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1. Introduction

For a variety of reasons, it is useful to be able to make accurate comparisons of
the relative consumption or real output between countries or between regions within a
country; e.g., aid flows or interregional transfer payments may depend on these multilateral
comparisons. Normal bilateral index number theory cannot be applied in this multilateral
context because bilateral comparisons are inherently dependent on the choice of a base
country and the resulting rankings of countries are not invariant to the choice of the base
country. Moreover, it is usually politically unacceptable to have a single country or region
play an asymmetric role in making multilateral comparisons.

The problem of making bilateral index number comparisons has been intensively
studied for about a century. From the viewpoints of both the economic and test approaches
to bilateral index number theory, a consensus has emerged that the Fisher [1922] ideal price
and quantity indexes are probably the best functional forms for index number formulae.}
However, there is no comparable consensus on what is the appropriate method for making
symmetric multilateral index number comparisons; i.e., comparisons that do not depend
on the asymmetric choice of a base country. Part of the reason for this lack of consensus
is that the test or axiomatic approach to multilateral index number theory is not as well
developed as the bilateral theory. In the last decade, Diewert [1986] [1988], Balk [1989]
[1995b] and Armstrong [1995] have made a start on developing axiomatic approaches to
multilateral comparisons.? In section 2 below, the present paper draws on this literature
by suggesting a list of 12 desirable properties or tests for multilateral methods. In sections
4 to 13, we evaluate 10 different muitilateral methods from the perspective of this test
approach to multilateral comparisons. We find that none of these methods satisfies all of
our suggested tests. Thus it is necessary to make choices about the relative importance of
the various tests.

In section 3 below, we suggest a multilateral generalization of the economic approach
to making bilateral comparisons. In analogy to the bilateral case3, we say that a multi-
lateral system is superlative if it is exact for a flexible linearly homogeneous aggregator
function. In sections 4 to 13, we determine whether the 10 multilateral methods studied
in this paper are also superlative.

Section 14 discusses some of the tradeoffs between the various methods and section
15 concludes.

Appendix 1 contains proofs of various Propositions and Appendix 2 tables numerical
results for the 10 multilateral methods for a 3 country, 2 commodity artifical data set.



2. Multilateral Axioms or Tests

Suppose that the outputs, inputs or real consumption expenditures of K countries®
in a bloc of countries are to be compared. Suppose also that there are N homogeneous
commodities consumed (or produced) in the K countries during the time periods under
consideration and the price and quantity of commodity n in country k are pf > 0 and
yﬁ > 0 respectively forn =1,...,N and k = 1,..., K.5 Denote the country k price and
quantity vector by p* = [pf,...,p5]T >> Oy and y* = [vF,...,45]T > On respectively.®
We assume that all prices are positive and are measured in common units and a common
numeraire currency. We also assume that the aggregate bloc quantity vector is strictly
positive; i.e., Eﬁlyk >> Opn. Finally, denote the N by K matrix of country prices by
P=pl,...,pX] and the N by K matrix of country quantities by Y = [¢/!,...,v¥].

The share of bloc consumption {or output or input) for country k, S¥, will depend
in general on the matrix of prices P and the matrix of quantities Y. Thus S* will be a
function of the components of P and Y, say S¥(P,Y) for k = 1,..., K. We assume that
the domain of definition for these functions is the set of strictly positive country price
vectors p* >> Op and nonnegative but nonzero quantity vectors y* > Oy fork=1,... . K
with Eif__ ly" >> On. In the remainder of this paper, we shall call a specific set of functions
defined on the above domain of definition, {S'(P,Y),..., SX(P,Y)}, a multilateral system
of bloc share functions or a multilateral method for making international comparisons of
aggregate quantities.

If there are only two units being compared, then define Q(p!,p? y!,v?) = S%(p,
%, y1,42)/S (0}, p%, y', ¥?) as the ratio of “country” 2's share of “output” to “country”
1's share. The resulting function Q(p!, p?, 3}, ¥?) can be interpreted as a bilateral quantity
index. We view a multilateral system as a generalization of bilateral index number theory
to cover the situation where the number of units being compared is greater than two. In
the remainder of this paper, we assume that the number of countries in the bloc is K > 3,
(unless we explicitly assume K =2). If there is only one commodity, then there is no
index number problem; i.e., we will have S¥(P,Y) = yf/EK=1y{ for k=1,...,K. Thus
we also assume that the number of commodities is N > 2.

In the axiomatic approach to bilateral index number theory”, the function Q(p!, p?,
y!,7?) is hypothesized to satisfy various axioms or tests. We shall follow an analogous
approach to multilateral index number theory by placing various tests or axioms on the
multilateral system of share functions S*(P,Y).

Before we list our multilateral axioms, consider the following example of a multilateral
system:

(1) SKPY)=pF-o*/=K p-vi; k=1,.. K



The above system of multilateral share functions is the ezchange rate system, where country
k’s share of bloc consumption (or output or input) is simply its share of total bloc value
where all values are computed using a common numeraire currency.

We now list 12 desirable properties for multilateral systems. We regard the first 7
properties as being more essential.

Our first multilateral axiom is:

T1: Share Test: There exist K continuous, positive functions S* (PY),k=1,... K,
such that =K ,S¥(P,Y) = 1 for all P,Y in the domain of definition described above.

It is obvious that share functions must sum to unity. The above share test also
added the requirements that each share function be continuous and positive. The test T'1
(without the positivity requirement) was proposed by Diewert [1986; 36] [1988; 76].

To motivate our second test, suppose that each country’s share of bloc output is the
same for every commodity, say S; for country k. Then it seems reasonable to ask that
Sk¥(P,Y) = B for each k.

T2:  Proportional Quantities Test: Suppose y* = fry for k = 1,...,K with B > 0
and BX B = 1. Then S¥(P,Y) =B for k=1,...,K.

The above test is a multilateral counterpart to Leontief’s [1936] Aggregation Theorem.

Our next test is a counterpart to Hicks’ [1946; 312-313] Aggregation Theorem: if each
country’s price vector p* is proportional to a common positive price vector p, then this p
can be used to determine country k’s share of bloc output as p - y*/ Eff,_lp .

TS:  Proportional Prices Test: Suppose pF = agp for k = 1,..., K with az > 0 for
some p >> Oy. Then S*(P,Y)=p-v*/p- Eﬁ,lyj fork=1,...,K.

Thus if either prices or quantities are proportional across countries, then tests T2
and T3 determine what the country share functions S*(P,Y) must be. The tests 72 and
T3 can be interpreted as multilateral counterparts to identity tests for bilateral price and
quantity indexes.

Our next 3 tests are invariance or symmetry tests.

T4:  Commensurability Test (Invariance to Changes in the Units of Measurement):
Let 6, > 0 for n = 1,...,N and let 4 denote the N by N diagonal matrix with the
6n on the main diagonal. Then S*(6P,6-1Y) = S¥(P,Y)for k=1,...,K.

The test T'4 requires that the system of share functions be invariant to changes in the
units of measurement for the N commodities. In the muiltilateral context, this test was



proposed by Diewert [1986; 38] [1988; 78]. In the bilateral context, this test was proposed
by Jevons [1884; 23], Pierson [1896; 131] and Fisher [1911; 411] [1922; 420].

T5: Commodity Reversal Test (Invariance to the Ordering of Commodities):  Let II
denote an N by N permutation matrix. Then S¥(ITP, 1Y) = S¥(P,Y) for k=1,...,K.

The above test implies that a country’s share of bloc output remains unchanged if the
ordering of the N commodities is unchanged. In the bilateral context, this test was first
proposed by Fisher [1922; 63] and in the multilateral context by Diewert [1986; 39] [1988;
79].

T6: Multilateral Country Reversal Test (Symmetric Treatment of Countries): Let
S(P,Y)T = [SYP,Y),...,SK(P,Y)] denote the row vector of country share functions
and let IT* denote a K by K permutation matrix. Then S(PI*,YII*)T = S(P,Y)TII*.

Thus if the ordering of the countries is changed or permuted, then the resulting system of
share functions is equal to the same permutation of the original share functions. The test
T6 means that no country can play an asymmetric role in the definition of the country
share functions. This property of a multilateral system was termed base country invariance-
by Kravis, Kenessey, Heston and Summers [1975]. When multilateral indexes are used by
multinational agencies such as the European Union, the OECD or the World Bank, it is
considered vital that the multilateral system satisfy T6. This property can be viewed as
a fairness test: each country must be treated in an even handed symmetric manner.

Our next test imposes the requirement that scale differences in the price levels of each
country (or the use of different monetary units in each country) do not affect the country
shares of bloc output.

T7: Monetary Units Test Letogx >0fork=1,...,K. Then S*¥(aip!,...,axpX,Y)
=S5@!,...,.pK,Y) fork=1,...,K.

Mathematically, T'7 is a homogeneity of degree 0 in prices property, a property which is
usually imposed on quantity indexes in bilateral index number theory. In the multilateral
context, Gerardi [1982; 398] and Diewert [1986; 38] [1988; 78] proposed this test.

The test T'7 is a homogeneity in prices test. Our next test is a homogeneity in
quantities test.

T8: Homogeneity in Quantities Test: Fori=1,.... K, >0,j#4i,5j=1,...,K,
we ha've Si(P’ y11 A 7yi—1) Ai y‘., yi+l? ... 7yK)/Sj(P’ yl’ A 7yi-l1 Aiyt’ yl+l’ AR | yK) =
MSU(P,Y)/SHP,Y).



Mathematically, T'8 says that the output share of country 4 relative to country j, $*/57, is
linearly homogeneous in the components of the country i quantity vector 4*. This property
is usually imposed on bilateral quantity indexes. In the multilateral context, this test was
suggested by Gerardi [1982; 397] and Diewert [1986; 37] [1988; 77].

Our next test imposes the following very reasonable property: as any component of
country k’s quantity vector y* increases, then country k's share of bloc output should also
increase.

T9:  Monotonicity Test: S¥(P,y,...,v*,...,v¥) is increasing in the components of
the vector y* for k=1,..., K:

Although T'9 has not been proposed before in the multilateral context, it has been proposed
in the context of bilateral index number theory; see Eichhorn and Voeller [1976; 23] and
Vogt [1980; 70].

The next two tests can be viewed as consistency in aggregation tests or country
weighting tests.

