil-
ity of short-term nominal bond returns. At longer horizons, however, the
correlation between changes in the real interest rate and changes in expected
inflation is weak and has little effect on the variability of nominal bond re-
turns.

This phenomenon can be seen in Figures 2 and 3, which decompose
three-month and ten-year nominal interest rates into real-interest-rate and
expected-inflation components. Since we have assumed that the inflation risk
premium is zero, expected inflation is just the difference between the nom-

Of course, for an investor with a long horizon a real bond with maturity equal to the
horizon is riskless. Campbell and Shiller (1996) develop this point in detail.
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inal interest rate and the real interest rate.® Figure 2 shows that short-run
movements in the three-month real interest rate and three-month expected
inflation are negatively correlated (changes in the real interest rate and in-
flation have a correlation coefficient of —0.81), but their longer-term cyclical
movements seem to have a slight positive correlation so the levels of the se-
ries have a negligible correlation of 0.03. Figure 3, by contrast, shows that
there is very little negative correlation between changes in ten-year real in-
terest rates and ten-year expected inflation; the correlation of changes is only
—0.08 in Figure 3, and the correlation of levels is positive at 0.27.

We can use our estimates to decompose the variability of excess returns
on nominal bonds into components attributable to inflation and real interest
rates. Because we assume that the log pure expectations hypothesis holds,
there is no term-premium component of the excess nominal bond return,
and the real-interest-rate component is the same as the excess return on a
pure real bond of the same maturity. The variance of the excess nominal-
bond return is the variance of the expected-inflation component, plus the
variance of the real-interest-rate component, plus twice the covariance of the
two components. Table 2 reports these two variance terms and the covariance
term, as fractions of the total variance of nominal bond returns, for maturities
of one year, five years, and ten years over our full sample period and several
subsamples.

At short horizons, the table shows that both inflation expectations and
real bond returns are highly variable—in fact, they are each more variable
than the corresponding nominal bond returns. They are highly negatively
correlated (the correlation coeflicient is —0.69 for one-year bonds over the
full sample), so there is a large negative covariance term which reduces the
variability of nominal bond returns. At longer horizons, the real interest rate
becomes less variable and less negatively correlated with inflation expecta-
tions; this leaves expected inflation as the dominant factor driving long-term

8The fitted values of real rates and expected inflation are non-linear functions of the
models’ parameter estimates, from which their standard errors can be calculated. At the
ten-year maturity real rates are the most precise statistically, with standard errors ranging
from 2 to 80 basis points, and averaging 12 basis points; for 95% of the sample they were
below 25 basis points. The standard errors for ten-year expected inflation averaged 17
basis points, with a range of 2-85 basis points; 74% were less than 25 basis points, and
98% were below 75 basis points. Thus our method delivers fairly precise estimates of
long-horizon expectations.
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excess bond returns. These results are consistent with the standard devia-
tions reported in Table 1 and the history shown in Figures 2 and 3. They
are also consistent with results obtained by Campbell and Ammer (1993) in
US data and by Barr and Pesaran (1995) in UK data.

Both Campbell and Ammer and Barr and Pesaran also find a large role
for changing risk premia, which are ruled out by our assumptions that term
and inflation premia are constant. In the next section we evaluate these
assumptions by using our estimated real and nominal yields to forecast future
inflation, and future changes in inflation and interest rates.
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5 The information in the term structure

If expectations are formed rationally, and if our estimated rates reflect the
expectations of market participants, we should find that our rates contain
some information about future movements in real interest rates and inflation.

Forecasting the level of inflation

There have, of course, been many investigations of the ability of nominal
interest rates to forecast inflation. These typically require some assumption
to be made about the variability of real rates in order that the expected
inflation component of the nominal rates can be separately identified. For
example, if real rates and term premia are assumed to be constant, nominal
rates themselves equal expected inflation plus a constant. Our identifica-
tion of separate processes for real rates and inflation is analogous to these
identifying assumptions, but should result in better forecasts.

