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This paper provides a detailed characterization of the volatility in the DM-dollar foreign exchange market
based on a one year sample of five-minute returns extracted from continuously recorded quotes on the
Reuters interbank network. Our model captures the significant intraday activity patterns and the strong
announcement effects associated with the regularly scheduled releases of macroeconomic statistics, along
with the persistent interdaily volatility dependencies familiar from studies of returns at daily and lower
frequencies. This decomposition into three distinct factors consisting of largely predictable calendar
effects, announcements effects, and volatility clustering, or ARCH, effects, is fundamental to our
approach, and allows for the explanation of a substantial fraction of the realized return variability, both
at the extreme high frequency and at the daily level. Interestingly, the relative predictive power of the
various components change dramatically with the observation frequency.

The calendar effects are naturally split into intraday, weekly, and more irregular Holiday and time
change patterns. The intraday effects combine an overall smooth volatility pattern over the 24-hour cycle,
reflecting the trading and economic news emanating from the financial centers around the globe, and
more abrupt changes associated with the Tokyo market opening and lunch periods. The weekly features
are driven strictly by the weekends. The markets virtually shut down over Saturday and Sunday, and
volatility just prior to and following the weekend is subdued. Finally, regional Holidays and the
introduction of Daylight Savings Time cause highly significant changes in the volatility pattern.

The announcement effects are quite distinct. They resemble one-time price adjustment processes
that induce dramatic, but short-lived, bursts of volatility. We investigate the impact of all major
scheduled macroeconomic releases, including both U.S. and German announcements. The investigation
focuses on the significance of each individual type of announcement and the associated dynamic volatility
response pattern. This is relevant for proper modeling of the volatility process, but also interesting in
its own right as a measure of the significance that the market attaches to each type of announcement.

Movements in volatility at the daily level permeates intraday returns. This suggests that standard
daily volatility estimates have explanatory power for intraday volatility, but also, more importantly, that
intraday returns possess valuable information regarding the evolution of volatility at lower frequencies.

Our results extend the literature in several ways. In particular, the use of continuous spot market
quotations for the full 24-hour trading cycle allows us to investigate the effects of all the major U.S. and
German announcements, the vast majority of which have not previously been analyzed in the literature,
along with various specific one-time events, e.g., the widening of the ERM band during our sample
period. However, counter to the analysis in Ederington and Lee (1993) who rely on U.S. futures prices,

we conclude that once the systematic intraday variability is properly accounted for, the announcement



effects, although statistically significant, are of only secondary importance in explaining overall volatility.
The major announcements clearly exercise a dominant role during a few predictable five-minute intervals
immediately following the news release, but their explanatory power is less than that of the intraday
pattern at the high frequencies, and much less than that of standard volatility forecasts at the daily level.

While we confirm previous findings regarding the qualitative features of the intraday volatility
pattern, established in, e.g., Bollerslev and Domowitz (1993), Dacorogna et al. (1993), and Andersen
and Bollerslev (1996a), we also enrich the characterization in several dimensions. First, only the latter
study accounts for volatility movements at the daily level, and, second, none of these studies include
announcement, regional Holiday, and Daylight Savings Time effects. Third, the identification of a
Japanese market opening effect with a highly significant influence over half an hour is, as far as we
know, new. Fourth, we explicitly control for the impact of the effective market closures around the
Tokyo lunch time and the implications of gaps in the data transmission on the inference.

Our analysis also shows how intraday returns may provide valuable information for measurement
of market volatility at daily and lower frequencies. As such our methodology sets the stage for more
accurate analyses of longer-run volatility and price dependencies in liquid financial markets through the
estimation of the latent volatility process by the cumulative sum of the intraday absolute returns rather
than the absolute value of the corresponding long-run returns. While information beyond past daily
returns has been used in estimating day-by-day volatility before, our results compare favorably to those
from earlier studies.! This novel aspect of our analysis is further supported by additional evidence from
other financial markets and longer calendar time spans reported in Andersen and Bollerslev (1996¢).

The general framework is furthermore relevant for a number of topics that have been studied
mainly through daily data, but should benefit from the additional information contained in high frequency
returns. These include issues regarding information transmission and volatility spill-over, both across
markets and intertemporally between the geographical regions of the identical market, see, e.g., Engle,
Ito and Lin (1990), Hamao, Masulis and Ng (1992) and Hogan and Melvin (1994), as well as the relation
between information flow, return volatility and variables such as bid-ask spreads or transactions volume,
see Goodhart and O’Hara (1996) for a survey of this literature. Finally, continuous (real time) decision

making regarding option pricing, implementation of hedges, and portfolio allocation require instantaneous

! The literature is large. For example, Garman and Klass (1980), Parkinson (1980), Beckers (1983), Ball and Torous (1984),
Rogers and Satchell (1991), and Kunitomo (1992) explore the information content in daily observations on high and low prices,
while Latane and Rendleman (1976), Day and Lewis (1992), Canina and Figlewski (1993), Jorion (1995), and Xu and Taylor (1995)
study the implied volatility extracted from option prices, and Clark (1973), Epps and Epps (1976), Tauchen and Pitts (1983),
Lamoureux and Lastrapes (1990a), Gallant et al. (1992), Andersen (1994, 1996), and Jones et al. (1994) investigate trading volume.
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evaluation of volatility dynamics. Our approach provides a natural starting point for such endeavors.
The paper is structured as follows. Section I reports on the data sources and the construction of
the five-minute return series. Section Il provides a preliminary data analysis, motivating our formal
modeling approach. The robust regression procedure is developed in section III; the details of this
discussion may be skipped by the reader primarily interested in the qualitative findings. Section IV
presents the empirical results regarding the calendar and announcement effects. It includes a quantitative
assessment of the instantaneous impact of each factor as well as their overall cumulative effect. Section
V provides evidence on the explanatory power of the documented volatility factors at both the intradaily

and daily levels. Section VI concludes. Further details regarding the model are provided in appendices.

I. Data Sources and Construction

Our primary data set consists of five-minute returns for the Deutschemark-U.S.Dollar (DM-$) spot
exchange rate from October 1, 1992, through September 30, 1993.> In addition, we utilize a longer
daily time series of 3,649 spot DM-$ exchange rates from March 14, 1979, through September 29, 1993.
The five-minute returns were constructed from the DM-$ exchange rate quotes that appeared on the
interbank Reuters network over the sample period. Each quote contains a bid and an ask price along with
the time to the nearest even second. At the end of each five-minute interval, we use the immediately
preceding and following quote to construct the relevant bid and ask prices. The quotes are weighted by
their inverse relative distance to the endpoint, and the log-price, log(P,, ), is then defined as the midpoint
of the logarithmic bid and ask. The n’th return within day t, R,,, , is now the change in log-prices during
the corresponding period. All N=288 intervals during the 24-hour cycle are used. However, to avoid
confounding the evidence by the decidedly slower trading patterns over the weekends, all returns from
Friday 21:00 Greenwich Mean Time (GMT) through Sunday 21:00 GMT were excluded; see Bollerslev
and Domowitz (1993) for an analysis of the interbank quote activity that justifies this "weekend"
definition. To maintain a fixed number of returns over the span of one week, we did not remove any
observations due to worldwide or country-specific Holidays, although we control explicitly for their
impact in the analysis below. This leaves us with a sample of T=260 weekdays for a total of 74,880
five-minute return observations; i.e., R,,, n=1,2,...,N, t=1,2,...,T. The data set also includes all of

the news headlines that appeared on the Reuters money news-alert screens. During the sample period

2 Going to a finer sampling interval results in the bid-ask bounce effect becoming dominant, as evidenced by the increasingly
significant negative sample autocorrelations reported in Guillaume et al. (1995). These findings are also consistent with the standard
deviation of our 5-minute return series being slightly less than the average quoted spread; see Bollerslev and Melvin (1994).
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from October 1, 1992 through September 30, 1993, a total of 105,065 such headlines appeared. These

are time stamped to the second and constitute the basis for our analysis of announcement effects.

II. Preliminary Data Analysis

This section provides an initial investigation of our high frequency foreign exchange return series that
serves to motivate our modeling approach. It falls naturally in three parts, corresponding to each of the

general factors that we identify as important determinants of the volatility process.

A. Daily ARCH Effects

Market microstructure theories concerning the relation between information flow, return volatility and
trading activity often ignore the lower frequency movements in volatility that are associated with the
conditional heteroskedasticity of daily returns. This is probably related to the fact that, until recently,
empirical studies have been unable to document that intraday return volatility displays characteristics that
are consistent with those observed at the lower frequencies. At the face of it, this is utterly puzzling.
How can the intraday return volatility process be void of ARCH features when the identical data,
aggregated to the daily level, provide overwhelming evidence of conditional heteroskedasticity? An
answer is provided by Andersen and Bollerslev (1996a) who demonstrate that the strong intraday volatility
pattern interferes with, and garbles, the time series structure of intraday volatility. Only by explicitly
modeling the intraday pattern is it possible to recover meaningful volatility dynamics. Nonetheless, the
question remains as to whether the ARCH features are of secondary importance at the highest
frequencies. A useful assessment is provided by the ability of standard models, based on daily returns,
to forecast the variability of high frequency returns over the following day. If the volatility clustering
at the daily level has little predictive value for subsequent intraday volatility then it may well be advisable
to ignore ARCH effects at the daily level when studying general intraday return dynamics.

For concreteness, we explore the relation between one-step-ahead volatility forecasts generated
by a MA(1)-GARCH(1,1) model of daily returns and alternative measures of return variability based on
intraday data.® The GARCH model is estimated from daily data over the longer sample period. The
associated estimates of the conditional standard deviation for each day of our high frequency sample are

depicted in Figure 1. Volatility starts out at a high level, and consistently declines over the initial one

3 While the GARCH(1,1) model is not necessarily the preferred model, it does represent a simple and popular model that
provides a reasonable approximation to the second order dependency in the series, see, e.g., Baillie and Bollerslev (1989).
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and a half month, followed by a more stable level over the remainder of the sample. However, even the
latter period is characterized by sudden bursts of volatility that die out only gradually. Finally, there is
an apparent surge in volatility at the end of the sample. This overall development is broadly consistent
with the dramatic events surrounding the European Monetary System (EMS) over the sample period.*
To develop intuition about the properties of alternative (ex post) volatility measures, it is useful

to contemplate an explicit model of intraday returns. Suppose that the exchange rate is determined by
dlog(P,) = u,-d7 + o,'Dw_,

where 7 = 0, W_ is a standard Brownian motion with unit variance per day, and the instantaneous mean,
., and volatility, o,, may be governed by separate stochastic processes. Much of modern asset pricing
theory is cast in terms of such continuous time diffusions. In the notation for the discretely sampled
intradaily returns defined above R, = log(P.yon) - 108(Pyniyn), Where t=1,2,...T, and n=1,2,...,N.

In empirical applications to high frequency data, it is often assumed that the mean return is constant,
E(R,) = m+on = #,

while allowance is made for time variation in the corresponding volatility process,
E(IRl,n I) = O+ wN-

One common approach used in the evaluation of daily (or lower) frequency volatility estimates, say a,,

relies on direct comparison with the corresponding realized absolute returns, (t = 1,2,...,T),
lRll = llOg(Pt) - log(PH )l

Studies using this approach include Cumby, Figlewski and Hasbrouck (1993), Figlewski (1995), Jorion

4 Early September 1992, the Finnish Markkaa gave up its peg to the main European currencies, and later that month the British
Pound and Italian Lira left the EMS, which limited exchange rates, through the European Rate Mechanism (ERM), to fluctuate by
only 2.25% versus each other. This created intense speculation that other currencies would leave the EMS, and the volatility in
October 1992 reflect the repercussions of these events in the DM-dollar market. The more dramatic episodes include the abolition
of the Swedish Krona peg on 11/19, the 6% devaluation of the Peseta and the Escudo on 11/23, and the abolition of the Norwegian
Krone peg on 12/10. By Christmas, this round of turmoil had been weathered, but uncertainty arose again during a speculative
attack on the Irish Punt in late January. The Punt was devalued by 10% on 01/30, and the market remained unsettled for most of
February. Market sentiment focused on the willingness of the Bundesbank to support the weaker currencies by loosening its
monetary policy. In fact, EMS-tensions were reduced by a German interest rate cut on 02/04. Later, the Peseta and Escudo
devalued again, on 05/13. This decision may have been associated with the upcoming vote, in Denmark, regarding the country’s
participation in the Maastricht treaty and the EMS, but the popular verdict, on 05/18, came out in favor of the treaty. The final
bout of ERM-related volatility occurred during the latter three weeks of July, but came to a dramatic halt with the announcement,
on 08/01, of a widening of the ERM-band from 2.25% to 15% for all currencies except the Dutch Guilder vis-a-vis the DM.
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(1995), and West and Cho (1995), among others. However, realized absolute or squared daily returns
are imprecise gauges of the underlying volatility. For example, the price may fluctuate rather wildly,
but nonetheless end up close to the opening price, thus falsely signaling a low volatility state. A richer

measure for the latent volatility might instead be based on the sum of the intradaily absolute returns, i.e.,
N
Z 'Rt,nl *
n=1

This measure will be referred to as the curmulative absolute returns in the discussion below.
To illustrate the potential efficiency gains associated with the latter measure, consider the extreme
case where volatility remains constant within each day; i.e., &, = oy, for 7 = 0, and [-] denotes the

integer value operator. Given the distributional assumptions regarding P, , it follows that

E(IR,]) = &, /=)',

and N
E(E lRt,,,IJ = NV, -2/m),

n=1

which suggest the following two ex-post measures of the daily volatility
6, = (/)R] ,

and N
6o = N2(m2)12 % |R,,|
n=1

While both estimators are unbiased, the latter is vastly superior. In the present simplified setting

Var(s, )

N
N7t (n/2) -Var[ y |Rm|)
n=1

N-1

N'l'(n/2)'[N~VaI(]Rt’n|) + 2:Y (N-i) Cov(|R,,|,|R, ;]
i=1

i

(n/2)-Var(|R,,|) = (n/2)-N~'-Var(|R,])



= N7'-Var(s,,) .