T10: Country Partitioning Test: Let A be a strict subset of the indices {1,2,..., K}
with at least two members. Suppose p* = a;p® for a; > 0,p® >> Oy and 7' = Gi®
for B; > 0,4* >> Oy for i € A with T;c48; = 1. Denote the subset of {1,2,...,K}
that does not belong to A by B and denote the matrices of country price and quantity
vectors that do not belong to A by P® and Y? respectively. Then: (i) for i € A, j €
A,S'(P,Y)/SI(P,Y) = B;/B; and (ii) for i € B, S*(P,Y) = S*(p°® P’ 4% Y®) where
Sk*(ps, Pb, 1%, V") is the system of share functions obtained by adding the bloc A aggregate
price and quantity vectors p® and 3° to the bloc B price and quantity matrices P? and Y?.

Thus if the aggregate quantity vector for bloc A, ¥®, were distributed proportionally among
its bloc members and each bloc A member’s price vector were proportional to the price
vector p®, then part (i) of T10 required that the bloc A share functions reflect their
proportional allocations of outputs and part (ii) of 710 requires that the non bloc A
share functions yield the same numerical values if bloc A were aggregated up into a single
country {or conversely, the non bloc A share functions yield the same values if a single
bloc A country is proportionally partitioned into smaller units). Note that T'10 requires
that K > 3 and that the system of share functions be defined for varying numbers of
countries. Test T'10 can be viewed as a generalization of Diewert’s [1986; 40] [1988; 79]
country partitioning test. For precursors of this type of test, see Hill [1982; 50] and Kravis,
Summers and Heston [1982; 408]. Note that the countries in bloc A satisfy the conditions
for both Hicks and Leontief aggregation; i.e., both prices and quantities are proportional
for bloc A countries. Under these rather strong conditions, it seems very reasonable to ask



that the system of share functions behave in the manner indicated by parts (i) and (ii) of
T10.

The following test also uses combined Hicks and Leontief aggregation but it applies
these aggregation conditions to countries in blocs A and B.

T11:  Bilateral Consistency in Aggregation Test: Let A and B be nonempty disjoint
partitions of the country indices {1,2,..., K}. Suppose that p* = a;p% vt = Biy® a; >
0,8; > 0,p% >> Oy, y* >> Oy fori € A with Zjcqf8 = landp’ = 7jpb, Y= jyb,'yj >0,
6; > 0, p® >> Oy, y® >> On for j € B with Z;jep; = 1. Then Zjep S/ (P,Y)/Tica
SYP,Y) = Qr(p? b, 4%, 1) where Qp is the Fisher [1922] ideal quantity index defined by

(2) QF(paapbi ya’ yb) = [pa : ybpb : yb/pa : yapb * ya]%

In this test, the set of countries is split up into two blocs of countries, A and B. Within each
bloc, price and quantity vectors are proportional. Hence if we aggregate country shares
over blocs and divide the sum of the bloc B shares by the sum of the bloc A shares, we
should get the same answer that the “best” bilateral index number formula Q(p?, p°, ¥%, v°)
would give, where the bloc A and B aggregate price and quantity vectors p®, p°, 32, 1P are
used as arguments in the bilateral index number formula. We chose Q to equal QF since
the Fisher ideal bilateral quantity index satisfies more “reasonable” bilateral tests than
its competitors; see Diewert [1992; 214-223]. Of course, it is possible to modify test T11
by replacing the Fisher ideal index QF by an alternative “best” bilateral index number
formula. However, the basic idea of test T'11 seems very reasonable: a good multilateral
method should collapse down to a good bilateral method if all price and quantity vectors
are proportional within blocs A and B.

The test T11 is related to Diewert’s [1986; 41] [1988; 81] Strong Dependence on
a Bilateral Formula Test. That test required that the limit of S7(P,y)/S*(P,Y) equal
a bilateral quantity index Q(p’,p’,1%,37) as all quantity vectors y* (except y* and 3)
tended to 0. However, we regard the present Bilateral Consistency in Aggregation Test
as a more satisfactory test, since some multilateral methods will not be well defined as
quantity vectors tend to zero.

We regard all of the above tests as being very reasonable and desirable for a multi-
lateral method. Unfortunately, none of the 10 multilateral methods that we study in this
paper satisfy all of these tests.

Before we consider economic approaches to multilateral comparisons, we consider one
additional test that practitioners regard as desirable.

We define an additive multilateral system of share functions S*(P,Y),k=1,...,K, as
follows: there exist N once continuously differentiable positive functions of 2N K variables,
(P, Y),n=1,..., N such that



(3) S¥PY)=ZN gn(PY)WE/EN 1gm(P.Y)EK hn; k=1,... . K;
where the functions g, have the following property:

(4) gn(PaP’-owP,Y)=pn; n=1,...,N

for all p >> On and Y in the domain of definition where p = [py,. .., pN]T is a common
price vector across all countries.

Property (3) is the main defining property of an additive system: it says that each
country’s share is determined by valuing its consumption components (or outputs or in-
puts) using the common “international” prices ¢1(P,Y),...,gn(P,Y), which in principle
can depend on the entire matrices of country prices and quantities, P = [p!,...,p¥] and
Y =[y',...,yK]. Property (4) restricts the class of admissible “international” prices in a
very sensible way: if all of the country prices are equal so that p! = p? = ... = pK = p,
then the “international” prices collapse down to these common national prices.

With the above definition in mind, we can state our last test:

T12: Additivity Test: the multilateral system is additive.

An additive multilateral system has the tremendously attractive feature of being user
friendly: if an analyst wants to compare the relative performance of countries over subsets
of commodities, then this can be done using the “international” prices g, (P,Y) to weight y*
for each country k and for n belonging to the subset of commodities to be compared. There
is no need to compute a separate set of country parities for each subset of commodities to
be compared. Moreover, each commodity component will correctly aggregate up to bloc
consumption (or output or input) valued at the international prices g,(P,Y).

Unfortunately, although additive multilateral methods are very convenient, they are
not consistent with the economic approach to multilateral systems as we shall see.

We now turn to a description of an economic approach to making international com-
parisons.

3. An Economic Approach To Multilateral Index Numbers

The axiomatic approach to multilateral systems of index numbers does not make
use of the assumption of optimizing behavior on the part of economic agents. Thus the
country price and quantity vectors, p* and y*, were treated as vectors of independent
variables in the previous section. In this section, we follow the example of Diewert {1996;
19-25] and assume optimizing behavior on the part of economic agents in each country.



Under this assumption, prices and quantities cannot be regarded as independent variables:
given prices, quantities are determined (or vice versa).

We shall make the very strong assumption that a common linearly homogeneous
aggregator function f exists across countries. This is the assumption that was used by
Diewert [1976; 117] in his definition of a superlative bilateral index number formula. Thus
in this section, we are looking for a multilateral counterpart to the bilateral concept of
superlativeness. In the consumer context,® we assume that each household in each country
maximizes the increasing, concave and linearly homogeneous utility function f(y) subject
to its budget constraint. Aggregating over households in country k, we find that the
country k quantity vector ¥ is a solution to:

(5) mazy{f(y):pF-y=pF-v*}; k=1,.. K

Define the increasing, linearly homogeneous and concave unit cost function that is
dual to f by

(6) clp) =miny{p-v: f(y) > 1,y >0n}

where p >> Opn is a positive vector of commodity prices. If all consumers in country k
face the same prices p* and y is the total consumption vector for country k, then we have

(M p*y*=c()f@*); k=1,...,K

Define the country k aggregate utility level of u; and the country k unit cost or unit
expenditure e as follows:

(B) ue=f¥*); ek=c(p*); k=1,.. K.

If the unit cost function c is differentiable, then by Shephard’s [1953; 11] Lemma,
country k quantities y* can be defined in terms of country k prices p* and country k
aggregate utility u; as follows:

Q) v*=<gc@®ux; k=1,...,K

where vc(pF) = [e1(P¥),...,cn(p*)]T is the vector of first order partial derivatives of c
evaluated at p*.

On the other hand, if the utility function f is differentiable, then by Wold’s [1944;
69-71] Lemma, country k prices p* can be defined in terms of country k quantities y* and
the country k unit expenditure level e, as follows:®

(10) 7*=vf@WFers k=1,...,K,



where 7 f(¥*) = [1(5),..., IN(@F)]T is the vector of first order partial derivatives of f
evaluated at y*.

Under the above assumption of optimizing behavior on the part of economic agents
for a linearly homogeneous aggregator function f, it is natural to ask that our system of
multilateral share functions S*¥(P,Y’) have the following ezactness property:

11) S(RY)/SI(PY)=fl¥')/f¥) 1<i, j<K.

Thus under the assumption of homogeneous utility maximization in all countries, it is
natural to require that the ratio of the consumption shares for countries i and j, S*(P,Y)
/S(P,Y), be equal to the aggregate real consumption ratio for the two countries, f(y*)
/f(?), for all countries 1 and j.

The above preliminary definition of exactness (11) does not indicate whether we are
regarding prices or quantities as independent variables. Thus, more precisely, we say that
the multilateral system S*(P,Y),k =1,..., K is ezact for the differentiable homogeneous
aggregator function f10 if for all ¥* > Oy and ex > 0 for k =1,..., K, we have

SvfVen.... v f@ )ex, v, .. ¥ S0 er, -, VG ex, v - 1]

(12) : )
=f")/f¥’); 1<i<j<K

In the above definition of exactness, we assume optimizing behavior, with prices p* in the
share functions S¥(P,Y) being replaced by the inverse demand functions 7 f(y*)ex; see
(10) above. Thus the weakly positive country quantity vectors ¥* > O and the positive
country unit expenditure levels ez > 0, k = 1,..., K are regarded as the independent
variables in the system of functional equations defined by (12).

The above definition of exactness assumes that each country’s system of inverse de-
mand functions (10) exists. Turning now to the dual case where we assume that each
country’s system of Hicksian demand functions (9) exists, we say that the multilateral
system S"(P, Y), k=1,...,K, is ezact for the differentiable unit cost function c!! if for
all p* >> Oy and u >0 for k=1,..., K, we have

S'p',.... o, v e, ..., ve@)uk]/Sp', . .., 0%, ve(@ u, . . ., ve(p®)uk]

(13)
=ufuj; 1<i<j<K.

In the above definition of exactness, we are assuming optimizing behavior, with quanti-
ties y* in the share functions S"(P, Y') being replaced by the Hicksian demand functions
va(p")uk; see (9) above. Thus the strictly positive country price vectors p* >> Oy and
the positive country utility levels u; > 0 are regarded as the independent variables in the
system of functional equations defined by (13).