For the rest of this section we adopt a slightly different notation. All rates
are in annualised, continuously compounded terms, and we define a multi-
period inflation rate 7,,,, to be the continuously compounded annualised
rate of change of prices from time ¢ to t +n. We also drop the superscript
notation for nominal rates; real rates will be indicated by a superscript r.

The basic equation, derived from Fisher (1930), is

Tnt4+n = Qn + ,Bn[ynt - yr(trt)] + €n,t4n- (14)

If risk premia are constant and investors have rational expectations, 3, = 1,
and the information in the yield curve can be measured by the explanatory
power of the equation.

Using data on nominal and real yields we can estimate (14) directly.

Alternatively, if the real yield y,(:t) is a constant 7("), then we have

Tnt+n = a:l + ﬂnynt + €nt4n (15)

where o, = o, — 7). We will compare the explanatory power of (15) with
that of (14) using our estimates of real yields.

The ability of the yield curve to predict inflation over a given horizon
depends in part on its ability to predict inflation over future sub-periods (or
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‘forward periods’) of that horizon. We can derive the following forward-rate
analogue of the estimated inflation equations,

Tn—m,t+n — Anm + /Bn,m[fn—m,m,t - fr(LT—)m,m,t] + €n,m,t+ny (16)

where f,_mm:¢ is the (n — m)-period nominal forward rate for the period
starting at (¢t + m) and ending at (¢ + n), f,(lr_)m,m,, is the corresponding real
forward rate, and §,., = 1 if expectations are rational and inflation and term
premia are constant. If real forward rates are constant, then we have instead

Tn—m,t4+n — a;,m + ﬁn,mfn—m,m,t + €nm,t+n- (17)

These two equations, (16) and (17), reduce to the previous pair of equations,
(14) and (15), when m = 0. We will compare their ability to forecast forward
inflation rates.

Some examples of these variables are plotted in Figure 4. The figure
shows actual inflation over the next year, 754412, the one-year inflation rate

currently expected to prevail over the next year, fi20: — ff;?o,n and the one-
year inflation rate currently expected to prevail nine years forward, fi2,108,¢ —
fl(;)ws,t- While current and nine-years-forward expected inflation generally
move together, there are some interesting periods of divergence, particularly
in the period around sterling’s departure from the ERM in 1992.

Estimation results for equations (16) and (17), for horizons n = 3, 6,
9, and 12 months and m = 0, 3, 6, and 9 months, are given in Table 3.
The table reports regression coefficients 3, ,,, with standard errors corrected
for serial correlation and heteroskedasticity in the equation error using the
methods of Hansen and Hodrick (1980) and White (1980). The table also
reports R? coeflicients that summarize the ability of the bond market to
forecast future inflation. At the horizon n = 3 we use both the three-month
iterbank rate and our fitted three-month rate; the results are similar no
matter which three-month rate is used.

The results at horizon n = 3 suggest that over three months nominal in-
terest rates and our measures of expected inflation contain the same amount
of information about future inflation. The expected inflation series does,
however, produce a coefficient rather closer to unity. Since there is no in-
dexation of any payments with less than an eight month horizon, our model
has no informational advantage over the simple nominal-rate equation in this
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maturity range: The ability of our model to forecast inflation at such short
horizons depends crucially on the extent to which it is appropriate to ex-
trapolate our real term structure back from eight months. That expected
inflation performs as well as nominal rates would seem to qualify as a minor
success.

At longer horizons (n = 6, 9, or 12), expected inflation performs consid-
erably better than nominal rates. The equation for annual inflation (n =
12,m = 0), for example, has an R* which is 30% greater when expected in-
flation is used, and an estimate of 3 within one standard deviation of unity.
The hypothesis 8 = 1 is rejected only once for the expected inflation equa-
tion, but is rejected six times for the nominal-rate equation. The superior
performance of expected inflation holds for all values of m we consider.