Thus, with N=288 five-minute intraday returns, the standard deviation is reduced by a factor of close
to seventeen. While the intraday volatility dynamics are much more complex than assumed above, the
calculation is suggestive of the greatly improved ex-post measurement of the latent volatility process
afforded by the cumulative absolute returns. As long as the discretely sampled intradaily returns are
uncorrelated and the absolute returns not perfectly correlated, this intraday measure is superior; for a
theoretical exposition on related issues, see Nelson (1992), and Nelson and Foster (1995, 1996).

The practical implication of the above is illustrated in Figure 2, which displays the two alternative
daily volatility measures along with the GARCH forecasts from Figure 1.5 The low correlation between
the GARCH forecasts and the realized absolute daily returns is evident in Figure 2.A. The daily absolute
returns are scattered almost arbitrarily around the forecasted values. In some sense this is inevitable.
Daily returns are inherently noisy, and innovations are typically large relative to their expected values.
Table I underscores this point. The sample correlation between the one-step-ahead GARCH volatility
forecasts and two different ex-post measures of the absolute and the squared daily returns are disturbingly
low, attaining a maximum of 0.107.° Clearly, a regression of the ex-post volatility measure on the
GARCH forecasts has negligible explanatory power, with an explained variability of, at best, around
(0.107)> = 1.1%. Given this evidence and the inadequacies of standard ARCH models when applied
directly to intraday returns, it is perhaps understandable that many studies ignore such volatility estimates.

The fallacy of this approach is, however, evident from Figure 2.B. The cumulative absolute
returns are intimately related to the GARCH volatility predictions. The first two columns of Table I
reinforce this conclusion. Over the annual sample, the correlation between the forecasts and the cumulate
absolute returns is as high as 0.672. In other words, about (0.672) = 45.2% of the variation in the sum

of absolute intraday returns is predicted by the daily forecasts generated by a simple GARCH model.’

% Note that the GARCH volatility estimates rely solely on the preceding squared daily returns and the parameter estimates
obtained over the longer sample. Since these parameter estimates are largely unaffected by the realization of returns over the final
year of the sample, the volatility estimates are effectively one-step-ahead volatility forecasts based on prior daily returns only.

® The second to last column calculates returns in accordance with our definition of the trading day, from 21 GMT one day
to 21 GMT the following day. The last column uses exchange rates from 12 GMT instead. The latter definition corresponds to
the convention for the longer DM-$ series that underlies our MA(1)-GARCH(1,1) estimates. These timing conventions are
inconsequential for the correlation measures. The results are also unaffected by the exclusion of Holidays. For instance, the
correlation between |R,| and the GARCH volatility estimate for non-Holidays equals 0.082, compared to 0.086 for the full sample.

7 This R? goes beyond 50% if simple adjustments are made for Holidays with predictably low return volatility.
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Furthermore, this variation is at the daily level. It is impossible to explain this phenomenon by any
intraday variation in volatility which is annihilated when aggregated over the entire trading day.
Consequently, ignoring the information conveyed by the volatility forecasts implies that a large
component of predictable return variability, entirely unrelated to intraday patterns or events, is excluded
from the high frequency analysis. Clearly, a misleading picture may emerge if there is no control for

this source of common variation across the intraday returns.

B. Calendar Effects

It is well documented that high frequency returns display pronounced intraday volatility patterns as well
as other systematic calendar features such as day-of-the-week and Holiday effects. In fact, we have, at
the outset, excluded weekend observations due to the effective market closure over this period. This
section describes the strictly calendar related characteristics of our five-minute DM-$ return series.
While there is very little evidence of predictability in the conditional mean, the series displays
pronounced intraday volatility and activity patterns.® Figure 3 depicts the average absolute return for
each five-minute interval across all 260 weekdays in our sample. The initial observation corresponds to
the interval ending at 21:00 Greenwich Mean Time (GMT), while the last observation represents the
interval 20:50-20:55 GMT. Thus, our week originates Monday morning in the Pacific segment where
trading is dominated by banks located in Wellington and Sydney. Trading volume and return volatility
is rather subdued at this hour. There is a significant jump in (average) volatility at 0:00 GMT, or 9am
Tokyo time, corresponding to the simultaneous opening of trading in a number of financial markets,
including the Tokyo foreign exchange interbank market and markets for U.S. debt securities. At this
point, the market must both interpret innovations to U.S. bond yields that have occurred since the close
of U.S. trading, and absorb any customer orders that have accumulated overnight at authorized currency-
dealing banks in Japan.® While Yen-$ dealings comprise the largest portion of the Asian foreign
exchange market, the quotes in the Yen-$ and DM-$ markets are intimately linked through a triangular
arbitrage relationship. Thus, it is perhaps not surprising that the impact of the opening of the Tokyo

market resembles the market opening effects documented for equity markets by, e.g., Wood et al. (1985),

8 There is evidence of weak negative first order autocorrelation, most likely induced by spread positioning of dealers attempting
to correct inventory imbalances by posting quotes that attract customers on one side of the market only, see, e.g., Miiller et al.
(1990), Bollerslev and Domowitz (1993), and Zhou (1996).

% Prior to December 1994, The Committee of Tokyo Foreign Exchange Market Customs prohibited ail authorized foreign
exchange trading in Japan prior to 9am, between 12:00-1:30pm, and after 3:30pm local time, see Ito, Lyons and Melvin (1996).
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and Harris (1986). Similar effects are identifiable during and following the lunch hour, 3:00-4:30 GMT,
where the Tokyo segment shuts down, and the overall market typically approaches a stand-still. Ignoring
the Lunch effect, we may loosely identify a u-shape pattern in volatility over the Asian segment, with the
latter part leading into the European segment at 6:00 GMT. Volatility is notably higher during European
trading which remains active until about 15:00 GMT. This is to be expected, as more economic events
of relevance for the DM-$ rate may hit the market during this part of the trading day. Interestingly, we
may again identify the rough outlines of a u-shape in the volatility pattern over this regional segment."
Notice, however, that the latter part of the u-shape in either case may reflect an overlap in market
activity: first the Asian market coexists with the European, and later, between 12:00 and 15:00 GMT,
the two most active centers trade simultaneously as it is afternoon in London and morning in New York.
Finally, after the close of the London market, volatility displays a monotonic decline until it reaches the
plateau associated with the Pacific segment. There are no signs of elevated volatility when trading closes
down in New York. Hence, while volatility clearly increases when each of the main regional segments
become active, there is no systematic evidence of enhanced volatility associated with the termination of
regional trading.!" This overall pattern is also consistent with previous evidence reported in Baillie and
Bollerslev (1991), Harvey and Huang (1991), and Dacorogna et al. (1993). We now turn towards a
discussion of the other systematic calendar features prevalent in high frequency returns.

Although there generally is a close coherence between the naive one-step-ahead volatility forecasts
from the daily GARCH model and the cumulative absolute return volatility measure depicted in Figure
2B, there are a few dramatic deviations, most notably exemplified by the trading days 62 and 67. These
are Christmas Day and New Year’s Day, and both have close to zero quote activity, resulting in imputed
intraday returns of near zero. Effectively, they are "weekends", as the low activity renders the intraday
volatility computation meaningless. A similar, albeit weaker, manifestation of a low quoting intensity
is at work on other U.S. Holidays throughout the sample. The days 41, 98, 137-138, 173, 198, and 243,
representing Thanksgiving, President’s Day, Easter, Memorial Day, July 4, and Labor Day, are

prominent examples. There are also instances of failures in the data transmission that causes gaps of

10 We later demonstrate that the distinct peaks, at exactly 12:30 and 13:30 GMT, are caused by price movements associated
with the release of U.S. macroeconomic news at 8:30 Eastern Standard Time (EST).

" we conjecture that this is due to the particular structure of the interbank market. Small transaction costs, the large number
of dealers and brokers, and the large size of regular transactions, force participants to continuously adjust their currency positions
towards the desired level. Each dealer will thus only have a relatively small inventory imbalance that must be addressed prior to
the end of trading. Lyons (1995, 1996) provides a theoretical exposition of the trading process in the interbank market.
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several hours in our intraday time series. The most noticeable manifestation of this phenomenon is for
day 258. The subsequent analysis explicitly controls for such spurious breaks in the volatility process.

A second type of calendar effects often recognized in high frequency returns is day-of-the-week
dependencies. The apparent need to allow for such effects is illustrated in Figure 4, where a set of two-
hourly dummies is estimated along with dummies for each of the weekdays. Mondays appear the least
volatile, while Thursdays and Fridays are the most volatile.

Third, the GMT time scale used in Figure 3 is dubious due to the observance of Daylight Savings
Time in both North America and Europe. If the daily cycles of economic activity and trading in the
different regions are underlying determinants of the intraday pattern, then it should differ across the
Summer Time and Winter Time regimes. Figure 5 supports this conjecture. The volatility pattern
appears translated leftward by exactly one hour between 6:00 and 21:00 GMT (the European and North
American segments) during the U.S. Summer Time regime."

Finally, motivated by the apparent importance of market openings and closures, we also consider
the possibility that volatility behaves differently in periods leading into, or out of, such market closures.
In particular, we find that Friday evenings and Monday mornings appear different from the identical

periods on other weekdays, and the following analysis consequently controls for both of these effects.

C. Macroeconomic Announcement Effects

Figure 6 suggests that U.S. announcements released at 8:30 EST, or 12:30 and 13:30 GMT, are the
source of the previously observed volatility spikes. It displays the intraday volatility pattern for days that
contained scheduled announcements on U.S. macroeconomic data, including the Employment Report, the
Merchandise Trade Deficit, the Producer Price Index (PPI), Durable Goods, estimates and revisions to
quarterly Gross Domestic Product (GDP), Retail Sales, Housing Starts, Leading Indicators, and Jobless
Claims. It is apparent that the releases induce quite dramatic price adjustments. However, while there
are signs of elevated volatility for several hours, the main impact seems to be gone within 10-20 minutes.
These findings are consistent with the observation of heightened return volatility on days with
macroeconomic announcements noted by, e.g., Harvey and Huang (1991) and Ederington and Lee (1993).

Table Il displays the 25 largest absolute five-minute returns over the sample, and indicates

whether any economic or political events may be identified as contributors to the abrupt price change.

12 As detailed in the appendix, we effectively delete the Tokyo lunch period by artificially assigning a low return to intervals
between 3:00 and 4:45 GMT, thus causing the volatility pattern to appear rectangular over this period. These observations are
further "dummied” out in the formal regression analysis conducted below.
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The latter exercise is, of course, subjective. Nonetheless, the evidence is striking, with the seven largest,
and 15 of the 25 largest, absolute returns directly associated with the release of economic news in the
same or the immediately preceding interval. Among other events that seemingly induced "jumps" in the
DM-$ exchange rate were the "Russia Crisis", involving a military confrontation between Yeltsin and
hardliners in the Russian Parliament, the plunge of the U.S. stock market on October 5, the election of
Bill Clinton as the next U.S. president, and various tumultuous episodes in the ERM, including the
widening of the band to 15%, and the floating of the Swedish Krona on 11/19 that culminated with a
devaluation of the Peseta and Escudo the following weekend.