10



In analogy with the economic approach to bilateral index number theory, we would like
a given multilateral system of share functions S¥(P,Y) to be ezact for a flexible functional
form for either: (i) the homogeneous aggregator function f that appears in (12) or (ii)
the unit cost function c that appears in (13). This exactness property for a multilateral
system is a minimal property (from the viewpoint of economic theory) that the system
should possess. If this property is not satisfied, then the multilateral system is consistent
only with aggregator functions that substantially restrict substitution possibilities between
commodities. If the multilateral system S¥(P, Y’) does have the above exactness property
for either case (i) or (ii), we say that the multilateral system is superlative. This is a
straightforward generalization of the idea of a superlative bilateral!? index number formula
to the multilateral context.

In the following 10 sections, we shall evaluate many of the commonly used multilateral
systems with respect to the 12 tests listed in section 2. We shall also determine whether
each multilateral system is superlative.

4. The Exchange Rate Method

The first multilateral method that we consider is the simplest: all country prices are
converted into a common currency (our country price vectors p* have already incorporated
this conversion to a numeraire currency) and the share function for country k, S¥(P,Y), is
defined to be its nominal share of bloc output, p* - ¥*/ZX  p7 - 1; equations (1) in section
2 above.

Proposition 1:  The exchange rate method passes tests T'1,74,T5,76,T8 and T9 and
fails the remaining 6 tests. The exchange rate method is not exact for any aggregator
function or any unit cost function and hence is not a superlative method.

Proofs of Propositions are in Appendix 1.

Proposition 1 shows that the exchange rate method has very poor axiomatic and
economic properties. However, due to its simplicity and minimal data requirements (only
domestic value information plus exchange rate information is required), it is probably the
most commonly used method for making multilateral comparisons.

We turn now to a class of additive methods.

11



5. Symmetric Mean Average Price Methods

Recall the definition of an additive multilateral method defined by (3) and (4) above.
In this section, we shall assume that the weighting functions gn(P,Y) are averages of
country prices for commodity n,pl,...,pX, forn=1,..., N. Specifically, we assume that

(14) gn(PY) Em(p,l,,p?,,...,an); n=1,...,.N

where m is a homogeneous symmetric mean.!® Two special cases for m are the arithmetic
and geometric means, defined by (15) and (16) respectively:

(15) gn(PY)=3SK (1/K)pk; n=1,...,N;
(16) ga(PY) = [MK pK)VK, n=1,..., N

The geometric average price multilateral system defined by (3) and (16) was originally
suggested by Walsh [1901; 381 and 398] (his double weighting method), noted by Gini
[1924; 106] and implemented by Gerardi [1982; 387]. It turns out that this method satisfies
more tests than other symmetric mean average price methods.

Proposition 2: The general symmetric mean average price multilateral method defined
by (3) and (14) (but excluding (16)) satisfies all tests except the monetary units test T'7
and the two country weighting tests 710 and T'11. The geometric average price method
defined by (3) and (16) satisfies all tests except T10 and T'11. Symmetric mean average
price methods are exact only for the linear aggregator function f defined by (17) and the
linear unit cost function ¢ defined by (18) below. Hence these methods are not superlative.

A linear aggregator function f is defined as

a7  f,.-.,yn) =N jan0m

where the the parameters a,, are positive. A linear unit cost function ¢ (dual to a Leontief
no substitution aggregator function) is defined as

(18) c(pl’ v ’pN) = anzlbnpn

where the parameters b, are positive.

From Proposition 2, we see that the geometric average price method is quite a good
one from the axiomatic perspective: the method fails only the two consistency in aggre-
gation tests 710 and 7'11. However, from the economic perspective, the Gerardi-Walsh
geometric average price method is not satisfactory: it is consistent only with aggregator

12



functions that exhibit perfect substitutability (see (17) above) or complete nonsubsti-
tutability (see (18) above).

Instead of using average prices to define additive quantity indexes, average quantities
could be used to define additive price indexes (or purchasing power parities as they are
called in the multilateral literature). We turn now to the consideration of this third class
of multilateral methods.

6. Symmetric Mean Average Quantity Methods

For this class of methods, we first define country k’s price level P* as follows:
19) PPY)=ZN_m@l,....vE)0k k=1,... K

where m is a homogeneous symmetric mean. If we define 3, = m(y},... ,yff ) as an
average over countries of commodity n, then we see that country k’s price level Pk is
simply the value of the average basket [f;,...,7n]T = 7 evaluated using the prices of
country k, [pf,...,p5]T = pF.

Once the price levels P* have been defined, the corresponding country k quantity
levels!* QF can be defined residually using the following equations:

(20) P*Q¥=pF.-o%;, k=1,.. K,

i.e., aggregate price times quantity for country k should equal the value of country k
consumption (or production or input), p* - y*. Finally, given the quantity levels QF, they
can be normalized into shares S*:

(21) S*=QF/zK @
(22) = [p* - */oF - 9]/ 2K 0 - i/t - )

where (22) follows by substituting (19) and (20) into (21). Recall that 7 is the average
quantity vector which has nth component equal to g, = m(y}, ..., yX).

As in the previous section, two special cases for the homogeneous symmetric mean m
that appeared in (19) are of interest: the arithmetic and geometric means defined by (23)
and (24):

(23) Fa=myl,.... ) =K (1/K)yE;, n=1,...,N;

(24) Fn=ml,....v¥)=ME yk5IVE,  n=1,...,N;
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Walsh [1901; 431] called the multilateral method defined by (22) and (23) “Scrope’s method
with arithmetic weights” while Fisher [1922; 307] called it the “broadened base system”
and Gini [1931; 8] called it the “standard population method”. Walsh [1901; 398] called
the multilateral method defined by (22) and (24) “Scrope’s further emended method with
geometric weights”. This index was later independently advocated by Gerardi [1982; 389).
The following Proposition shows that average quantity methods satisfy fewer multi-
lateral tests than average price methods but they have equivalent exactness properties.

Proposition 8: A symmetric mean average quantity multilateral method defined by (22)
and 7, = m(y,l,, ceey y,’f), n=1,..., N where m is a general homogeneous symmetric mean
(excluding the two special cases (23) and (24)) satisfies tests T'1 —T'7 and fails tests 7'8 and
T10 — T'12. The geometric weights method defined by (22) and (24) passes tests T'1 — T8
and fails tests 7’9 — T'12. The arithmetic weights method defined by (22) and (23) passes
tests T1 — T'7 and T9 and fails T8 and 710 — T'12. Symmetric mean average quantity
methods are exact for only the linear aggregator function f defined by (17) and the linear
unit cost function ¢ defined by (18). Hence these methods are not superlative.

Note that the above Proposition does not determine whether the monotonicity test
T9 holds for a general homogeneous symmetric mean: we were only able to determine
that the linear mean method defined by (23) satisfies T'9 but the geometric mean method
defined by (24) does not satisfy T9.

Comparing Propositions 2 and 3, we see that the Gerardi-Walsh geometric average
price method defined by (3) and (16) dominates all of the methods defined in this section
and the previous section, failing only the two country weighting tests 710 and T'11.

We turn now to a more complex average price method.

7. The Geary-Khamis Average Price Method

The basic equations defining the Geary-Khamis!® method can be set out as follows.
Define an average price for commodity n by

(25) w,=xK [yf,/z;.‘:lyz;] [%/P¥); n=1,...,N

where the country k price level or purchasing power parity P* is defined as

(26) Pr=pk-yk/m-yk k=1,... K
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where 7 = [,...,mn]T is the vector of Geary-Khamis bloc average prices. Note that m,
is a weighted average of the purchasing power parity adjusted country prices pf, /P* for
commodity n, where the country k weight is equal to its share of the total quantity of
commodity n, yﬁ/)]f:ly,’., Once the m, and P* have been determined by (25) and (26),
the country k quantity levels QF and shares S* can be determined using equations (20)
and (21).

If we substitute equations (26) into (25), the equations which define the Geary-Khamis
share functions can be simplified into the following system of equations:

(27) [In — CJm = Oy;
(28) y-m=1
(29) Sk=m.y*. k=1,...,K

where Iy is the N by N identity matrix, y = E,{‘;lyk >> Oy is the strictly positive bloc
total quantity vector and the strictly positive N by N matrix C is defined by

(30) C =g ol BT /R o

where p* is the country k positive price vector p* >> O diagonalized into a matrix and
g is the total quantity vector y = £X  y* diagonalized into a matrix.

Using (30), note that yTC = yT. Thus the positive vector y is a left eigenvector of the
positive matrix C that corresponds to a unit eigenvalue. Hence by the Perron [1907; 46]
- Frobenius [1909; 514]'6, A = 1 is the maximal eigenvalue of C and C also has a strictly
positive right eigenvector 7 that corresponds to this maximal eigenvalue; i.e., we have the
existence of # >> On such that Cr = = which is (27). This positive right eigenvector
can then be normalized to satisfy (28). From (29), we see that the Geary-Khamis method
satisfies the additivity test T12.

The following Proposition shows that the Geary-Khamis multilateral system does
rather well from the viewpoint of the axiomatic approach but not so well from the viewpoint
of the economic approach.

Proposition 4: The Geary-Khamis multilateral system of share functions defined by
(27) - (30) satisfies all of the multilateral tests except T8 (homogeneity in quantities), T'9
(monotonicity in quantities) and T'11 (bilateral consistency in aggregation). However, the
Geary-Khamis method does satisfy a reasonable modification of T'11. The method is exact
only for the linear aggregator function f defined by (17) and the linear unit cost function
¢ defined by (18). Hence the method is not superlative.
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Proponents of the GK system might argue that the method’s failure with respect to
test T'11 is perhaps exaggerated, since instead of ending up with a bilateral Fisher quantity
index Qg under the conditions of test T'11, we end up with the bilateral GK quantity index
QckK; i.e., under the conditions of test T'11, we obtain:

(31) E;enS/(PY)/icaSHPY) =p* - 4*/p* - y*Pox (v*, 2%, 4%, %)

where the GK bilateral price index Pgg is defined by!?

(32) Pok(p® % v% vP) = TN A(y2, 2B /=N _ A (y2, v2)p2

and where h(z, z) = 2z2/[x+ 2] is the harmonic mean of z and 2, [(1/2)]z~!+(1/2)z~1]"},
if both = and z are positive. However, from the viewpoint of the test approach to bilat-
eral index number theory, the Fisher price and quantity indexes pass considerably more
tests than the Geary-Khamis price and quantity indexes. The Fisher bilateral price index
satisfies all 20 of the tests listed in Diewert [1992; 214-221]'® while the Geary-Khamis
bilateral price index fails 6 of these tests: PT7 (homogeneity of degree 0 in current pe-
riod quantities), PT8 (homogeneity of degree 0 in base period quantities), PT13 (price
reversal or price weights symmetry), PT16 (the Paasche and Laspeyres bounding test),
PT19 (monotonicity in base period quantities) and PT20 (monotonicity in current period
quantities). The failure of bilateral test PT13 is not important but the failure of the other
tests is troublesome.