Forecasting changes in nominal interest rates, real interest rates, and in-
flation

The expectations hypothesis of the term structure implies that current
yields contain all of the available information about expected future changes
in interest rates. A number of papers have attempted to test this hypothesis
for nominal interest rates, and have produced mixed results (see, for example,
Campbell (1995), Campbell and Shiller (1991), Fama and Bliss (1987), and
Shiller, Campbell, and Schoenholtz (1983)). The stylised facts for US data
are summarized by Campbell and Shiller (1991) as follows: “The slope of the
term structure almost always gives a forecast in the wrong direction for the
short-term change in the yield on [long bonds], but gives a forecast in the
right direction for long-term changes in short rates”. We now ask whether
the same results appear in UK data, and whether the results for nominal
interest rates apply to real interest rates and inflation.

Campbell and Shiller (1991) show that the expectations hypothesis of the
term structure implies 5 = | in the following equation for nominal rates,

Etyn—m,t+m —Ynt = + ﬁsn,m,ty (18)
where
Snnt = (m/(n = m))Same = (m/(n —m))(Ynt — Ymt)- (19)

According to the expectations hypothesis, term premia are constant. Thus
if the yield spread S, ., between long- and short-term bonds is unusually
high, investors must be expecting the yield on long bonds to rise; this will
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generate capital losses to offset the yield advantage of long bonds. Using
McCulloch’s (1990) estimates of US zero-coupon bond yields, Campbell and
Shiller (1991) found a predominance of negative estimates for 4 for almost
all values of n and m.

This equation applies equally to nominal and real rates and, therefore,
to expected inflation. Table 4 shows the results of replicating these tests
with our estimated data for yields up to a maturity of five years. The table
reports 8 coeflicients, with standard errors corrected for serial correlation
and heteroskedasticity. Two of the three estimates for 4 using nominal rates
are positive, in contrast to Campbell and Shiller’s results, while four of the
six coefficients for real rates and expected inflation are also positive. The
estimate of B for expected inflation when (m,n) = (3,12) is significantly
different from zero, but not from one. The coefficients for real and nominal
interest rates are poorly determined, however, and neither zero nor one can
be rejected as the true value. Overall, the results are imprecise but offer no
evidence against the expectations hypothesis.

Campbell and Shiller (1991) also test the ability of the term structure
to forecast changes in short (m-period) rates over long (n-period) horizons.
Under the expectations hypothesis coefficient 3 should be one in the following
regression of short-rate changes on the yield spread:

St =+ BSums
k-1
Snmit = 2(1 — 1/ B)(Ym,t4im — Ym,e4(i-1)m ), (20)
i=1
where k = n/m, and S* is the spread that would be implied by the expecta-
tions hypothesis if agents had perfect foresight of future short-term interest
rates.

The variables S* and S can be defined in terms of a range of different
rates, in addition to the nominal yields used by Campbell and Shiller. In
the first column of Table 5 we repeat their regression using our estimated
yields to construct both S* and §. The next two columns decompose both
variables into estimated ex-ante real interest rates and expected inflation.
Columns 4 and 5 are based on an S™ constructed using actual ex-post infla-
tion, and show the results of regressing this on our expected inflation spread
and our nominal yield spread respectively, the latter equations replicating
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the ‘inflation-change’ regressions of Mishkin (1990). The table reports coeffi-
cients, standard errors corrected for serial correlation and heteroskedasticity,
and R? coefficients.”

The results reported in the first three columns of Table 5 support Camp-
bell and Shiller’s conclusion that the yield curve is better at forecasting long-
run changes in short rates than at forecasting short-run changes in long rates.
For nominal interest rates, the estimates of § range from 0.69 to 1.02, are
reasonably well determined and lead us to reject the hypothesis that g =1
only for n = 6,m = 3. The results for real interest rates in column 2 also
support the expectations hypothesis; the equations are well determined and
the coefficients are all close to unity. For expected inflation too the results
are supportive; here all of the coefficients are significantly different from zero,
but not from one.