We conclude that scheduled releases occasionally induce large price changes, but the associated
volatility shocks appear short-lived. The reason is probably their one-time character. While market
participants differ in their interpretation of the news, the market typically settles on a new equilibrium
price after a brief period of hectic trading, see, e.g., Goodhart and Figliuoli (1992) and Goodhart et al.
(1993). This is contrary to the often more prolonged impact of unscheduled news. Examples include
the Russia Crisis and the Stock Market Plunge. Each are related to three separate, large innovations, and
appear to exert longer-lasting effects. Announcements may thus constitute news arrivals with a well-
defined content and clearcut termination that endows them with a particularly short-lived impact, largely
unrelated to the strong volatility persistence observed at the daily level. Nonetheless, they are sufficiently

numerous that they induce an appreciable amount of predictable volatility in overall returns.

III. Estimating the Systematic Features of High-Frequency Volatility

The volatility dynamics of high frequency foreign exchange returns are extremely involved. There are
pronounced intraday patterns, highly significant, albeit short-lived, announcement effects, and standard
volatility clustering, or ARCH, effects at lower frequencies. Moreover, the latter cannot exist exclusively
at the lower frequencies. They must necessarily be present in the form of highly persistent components
in the intraday volatility process as well; otherwise the aggregation of intraday returns will not
accommodate the persistent volatility processes at the daily level, see, e.g., the theoretical results
regarding temporal aggregation of ARCH processes in Drost and Nijman (1993) and Drost and Werker
(1996), and stochastic volatility processes in Andersen and Bollerslev (1996b), Ghysels et al. (1996), and
Meddahi and Renault (1995). Thus, we stipulate that the volatility process is driven by the simultaneous
interaction of numerous different components, some associated with economic news releases, some with
predominantly predictable calendar effects, and some with highly persistent, unobserved (latent) factors.

It is beyond the scope of the present paper to estimate a full-fledged time series model that accounts for
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the interaction of all these effects.”” Instead, we demonstrate how formal evaluation of the effects
documented in section II may be performed using a simple two-step procedure, where the final step relies
on standard regression techniques.

In full generality, our model takes the following form,
R.-R, = o,5.,Z M)

where I_{,vn is the expected five-minute return, Z, , is an i.i.d. mean zero, unit variance, error term, s,
represents the calendar features as well as the scheduled announcement effects, and o,, denotes the
remaining, potentially highly persistent volatility components, that traditionally are captured by ARCH
or stochastic volatility models. All the return components are assumed to be independent, and the
volatility components are non-negative; i.e., o,,, 8., > 0 for all t,n."*

Without additional restrictions, the components of equation (1) are not separately identifiable.
However, by squaring and taking logs, we may isolate the calendar and announcement effects, s, , as

the sole explanatory variables,

t.n

2log[|R,, - l_{t_nl] - logo,z‘n = ¢+ 2logs, , +u @)

where ¢ = E{log Z?,], and u, = logZ? - E[log Z?,]. Itis evident that log s,, , in general, will
be stochastic. [Each particular release of, say, the Employment Report is unique, with the figures
providing a certain innovation relative to prior consensus forecasts. The price and volatility reaction will
reflect the size of this innovation (the news content), the dispersion of beliefs across traders, and probably
a host of other market conditions at the time of the release. In order to capture these dynamic features
directly, one must resort to explicit time series modeling based on a wider information set, including
consensus forecasts, recent return innovations etc. Instead, our goal is more modest. We merely assume
that the (log-) volatility response, conditional on the type of announcement, the time of the release, and
other relevant calendar information, has a well-defined expected value, E[log s,,]. This average impact

is then governed by purely deterministic regressors. Of course, the innovation, log s, - E[log s, ], will

13 Payne (1996) demonstrates that direct estimation of a system containing all three factors is feasible, but his stochastic
volatility model accommodates only one persistent latent factor. In contrast, Andersen and Bollerslev (1996b) show that the long-
run features of the five-minute DM-$ return series analyzed here are consistent with a heterogeneous information arrival
interpretation of the volatility process, but only if the number of latent components, endowed with relatively strong volatility
persistence, is large.

4 We clearly lose some information by focusing strictly on a model for the imputed five-minute returns. The aim to utilize
all of the "ultra-high" frequency data underlies the recent work of Engle (1996) and Engle and Russell (1996).
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typically be highly correlated for the immediate period following new a release, and this will induce serial
correlation and heteroskedasticity in the error term of the regression that we develop below. Similarly,
we assume that log o, , is strictly stationary with a finite unconditional mean, E[ log o, ].

In order to obtain an operational regression equation, we impose some additional structure.
Firstly, we assume that l_{“, is constant and well approximated by the sample mean, R. This is innocuous
because the standard deviation dwarfs the mean return, implying that the inference is not sensitive to
minor misspecification of the conditional mean. Secondly, we utilize an a priori estimate of the return
standard deviation, &, , to help control for this source of systematic volatility movements. Thirdly, we
impose a parametric representation on the regressor E[log s ,] of the form f(6;t,n). Since theory
provides no specific guidelines regarding the shape of the intraday pattern, we allow for a flexible

functional form, essentially letting the data govern the specification. Our choice is the following

D P
. - : 2 . .cos P2T qin P27
f(6;t,n) = p, + p,'n + p, 0’ + §)\k I(t,n) + pz-;(éw cos =1 + 8,,-sin 3 n)(é)
where 1,(t,n) is an indicator for the event k during interval n on day t. Apart from the dummy variables,
equation (3) is identical to the flexible Fourier functional form proposed by Gallant (1981, 1982), and
as such may be given a semi-nonparametric interpretation.'

Assembling all the pieces, we obtain the operational regression,

2log[|R,, - R|] - logé?, = & +f(6;t,n) + 1, @

i

X

t,n
where ¢ = E[log Z2,] + E[log o?, - log 67,] and, ignoring any inconsequential misspecification of
the conditional mean, the error process {0, } is given by,

a,, = (logs?, - Eflogs2,]) + (logo?, - logé?, - E[logal, - logd?,])

t,n

5)
+ (logZ?, - E[logZZ,]) -

The two-step procedure is now apparent. The first step requires calculating 1-1 providing a reasonable
estimator of 6,,, and specifying the exact form of the announcement dummies and lag lengths to be

included in the regressors of equation (3). Thus, the first step provides the observable regressors and

15 Allowing for the intraday pattern to depend on the overall volatility level for the day, g, appears important for some
markets, but was not significant in this context. The more general specification is utilized in Andersen and Bollersiev (1996a).
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regressand for (4). The resulting expression constitutes a non-linear regression in the intraday time
interval, n, and the event dummies, I, . It is parameterized by a quadratic (u-coefficients), a number of
sinusoids (é-coefficients), and dummies (A-coefficients). It is estimated, in the second step, by ordinary
least squares (OLS). Estimation efficiency is enhanced by enforcing the intrinsic periodicity of the
intraday pattern (of one day).'® We refer to equation (4) and the associated OLS procedure as the FFF-
Regression. Clearly, this two-step method is not fully efficient, but, as argued below, given correct
specification of the FFF-regressor in the first step, the parameter estimates are consistent.

The distributional properties of %,, compared to those of R}, , represents an obvious advantage
of the FFF-procedure, relative to running an equivalent regression in the squared returns. The vast
majority of the five-minute returns are very small, but there are instances of quite dramatic moves,
usually associated with the arrival of political or economic news. Thus, the five-minute returns has a
kurtosis of 21.5 compared to 4.5 for the 12-hour returns. This indicates a serious outlier problem, that
is effectively eliminated by the log-transform."”

The statistical properties of the FFF-regression is determined by the nature of the error process,
0,,, in equation (5). It consists of three terms. The last is simple, as it constitutes an i.i.d. process.
The first captures the discrepancy of calendar and announcement components from their expected values.
Such divergences arise from stochastic components in the intraday "seasonal” or "news" innovations that
differ from their expected values. As such, errors from this source are the rule rather than the exception.
Nonetheless, if the mean effects are correctly specified and the errors are stationary, this does not affect
the consistency of the OLS-estimator. The second term reflects potential misspecification of the estimated
volatility component, 4,,. Given the complexity of this process, it is inevitable that any preliminary
estimator is misspecified, so this error term is likely heteroskedastic, serially correlated and perhaps even
biased. However, any bias is absorbed in the constant, ¢, and will not further affect inference.

Moreover, as long as the regressand and the volatility process itself are stationary, this entire error

'8 This is done through the restriction f(8;t,n) - I A\, L (t,n) = f(6;t,n+288) - ¥ N I, (t+1,n). This is, by construction,
satisfied for the trigonometric terms in equation (3), so the constraint simply imposes a linear restriction on g, and u,. The
resulting estimates for u, and p, were always insignificant, and the estimated patterns, with or without inclusion of the quadratic
terms, were indistinguishable. Hence, the quadratic was omitted from the analysis throughout by imposing g, = pu, = 0.

7 In fact, inspection of the regressor series, %, now suggests a possible "inlier" problem, arising from the low values
obtained when taking logs of small positive squared returns. The problem is similar to that encountered when applying the Kalman
filter to log-squared returns in order to estimate stochastic volatility models, see, e.g., Harvey, Ruiz and Shephard (1994).
However, we explicitly analyzed the data for the presence of unduly influential observations, following the procedure in Davidson
and MacKinnon (1993), section 1.6. We also truncated the observations for %, from below by letting all return observations in
the interval (0% , 0.00036% ) equal 0% (minus the sample mean) before transforming to %,,. It was confirmed in both cases that
the presence of inliers did not exert an appreciable impact on the estimated volatility pattern.
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component is stationary. We conclude that the OLS-estimator is consistent, while the associated error
process will display dependencies of unknown form. Consequently, formal inference requires the use
of robust standard errors that are consistent under general heteroskedasticity and autocorrelation.

A final issue concerns the proper choice of the first stage estimator, 6,,. A simple candidate
class may be derived from standard ARCH models, fit at the daily level. For example, the GARCH(1,1)
estimates in section II. A are directly applicable, if one stipulates that this volatility component is constant

over the trading day. The associated intraday estimates are

Ocn 5,/ N2, ©)

An alternative is to abandon the estimation of o,, altogether. This is equivalent to the imposition of a

constant value for g,,, €.g., letting the sample mean of the estimated ¢, be denoted o, we have
o, = o/ N" @

In either case, we do not capture the high frequency movements in this component, but, as argued above,
the consistency of the FFF-regression is retained. The advantage of the (constant) estimator (7) is that
it eliminates any generated regressor problem. On the other hand, it does nothing to alleviate the
heteroskedasticity. In contrast, the estimator, (6), does provide a normalization with respect to strong

overall movements in volatility, which should improve the efficiency of the second step procedure.'®

IV. Empirical Results

We report on the empirical findings in two separate sections. The first focuses on the calendar effects,
and the second on the announcement effects. Notice, however, that all coefficients were estimated

simultaneously, so that the full range of systematic volatility features were controlled for throughout.

A. Estimated Calendar Effects

Decisions regarding the treatment of a number of distinct features in the five-minute return series are
necessary prior to estimation of the intraday pattern. We briefly outline our approach, but refer to the

appendix for a full exposition. First, we observe that the extreme slowdown in market activity over some

'8 The robustness of the developed FFF-regression is worth reiterating. The nature of conditional heteroskedasticity is left
unspecified, and need have to nothing to do with the preliminary estimator, &,,. Likewise, the distributional form for the
conditional errors is unspecified, except for the existence of second order moments. General stochastic dependencies are allowed
in both the calendar and announcement effects. The only caveat is a "generated regressor” problem that may arise from the first
step estimates of &,,, which may impart a bias in our standard errors, see Pagan (1984). However, we document below that this
problem is negligible in the current context, given our choice of first-step estimators.
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Holidays as well as the Tokyo lunch period resemble weekends. Since we aim to characterize the overall,
average volatility pattern, the systematic lack of reliable return observations over a given interval is an
overriding concern. Consequently, we treat these episodes as analogous to weekends, and, effectively,
eliminate them from the sample. Each Tokyo lunch period, from 12:00 to 1:45pm local time, each major
Holiday, and each interval associated with a failure in data transmission, were assigned the identical low,
positive return, and a dummy variable was introduced to account (perfectly) for the returns over these
periods. This retains the strict periodicity in the data, while removing any impact from these episodes
on the inference. Some regional Holidays involve only subdued, rather than extremely thin, quoting
activity, so we introduce a "Holiday" dummy to accommodate these predictable reductions in volatility.
There is also some evidence of a slowdown in the periods surrounding the weekends, i.e., early Monday
morning in the Pacific zone, and late Friday afternoon in the North American segment. We accommodate
them by constrained second order polynomials over the corresponding intervals, resulting in two
regression coefficients for each of these periods. The Tokyo market opening effect is captured by a
single coefficient that allows for a linear decay in the associated volatility burst. U.S. Daylight Savings
Time induces a one-hour parallel shift in the intraday pattern over parts of the day, which is readily
accommodated. However, this increases volatility in the earlier part of the day, and this is compensated
by lower volatility during the now longer hiatus between the North American and Pacific segments. This
is captured by a restricted second order polynomial (one free parameter) over the latter part of the day.
Moreover, we incorporate day-of-the-week dummies for all weekdays except Monday. Finally, we need
to select the sinusoids to be included in the seminonparametric component of equation (4). The removal
of the Tokyo lunch period facilitates approximation of the intraday pattern by means of smooth functional,
and we obtain an excellent fit using only four sets of sinusoids, see Andersen and Bollerslev (1996a),
Payne (1996), and Kofman and Martens (1996) for earlier representations of this form.