From the viewpoint of the economic approach to index number theory, the Geary-
Khamis method is definitely inferior to the multilateral systems that will be discussed later
in sections 10-13. Note that even in the two country case (K = 2), the GK method is exact
only for the linear aggregator function (17) and the linear unit cost function (18). Thus the
method is consistent only with perfect substitutability or with perfect nonsubstitutability.

8. Van Yzeren’s Unweighted Average Price Method

In this method, a vector of bloc average prices p* is defined in a manner similar to
the definition of the Geary-Khamis average price vector = (recall (25) above) except that
the price vector of each country p* divided by its purchasing power parity or price level P*
is weighted equally. Van Yzeren [1957; 13] originally called this method the homogeneous
group method. He later called it (Van Ijzeren [1983; 40]) a price combining method or an
unweighted international price method. The equations defining this method are (33) - (36)
below:

(33) p* =oZf pF/PF
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(34) Pk____‘pk.yk/p‘.yk; k=1,...,K;
(35) SkEpt,yk; k=1,...,K;
(36) =K Sk=1,

where « is a positive number. If we substitute (34) into (33) and substitute (35) into (36),
we find that the vector of bloc average prices p* and the scalar o must satisfy the following
two equations;

(37) p* =o[=K (7" - ) 0T p* = aCp
(38) 1=[=K ¥ .-p* =y -p*

where C = [¢;5] with ¢;j = Elilpfyf/p" -y*and y = Ef:lyk is the bloc total quantity
vector as usual. Since y* > Oy and p* >> Oy for each k with Zﬁ_.ly" >> Oy, C is a matrix
with positive elements. Hence @ = 1/A > 0 where ) is the largest positive eigenvalue of C
and p* >> Oy is a normalization of the corresponding strictly positive right eigenvector
of C (recall the Perron-Frobenius Theorem). Thus if the number of goods N is equal to
2, it is possible to work out an explicit algebraic formula for the S*.

It is possible to express the defining equations for this method in a different manner
which will give some additional insight. Substitute (34) into (33) and premultiply the
resulting (33) by 3*7 for i = 1,..., K. Using (35), the resulting K equations become
(39) § = oSk, (o)W ¥ i=1,.. K

After defining the vector of shares s = [S1,...,SX]T, equations (39) can be rewritten
using matrix notation as

(40) s=aDs

where the ijth element of the K by K matrix D is defined as d;; = p’-y*/p’-¢¥ > Ofori,j =
1,..., K. Since D is positive, take a = 1/ where ) is the maximal positive eigenvalue of
D and s is a normalization of the corresponding strictly positive right eigenvector of D.1°
The definition of s and a using equations (36) and (40) is the way Van Yzeren [1957; 13]
originally defined his homogeneous group method. We have used the techniques of Van
Ijzeren [1983; 40-41] to show that (36) and (40) are equivalent to (33) - (36).

Before we summarize the properties of Van Yzeren’s unweighted homogeneous group
method in Proposition 5 below, it will be useful to note that the following flexible functional
forms are exact?? for the Fisher ideal quantity index Qr defined above by (2):

41) f(y) = @TAy)}; A= AT,
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(42) c(p) = (»"Bp)i; B =BT

The f defined by (41) is the square root quadratic aggregator function and the cost function
defined by (42) is the square root quadratic unit cost function. If either of the matrices A
or B has an inverse, then A = B~1,

Proposition 5:  Van Yzeren’s Unweighted Average Price Method defined by (36) and (40)
satisfies all of the multilateral tests except 79 (monotonicity) and the two consistency in
aggregation tests 710 and T'11. For K. > 3, this method is exact only for the linear
aggregator function defined by (17) and the linear unit cost function defined by (18).
However, for the two country case (K = 2), this method is exact for the f defined by (41)
and the ¢ defined by (42). Finally, in the K = 2 case, S2/S! = Qp(p!,p% y',y?) where
Qr is the Fisher ideal quantity index defined by (2).

Proposition 5 shows that this average price method suffers from the same limitation
possessed by the average price methods studied in section 5 and 7: when K > 2, these
methods are consistent only with perfect substitutability or zero substitutability.

Note that Van Yzeren’s unweighted average price method (which fails 79 — T'11) is
dominated by the Gerardi-Walsh geometric mean average price method (which fails only
T'10 and T'11) discussed earlier in section 5.

We turn now to an analysis of the average quantity counterpart to the present method.

9. Van Yzeren’s Unweighted Average Basket Method

In this method, a vector of bloc average quantities y* is defined in a manner that is
analogous to the definition of the average prices p* in the previous section, except that the
role of prices and quantities is interchanged. Van Yzeren [1957; 6-14] originally called this
method the heterogeneous group method and he later (Van Ijzeren [1983; 40-44]) called it
an unweighted basket combining method.

(43) y* =oazk  y*/SF;

(44) Pr=pk.y~ k=1,..., K;
(45) PrkSk=pk.o% k=1,..., K;
(46) =K Sk=1.

If we substitute (44) and (45) into (43) and (46), we find that the vector of bloc average
quantities ¥* and the scalar a must satisfy the following N + 1 equations:
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(47)  y* = o[ZK (0" - *) T y* = oCTy;
(48) 1=3xK p*-y*/pk -y

where C = [¢;;] with ¢;; = Ekﬁlpfyf /p" -y* is the same matrix which appeared earlier in
(37). We can satisfy (47) by choosing a = 1/ where ) is the maximum positive eigenvalue
of the positive matrix C and by choosing y* to be a normalization of the corresponding
positive left eigenvector of C' (or positive right eigenvector of CT). The normalization
of the eigenvector is determined by (48). As in the previous section, if the number of
commodities N is equal to two, then it is possible to work out an explicit formula for the
Sk,

As in the previous section, it is useful to transform the above equations into a more
useful form. For i =1,..., K, premultiply both sides of (43) by p*T. Using (44) and (45),
the resulting system of equations can be written as

(49) (S =aZi /P NS i=1,. K

Define the vector s~1 = [(S1)~}, (§2)~1,...,(SX)~1)T. Then equations (49) can be written
in matrix form as

(50) s~ 1=aDTs™!

where DT is the transpose of the matrix D defined in the previous section below (40).
Thus as in the previous section, we can take o = 1/\ where A is the maximum positive
eigenvalue of the positive matrix D and in this section, we let s~ be proportional to the
positive left eigenvector of D that corresponds to A, the factor of proportionality being
determined by (46).

Van Yzeren [1957; 25] initially defined his heterogeneous group method using a version
of (50), except that the S* in (50) were replaced by the parities P* using equations (45).
Later, Van Ijzeren [1983; 40] derived the average basket interpretation of this method that
was defined by (43) - (46) above.

Proposition 6: Van Yzeren's Unweighted Average Basket Method defined by (46) and
(50) satisfies all of the multilateral tests except the monotonicity test T°9, the two con-
sistency in aggregation tests 710 and T'11 and the additivity test T'12. For K > 3, the
method is exact only for the linear aggregator function defined by (17) and the linear unit
cost function defined by (18). However, for the two country case (K = 2), the method is
exact for the f defined by (41) and the c¢ defined by (42) and in this case, S2/S! = QF is
the Fisher ideal quantity index defined by (2).
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Proposition 6 shows that Van Yzeren’s average basket method suffers from the same
limitation that applied to all of the methods studied in sections 5-8 above: if K > 3, these
methods are consistent only with perfect substitutability or zero substitutability.

The average basket method (which fails 79 — T'12) is dominated by Van Yzeren’s
average price method (which fails 7’9 — T'11) and the Gerardi-Walsh method (which fails
only T10 — T11).

The multilateral methods of Van Yzeren presented in this section and the previous
section are generalizations of the bilateral Fisher ideal quantity index in the sense that
these methods reduce to the Fisher index when there are only 2 countries. However, these
methods are not very satisfactory generalizations in the 3 or more country case because
these methods are not exact for the flexible functional forms defined by (41) and (42). The
multilateral methods that will be discussed in the following 4 sections do not suffer from
this inflexibility: the methods which follow are all exact for the f defined by (41) and the c
defined by (42) and hence are superlative. Moreover, all of the multilateral methods which
follow can be viewed as methods which attempt to harmonize the inconsistent comparisons
that are generated by using a bilateral quantity index @ in the multilateral context.

10. The Gini-EKS System

We turn now to an examination of a multilateral method that uses a bilateral price or
quantity index, P(p*,p?,3,%7) or Q(p*,p’, %, 1), as the basic building bloc. We assume
for the remainder of the paper that the bilateral price and quantity index satisfy?!

(51) P, ¢7,¢', v )QW, P, v' ) =9 - /P - o

Thus if P is given, then the corresponding Q can be defined via (51) and vice versa.
Suppose that the bilateral quantity index Q satisfies Fisher’s [1922; 413] circularity
test??; i.e., for every set of three price and quantity vectors, we have

(52) Q@' d", QW % % %) = Q' P ¢\, &%)

We shall show why circularity is a useful property in the context of making multilateral
comparisons shortly.

It is obvious that a bilateral quantity index Q can be used to generate a multilateral
system of share functions provided that we are willing to asymmetrically single out one
country to play the role of a base country. For example, suppose we have a bilateral Q and
we choose country 1 to be the base country. Then the share of country k, Sy say, relative
to the share of country 1, S; say, can be defined as follows?3:
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(53) Sk/S1 = Qo5 v ,vF); k=1,...,K.
Equations (53) and the normalizing equation
(54) E]Ic(=lSk =1

will determine the multilateral shares using country 1 as the base.4

The problem with the multilateral star method defined by (53) and (54) is that, in
general, the method will not satisfy test T6; i.e., the method will not be independent
of the choice of the base country. However, if the bilateral quantity index Q satisfies
the circularity test (52), then the star system would be independent of the base country.
We demonstrate this assertion as follows. Consider the multilateral shares S; that are
generated by @ using country 2 as the base:

(55) Si/S3=Q0* 5 y*) k=1,... K

Now assume that Q satisfies circularity (52) and premultiply both sides of (55) by the
constant S3/S1 = Q(p',p% ', 9?) :

[S2/S1] [St/S3] = QP p%, ', ¥D)Q(#%, ¥, 42, v)
= Q" 7", 4", v") using (52)
= Sk/S1 using (53).

Thus the Sj are proportional to the S; and hence, after using the normalization (54), they
must be identical.

Unfortunately, if the bilateral index @ satisfies the circularity test for all price and
quantity vectors, then Eichhorn [1976] [1978; 162-169] and Balk [1995a; 75-77] show that
Q does not satisfy many other reasonable bilateral tests. In fact, Eichhorn’s methods may
be used to prove the following result.