Columns 4 and 5 of Table 5 show that the term structure is less successful
at forecasting future changes in actual (rather than expected) inflation. Both
nominal interest rates and expected inflation rates perform poorly, although
at longer horizons the estimates of 3 are closer to one for expected inflation
than for nominal interest rates. The regressions for short horizons confirm
Mishkin’s conclusion that “apparently, the term structure for maturities of
six months or less contains almost no information about the path of future
inflation”.

"The serial correlation adjustment of Newey and West (1987) is used for the results
in columns 4 and 5; the Hansen-Hodrick adjustment generated some negative standard
errors in these regressions.
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6 Conclusion

The results reported in this paper demonstrate that a simple, transparent
framework, applied uniformly across the maturity structure, can generate em-
pirically reasonable and statistically precise estimates of yield and forward
rate curves. Application of this framework to British index-linked bonds and
conventional bonds produces a plausible decomposition of expected nominal
rates into expected real rates and inflation. The decomposition generates
significantly better inflation forecasts than can be obtained from nominal
interest rates alone. Forecast equations using expected inflation fit actual in-
flation better and, unlike the equations based on nominal rates, are consistent
with the expectations hypothesis of the term structure.

Real interest rates are highly variable at short horizons but display very
little variation at long horizons; almost 80% of the movement of long-term
nominal rates appears to be due to changes in expected long-term inflation.
Changes in short-horizon real rates and expected inflation are negatively
correlated, but the correlation decays towards zero as the horizon increases.
Conversely, the levels of real rates and expected inflation exhibit positive
correlation that increases with the horizon.

The theoretical framework employed here can be generalized in several
ways. Most obviously, we need not confine our attention to models driven
by the two simple processes employed here. We can allow more complicated
processes for expected future inflation and real interest rates, and can see
whether this significantly improves our ability to fit nominal and index-linked
bond prices.

The principal theoretical shortcut used in this paper is our assumption
that the data obey the log pure expectations hypothesis. While this is a sig-
nificant oversimplification in theory, its empirical consequences are probably
quite limited. In future research, however, we plan to use models of the well-
known Cox, Ingersoll, and Ross (1985) class, implemented in discrete time in
the manner of Backus (1993), Campbell, Lo, and MacKinlay (1997), Chap-
ter 11, and Sun (1992), to estimate constant or time-varying term premia
simultaneously with the rest of the model.
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Table 1:

Moments of excess returns

Means Standard deviations

Sample | Maturity | Nominal (s.e.) Real (s.e.) | Nominal Real Ratio
85.01- | l-year 0.19  (0.55) -2.53 (0.67) | 5.96 7.26 0.82
94.10 d-year 0.97 (2.57) -1.17 (1.52) | 27.95 16.46 1.70
10-year 1.39 (4.23) -1.44 (2.30) | 4594 2498 1.84

85.01- | 1-year 0.37 (1.23) -2.51 (1.35) 7.09 777 091
87.09 3-year 1.46 (5.49) -1.89 (2.80) | 31.55 16.09 1.96
10-year 173 (9.34) -4.88 (4.26) | 53.65 24.49 219

87.10. | l-year 134 (097) 200 (1.09)| 580 653 0.89
90.09 d-year -4.64 (4.54) -0.72 (2.70) | 27.23 16.19 1.68
10-year -7.43  (742) -0.34 (3.94)| 4454 2365 1.88

90.10- | 1-year 1.02 (1.15) -4.06 (1.34) 5.62 6.56  0.86
92.08 d-year 7.56 (5.49) -1.74 (3.83) 26.88 1875 1.43
10-year | 11.15  (7.33) -0.69 (5.90) | 3589 28.91 1.24

02.09- | Lyear 138  (091) 183 (1.67)] 456 835 0.5
94.10 S-year 2.07 (4.96) -0.29 (3.19) | 24.81 15.95 1.56
L 10-year 4.27 (9.17) 0.78 (4.90) | 4585 2451 1.87
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Table 2:

Variance decomposition of excess returns

Proportion due to
Sample | Maturity | Inflation Real rates Covariance | Correlation
85.01- 1-year 1.74 1.49 -2.23 -0.69
94.10 5-year 0.72 0.35 -0.06 -0.06
10-year 0.78 0.29 -0.08 -0.08
85.01- | l-year 1.59 1.20 -1.79 -0.65
87.09 5-year 0.89 0.26 -0.15 -0.15
10-year 0.91 0.20 -0.11 -0.13
87.10- | 1l-year 1.68 1.43 -2.11 -0.68
90.09 5-year 0.65 0.33 0.02 0.02
10-year 0.57 0.21 0.22 0.32
90.10- 1-year 0.98 1.24 -1.23 -0.55
92.08 5-year 0.63 0.51 -0.15 -0.13
10-year 0.96 0.73 -0.69 -0.41
92.09- 1-year 6.21 4.90 -10.11 -0.92
94.10 5-year 0.58 0.24 0.18 0.24
10-year 0.58 0.18 0.24 0.37
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Table 3:

Inflation forecasting regressions

m
Interest rates Expected inflation
n 0 3 6 9 0 3 6 9
3(interbank) | 0.71
(0.22) - ; - - - -
R? 0.20
3 0.77 - - - 1.03 - -
(0.25) (0.35)
R? 0.21 - - 0.21
6 0.28 0.49
- (0.12) - ; - (0.14) -
R? 0.10 0.17
9 0.38 0.37 0.73 0.71
- (0.15) (0.14) - (0.22) (0.26) -
R? 0.15 0.06 0.30 0.14
12 0.57 0.50 0.45 0.45 0.81 0.87 0.79  0.66
(0.19) (0.21) (0.21) (0.24)](0.30) (0.27) (0.29) (0.22)
R? 0.24 0.13 0.08 0.03 0.31 0.25 0.17  0.05
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Table 4:
Regressions of Yn_m t+m — Ynt on predicted change s, m

Nominal Real Expected
rates rates inflation
m
n 3 12 3 12 3 12
12| 0.26 0.66 1.37
(0.47) - (0.49) (0.58) -
60| -043 096 | 006 025 | -0.54 -0.07
(1.83) (1.35) | (0.75) (0.60) | (1.00) (0.86)
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Table 5:

Regressions of S;;  , on S, m

S*: 5
estimated:estimated actual:estimated
1 2 3 4 5

n,m | nom:nom realireal FE(m):E(x)|x:E(n) mnom
6,3 0.69 0.88 1.19 -1.20 0.36
(0.13) (0.21) (0.38) (0.98)  (1.90)

R? 0.10 0.13 0.23 0.01 -0.01

9.6 -0.11 1.29
- - (0.73)  (1.20)

R? -0.01 0.00

12,3 0.89 0.88 1.16 -0.12 2.12
(0.26) (0.11) (0.14) (0.71)  (1.13)

R? 0.11 0.26 0.48 -0.01 0.04

12,6 0.74 0.92 1.33 0.63 3.33
(0.38) (0.21) (0.21) (0.67)  (1.14)

R? 0.04 0.16 0.36 0.01 0.14

12,9 1.21 2.62
- - (0.67)  (1.21)

R? 0.02 0.05

24,12 1.02 0.77 0.89 0.83 3.05
(0.46) (0.30) (0.33) (0.74)  (0.61)

R? 0.08 0.16 0.17 0.04 0.39

30




Per cent p.a.

10

——————n,

Nominal

Bank of England curve ———

Inflation

Real

6 8 10 12 14 16

Maturity in years

18

20



13 15

2 3 456789 11

1

0

—2

Figure 2: Estimated and interbank 3—month rates
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Figure 4: Expected annual inflation: current and 9yrs forward
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