We control for four different types of macroeconomic announcements in this section. The most
influential is the Employment Report ("king of kings" among announcements (Carnes and Slifer (1991)),
and it is allowed to abide by its own volatility decay rate. The other significant U.S. announcements are
included as either "Category 1" (more important) or "Category 2" (less important) releases. The former
incorporates GDP figures, trade balance figures, and durable goods purchases, while the latter contains
the PPI, retail sales, housing starts, leading indicators, initial jobless claims, factory orders, and German
M3-figures. Finally, releases following the biweekly Bundesbank meeting had a major impact on the
market, so this effect was also treated separately. Each type of announcement effect is summarized by

a single regression coefficient. Interpretation of these point estimates is discussed in the next section.
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The estimation results for the full system, using the first step estimator (6), are recorded in the
second column of Table III.  All coefficients associated with the intraday pattern are highly significant,
except for the last sine term.'” As mentioned, the volatility slowdown over the latter part of the
Summer days compensates for increased activity earlier in the day due to Daylight Savings Time. The
strong market opening in Tokyo is noteworthy, while pronounced announcement and Holiday effects were
expected. In contrast, there is no evidence of a Monday morning effect, once the other calendar effects
are taken into account, and the Friday afternoon effect is at best borderline significant. Similarly, there
is no indication of a day-of-the-week effect. Although the Friday coefficient is large when judged by the
conventional OLS standard errors, the effect is likely an artefact of specific events that happened to occur
on Fridays. When evaluated against the robustified standard error the effect is decidedly insignificant.

The above results justify estimation without the day-of-the-week dummies. These estimates are
given in Table III, column three. The only qualitative difference is that the Friday afternoon effect now
is insignificant at the 5% level. As a last robustness check, we estimated the identical system, imposing
the constant daily volatility factor, (7). The results in Table III, column four, confirm that the parameter
estimates are largely unchanged, and the qualitative features of the inference unaffected. Thus, the
inclusion of &, does not seem to give rise to a practical generated regressors problem.

The intraday volatility pattern, as dictated by the estimates in column three, Table III, are
displayed in Figure 7. Both the Tokyo opening effect, and the increased volatility during the overlap in
the Asian and European, and subsequently, the European and North American segments are apparent.
The Monday morning and Friday afternoon effects also manifest themselves clearly, in spite of being
marginally insignificant. The excellent overall fit is evident from Figure 8, which displays the predicted
and average absolute realized five-minute returns in the FFF-dimension underlying the estimation.

Arguably, the corresponding fit in the absolute return dimension is a better gauge of the success

of the model. To convert the FFF-pattern into absolute returns, note that equations (1) through (4) imply
IR,,-R| = N5 -exp(f(6;t,n)/2)-exp(d,,/2) . @)

One-day-ahead intraday forecasts, conditional on 6, , may therefore be generated by taking the conditional
expectation in equation (8), and evaluating f(-;t,n) at the estimated 8. If we ignore a potential correlation

between o, and the transformed error term, we simply have to obtain the unconditional expectation,

1% The large differences between the heteroskedasticity and autocorrelation consistent and the OLS standard errors signify the
importance of accounting for the effects of the strong volatility clustering and outlying observations when conducting the inference.
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E[exp(d,,/2) ], which in turn may be estimated by averaging the corresponding expression, exp(y,, /2),
over the relevant residuals in the sample.”? The unconditional volatility forecasts may be obtained in
identical fashion, except that ¢ would be used in place of 6,. This resulting (unconditional) pattern is
displayed in Figure 9, and contrasted to the actual average absolute returns. While the more pronounced
sensitivity to outliers renders the actual average pattern somewhat jagged, the overall fit is very good.

We end the section by assessing the economic significance of the estimated FFF-coefficients. The
point estimates associated with regular dummy variables in equation (3) are readily interpreted. For
example, a coefficient of unity is tantamount to the addition, to equation (8), of a multiplicative factor
of exp(1/2) = 1.65. Thus, volatility for the corresponding interval increases by about 65 percent.
Consequently, the Holiday factor amounts to exp(-0.712/2) = 0.700, or a reduction in volatility of about
30 percent. This effect applies uniformly to each interval covered by the Holiday dummy. Beyond less
important U.S. "Holidays" such as Veterans day and weekdays between Christmas and New Year, these
also include regional Holidays in Tokyo, Wellington, Sydney, and London.

Assessment of the remaining calendar and announcement effects is more complicated because the
regressors are not simple indicators, but involve prespecified dynamic response patterns. In particular,
assuming that event k impacts volatility over N, intervals, the implied set of regressors are,

N,

Z Mk, i) - I (t,n-i) .

i=0
If the announcement affects volatility for an hour or two, there are 13 or 25 separate event-specific
coefficients to estimate. Given the limited number of occurrences of each event and the inherent noise
in the returns process, this is highly inefficient. Instead, we impose a reasonable decay-structure on the
volatility response pattern, and simply estimate the degree to which the event "loads onto” this pattern,
by imposing Ak,i) = N (i), 1 = 0, 1, ..., N,, where (i) dictates the prespecified pattern. Hence,
exp( A, - ¥(0)/2 ) signifies the immediate response of the absolute returns, while the response at the i’th

lag equals exp( A\, - ¥(i)/2). The corresponding cumulative response measure is naturally defined by,

()]

N .
k )\.
exp __l‘_ﬁ -1

M(kk) = ¥

i=0

2 Note that any correlation would enhance the predictive power of the daily volatility factor. Thus, the assessment of the
explanatory power provided by &, in this context may be deemed a conservative estimate of its true predictive value.
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This nonlinear function of the event-specific loading coefficient, A, , reflects the impact over the entire
response horizon expressed as a multiplicative factor scaled in units of average volatility per interval over
the period. The Tokyo market opening, for example, has an immediate response coefficient of 0.65 and
a cumulative response measure of 2.12, implying that volatility jumps by 65% at 9am Tokyo time, while
more than twice the usual volatility of a five-minute interval is added over the span of the half hour
response horizon. However, volatility is low at this point in the trading cycle, averaging about 0.025%
per interval, so the full impact is only around 0.053%. Since the (median) cumulative absolute return
is about 9% over our sample, this constitutes less than 0.6% of the return variability for a typical day.
Although the effect is pronounced and robust - and market observers and traders clearly recognize it -
it is thus arguably of limited overall economic importance. A similar calculation shows the economic
significance of the early Monday effect to be negligible. While the first few intervals have an estimated
14% reduction in volatility, the total effect amounts to about 0.38% of the daily cumulative absolute
returns. In contrast, the late Friday slowdown may exert a considerable effect. Due to Daylight Savings
Time, separate estimates are obtained for Summer and Winter, but the reduction in volatility over the last

interval of the day is 31% in both cases, with a cumulative impact of 3% to 4% at the daily level.

B. Estimated Announcement Effects

This section reports on our estimation of the volatility responses associated with regularly scheduled
macroeconomic announcements in the U.S., Germany and Japan. Extensive experimentation revealed
the qualitative features of the average volatility impact to be remarkably similar across most of the
announcements, and well approximated by third order polynomials constrained to reach zero at a one hour
horizon. In order to allow for simultaneous estimation of the multiple effects, we adopted this pattern
as a universal format for the (i) sequence. The announcements load onto the pattern in accordance with
the logic underlying equation (9), except that few releases, notably the Employment Report, follow
elongated versions, so that their response horizons go beyond one hour. Apart from this, the only source
of variation across the estimated response patterns is the announcement-specific loading coefficients, A, .

A summary of the results may be based on the point estimates for the announcement coefficients
in Table III, column three. The table includes all releases that were determined to be highly significant,
with category I and II consolidating those that have about the same response patterns. The estimated
average effects take the form displayed in Figure 10. For comparison, the figure also includes an
estimated response pattern for the period following the widening of the ERM-band. Since this decision

arguably had the same one-shot character as regularly scheduled announcements, with no additional
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information to be released subsequently, the market response should share the qualitative features of the
standard announcement responses. The remaining estimates are invariant to the inclusion of this event.

The relative size of the response patterns in Figure 10 is as expected. The revision of the EMS-
band was a major event, and the large and prolonged volatility response is no surprise. The ranking of
the regular announcements reflects the fact that they were presorted according to apparent significance.
More interesting is the size of the estimated effects. The coefficients displayed in Figure 10 represent
AK) - y(@i) fori = 0, 1,...,32 where, e.g., y(0) = 2.18869 and A, is given in Table III. For example,
the contemporaneous response to an Employment Report is governed by A, - y(0) = 1.746 - 2.18869 =
3.822. From equation (10), this is tantamount to a multiplicative impact on the absolute return of
exp( 3.822/2) = 6.76, or an instantaneous jump in volatility of about 576 % . The corresponding cumulate
response from equation (9) amounts to 27.17. Since a conservative estimate of the expected absolute
return during 8:30-10:30 EST, absent announcement effects, is around 0.05% per five-minute interval,
the overall effect is an elevation of volatility by 27.27 - 0.05% = 1.3585%. Therefore, we find about
a15% (= 1.3585/9 %) average increase in the cumulate absolute return for trading days that contain a
scheduled Employment Report. Analogous calculations reveal that the instantaneous volatility nearly
triples for category I announcements, almost doubles for category II announcements, and jumps by almost
400% following Bundesbank Meetings, while the cumulative impact represent an increase in the daily
cumulative absolute returns of about 3.6%, 2.0%, and 5.1%, respectively. Of course, the Bundesbank
Meetings are biweekly rather than monthly, so their overall impact, at least over this sample period, is
estimated at close to 2/3 of that of the U.S. Employment Report. Likewise, categories I and II represent
multiple monthly releases, so their combined impact is substantial. We again stress that these estimates
represent average, or expected, responses. The most surprising releases were associated with a much
larger impact. This point is exemplified by the ERM-Band widening, which ranks eleventh on the list
of large return innovations in Table II. The event is estimated to have raised the instantaneous absolute
five-minute return by 3,000%, and to have increased the cumulative absolute return on August 2, 1993,
by 36.6%. There are announcements within each of the four categories that are associated with even
larger immediate responses than the ERM-band correction. Thus, some scheduled announcements induce
truly spectacular bursts of volatility, although the responses, on average, are decidedly less pronounced.

While the strict categorization in Table III is adequate for general characterization of the
announcement effects, it is evident that the categories cover quite diverse events. In order to convey
more direct information regarding the importance of each individual type of release, Table IV reports

loading coefficients for all U.S. and German announcements investigated in the study. These were
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obtained by treating each announcement in the manner afforded the Employment Report and Bundesbank
Meetings in Table III, i.e., we control for all remaining significant announcements while estimating the
marginal impact of the release under investigation. All statistically significant releases are listed in Table
IV.A, and ranked according to their estimated impact on the cumulative absolute returns. The results
largely confirm our earlier findings. Indeed, the first twelve announcements are the ones controlled for
throughout in our estimation procedure. The set of significant U.S. releases also corresponds closely to
those identified by Ederington and Lee (1993, 1995a, 1995b) and Payne (1996). Of course, we would
expect the relative importance of the releases to differ across markets. For instance, Ederington and Lee
(1993) and Jones et al. (1995) find the PPI figures to be almost as important as the employment report
for U.S. bond market volatility; see also Goodhart et al. (1993) and DeGennaro and Shrieve (1995) for
analyses of high frequency news effects in the U.S. Dollar - British Pound and U.S. Dollar - Japanese Yen
foreign exchange markets, respectively.? The overwhelming significance of the two German monetary
announcements is also interesting, especially in light of the fact that none of the corresponding U.S.
monetary announcements have any explanatory power; for evidence pertaining to earlier periods see, e.g.,
Hardouvelis (1984), Goodhart and Smith (1985), Hakkio and Pearce (1985), and Thornton (1989).
However, it is worth recalling the intense scrutiny of German monetary policy over the sample period
due to the frictions in the EMS.? Moreover, U.S. monetary policy was unusually uncontroversial over
the period. For example, there were no changes in the Fed Funds rate over the sample. Only
confirmation of our results over a longer sample period will allow us to gauge the robustness of these
particular findings. Nonetheless, the results are consistent with the emphasis that the Bundesbank
allegedly places on monetary targets as guidelines for its policy decisions.