Proposition 7:  Suppose that the bilateral quantity index @ satisfies the circularity test
(52) and the following bilateral tests: BT1 (positivity), BT3 (identity), BT5 (proportion-
ality in current period quantities), BT10 (commensurability), and BT12 (monotonicity
in current period quantities). Then Q(p!,p? y',%?) = IN_,(y2/yl)>" where the ay, are
positive constants summing to unity.

The bilateral tests BT1 -BT13 will be defined later in this section. Proposition 7 merely
illustrates that Irving Fisher’s [1922; 274] intuition was correct: if a bilateral quantity
index?> satisfies the circular test plus a few other reasonable tests, then the index must
have constant price weights?® which leads to nonsensical results.2’” Thus as a practical
matter, we cannot appeal to circularity to make the star system a symmetric method.
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Returning to the asymmetric star system defined by (53) and (54), if instead of

country 1, we use country i as the base, then the share of country k using ¢ as a base, S(i),
can be defined using the bilateral quantity index Q as follows:

(56) SO = Q@ 7%, v, vM)/ZK Q0 P v ) ik=1,... K.

Fisher [1922; 305] was perhaps the first to realize that the asymmetric multilateral methods
defined by (56) could be made to satisfy the symmetric treatment of countries tests T6 by
taking the arithmetic mean of the shares defined by (56); i.e., the Fisher blended share®®
for country k, S,f , can be defined by equations (57):

57) SF=3xK (1/K)SY; k=1,... K.

Instead of using an arithmetic average of the S\ defined by (56), Gini [1924; 110} [1931;
12] proposed using a geometric average. Thus the Gini share of bloc aggregate quantity
for country k turns out to be proportional to [Q(p!, p¥, ', v*) ... Q(©¥, ¥, v¥, v*)|(VK),
ie.,

(58) S¢ = o[IK,Q@, p*, v/, ¥")|VE); k=1,....K

where o is chosen so that the S sum to one. In general, Gini (1931; 10] required
only that his bilateral index number formula?? satisfy the time reversal test; i.e., that
Q2% p', 4%, y') = 1/Q(p!,p% ¢!,%%). In his empirical work, Gini [1931; 13-24] used the
Fisher ideal formula. Finally, Gini [1931; 10] called his multilateral method the circular
weight system. Gini's method, using the Fisher ideal formula, was later independently
proposed by Elteto and Kéves [1964] and Szulc [1964] and is known as the EKS system.

Eltet6 and Koves and Szulc actually derived their multilateral system (58) by a differ-
ent route which we shall now explain. Let P; be the country k price level that corresponds
to country k’s multilateral share S;. As usual, we impose the following restriction on the
P, and Si:

(59) PeSp=pF-v*; k=1,...,K.

Now pick bilateral price and quantity indexes, P and Q, that satisfy the product test (51).
The country price levels Py are determined by solving the following least squares problem:

(60) minp, . szg-l X {Inl(P/P) PO, P, 4, )]} |
=minp,,. Py St Sic1 {In[(B/ PP - ¥ v - ' Q¢ ¥, ¥)]}?  using (51)
=minsg,, . SKE.—l X1{In[(S/8)/Q0 , P, o', ¥} using (59)

(61)  =ming,, s, Z5, K, {In[(S;/S)QW, v’ v, v)]}?
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where (61) follows from the line above if @ satisfies the time reversal test. Thus if the
bilateral quantity index @ satisfies the time reversal test, finding the optimal price levels
Py, that solve the least squares problem (60) is equivalent to finding the optimal country
shares Sy, that solve the least squares problem (61). Note that the objective function in (60)%
is homogeneous of degree zero in the P; and the objective function in (61) is homogeneous
of degree zero in the S;. Hence a normalization on the Py or Si is required to determine
their absolute levels. As usual, we choose the normalization (54).

Differentiating the objective function in (61) with respect to Si leads to the following
equations for k=1,..., K:

(62) InSi — (1/K)ZK  inS; = (1/2K)ZK  1nQ(p7, p*, %, v)

—(1/2K)=K ,InQ(o*, ', ¥, ).

If Q satisfies the time reversal test3?, then equations (62) simplify to3!

(63) Sk/[SISK]l/K= [n;ilQ(pJ’pk’yJ’yk)]l/Kt k= 1,,K

Using the normalization (54), it can be seen that the shares defined by (63) and (54) are
identical to the Gini shares defined by (58) and (54).

Eltet6 and Koves [1964] and Szulc [1964] used the least squares problem (60) with
P equal to the Fisher ideal bilateral price index Pg to derive the EKS purchasing power
parities P;. Van Ijzeren [1987; 62-65] showed that one also obtained the EKS Py and
Sy, if the Fisher, Paasche or Laspeyres price indexes were used as the P in (60) or if the
Fisher, Paasche or Laspeyres quantity indexes were used as the Q in (61).32 We shall call
the system of shares defined by (54) and (58) for a general bilateral Q satisfying the time
reversal test the Gini System. When Q is set equal to the bilateral Fisher ideal quantity
index Qr, we call the system defined by (54) and (58) the Gini-EKS System.

In order to determine the axiomatic properties of the Gini system, we shall assume
that the bilateral quantity index satisfies the following 13 bilateral tests:33

BT1: Positivity: Q(p',p% 9!, v%) > 0.

BT2: Continuity: Q@ is a continuous function of its arguments.

BT3: IHdentity: Q(»',p%v,v)=1.

BT4: Constant Prices: Q(p,p,v',9%) =p-v3/p-y.

BT5: Proportionality in Current Peﬁ'od Quantities:  Q(p!, p?, ¥', \?) = AQ(p, %, v, 1?)

for all A > 0.

23



BT6: Inverse Proportionality in Base Period Quantities: Q(p!,p?, M, y?) =
A71Q(pY, p?, ¥, %?) for all A > 0.

BT7: Homogeneity in Current Period Prices:  Q(p', \p?, 4%, %) = Q(p', p?, ¢!, v?) for
all A > 0.

BT8: Homogeneity in Base Period Prices:  Q()\p',p% v', %) = Q(p!,p?, 4!, 4?) for all
A>0.

BT9: Commodity Reversal  Q(IIp!,Mp?, IIy!, My?) = Q(p!, p%, y', y?) where IT is an N
by N permutation matrix.

BT10: Commensurability: Q(61p}, - - ,6Np}v,61p%, .. ,6Np?v,5l"1y%, .. ,6;,1y11v, l_ly%,
...,éx,ly?v) = Q(p},...,p}v,p%,...,pfv,y{,...,y}v,yf,...,y%,) forall 6 > 0,...,6n§ > 0.

BT11: Time Reversal  Q(p%,p', 4% v') = 1/Q(p', 9%, v, v?).

BT12: Monotonicity in Current Period Quantities:  Q(p',p%, %%, v%) < Q(p', 2%, 9, v)
if y2 < y.

BT13: Monotonicity in Base Period Quantities:  Q(p!,p%,v',y%) > Q(p!, 0%, v,9?) if
Y <y

It should be noted®! that the Fisher ideal quantity index QF satisfies all of the above
13 bilateral tests.

Proposition 8:  Let the bilateral quantity index Q satisfy tests BT1-BT13. Then the Gini
multilateral system defined by (54) and (58) satisfies all of the multilateral tests except
T10,T11 and T'12. However, the Gini system satisfies a modified version of T'11 where
Qr is replaced by Q. If Q equals the Fisher ideal quantity index Qp, then the Gini-EKS
system passes all of the multilateral tests except the consistency in aggregation test T'10
and the additivity test T12. In addition, the Gini-EKS multilateral system is exact for
the aggregator function defined by (41) and the unit cost function defined by (42).

The above Proposition shows that the Gini-EKS system has desirable properties from
both the economic point view (since it is superlative) as well as from the test point of view
(since it fails only two tests).

As a useful application of the first part of Proposition 8, we note that the Walsh
[1901; 105]) quantity index Qw defined as

(64)  Qulrt,rv!,v?) = ZAL, (phod) V242 /T, () /24,
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satisfies all of the bilateral tests BT1-BT'13. Hence applying Proposition 8, the Gini
multilateral system defined by (54) and (58) where Q = Qw satisfies all of the multilateral
tests except T'10, T'11 and T'12. Moreover, if we modify test T'11 by replacing Qr by Qw,
this modified test T'11 will be satisfied by the Gini-Walsh multilateral system. Finally,
Diewert [1976; 130-134] showed that the Generalized Leontief unit cost function defined
by?3%

2
(65) c(p1,..-.,PN) = 2{‘;12;.":11;,-,-;;,?/ p;/z

where b;; = bj; is exact for (64). In a manner analogous to the proof of Proposition 8,
we can show that the ¢ defined by (65) is exact for the system of functional equations
(13) when the country shares are defined by (54) and (58) with Q@ = Qw. Thus the Gini
multilateral methods that use either the Fisher or Walsh quantity indexes, Q or Qw, as
the bilateral Q in (58) have entirely similar axiomatic and economic properties; both are
superlative multilateral methods.

We turn now to another superlative multilateral method with good axiomatic prop-
erties.

11. The Own Share System

Given a bilateral quantity index @, if we pick a base country i, we can calculate the
quantity aggregate for country k relative to i by Q(¢%, p*, %, v*). If we sum these numbers
over k, we obtain total bloc output or consumption relative to the base country i. Hence

country i's share of bloc output, using country i as the base, is the reciprocal of this sum,
S* defined as:

(66) Si‘ = [Ef=1Q(pi)pk: yi’ yk)]_1 = [Ef::lQ(pkspii yk1 yi)-ll—l

where the last equality in (66) follows if Q satisfies the time reversal test. Unfortunately,
unless @ satisfies the circularity test, the “shares” defined by (66) will not in general sum
to unity. Hence, we need to normalize the S** so that they sum to one. Thus the oun
share multilateral system is defined by (54) and the following K equations:

(67) S =aolS Q05 P y5 )T i=L.. K.

The own share system was introduced by Diewert [1986] [1988; 69]. The preliminary
“share” S** defined by (66) defines country i’s share of world product (or consumption or
input) in the metric of country i. Since in general, these metrics are not quite compatible,
these shares are adjusted to sum up to unity using (67) and (54).
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It can be shown that the own shares defined by (67) and (54) will be numerically
close to the Gini shares defined by (58) and (54) (if the same Q is used in (58) and (67)),
since equations (67) can be replaced by the following equivalent system of equations:

(68) S = oSK (1/K)QWH,p'¢% ¥) Y i=1,... K.