Table IV.A also includes the only Japanese release of any significance, namely the Japanese GNP
figures. Since there are only four annual releases of this statistic, the announcement is of limited overall
import, but the statistical significance is noteworthy. The directional response of the exchange rate is
consistent with a strengthening of the dollar on positive innovations to the Japanese GNP. It suggests
an interpretation that stresses the U.S.-Japanese trade imbalance. Strong growth in Japan would be
conducive to imports from the U.S., and a shrinkage of the overall U.S. deficit vis-a-vis Japan.

However, the small sample precludes any firm conclusions. For comparison purposes the table also

2 In a related context, Eddelbiittel and McCurdy (1996) find that a simple frequency count of the news headlines on the
Reuters screen is positively related to the intradaily DM-$ volatility. Similar correlation measures between equity volatility and
headline news-counts are developed in Mitchell and Mulherin (1994), and Berry and Howe (1994).

2 For a recent discussion of the Bundesbank monetary policy rules see Clarida and Gertler (1996).
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includes the German GDP figures. These are estimated to be of about the same economic importance
as the Japanese GNP numbers, although the effect is not statistically significant at the 5% level.

The remaining 22 U.S. and 20 German news releases were all individually insignificant, but the
mere fact that a majority of the coefficients are positive (15 versus 7 and 11 versus 9, respectively)
suggests that on average these announcements contribute positively to the DM-$ volatility, although the
economic impact in most instances is negligible. The complete listing is given in Tables IV.B and IV.C.

The qualitative importance of the announcement effects is perhaps best illustrated by observing
that they "explain” the significance of weekday dummies. A number of previous studies have noted the
importance of allowing for day-of-the-week effects when modelling daily exchange rate movements, see,
e.g., McFarland et al. (1982, 1987), So (1987), Hsieh (1988, 1989), and Baillie and Bollerslev (1989).
Upon running the FFF-regression, using the volatility estimates from (6), including all calendar effects
but excluding the announcement effects, we obtain the following coefficients on the weekday dummies
for Tuesday through Friday, -0.038 [-0.54] (-1.26), 0.038 [0.53] (1.24), 0.118 [1.68] (3.85), and
0.165 [2.19] (5.09), where the square brackets provide robust t-statistics and the parentheses report
standard OLS t-statistics. Thus, ignoring the announcement effects produces economically large day-of-
the-week effects, with Friday having estimated excess absolute returns on the order of 8.5%, and
Thursday of 6.0%. Moreover, the effect is highly significant based on the conventional heteroskedasticity
adjusted OLS standard errors, and the Friday effect remains significant at the 5% level when judged
against fully robust standard errors. Of course, Table III demonstrates that this result vanishes, if we
account for the announcement effects. The large Thursday and Friday dummies reflect the clustering of
scheduled news releases on these weekdays. Given the estimates in Table IV, a back-of-the-envelope
calculation indicates the magnitude of the involved effects. For example, Fridays contain all 12
Employment Report releases, as well as 4 trade balance, 2 housing start, 5 CPI, 3 retail sales, 5 PPI, 5
business inventories, 3 durable goods, 3 GDP, 3 factory orders, S industrial output/capital utilization, one
leading indicator, one jobless claims, and one Bundesbank meeting releases over the year. In total, this
increases the average cumulative absolute returns on Fridays by about 5.4%. The unexplained gap of
about 3.1% is small, and certainly consistent with random variation. In fact, from Table II it is evident
that the most influential releases of PPI, retail sales, and durable goods figures happen to occur on
Fridays, and, in addition, there are two distinct episodes of "ERM turmoil" on this weekday. Hence,
the enhanced volatility on Fridays is readily "explained”, which is consistent with the message obtained
from the robust inference. A similar analysis applies to Thursdays. The Bundesbank meetings typically

take place on this weekday, resulting in 23 releases. This combined with 51 jobless claims, 6 trade
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balance, 6 factory orders, 5 retail sales, 4 PPI, 3 CP1, 3 GDP, and 2 housing start releases plus numerous
minor announcements explains an average elevation of volatility on the order of 5.0%. The residual
1.0% is comparable to the implied variation across the first three weekdays, and clearly insignificant.
Consequently, there is no evidence of a day-of-the week effect. The implication is that volatility
forecasts based on such dummies are biased. For instance, if there are no scheduled announcements on
a Friday, forecasts will tend to be inflated by about 7-8%, while volatility for a Friday containing just
an Employment Report release, on average, will be underestimated by the same magnitude. If additional
announcements are scheduled for the same Friday the downward bias in the forecast is further aggravated.
In summary, macroeconomic announcements have a large impact when they hit the market, with
the largest S-minute returns over the entire sample readily being identified with such public releases.
Clearly, for sensible inference around these periods, it is necessary to control for this effect. However,
the induced bursts of volatility are short-lived. As such, the overall significance of these announcements
for volatility at the daily level is tenuous. In fact, the majority of the releases induce an average excess
curnulative absolute returns of around, or less than, 5% of that for a typical trading day. Only the
employment report is associated with a substantially higher impact. The following section explores the

relative significance of the various effects documented above for explaining the overall volatility.

V. The Relative Importance of the Volatility Components at Different Frequencies

Different market participants are concerned with different features of the volatility process. Market
makers, brokers, and money managers engaging in continuous trading or the implementation of dynamic
portfolio and hedging strategies are exposed to short-run volatility, and consider information on this
dimension vital. Conversely, more passive investors are mostly concerned with lower frequency
movements. Likewise, research into the price mechanism or other market microstructure issues focuses
on the extreme high-frequency movements, while standard asset pricing models typically are specified
and tested at daily or lower frequencies. While the higher and lower frequency characteristics cannot be
entirely independent, the difference in perspective will lead to rather wide discrepancies in the assessment
of the economic significance of the factors that we have explored above.® This section formally
evaluates the impact of each component at both the extreme high frequency and the daily level.

The FFF framework allows for a direct assessment of the joint and marginal predictive power

B Discrepancies in the investment horizons across different types of traders underlies the motivation behind the Heterogeneous
ARCH, or HARCH, class of models proposed by Miiller et al. (1996).
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achieved by each of the three separate components; the daily volatility factor, the calendar effects, and
the announcement effects. The indicator variable, I, is unity if the daily (ARCH-based) volatility factor
is included in the construction of a given forecast, as in equation (6), and zero if the forecast is based on

a constant daily volatility factor, as in equation (7). Formally, the associated component takes the form,

6. = 601, + o-(1-1).

[

Likewise, the indicators, I, I,, and I, , signify whether calendar, announcement, and Holiday effects are
accounted for in the construction of the forecast. The calendar effects, f_, include the impact of the FFF-
sinusoids, the Tokyo open, the Daylight Savings Time, and the early Monday, and late Friday regressors.
The announcement effects, f,, signify the contribution of the four announcement regressors from Table
III, while the holiday effects, f,, refer to the predicted reduction in volatility associated with the Holiday
dummy and the control for missing observations. The latter effects were incorporated in all forecasts,
so that this source of predictable return variability does not interfere with the interpretation of the results.
Based on the set of FFF-regressors in equation (3), it is now straightforward to construct a volatility
forecast from equation (8), and identify the unique contribution from each of the three remaining sources
of systematic variation. In particular, letting the vector of indicator variables, I = (1, L, I,), identify

a given model configuration, the set of one-day-ahead absolute return interval forecasts is calculated as,

F(tn) -1+ f(t,n) -1, + f(t,n) -1, (10)
2

V(I;t,n) = ¢y &t‘n - exp

where £, (t,n) = f, (8;t,n) and so forth, and 8 is estimated conditional on the current variant of the model,
as indicated by I. Thus, the parameters are allowed to vary across the designs in a manner that
maximizes the explanatory power of the specific components for each configuration.

Table V provides the fraction of the total variation in absolute returns explained by each forecast.

These are given as the R? from the following regressions of realized cumulative absolute returns,
amn

N
Y IR ,-R| = b, + b Y v(I;t,n) + e,
n=}

and realized five-minute absolute returns, (t = 1,...,T; n = 1,...,N),
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-R| = b, + b, -v({;t,n) + ¢,. (12)

on the corresponding volatility forecasts.

The results are telling. Consider the first data column in Table V, that refers to the degree of
explained variation in daily cumulative absolute returns. The complete model accounts for an impressive
60.6 % of the total variation. Moreover, this number drops only slightly if we remove the announcement
or the calendar components from the forecast. In contrast, the explained variation drops precipitously
when the daily volatility factor is omitted. In fact, the benchmark explanatory power, provided by the
Holiday effects alone (8%), is only marginally improved by incorporating calendar effects (8.3 %) and
only slightly improved when allowing for announcement effects (11.4%). In contrast, the daily GARCH
volatility factor alone explains 57.8%. The message is clear. The daily volatility forecasts capture
broader movements in volatility that generally are independent of calendar effects. This is perhaps not
surprising given that the intraday pattern, which accounts for the majority of these features, is annihilated
when aggregated to the daily level. More striking is the marginal impact of the announcements at the
daily level.** Evidently, the conclusion of Ederington and Lee (1993) that announcement effects provide
most of the explanatory power for return variability over the trading day is grossly misleading for the
current sample period, that is characterized by large fluctuations in the overall level of volatility.®
Finally, we note that the calendar effects pick up additional explanatory power if day-of-the-week effects
are allowed, but remain less important than the announcement effects. This is fully consistent with the
weekday dummies substituting (imperfectly) for the news releases.

Turning to the last column of Table V, we find that the explanatory power of the components is
reversed when we consider the high-frequency return variability. The overall explained variation has
dropped to 15.9%, but more revealing is the fraction explained by the calendar effects alone (8.1%)
relative to the announcement effects (4.9%) and the daily volatility factor (3.4%). In other words, the
intraday pattern accounts for the majority of the explained variation, while the announcements are
sufficiently influential, in spite of the relatively few intervals they affect, that they also exert an
appreciable impact, and, finally, the overall predictable movements in daily volatility have only a limited,

although not negligible, impact at the five-minute return level.

2% This is consistent with French and Roll (1986) who argue that public information releases account for little of the daily
variability in U.S. equity returns.

s Subsample analysis reveals that the explained variation drops considerably when the overall level of volatility is more stable.
However, the ranking of the effects remains the same across all investigated subsamples.
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VI. Concluding Remarks

The volatility process of the interbank DM-$ spot exchange rate market is quite involved. Entirely new
phenomena become visible as one proceeds from daily returns to high frequency intraday returns.
Nonetheless, it is possible to identify three sets of characteristics that govern the main systematic features
of the process. At the high frequency level, the pronounced intradaily volatility pattern is dominant. It
accounts for an average variation in the absolute returns of more than 250% across the 24-hour trading
cycle (after exclusion of the Tokyo lunch period). The magnitude of this effect overwhelms the
predictable day-by-day changes in volatility captured by, e.g., ARCH models, which rarely changes by
more than 25% over any 24 hour period. In addition, strong, but short-lived, announcement effects are
eminently prevalent at the very highest frequencies.

Our analysis documents that the high frequency calendar and announcement effects may be
estimated with a reasonable degree of precision, even without accounting for the broad movements in the
daily volatility. This is possible because dramatic overall changes in the level of volatility will affect each
interval over the 24-hour cycle in a similar manner. Likewise, if the announcements are distributed
evenly over the entire sample, then the average effects should be captured fairly accurately. On the other
hand, it is evident that analysis of one-time events must account not only for the intradaily pattern and
the possible release of economic or political news within the event window, but also for the overall level
of volatility.

Furthermore, when analyzing the broader economic implications of the identified factors, it is
evident that the daily volatility factor dominates at frequencies around and lower than one day. Thus,
it might be argued that the intraday pattern and announcement effects are of lesser importance, and that
the high frequency data are of limited interest outside the area of market microstructure. This conclusion
is highly misleading, however. Perhaps the most significant finding to emerge from our study is that the
high frequency returns contain extremely valuable information for the measurement of volatility at the
daily level. The cumulative absolute returns provide a vastly superior ex-post measure of the underlying
daily latent volatility factor than either absolute or squared daily returns. As such, the results encourage
the development of new and improved techniques for the estimation and prediction of daily or lower
frequency volatility that explicitly incorporates the information in the intraday return observations.
Moreover, the intraday returns may provide new insights that are of critical importance for the
understanding of the lower frequency return dynamics.

To illustrate the latter point, Figure 11 displays the correlogram for the raw absolute five-minute

returns, |R,, - R|, as well as the corresponding filtered absolute returns, §,"' - [R., - R|. The former,
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depicted in Figure 11.A, is dominated by the strong periodicity at the daily frequency and does not appear
particularly informative.”® Figure 11.B, in contrast, features a strictly positive and slowly declining
correlogram. While spikes are visible at the daily frequencies, they are minor and do not distort the
overall pattern. This may be interpreted as a testimony to the relative success of our model for s, in
capturing the systematic calendar and announcement effects. The regularity of the correlogram in Figure
11.B compares favorably to those of similarly filtered absolute returns presented in Andersen and
Bollerslev (1996a) and Payne (1996). The main point, however, is that the pronounced hyperbolic rate
of decay in the absolute return autocorrelations is indicative of so-called long-memory in the volatility
process. This is not consistent with the rate of decay implied by ordinary ARCH models, but points
towards a fractionally integrated volatility process, as proposed by Baillie et al. (1996) in the ARCH
framework, and Harvey (1994) and Breidt et al. (1995) within the context of stochastic volatility models.
Specifically, the estimate of the so-called degree of fractional integration, or d, implied by the fitted
hyperbolic decay in Figure 11 equals 0.387, which is in close accordance with the estimates obtained by
semi-parametric frequency domain methods in Andersen and Bollerslev (1996b) and Henry and Payne
(1996). Thus, the long-memory characteristics appear inherent to the return series, as they manifest
themselves, even over relatively short time-spans. This suggests that the source of fractional integration
in the volatility is related to the data generating process itself, rather than induced by infrequent structural
shifts as suggested by Lamoureux and Lastrapes (1990b). Thus, once we have accounted for the
predictable calendar and announcement effects, the high frequency data provide important evidence on
the plausibility of two alternative hypotheses that appear observationally equivalent from the perspective
of lower frequency returns. Indeed, we expect the information provided by high frequency returns to
become increasingly valuable to a broad range of issues in financial economics, both within and beyond

the realm of market microstructure.

% Both series are adjusted for missing observations, so that, e.g., the Tokyo lunch hour is removed. The daily periodicity
is even more pronounced when the lunch time observations are retained.
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Appendix

A.1 Regional trading segments, Holidays, and data gaps

We begin by formally defining the regional trading segments. This classification is used to assign dummy

variables to the intervals affected by regional Holidays. The observance of Daylight Savings Time in

Europe and North America, at periods that do not fully coincide, induce us to operate with four separate

categories. Furthermore, the classification is not exhaustive, in the sense that there are periods which

do not belong to any specific regional segment. This is immaterial since it is only used to specify periods

that are affected significantly by regional Holidays in one of the market centers. The following daily

Greenwich Mean Time (GMT) trading zone definitions are used:

Wellington (New Zealand):
Sydney (Australia):
Tokyo (Japan):

London (Europe):
Europe-N.America Overlap:
New York (N.America):

Year Round

20:55-22:00
20:55-00:00
00:00-06:00

09/27-10/23

07:00-15:00
11:30-15:00
11:30-20:30

10/26-03/26

07:00-16:00
12:30-16:00
12:30-20:30

03/26-04/02  04/05-09/24
06:00-15:00  06:00-15:00
12:30-15:00  11:30-15:00
12:30-20:30  11:30-20:30

Regional Holidays affect the entire trading segment, except for certain minor U.S. Holidays, where an

appreciable drop in quoting and trading activity only takes place after the London market closes. The

following Holiday periods were identified from the quote intensity as well as the Reuter’s news tape.

Dates

10/12
11/11
11/26
12/21-01/01
01/18
02/15
04/08
04/09
04/12
05/30
07/05
09/06

United States

Time Period

11:30-20:30
16:00-20:30
12:30-20:30
All Day
16:00-20:30
12:30-20:30
15:00-20:55
All Day
20:55-20:30
11:30-20:30
11:30-20:30
11:30-20:30

Occasion

Columbus Day
Veterans Day
Thanksgiving
Christmas/New Year
King’s Birthday
President’s Day
Easter Begins
Easter

Easter Ends
Memorial Day
July 4

Labor Day



Tokyo - Dates: 11/03, 11/23, 01/15, 02/11, 04/29, 05/03, 09/15, 09/23
Wellington - Dates: 10/26, 01/25, 06/07
Sydney - Dates: 10/05, 01/26, 04/26, 06/14

London - Dates: 05/03, 05/30, 08/30

We also checked for slowdowns associated with regional Holidays in a number of additional countries,
including Hong Kong, Taiwan, Singapore, Germany, and Switzerland, but no clear signs of an effect
could be detected, so these Holidays were not included in the analysis.

All five-minute intervals, covered by the Holiday periods listed above, were assigned one of two
different dummies. The "Holiday"-dummy refers to periods of reduced activity, where reliable returns
may nonetheless be obtained. An interpretation is that this corresponds to lower levels of general
economic activity, where less relevant economic news are generated. The "Market Closure"-dummy
refers to periods where the quoting intensity is so low as to render return calculations unreliable. Among

the above Holidays, the following are allocated to the latter "Market Closure" category:

Dates Time Period Occasion
Market Closures: 10/12 15:00-20:30 Columbus Day

11/26 16:00-20:30 Thanksgiving

12/22 20:30-20:55 Christmas

12/23-12/25 All Day Christmas

12/28 21:00-23:00 Christmas

12/31 17:00-20:55 New Year

01/01 All Day New Year

02/15 16:00-20:30 President’s Day

04/08 20:30-20:55 Easter

04/09 All Day Easter

04/12 20:55-20:30 Easter

05/30 06:00-20:30 Memorial Day

07/05 11:30-20:30 July 4

09/06 11:30-20:30 Labor Day

The trading restrictions in Japan over the sample period precludes reliable assessment of the properties
of the return series over the local lunch period. It effectively corresponds to a “weekend" in the midst

of the trading day. Formally, we define a market closure each day during

Tokyo Lunch-Time: 03:00-04:45



Finally, we identified some apparent failures in the data transmission which result in lengthy gaps in the

quote series. All of the affected intervals were treated as market closures. The specific periods are:

Dates Time Period

Data Gaps: 10/21 01:18-05:37
10/28-29 22:16-01:15

11/17 01:30-05:39

12/16 01:15-05:12

01/08 00:33-06:20

02/10 01:35-06:27

02/22 04:52-06:40

05/21 16:41-21:00

09/26-27 21:57-06:07

The market closures present a modeling dilemma, since we want to eliminate these observations, but also
want to retain the strict periodicity associated with the intradaily and weekly features of the high
frequency return series. We solve this by artificially assigning a very low, positive return (standardized
by an overall daily volatility factor) to all these intervals, and then removing (zeroing out) all regressors
except the market closure-dummy from these intervals. This implies that the dummy "explains" the low

returns (near) perfectly, while the inference regarding all other features of the return series is unaffected.

A.2 Regressors for constrained calendar and announcement volatility response patterns

In order to accommodate the overall impact through a parsimonious representation that also allows for
efficient inference, the reported estimates for the announcement and calendar effects are based on the
imposition of an a priori structure on the volatility response pattern. In particular, assuming that the
feature in question affects volatility from interval n, to n, + n;, the impact over the event window, 7 =

0, 1, ..., n;, may then be represented by a polynomial specification,
pn) =c+c 7+ ... +cpeTh

Of course, for P = n, this would effectively imply the estimation of a dummy variable for each of the
N = n; + 1 event intervals. However, the use of a lower order polynomial afford a great degree of
flexibility along with a significant reduction in the dimensionality of the parameter space. Furthermore,
sensible constraints on the response pattern, including smoothness, are readily imposed in terms of the
polynomial representation. For example, the requirement that the impact reflects a gradual movement
away from the standard pattern is imposed by enforcing p(0) = 0. This simply annihilates the constant,

i.e.,, ¢g = 0. Another desired property may be that the effect slowly fades, which is obtained by



imposing p(I:I) = 0. Substituting 7 = N into p(7), solving for cp, and inserting the resulting expression

for ¢ back into p(7), leads to a restricted polynomial with one less parameter,
p(r) = o [1-(/NFPT+ ¢, [1-(/NP -7+ .+ ¢y [1-(/N)]- 7.
We can now classify a number of our calendar and all of our announcement regressors through the choice

of polynomial order, P, the response horizon, or N, and the endpoint constraints imposed on p(r). The

following specifications underlie the results reported in the paper:

Tokyo Market Opening: N = 6, P=1, p(f\—l-i- 1) =0,

Late Summer Day Slowdown: N = 60, P=2, p(0) = p(I:I+ D=0,
Early Monday Effect: N = 17, P =2, p(I:I+ 1) =0,

Late Friday Effect: N =46 (58), P =2, p(0) = 0,
EMS-Band Widening: N = 30, P =3, p(N+ 1) = 0,
Employment Report: N = 24, P =3, p(ﬁ+ 1) =0,

All Other Announcements: N = 12, P =3, p(I—\_J+ 1) =0.

The above representations leave one free parameter for the Tokyo market opening and the Summer
slowdown, and two free parameters for the weekend effects denoted "Monday early" and "Friday late".
The "Friday late” coefficients are identical in Summer and Winter, but the effects lasts an additional hour
during Summer due to Daylight Savings Time. Finally, there are three announcement effect parameters,

but as explained in section IV.A, we further restrict this pattern by imposing the common structure,

PdT) = N Po(7),

where p,(7) refers to the polynomial for event type k, and py(7) denotes a fixed response pattern.
Specifically, we calibrated the pattern by fitting all three parameters for a set of announcements of about
equal significance, resulting in a benchmark pattern that resembles the one associated with Category I
releases. Concretely, (¢;, ¢,, ¢,) = (2.18868, -0.64101, 0.07663). This uniquely identifies p,(7), and
pi(7) thus has only one free "loading” parameter, A, . Of course, this procedure only strictly applies for
response horizons corresponding to N = 12. In order to retain the benchmark pattern for larger I:I we
let the 7-variable progress only by a (12/1:1)-fraction of a unit per five-minute interval, rather than a full
interval. This "stretches" the event time scale so that it conforms to the desired horizon.

Finally, we apply the corresponding "time-deformation" procedure to the sinusoids in the U.S.
Summer Time intraday pattern in order to compensate for the one hour leftward shift from 7:00 to 6:00

GMT. This elongation of the intraday pattern is implemented over 19:55-00:00 GMT.



Table Notes

Table I: Ex-Post Return Volatility Measures and GARCH(1,1) Correlations

The table displays the correlations between forecasts of the daily DM-$ return standard deviations (Panel A) or the
daily return variances (Panel B) with alternative measures of the ex-post return variability. The daily return
standard deviation and variance for each weekday of the one-year sample, October 1, 1992 - September 29, 1993,
is obtained from a MA(1)-GARCH(1,1) model estimated using daily data on the DM-$ spot exchange rate over the
longer sample period from March 14, 1979 through September 29, 1993. The measures of ex-post return variability
for the first two entries in Panel A and the first entry in Panel B, are constructed from percentage returns based on
interpolated five-minute logarithmic average bid-ask quotes for the DM-$ spot exchange rate. Quotes from Friday
21:00 GMT through Sunday 21:00 GMT have been excluded, resulting in a total of 74,880 return observations.
The last two entries in each of the panels are based on ex-post return variability measures constructed from daily
continuously compounded DM-$ returns over the one-year sample. The returns denoted R, are calculated from the
spot exchange rate observed at 12:00 GMT, consistent with the definition used for the longer daily sample, while
the preceding entries use the exchange rates observed at 21:00 GMT, which is consistent with the definition of the
trading day used for the five-minute return sample.

Table II: Largest Absolute Five-Minute Returns

The table reports the largest absolute five-minute returns calculated from the DM-$ spot exchange rate over the
October 1, 1992 through September 29, 1993 sample period. The absolute returns are obtained from interpolated
five-minute logarithmic average bid-ask quotes. Quotes from Friday 21:00 GMT through Sunday 21:00 GMT have
been excluded, resulting in a total of 74,880 return observations. The 288 intraday returns per 24-hour trading day
are numbered, starting at the interval 20:55-21:00 GMT, and ending with the interval 20:50-20:55 GMT. For each
interval, we have subjectively indicated whether any economic or political event appears to have contributed to the
large absolute five-minute return.