In (58), a geometric mean of the numbers Q(p!,p% ¥!,3%),..., Q(0%, ', v¥,¢') is taken
while in (68), a harmonic mean is taken. Since a geometric mean will usually closely
approximate a harmonic mean, it is evident that the Gini shares will usually be numerically
close to the own shares.

The following Proposition shows that the axiomatic and economic properties of the
own share system are almost identical to the axiomatic and economic properties of the
Gini system. ‘

Proposition 9:  Let the bilateral quantity index @) satisfy tests BT1-BT'13. Then the own
share system defined by (54) and (67) fails the multilateral linear homogeneity test T8 and
the additivity test T'12. Test T11 is satisfied if Q equals Qp, the Fisher ideal quantity
index, and in general, a modified test T'11 is satisfied where the Qr in the statement of
the test is replaced by the bilateral Q. All remaining multilateral tests are satisfied. If Q
equals @, then the own share system is exact for the homogeneous quadratic aggregator
function f defined by (41) and for the homogeneous quadratic unit cost function ¢ defined
by (42).

The above Proposition shows that the Fisher own share system (where Q@ = Q)
is superlative and has desirable axiomatic properties. Its properties are identical to the
Gini-EKS system studied in the previous section with the exception of tests T8 and T10:
the Fisher own share system satisfies the country partitioning test T10 and fails the ho-
mogeneity in quantities test T8 and vice verse for the Gini-EKS system. Both methods
fail the additivity test T12. Thus if the linear homogeneity property T'8 were thought to
be more important than the country weighting property T'10, then the Gini-EKS system
should be favored over the Fisher own share system and vice versa.

As a corollary to Proposition 9, we note that the Walsh index Quw defined by (64)
satisfies the bilateral tests BT1-BT13. Hence the Walsh own share system (where Q@ = Qw
in (67)) passes all of the multilateral tests except T'8,T'11 and T'12. Moreover, a modified
test T11 (where Qp is replaced by Qw in the statement of the test) is satisfied. Finally,
it can be shown that the generalized Leontief unit cost function defined by (65) is exact
for the system of functional equations (13) where the country shares are defined by (54)
and (67) with Q = Qw. Hence the Walsh own share system is also a superlative method.
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12. Generalizations of Van Yzeren’s Unweighted Balanced Method

In this section, we consider generalizations of Van Yzeren’s [1956; 25] unweighted
balanced multilateral method. In the following section, we consider generalizations of his
weighted balanced method.

Let P(p’, p*, 17, ¥*) be a bilateral price index and consider the following minimization
problem:

(69) minPI,...,PKz§€;12K=1P(pj, pk’ yj’ yk)Ri/Pk'

Note the similarity of (69) to the minimization problem (60) which generated the Gini
price levels.

Since the multilateral methods defined in this section and in section 10 are both
generated by solving minimization problems, both methods are examples of what Diewert
(1981; 179] called neostatistical approaches to multilateral comparisons.

The first order necessary conditions for the minimization problem (69) reduce to

(70) =K P(', 05, o vF)P/ P = X, POV, 0P 01 P/P; i=1,... K.

Note that the objective function in (69) is homogeneous of degree zero in the P,. .., Pk.
Thus a normalization on the P, can be imposed without changing the minimum. Van
Yzeren [1956; 25-26]% initially defined the bilateral price index P(p?,p*,17,3*) to be the
Laspeyres price index3® and proved that the minimum to (69) exists and is characterized
by a unique positive solution ray to the first order conditions (70).3% Van Yzeren’s proofs
of existence and uniqueness go through for the more general model with a general bilateral
P provided that the P(p’, p*, 37, v*) are all positive.

The minimization problem (69) involving the price levels P, can be converted into
a minimization problem involving the Sj if we use equations (59) to eliminate the Py in
(69). If we then eliminate the P(p/, p*, 3, ¥*) using the product test (51), the minimization
problem (69) becomes:

minslv---:SKEf——’lzi(zl[I/Q(pi) pk9 yj! k)][Sk/SJ]
(71) = ming,, sk T SR, QEF. P, 5, ¥7) Sk /S;

where (71) follows from the line above if Q satisfies the bilateral time reversal test BT11.
The first order conditions for (71) reduce to

(72) 2j=1Q(Pi:Pi, ¥, 4°)Si/S; = EK=1Q(Pk,pi,yk, HSk/Si; i=1,..., K.

As was the case with equations (70), equations (72) are dependent and any one of them
can be dropped. Following Van Yzeren's [1956; 25-26] proof again and assuming that the

27



Q(p?, p*, 4, v) are all positive, we obtain a unique positive solution ray to (72). To obtain
a unique solution to (72), add the usual normalization

(713) =K Spi=1

Following the example of Van Yzeren [1956; 19], we suggest a practical method for
finding the solution to (72) and (73). First, note that equations (72) can be rewritten as
follows: fori=1,..., K:

(74)  S; = {[ZK, Q0" P, v*, v} S/, Q0 p . o, 1) ST .

Temporarily set S; = 1 and drop the first equation from (74). Insert positive starting
values for Sy, ..., Sk into the right hand sides of equations 2 to K in (74) and obtain new
values for Sy,...,Sk. Insert these new values into the right hand sides of equations (74)
and keep iterating until the S; converge. The final vector [1,53,...,Sk] can be then be
normalized to sum up to unity.40

Before we discuss the axiomatic properties of the multilateral method defined by (72)
and (73), it is useful to note what happens if the circularity test (52) is satisfied by Q
for the observed data set. At the beginning of section 10, we showed that all of the star
system shares would coincide in this case. If the common system of shares were denoted
by S7,..., Sk, we would have QR ¢, v y) = SJ?/S;' for all i and j. Thus if the bilateral
index @) satisfies circularity for the observed data, then it can be seen that the base country
invariant shares St,..., Sk will satisfy equations (72) and hence these shares will also be
the unweighted balanced method shares.4!

Proposition 10: Let the once differentiable bilateral quantity index Q satisfy tests BT1-
BT13. Then the unweighted Van Yzeren balanced system with this Q defined by (72) and
(73) fails the multilateral tests 7710 and T12. Test T'11 is satisfied if Q equals Qp, the
Fisher ideal quantity index, and in general, a modified test T'11 is satisfied where the Qp
in the statement of the test is replaced by Q. The remaining multilateral tests are satisfied.
If Q equals the Laspeyres, Paasche or Fisher ideal quantity index, then the corresponding
unweighted balanced system is exact for the homogeneous quadratic aggregator function
f defined by (41) and for the homogeneous quadratic unit cost function ¢ defined by (42).
Moreover, each of these three versions of the unweighted balanced method satisfies all of
the multilateral tests except the country partitioning test T10 and the additivity test T'12.

The above Proposition shows that the following multilateral methods are all superla-
tive: (i) Van Yzeren’s [1956; 15-20] original unweighted balanced method that set Q = Qp,,
where Q, is the Laspeyres quantity index (which corresponds via (51) to the Paasche price
index); (ii) Gerardi’s [1974] modified unweighted balanced method that set Q@ = Qp, where
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Qp is the Paasche quantity index (which corresponds to the Laspeyres price index) and
(iii) Van Ijzeren’s {1987; 61] Fisher ideal balanced method that set Q = Qp, where Qf
is the Fisher ideal quantity index (which corresponds via (51) to the Fisher ideal price
index). Moreover, these three methods all have the same axiomatic properties, failing only
tests 710 and T'12.

Since the Walsh bilateral quantity index Qw satisfies tests BT'1-BT'13, Proposition
10 shows that the unweighted balanced method that sets Q@ = Qw in (72) also satisfies all
of the multilateral tests except 710, T'11 and T°12. However, the modified version of T11
where Qr is replaced by Qw is satisfied. Moreover, it is straightforward to show that this
Walsh unweighted balanced method is exact for the flexible unit cost function defined by
(65) and hence this multilateral method is also superlative.

It is possible to follow the example of Balk [1989; 310-311] and show that the shares
generated by the unweighted balanced method with an arbitrary bilateral Q (recall (72)
above) will be numerically close to the shares generated by the Gini system (recall (58)
above). First note that if we multiply both sides of (72) by 1/K, we obtain arithmetic
means of K numbers on each side of (72). These arithmetic means can usually be closely
approximated by geometric means. Hence the equations (72) are approximately equivalent
to

(75) I, QW P, 4%, 49)Si/SiIVE = TE, [Q(%, ', %, o) S/ SV, i=1,... K.
The above equations simplify to
(76) S? = o[, Q(F, v, o5, ")/, QP o )IVE; i=1,... K,

where o = [IIK | S]V/X. If Q satisfies the time reversal test BT11, then equations (76)
further simplify to equations (58), the defining equations for the Gini shares with a general
Q. Finally, note that if the bilateral Q in (76) is either the Laspeyres index @, or the
Paasche index Qp, then the resulting equations (76) are equivalent to equations (58) with
the bilateral Q in (58) set equal to the Fisher ideal quantity index Q. This last observation
helps to explain Van Ijzeren’s [1987; 63] observation that the unweighted balanced method
shares are numerically close no matter whether Qz, Qp or Qr is used as the bilateral Q
in equations (72) and (76).42

The argument in the last paragraph above showed that the Fisher unweighted bal-
anced method, where Q = Qp in (72), will generate shares that are numerically close
to the Gini-EKS shares, where Q = QF in (58). Propositions 8 and 10 above also show
that these two multilateral methods have identical aziomatic properties (they both fail
the country partitioning test T10 and the additivity test T12) and they have identical
economic properties (they are both exact for the homogeneous quadratic functional forms
defined by (41) and (42) above).
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In the following section, we shall study another class of multilateral methods due
originally to Van Ijzeren [1982; 45]. The method studied in section 13 below turns out
to have identical axiomatic and economic properties as the own share system studied in
section 11 above.

13. Generalizations of Van Yzeren’s Weighted Balanced Method

Following Van Yzeren [1956; 25] (who chose the bilateral @ to be Qr, the Laspeyres
quantity index), we introduce the following weighted version of the minimization problem
(71):

minS],...,szlezf-_—leka(pk)pj, ykv y])Sk/SJ

where the positive weights w; are given numbers that somehow reflect the relative size or
importance of the countries. The first order necessary conditions for the above minimiza-
tion problem reduce to (77) fori =1,...,K:

(1) K wiQ, P, ¥, ¥)5i/S; = B, wkQ(p*, 7, 45, 4') S/ Si.

If the bilateral @ satisfies BT1 and we add the normalization (73) to (77), then the
arguments of Van Yzeren [1956; 25-26] can be adapted to show that there is a unique
positive set of shares Si(P,Y,w),...,Sk(P,Y,w) that solve (73) and (77). Note that
the solution shares now depend on the vector of country weights w = (w,... Jwi)T
as well as the matrix of country prices P and the matrix of country quantities Y. At
this point, we note that Balk’s [1989][1995] axiomatic treatment of multilateral index
numbers works with this weighted system of share functions, S;(P,Y,w),...,Sk(P, Y, w),
rather than the unweighted shares, S;(P,Y),...,Sg(P,Y), that have been studied in the
present paper. We will not pursue Balk’s axiomatic treatment, since it adds an extra
layer of complication in determining exactly what weights w should be used. Moreover,
our axiomatic treatment of the multilateral case seems to be the simplest extension of the
bilateral axiomatic approach.

We now follow Van Ijzeren [1983; 45] [1987; 65] and set w; = Sj for j=1,...,K in
(77).#3 This leads to the following system of equations:

(78) ZiL,Q0 7. ¢¢)SE = BK,Q0¢ ' vk 0)SE i=1,... K.

Equations (78) and the normalizing equation (73) define the Van Ijzeren weighted balanced
shares with a general bilateral Q. Summing equations (78) over all 1 leads to an identity
so only K — 1 of the K equations in (78) are independent.
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We need to establish the existence of a positive unique solution to equations (73) and
(78)% define the ikth element of the matrix A by

(79)  ai = QW5 1,95, ¢)/ZK,Q0 Y, ¢',¥); 1<ik<K.

It can be seen that equations (78) are equivalent to the following system of equations
where 27 = [z3,...,7x] = [Sf,...,S?{]:

(80) Az =r=z.

Il

We assume Q satisfies BT1 and hence A has positive elements. Define the vector v =
[v1,...,vk]T where v; = JI-(=1Q(pi,p7',y‘,yj) for i =1,..., K. Using this definition for v
and (79), we have

(81) oT =ovTA.

Equation (81) shows that the positive vector v is a left eigenvector of the positive matrix A
that corresponds to a unit eigenvalue. Hence by the Perron [1907] - Frobenius [1909] The-
orem, the maximal positive eigenvalue of A is one and there exists a corresponding strictly
positive right eigenvector z that satisfies (80). Once z is determined, the corresponding
S; satisfying (73) and (78) can be defined by

(82) S,-=:1::/2/2§{=1x;/2; i=1,..., K

The numerical calculation of the weighted balanced shares can readily be accom- -
plished if we make use of the theory of positive matrices. Let us drop the last equation in
equations (80) and set the last component of the z vector equal to 1. Define the top left
K — 1 by K — 1 block of the K by K matrix A as the positive matrix A, define the first
K — 1 components of the K dimensional column vector = as Z and define the top right
K — 1 by 1 block of A as the positive vector & Setting zx = 1, the first K — 1 equations
in (80) may be rewritten as

(83) % =[Ix_1— A] s,

where /i _; is a K—1 by K —1 identity matrix. Using a result due to Frobenius {1908; 473},
the maximal positive eigenvalue of A is strictly less than the maximal positive eigenvalue
of A, which is 1. Thus the inverse of Ix_; — A has the following convergent matrix power
series representation:

(84) [IK_I—A]—1=IK_1+A'+}§2+...
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and hence, using the positivity of A, [[x_; —A]~! is a matrix with strictly positive elements.
Thus, using the positivity of &, the Z defined by (83) has positive components. Equations
(83), zy = 1 and equations (82) can be used to numerically define the weighted balanced
shares S; using a general bilateral Q satisfying BT1.4°

The following proposition lists the axiomatic and economic properties of the multi-
lateral method defined by (73) and (78).

Proposition 11:  Let the once differentiable bilateral quantity index Q satisfy tests BT'1-
BT13. Then the weighted balanced method with the general bilateral Q defined by (73)
and (78) fails the multilateral homogeneity in quantities test 78 and the additivity test
T12. Test T'11 is satisfied if Q = Qp, the Fisher ideal quantity index, and in general, a
modified test T'11 is satisfied where the Qg in the statement of the test is replaced by the
Q satisfying the bilateral tests BT1-BT13. The remaining multilateral tests are satisfied.
If the bilateral quantity index Q in (78) equals the Laspeyres, Paasche or Fisher ideal
quantity index, then the resulting Van Ijzeren [1983; 45] weighted balanced systems are
exact for the homogeneous quadratic functions f and ¢ defined by (41) and (42) and hence
each of these systems is superlative. Moreover, each of these three versions of the weighted
balanced method satisfies all of the multilateral tests except 78 and T'12.

The above Proposition shows that the Van Ijzeren [1983; 45-46] weighted balanced
methods that used the Laspeyres, Paasche and Fisher quantity indexes as the bilateral
quantity index are all superlative multilateral systems; i.e., they are exact for the flexi-
ble functional forms defined by (41) and (42). Moreover, these three weighted balanced
methods all have excellent axiomatic properties, failing only tests T8 and T'12.

Since the Walsh bilateral quantity index satisfies tests BT'1-BT13, Proposition 11 im-
plies that the weighted balanced method that uses Qw in (78) will satisfy all of the mul-
tilateral tests except 78,T11 and T'12. Moreover, this Walsh weighted balanced method
will satisfy the modified version of test T'11 where Q is replaced by Qw . It can be shown
that this method is exact for the flexible unit cost function defined by (65) and hence the
Walsh weighted balanced method is also superlative.

Adapting the method used by Balk [1989; 310-311], it is possible to show that the
shares generated by the weighted balanced method using the bilateral quantity index @
(see equations (78) above) will usually be numerically close to the shares generated by the
Gini system using the same bilateral Q (see equations (58) above). Multiply both sides of
equations (78) by 1/K and note that we have an arithmetic mean of K numbers on each
side of each equation in (78). Approximating these arithmetic means by geometric means
leads to the following system of equations:

(85) Hj:l[Q(pi,p‘i’yi’ yJ)ng]l/K = Hf:l[Q(pkvpi; yk, y’)S,%]l/K, 1= 1, ey K.
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Equations (85) simplify to equations (76) and if Q satisfies the time reversal test, equations
(76) further simplify to equations (58), the defining equations for the Gini system shares.
Thus if the arithmetic means are close to the corresponding geometric means in (85),
the Gini shares using a bilateral @ that satisfies BT'11 will be close to the corresponding
weighted balanced shares using the same bilateral Q.

Recall that if the geometric means in (75) are close to the corresponding arithmetic
means, then the Gini shares using a () that satisfies BT'11 will be close to the corresponding
unweighted balanced shares using the same bilateral . Finally, recall that if the harmonic
means in (68) are close to the corresponding geometric means, then the own shares using Q
will be close to the corresponding Gini shares using the same Q. Under normal conditions,
these arithmetic, geometric and harmonic means will closely approximate each other and
so the Gini shares, own shares, unweighted balanced shares and weighted balanced shares
using the same bilateral Q should closely approximate each other.

In sections 10 and 12, we showed that the Gini-EKS system and the unweighted
balanced method with @ = Qr had identical axiomatic (both failed tests 710 and T'12)
and economic properties (both were exact for the same flexible functional forms defined by
(41) and (42) above). Propositions 9 and 11 show that the own share system with Q = QFf
and the weighted balanced system with Q = Qg have identical axiomatic properties (both
fail tests T8 and T'12) and economic properties (both are exact for the flexible functional
forms defined by (41) and (42) above).

14. What are the Tradeoffs?

We have considered in some detail the axiomatic and economic properties of 10 meth-
ods for making multilateral comparisons.s From the axiomatic perspective we find that
the methods described in section 4, 6, 8 and 9 are dominated by other methods. The
undominated methods are: (i) the Gerardi-Walsh geometric average price method defined
in section 5 by equations (3) and (16) which fails only 710 and T'11; (ii) the Geary-Khamis
method defined in section 7 which fails only 78, T'9 and T'11 (but satisfies a modified ver-
sion of T'11); (iii) the Gini system defined in section 10 which fails only 710 and T'12; (iv)
the unweighted balanced system defined in section 12 which also fails only 710 and T'12;
(v) the own share system defined in section 11 which fails only T8 and T'12 and (vi) the
weighted balanced system defined in section 13 which also fails only 78 and T12.

From the economic perspective, we found that the four methods described in sections
10-13 were superior to the remaining six methods: the Gini-EKS system, the weighted and
unweighted balanced systems with the bilateral quantity index Q chosen to be the Fisher
ideal index Qr and the own share system with Q = Qg were all superlative methods; i.e.,
they were exact for the flexible functional forms defined by (41) and (42). The other six
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methods were either not exact for any aggregator function or they were consistent only for
preference functions or production functions that exhibited either perfect substitutability
(a linear aggregator function) or zero substitutability (a Leontief aggregator function or a
linear unit cost function).

Examining the four superlative methods defined in sections 10-13, we found that if
various harmonic and arithmetic means are close to the corresponding geometric means,
the shares for these four methods will be numerically close to each other if the same
bilateral @ is used in each method. Assuming that the bilateral quantity index used in
each of these four methods is the Fisher ideal quantity index, Propositions 811 above
showed that it was not possible for any of these superlative methods to simultaneously
satisfy test T'8 (linear homogeneity in quantities) and test T'10 (country partitioning): the
Gini-EKS system and the unweighted balanced method satisfied T8 but not 710 while the
own share and the weighted balanced methods satisfied 710 but not 7'8.47

How should we resolve the conflict between T8 and T10? There is no completely
scientific answer to this question but consider the following opinions. First, Peter Hill
noted that a major advantage of the Geary-Khamis method which satisfies T'10 over the
Walsh-Gerardi method which does not is that the former method would not change very
much if a large country were split up into several small countries:

“Thus, the contribution of the United States to the determination of the
average international price would tend to be the same whether or not the United

States were treated as a single country or fifty or more separate states.”
Peter Hill[1982; 50]

In a similar vein, Kravis, Summers and Heston make the following comment on the Walsh-
Gerardi method:

“The Gerardi method would assign the same weight to Luxembourg and
Belgium prices as to German and Netherlands prices in a comparison involving
the four countries. However, if Belgium and Luxembourg become one country
their average prices would have a combined weight of one. The comparison be-
tween Germany and Netherlands would differ according to whether Luxembourg
and Belgium were treated as two countries or one.”

Irving Kravis, Robert Summers and Alan Heston[1982; 408]

Finally, Van Ijzeren summarizes his discussion on whether a weighted method (which
satisfies test 7'10) should be used as follows:

“Hence, theory rejects non-weighting. Surely, common sense does too!”
J. Van Ijzeren[1987; 67]
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I tend to agree with the above authors on the importance of weighting: it seems reasonable
that the chosen multilateral method should reflect the fact that if big countries are broken
up into a bunch of smaller countries, then comparisons between the unpartitioned countries
should remain the same. This is the essence of the country partitioning test 710. Thus it
seems to me to be more important to satisfy 710 rather than T8.