Table III: Flexible Fourier Form Regressions

The table reports the parameter estimates, with robust standard errors in square brackets and regular OLS standard
errors in parentheses, for the regression of logarithmic squared demeaned five-minute DM-$ returns on deterministic
regressors capturing calendar and announcement effects. The returns are calculated from interpolated five-minute
logarithmic average bid-ask quotes for the DM-$ spot exchange rate over the October 1, 1992 through September
29, 1993 sample period. Quotes from Friday 21:00 GMT through Sunday 21:00 GMT are excluded, resulting in
a total of 74,880 return observations. The robust standard errors reflect a Newey and West (1987) type correction
incorporating 289 lags. The regression equation takes the form

xt,n

2-log[|R,, - R|] - logé}, = &+ f(0;t,n) + &, ,

where R, , denotes the five-minute returns for interval n on day t, R the sample mean of the five-minute returns,
67 , is an a priori estimate of the overall daily level of the five-minute return standard deviation, 4, , is a mean zero
error term, and f(6;t,n) represents the deterministic calendar and announcement regressors. The volatility estimates,
6, for interval n on day t, are obtained from an estimated MA(1)-GARCH(!, 1) model fit to a longer daily sample
of DM-$ spot exchange rates from March 14, 1979 through September 29, 1993. Denoting the daily return standard
deviation estimate by 6,, the daily volatility factor is captured by 4,, = N'?-5,. The "Daily Volatility Excluded”
column indicates that N"'?-¢ is used in place of 6,,, where o denotes the sample mean of 5,. The f(6;t,n) function
is given by

D 4

2 . p2
f(8;t,n) = ug + 3 A L(tn) + E(ac.p'mann * as.p'smpNn n),
k=1 p=|

During the U.S. Summer Time, the sinusoids are translated leftward by one hour and an additional restricted second
order polynomial allows for a volatility slowdown between 19:00 and 24:00 GMT. The I(t,n) regressors indicate
either regular dummy variables (in the case of Holidays or weekdays) or a prespecified volatility response pattern



associated with a calendar related characteristic or an announcement. A separate linear volatility decay is allowed
for the Tokyo open, 00:00-00:35 GMT. Similarly, a restricted second order polynomial adapts to the volatility
slowdown around the weekends, i.e., early Monday morning, 21:00-22:30 GMT, and late Friday, 17:00-21:00
GMT (U.S. Winter Time) or 16:00-21:00 GMT (U.S. Summer Time). Finally, the volatility decay pattern
following announcements are restricted to last one hour (13 intervals), except for the Employment Report pattern
which lasts two hours (25 intervals). All of the response patterns are approximated by a third order polynomial
restricted to reach zero at the end of the response horizon. The announcement coefficients measure the extent to
which the absolute returns load onto this pattern following the announcement. Category I comprises U.S.
announcements on GDP, the trade balance, and durable goods, while Category II covers U.S. releases of PPI, retail
sales, housing starts, leading indicators, jobless claims, and factory orders, and the German M3 figures.

Table IV: Estimated Announcement Effects

The table gives the parameter estimates with robust standard errors in square brackets associated with the specific
announcements obtained from regressions of the logarithmic squared demeaned five-minute DM-$ returns on a set
of deterministic regressors allowing for calendar and other announcement effects. The returns are calculated from
interpolated five-minute logarithmic average bid-ask quotes for the DM-$ spot exchange rate over the October 1,
1992 through September 29, 1993 sample period. Quotes from Friday 21:00 GMT through Sunday 21:00 GMT
are excluded, resulting in a total of 74,880 return observations. The regression takes the form

% 2-1og[|R,, - R|] - log&?, = &+ f(8:t,n) +4d,,,

t.n

where R, , denotes the five-minute returns for interval n on day t, R the sample mean of the five-minute returns,
a7, is an a priori estimate of the overall daily level of the five-minute return standard deviation, 4, , is a mean zero
error term, and f(f;t,n) represents the deterministic calendar and announcement regressors. The volatility estimates,
0., for interval n on day t, are obtained from an estimated MA(1)-GARCH(1,1) model fit to a longer daily sample
of DM-$ spot exchange rates covering the period from March 14, 1979 through September 29, 1993. Denoting
the daily return standard deviation estimates by 6, the daily volatility factor is captured by 6,, = N'2-5,. The
f(0;t,n) function is given as

2 p2x
> (56‘p~cos—r—q—-n + bw~sm

s

D
f(6;t,n) = py + Y A L (t,n) + p2Tﬂn)
k=1

|4

During U.S. Summer Time, the sinusoids are translated leftward by one hour and an additional restricted second
order polynomial allows for a volatility slowdown between 19:00 and 24:00 GMT. The L, (t,n) regressors indicate
either regular dummy variables (for Holidays or weekdays) or prespecified volatility response patterns associated
with a calendar feature or an announcement. A separate linear volatility decay is allowed for the Tokyo open,
00:00-00:35 GMT. Similarly, a restricted second order polynomial adapts to the volatility slowdown around
weekends, early Monday morning, 21:00-22:30 GMT, and late Friday, 17:00-21:00 GMT (U.S. Winter Time) or
16:00-21:00 GMT (U.S. Summer Time). The volatility decay pattern following announcements are restricted to
lasts one hour (13 intervals), except for the U.S. Employment Report pattern which lasts for two hours (25
intervals). All of the response patterns are approximated by a third order polynomials restricted to reach zero at
the end of the response horizon. The reported coefficients measure the extent to which the absolute returns load
onto this pattern following the announcement. Beyond the specific announcement under investigation, all of the
regressions allow for the independent influence of the U.S. Employment Report, the Bundesbank Meeting, and
Category I and I announcements. Category I includes U.S. announcements on GDP, the trade balance, and durable
goods. Category II covers U.S. releases of PPI, retail sales, housing starts, leading indicators, jobless claims, and
factory orders, and German M3 figures. If the individual announcement under investigation is a member of one
of these categories, the announcement is dropped from the category. The instantaneous jump in volatility measures
the estimated increase in the five-minute absolute return for the interval where the announcement is made, while
the estimated total cumulative absolute return induced by the announcement over the assumed response horizon is
measured relative to the median daily cumulative absolute return of 9.0%.



Table V: Explained Variation for Alternative Absolute Return Forecasts

The table reports the R*s from OLS regressions of realized daily cumulative absolute DM-$ returns, or realized
five-minute absolute DM-$ returns, on alternative one-day-ahead absolute return forecasts. For the daily cumulative
absolute returns, the regressions takes the form

N _ N
Y IR,-R| = by + b, ¥ v(I;it,n) + ¢,

n=1 n=1

where v(I;t,n) denotes the relevant absolute return forecast for interval n on day t, and ¢, is an error term. The
regressions for the five-minute absolute returns are calculated as

IR,,-R| = by + b, v(I;t,n) + e,.

t,n

The five-minute returns are based on interpolated logarithmic average bid-ask quotes for the DM-$ spot exchange
rate from October 1, 1992 through September 29, 1993. Quotes from Friday 21:00 GMT through Sunday 21:00
GMT are excluded, resulting in a total of 74,880 five-minute observations. The daily cumulative absolute returns
are aggregated from 21:00 GMT to 21:00 GMT the following day. The corresponding one-day-ahead five-minute
absolute return forecasts are obtained as

f(t,n) I+ £ (t,n) I, + £ (t,n)
2

v(I;t,n) = ¢, 6, , exp

where 6,, = N'2-[5,-1, + o (1 - 1,)] represents an estimate of the benchmark return volatility of the interval,
while fc (t,n), fa (t,n) and fh (t,n) denote the estimated calendar, announcement and Holiday effects from a regression
of normalized, log-squared, demeaned five-minute DM-dollar returns on calendar, announcement and Holiday
regressors. The functional form of the forecast equation translates the estimates into the absolute return dimension.
The indicator variables I, I, and I, signify whether the features associated with a given effect are included in the
construction of the forecast. For example, the indicator vector I = (I,, L., I,) = (0,1,1) corresponds to the model
whose coefficients are listed in the last column of Table III; that is, the daily volatility factor is assumed to be
constant. Estimates for the time-varying daily return standard deviations over the one-year sample, §,, are obtained
from a MA(1)-GARCH(1,1) model fit to a longer daily sample of DM-$ returns covering the period from March
14, 1979 through September 29, 1993. The sample mean of 4, is denoted by 0. The "*" indicates the allowance
for day-of-the-week dummies among the calendar effects, while these are excluded otherwise.



Table 1

Ex-Post Return Volatility Measures and GARCH(1,1) Correlations

Panel A: Gaussian MA(1)-GARCH(1,1) Estimates of g,
o=t Ryl (Ih- R2)™ |E5-1 Rl IR
0.672 0.618 0.046 0.086
Panel B: Gaussian MA(1)-GARCH(1,1) Estimates of o7
Lh-i RA (Z8-1 Rin)? R}

0.660 0.066 0.107




Table II

Largest Absolute Five-Minute Returns

Absolute Return Date Interval Weekday Event
1.244 10/02 188 Friday Employment Report
0.897 06/04 188 Friday Employment Report
0.648 11/19 200 Thursday Jobless Claims
Housing Starts
0.637 03/04 189 Thursday Bundesbank Meeting
0.581 09/03 188 Friday Employment report
0.580 06/11 188 Friday Retail Sales
Producer Price Index
0.573 10/02 189 Friday Employment Report
0.530 09/21 234 Tuesday Russia Crisis
0.529 11720 37 Friday ERM Turmoil
0.527 01/29 200 Friday Durable Goods
0.517 08/02 36 Monday ERM Band Revision
0.510 10/05 243 Monday U.S. Stock Market Plunge
0.503 09/21 233 Tuesday Russia Crisis
0.501 03/05 200 Friday Employment Report
0.498 09/16 197 Thursday Industrial Output
0.494 08/31 188 Tuesday Gross Domestic Product
0.480 07/02 188 Friday Employment Report
0.478 10/05 240 Monday U.S. Stock Market Plunge
0.463 10/05 229 Monday U.S. Stock Market Plunge
0.458 11/04 39 Wednesday U.S. Presidential Election
0.455 09/21 235 Tuesday Russia Crisis
0.449 08/19 188 Thursday Jobless Claims
Trade Balance
0.441 10/23 195 Friday ERM Turmoil
0.439 04/22 198 Thursday Bundesbank Meeting
0.434 10/27 200 Tuesday Gross Domestic Product




Flexible Fourier Form Regressions

Parameter Full System Day-of-Week Effect Day-of-Week, Daily
Excluded Volatility Excluded
o + € -1.77 -1.76 -1.85
[-32.8) [-69.2] [-56.3]
(-79.4) (-155.6) (-162.0)
0., -0.12 -0.13 -0.13
[-4.41] [-4.58] [-4.78]
(-8.27) (-8.62) (-8.77)
0., -0.13 -0.13 -0.13
[-4.93] [-5.09] [-5.10]
(-8.16) (-8.30) (-8.26)
8.4 -0.28 -0.28 -0.29
[-11.8] [-12.0] [-11.4]
(-18.4) (-18.5) (-18.5)
Ocq 0.14 0.14 0.14
[8.10] [8.01] (8.10]
(10.6) (10.6) (10.6)
S -0.62 -0.62 -0.62
[-24.1] [-23.8] [-23.4]
(-38.6) (-38.5) (-38.4)
3, -0.21 -0.21 -0.21
[-10.4] [-10.2] [-10.2]
(-14.3) (-14.1) (-14.0)
0, 0.17 0.18 0.17
[8.64] [8.76] [8.55]
(11.9) (12.1) (11.8)
Oy 4 -0.01 -0.01 -0.01
[-0.68] [-0.46] [-0.68]
(-0.91) (-0.62) (-0.94)
Summer -1.14 -1.15 -1.08
Slowdown [-5.91] [-5.95] [-5.06]
(-10.6) (-10.7) (-9.93)
Tokyo 0.59 0.58 0.59
Opening [8.96] [8.91] [9.06]
(9.81) (9.76) (9.76)




Table III, Continued

Parameter Full System Day-of-Week Effect Day-of-Week, Daily
Excluded Volatility Excluded
Holiday -0.698 -0.712 -0.703
[-5.76] [-6.28] [-6.87]
(-13.86) (-15.25) (-14.93)
Employment 1.755 1.746 1.739
Report [10.38] [10.47] [8.82]
(11.11) (11.09) (10.95)
Category 1 0.997 0.991 0.992
Announcement [7.23] [7.28] [7.48]
(8.35) (8.33) (8.26)
Category 1I 0.627 0.620 0.619
Announcement [6.71] [7.03] [6.89]
(8.64) (8.65) (8.56)
Bundesbank 1.465 1.457 1.492
Meeting [6.20] [6.20] [6.43]
(10.01) (9.99) (10.13)
Monday -0.301 -0.368 -0.529
Early [-0.26] {-0.32]} [-0.45]
(-0.36) (-0.44) (-0.63)
0.001 0.069 0.208
[0.001] [0.047] [0.14]
(0.001) (0.065) 0.19)
Friday -0.609 -0.412 -0.437
Late [-2.04] [-1.43] [-1.39]
(-3.36) (-2.37) (-2.49)
0.068 0.011 0.017
[0.49] [0.08] [0.12]
(0.88) (0.14) (0.22)
Tuesday -0.065
[-0.95] - -
(-2.17)
Wednesday 0.006
[0.08] - -
(0.19)
Thursday 0.050
[0.74] - -
(1.65)
Friday 0.096
[1.31] - -

(2.99)




Table IV.A

Important Announcement Effects

Announcement

Coefficient
[Robust t-Stat]

Instantaneous Jump in

Volatility (Percent)

Impact in Percent of
Daily Cum. Abs. Return

Employment
Report

Advance Report on
Durable Goods

Bundesbank
Meeting

Merchandise
Trade

Gross Domestic
Product

Producer Price
Index

Retail Sales
German M3
Leading Indicators
Housing Starts
Factory Orders
New Jobless

Claims

Japanese Gross
National Product

German Gross
Domestic Product

1.75
[11.5]

1.27
[5.75]

1.46
[9.74]

0.889
[4.24]

0.836
[3.43]

0.703
[3.67]

0.670
[2.86]

0.872
[4.77]

0.624
[3.55]

0.515
[2.29]

0.481
[2.05]

0.334
[3.02]

0.600
[2.40)

0.506
[1.43]

576

303

392

164

150

116

108

160

98

76

69

44

93

74

15.1

5.17

3.12

2.87

2.31

2.17

2.13

1.99

1.59

1.46

0.968

0.949

0.931




Table IV.B

Less Important U.S. Announcements

Announcement Coefficient Robust t-Stat
U.S. Treasury Report 0.338 1.62
Consumer Confidence (Conference Board) 0.273 1.20
Consumer Price Index 0.236 1.02
Construction Spending 0.211 0.954
Car Sales 0.091 0.709
Business Inventories 0.124 0.704
Housing Completions 0.070 0.430
Import Prices 0.076 0.374
University of Michigan Survey 0.043 0.315
Current Account Deficit 0.084 0.314
Industrial Output / Capital Utilization 0.067 0.282
Non-Farm Productivity 0.035 0.154
M2 Figures 0.017 0.134
Personal Income 0.030 0.102
Real Earnings 0.005 0.021
Reserve Assets -0.012 -0.062
House Sales -0.041 | -0.150
Minutes from FOMC Meeting -0.177 -0.613
Capital Spending Survey -0.261 -0.689
NAPM Survey -0.205 -0.777
Consumer Installment Credit -0.375 -1.02

Wholesale Sales -0.181 -1.06




Table IV.C

Less Important German Announcements

Announcement Coefficient Robust t-Stat

Wholesale Turnover 0.322 1.56

Retail Sales 0.124 0.668

Consumer Price Index (All States Tallied) 0.072 0.668
East German Consumer Price Index 0.122 0.647
East German Industrial Orders 0.152 0.630
Industrial Orders 0.110 0.465
Producer Price Index 0.085 0.423
Wholesale Prices 0.054 0.295

Current Account 0.032 0.181
Consumer Price Index (First State) 0.010 0.051
Business Insolvencies 0.002 0.010
Employment Report -0.004 -0.022
Import Prices -0.011 -0.049
Consumer Price Index (Final) -0.089 -0.427
East German Employment -0.075 -0.438
East German Producer Price Index -0.092 -0.503
Industrial Qutput -0.176 -0.702

Capital Account -0.238 -1.14

East German Industrial Output -0.245 -1.18

Consumer Price Index (Preliminary) -0.563 -1.84




Table V

Explained Variation for Alternative Absolute Return Forecasts

Design

Daily Cumulative
Absolute Returns

Five-Minute
Absolute Returns

Complete Model
a4, L.L) = ({1,1,1)

No Announcements
a,, .,y = (1,1,0)

No Calendar Effects
a,.L.L) =(1,0,1)

Only Daily Volatility
a€.L.L) = (1,0,0)

No Daily Volatility
I,L.L) =011

Only Announcements
I, L.L) = 00,1

Only Calendar Effects
&, L.L) = 0,1,0)

Calendar + Day-of-Week

1,,L,L) = (0,1,0y

Only Holiday Effects
(I, L,I) = (0,0,0)

0.606

0.579

0.603

0.578

0.119

0.114

0.083

0.107

0.080

0.159

0.113

0.084

0.034

0.124

0.049

0.081

0.083

0.002




Figure Notes

Figure 1: Daily GARCH(1,1) Volatility Forecasts

The figure plots the one-step-ahead conditional standard deviation forecasts from a MA(1)-GARCH(1, 1) model for
the daily DM-$ spot exchange rate from October 1, 1992 through September 30, 1993, for a total of 260 non-
weekend days. The model is estimated with data over the longer sample period from March 14, 1979 through
September 29, 1993.

Figure 2: Daily GARCH(1,1) Volatility Forecasts versus Ex-Post Return Variability Measures

The figures plot the conditional return standard deviation forecasts from a MA(1)-GARCH(1,1) model for the daily
DM-$ returns from October 1, 1992 trough September 29, 1993, along with the corresponding realized absolute
daily returns in Panel A and the corresponding cumulative absolute five-minute returns in Panel B. All series have
been normalized to average unity over the one-year sample.

Figure 3: Intraday Volatility Pattern

The figure plots the average absolute five-minute DM-$ return for each five-minute interval, starting with the
interval 20:55-21:00 GMT and ending at 20:50-20:55 GMT. The returns are calculated from interpolated five-
minute logarithmic average bid-ask quotes for the DM-$ spot exchange rate over the October 1, 1992 through
September 29, 1993 sample period. Quotes from Friday 21:00 GMT through Sunday 21:00 GMT are excluded,
resulting in a total of 74,880 return observations. All 260 weekdays are employed in calculating the averages.

Figure 4: Daily and Weekly Volatility Patterns

The figure displays the estimated average absolute five-minute DM-$ returns obtained from a regression on two-hour
and day-of-week dummies. The returns are calculated from interpolated five-minute logarithmic average bid-ask
quotes for the DM-$ spot exchange rate over the October 1, 1992 through September 29, 1993 sample period. The
two-hour intervals start out at 20:55-22:55 GMT and end at 18:55-20:55 GMT.

Figure 5: Intradaily U.S. Summer and Winter Time Volatility Patterns

The figure plots the average absolute five-minute DM-$ return for each five-minute interval, starting with 20:55-
21:00 GMT and ending at 20:50-20:55 GMT. The returns are calculated from interpolated five-minute logarithmic
average bid-ask quotes for the DM-$ spot exchange rate over the October 1, 1992 through September 29, 1993
sample period. Quotes from Friday 21:00 GMT through Sunday 21:00 GMT are excluded, resulting in a total of
74,880 return observations. The Tokyo lunch period, 3:00-4:45 GMT, is assigned an artificially low returns. All
145 weekdays during the U.S. Summer Time and the 115 weekdays during U.S. Winter Time are employed.

Figure 6: U.S. Announcement Day Volatility

The figure plots the average absolute five-minute DM-Dollar return for each five-minute interval, starting with
20:55-21:00 GMT and ending at 20:50-20:55 GMT for days with regularly scheduled U.S. macroeconomic
announcements. The returns are calculated from interpolated five-minute logarithmic average bid-ask quotes for
the DM-$ spot exchange rate over the October 1, 1992 through September 29, 1993 sample period. Quotes from
Friday 21:00 GMT through Sunday 21:00 GMT are excluded, resulting in a total of 74,880 return observations.
The Tokyo lunch period, 3:00-4:45 GMT, is assigned an artificially low return. Figure A is based on U.S. Summer
Time, while Figure B graphs the average across the U.S. Winter Time announcement days. These days each
contain at least one release, at 8:30 Eastern Standard Time, of one of the following U.S. macroeconomic
announcements: the employment report, the merchandise trade deficit, the producer price index, the advance durable
goods report, estimates or revisions to the gross domestic product, retail sales, housing starts, leading indicators,
and new jobless claims.

Figure 7: Flexible Fourier Form Fit

The figure graphs the fit to the average logarithmic squared, normalized and demeaned five-minute DM-$ returns
across the 24-hour weekday trading cycle. The returns are calculated from interpolated five-minute logarithmic
average bid-ask quotes for the DM-$ spot exchange rate over the October 1, 1992 through September 29, 1993
sample period. Quotes from Friday 21:00 GMT through Sunday 21:00 GMT are excluded, resulting in a total of
74,880 return observations. The intervals starts with 20:55-21:00 GMT and ends at 20:50-20:55 GMT. The Tokyo
lunch period, 3:00-4:45 GMT, is artificially assigned low returns, so this part of the pattern is not estimated. The
fit is based on four sets of sinusoids, dummies for the Tokyo open period, 00:00-00:35 GMT, and constrained



second order polynomials for early Monday and late Friday, as well as the latter part of the U.S. Summer Time
trading day. Separate estimates for U.S. Summer and Winter Time are reported in figures A and B.

Figure 8: Average Intradaily Log-Volatility Fit

The figure graphs the fit to the average logarithmic squared, normalized and demeaned five-minute DM-dollar
returns across the 24-hour weekday trading cycle plotted against the corresponding averaged sample values. The
returns are calculated from interpolated five-minute logarithmic average bid-ask quotes for the DM-$ spot exchange
rate over the October 1, 1992 through September 29, 1993 sample period. Quotes from Friday 21:00 GMT through
Sunday 21:00 GMT are excluded, resulting in a total of 74,880 return observations. The GMT axis starts with the
20:55-21:00 GMT interval and ends at 20:50-20:55 GMT. The Tokyo lunch period, 3:00-4:45 GMT, is artificially
assigned low returns, so this part is not fitted. The fit is based on four sets of sinusoids, dummies for the Tokyo
open, 00:00-00:35 GMT, and constrained second order polynomials for the latter part of the U.S. Summer Time
trading day, as well as early Monday and late Friday. The latter "weekend effects" are not indicated on the figures.
The Summer and Winter Time averages in figures A and B are based on 145 and 115 weekdays, respectively.

Figure 9: Average Intradaily Absolute Return Fit

The figure graphs the fit to the average absolute five-minute DM-dollar returns across the 24-hour weekday trading
cycle plotted against the corresponding averaged sample values. The returns are calculated from interpolated five-
minute logarithmic average bid-ask quotes for the DM-$ spot exchange rate over the October 1, 1992 through
September 29, 1993 sample period. Quotes from Friday 21:00 GMT through Sunday 21:00 GMT are excluded,
resulting in a total of 74,880 return observations. The GMT axis starts with the 20:55-21:00 GMT interval and ends
at 20:50-20:55 GMT. The Tokyo lunch period, 3:00-4:45 GMT, is artificially assigned low returns, so this part
is not fitted. The fit is based on a Flexible Fourier Form regression of logarithmic squared, normalized and
demeaned returns onto four sets of sinusoids, dummies for the Tokyo open, 00:00-00:35 GMT, and constrained
second order polynomials for the latter part of the U.S. Summer Time trading day, as well as early Monday and
late Friday. The latter "weekend effects” are not indicated on the figures. The Summer and Winter Time averages
in figures A and B are based on 145 and 115 weekdays, respectively.

Figure 10: Dynamic Announcement Response Patterns

The figure graphs the relative strength and duration of the estimated dynamic log-volatility response pattern of the
five-minute DM-$ returns following the release of macroeconomic announcements. The returns are calculated from
interpolated five-minute logarithmic average bid-ask quotes for the DM-$ spot exchange rate over the October 1,
1992 through September 29, 1993 sample period. Quotes from Friday 21:00 GMT through Sunday 21:00 GMT
are excluded, resulting in a total of 74,880 return observations. The response pattern estimates are obtained from
a Flexible Fourier Form regression of the logarithmic squared, normalized and demeaned returns onto four sets of
sinusoids, dummies for the Tokyo market opening, and constrained second order polynomials for the latter part of
the U.S. Summer Time trading day, as well as early Monday and late Friday.

Figure 11: Absolute Return Correlograms

The figures display the autocorrelations for demeaned raw and filtered five-minute absolute returns. The returns
are calculated from interpolated five-minute logarithmic average bid-ask quotes for the DM-$ spot exchange rate
over the October 1, 1992 through September 29, 1993 sample period. Quotes from Friday 21:00 GMT through
Sunday 21:00 GMT, along with the Tokyo lunch period, 3:00-4:45 GMT, are not included, resulting in 267
weekday return observations, for a total of 69,420 five-minute returns. Additional minor corrections were also
made for extremely low quoting activity during Holidays and gaps in the data series. The filtered returns in figure
B are obtained by standardizing the raw demeaned absolute returns by the estimated volatility impact of calendar,
Holiday and announcement effects.
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Figure 2A: Daily GARCH(1,1) Volatility Forecasts versus
Ex—Post Return Variability Measures
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Figure 7A: Flexible Fourier Form Fit
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Figure BA: Average Intradaily Log—Volatility Fit
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Figure 9A: Average Intradaily Absolute Return Fit
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Figure 11A: Absolute Return Correlograms
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