Propositions 9 and 11 show that the Fisher own share system and the Fisher weighted
balanced method have identical axiomatic and economic properties: both are superlative
and both fail the linear homogeneity test 78 and the additivity test T12 but pass the
other tests including 7'10. Moreover, we have provided theoretical arguments to show
that they will normally closely approximate each other numerically.®8 Which of these
two methods should be used in practice? Balk [1989; 310} provides a theoretical argument
(which the present author finds unconvincing) for preferring the weighted balanced method
over the own share method. However, a major advantage of the own share method is its
relative simplicity. Statistical Agencies can readily explain the essence of the method to
the public as follows: each country’s preliminary share of “world” output or consumption
is determined by making bilateral index number comparisons (using the best available
index number formula) with all other countries. These preliminary shares are then scaled
(if necessary) to sum up to one. It is very difficult to explain the mechanics of the weighted
balanced method in an equally simple fashion.

In some situations, it may not be important for the multilateral method to satisfy the
country partitioning test T10. For example, the multilateral method might be required
to determine the relative price levels (or purchasing power parities) in a number of cities
where an international organization or multinational firm has employees so that salaries
can be set in an equitable manner. In this case, it will probably be more important
to satisfy the linear homogeneity test T8 rather than 7'10. In this situation, it will be
important to use a superlative method, which will recognize the realities of consumer
substitution. In this situation, we would recommend the use of the Gini-EKS system or
the unweighted balanced method with Q = Qf since these methods are superlative and
fail only tests T10 and T'12. In section 12, we indicated that these two methods will
normally numerically approximate each other quite closely.4? Which of these two methods
should be used in empirical applications? On grounds of simplicity, we would favor the
Gini-EKS system over the unweighted balanced system. In the former case, there is at least
a closed form formula for the country shares, while in the latter case, iterative methods
have to be used in order to determine the country shares. Thus it will be more difficult for
International Agencies or multinational firms to explain the mechanics of the unweighted
balanced method to their employees.

Having discussed the tradeoffs between tests T8 and T'10 in the context of the four
superlative multilateral methods analyzed in this paper, we turn now to a discussion of the
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tradeoffs between superlativeness and additivity. For the ten multilateral methods studied
in this paper, it is impossible to satisfy both properties simultaneously if the number of
countries K exceeds two.’ We will now indicate why the quest for an additive superlative
method will be futile in general in the many country case (i.e., when K > 3).

Consider the two good, three country case. Suppose that we are in the consumer
context and that the preferences of each country over combinations of the two goods can
be represented by the same utility function and that the observed consumption vector
(yf, yé‘) for each country k is on the same indifference curve. Suppose further that relative
prices p’«j / p’f differ dramatically across the three countries. The situation is depicted in
Figure 1 below. The points A, B and C represent the consumption vectors (y1,43), (¥, y2)
and (y:l’, yg) for countries 1, 2 and 3 respectively. Since the consumption vectors are all on
the same indifference curve, a multilateral method based on the economic approach should
make the country shares of world consumption equal; i.e., an economic based multilateral

Figure 1

Y2
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method should yield S! = §2 = S3. Depending on how well the flexible functional form
associated with a superlative multilateral method approximates the indifference curve in
Figure 1, a superlative multilateral method should lead to approximately equal shares for
the three countries. The set of consumption vectors that an additive method will regard
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as being equal can be represented as a straight line with a negative slope in Figure 1. If
we take the prices of country 2 as the world average prices associated with an additive
multilateral method, it can be seen that the share of country 1 will be proportional to
the distance OE, the share of country 2 will be proportional to OD (too small) and the
share of country 3 will be proportional to OF (too big). As the reader can see, there is no
choice of price weights that will generate a straight line that will pass through each of the
points A, B and C simultaneously. Thus additive methods, which implicitly assume that
indifference curves are linear, are inherently biased if indifference curves are nonlinear.

Figure 1 can also be used to demonstrate the general impossibility of finding an
additive superlative multilateral method if the number of countries K > 3 and the number
of commodities N > 2: if N > 2 and K > 3, then let the last N — 2 components of the
country consumption vectors y*, %2, ...,y" be identical and let the first two components
of y!, 32 and 1 be the points A, B and C in Figure 1, so that the utility of !,3? and 33
is identical. Since there is still no straight line that will pass through the points A, B and
C, our general impossibility result follows.

Figure 1 also illustrates the Gerschenkron effect: in the consumer theory context,
countries whose price vectors are far from the “international” or world average prices used
in an additive method will have quantity shares that are biased upwards.5! Marris [1984;
52) has a diagram similar to our Figure 1 to illustrate the bias associated with additive
methods in the consumer theory context. It can be seen that these biases are simply
quantity index counterparts to the usual substitution biases encountered in the theory of
the consumer price index.52 However, the biases in the multilateral context will usually be
much larger than in the intertemporal context, since relative prices and quantities will be
much more variable in the former context.

As an aside, R.J. Hill [1995; 73] noted that the average basket methods studied in
section 6 above will suffer from a reverse Gerschenkron bias: in the consumer theory
context, countries whose quantity vectors are far from the average basket quantities will
have quantity shares S* that are biased downwards and this bias is reversed in the producer
theory context.

The bottom line on the above discussion is that the quest for an additive multilateral
method with good economic properties (i.e., a lack of substitution bias) is a doomed ven-
ture: nonlinear preferences and production functions cannot be adequately approximated
by linear functions. Put another way, if technology and preference functions were always
linear, there would be no index number problem and hundreds of papers and monographs
on the subject would be superfluous! Thus from the viewpoint of the economic approach to
index number theory (which assumes optimizing behavior on the part of economic agents),
it is not reasonable to ask that the multilateral method satisfy the additivity test, T'12.
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We conclude this section by reinterpreting the quest for additivity. Suppose that we
want an additive method, not to provide accurate economic relative shares for K countries
in a bloc, but simply to value the country quantity vectors 3!,...,y% at a common set
of “representative” prices 7 = [my,mo,. .. ,1rN]T. The question is, how should we choose
these “representative” or “reasonable” international prices? There appear to be two main
alternatives: one due to Balk [1989; 299] and one due to Hill [1982; 59].

Suppose that in defining the international price vector 7, we are allowed to use the
country shares S* and country purchasing power parities or price levels PX k=1,..., K,
that are generated by the investigator’s “best” multilateral method. Balk [1989; 299],
drawing on the work of Van Ijzeren [1983][1987], defined his vector of international prices
7 as the following country share weighted average of the country price vectors p* deflated
by their purchasing power parities:

(86) ==Xk Sk*/PF).

On the other hand, the generalized Hill [1982; 59] international prices mp,n =1,..., N can
be defined by equations (25) above, except that the Geary-Khamis price levels P* which
appeared in those equations should be replaced by the analyst’s “best” multilateral price
levels. Hill [1982; 50] [1984; 129] explained why the m,’s defined by (25) are natural ones
to use to define international average prices: these prices are the natural extension to the
multilateral context of the prices used in the national accounts of a single country. In a
single country, the average price used for a commodity is its unit value; i.e., its total value
divided by its total quantity.5 It can be seen that the m, defined by (25) are precisely
of this character, except that the country prices pX are replaced by the purchasing power
parity adjusted prices pﬁ/Pk. However, Hill did not emphasize the fact that it is not
necessary to use the Geary-Khamis P* in (25): the P* generated by any multilateral
method could be used.

To summarize the above discussion, we followed the example of Balk [1989; 310] and
suggested that it is not necessary that the multilateral method satisfy the additivity test:
the country shares S* and the country price levels P* generated by the “best” multilateral
method can be used in equations (25) or (86) to generate “representative” international
prices or unit values m, that can be used by analysts in applications where it is important
that commodity flows across countries in the bloc be valued at constant prices.4

15. Conclusion

In section 2, we developed a “new”% system of axioms or desirable properties for
multilateral index numbers. Tests T'1 — T'9 are adaptations of bilateral index number

38



tests to the multilateral context. Tests 710 and T'11 are genuine multilateral properties
that do not have bilateral counterparts. We have included the additivity test T'12 in
our list of axioms because so many analysts find this property very useful in empirical
applications. However, in the previous section, we concluded that the additivity test was
not at all desirable from the viewpoint of the economic approach to index number theory
since additive methods cannot deal adequately with nonlinear preference and technology
functions. Thus axioms T'1 — T'11 are a very reasonable set of properties that can be used
to assess the usefulness of a multilateral system of index numbers.

In section 3, we pursued the economic approach to index number comparisons. In
particular, we adapted the exact and superlative index number methodology developed for
bilateral index numbers to the multilateral context. If a multilateral system is superlative,
then it is consistent with optimizing behavior on the part of economic agents where the
common preference or technology function can provide a second order approximation to
an arbitrary differentiable linearly homogeneous function. Thus a superlative method will
tend to minimize various substitution biases that nonsuperlative methods will possess.
Superlativeness is a minimal property from the viewpoint of the economic approach to
index numbers that a multilateral system should possess.

In section 4-13, we evaluated 10 leading multilateral methods from the economic and
axiomatic perspectives. From the axiomatic perspective, 6 methods satisfied more axioms
than the remaining methods. These best methods were: the Gerardi-Walsh geometric
average price method defined in section 5 (which fails T10 and T'11); the Geary-Khamis
method defined in section 7 (which fails 78,79 and T'11); the Gini system and the un-
weighted balanced system defined in sections 10 and 12 (which fail 710 and T'12) and the
own share and weighted balanced system defined in sections 11 and 13 (which fail T8 and
T12). From the economic perspective, the 4 methods defined in sections 10-13 were the
best.

To see that the 10 multilateral methods studied in this paper can generate a very
wide range of outcomes, the reader should view the results of a 3 country, 2 commodity
artificial empirical example in Appendix 2.

If the multilateral method is required to determine purchasing power parities in the
K locations so that satisfaction of the country partitioning test T'10 is not important
in this context, then in section 14, we concluded that either the Gini-EKS system or
the unweighted balanced method (using the bilateral Fisher ideal quantity index) were
probably best for this purpose. Between these two methods, we have a slight preference
for the Gini-EKS method due to its relative simplicity.

On the other hand, if the multilateral method is required to rank the relative outputs
or real consumption expenditures between the K countries (or provinces or states), then
since satisfaction of test T'10 is important in this context, we concluded in section 14 that
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the own share or the weighted balanced methods (using the bilateral Fisher ideal quantity
index) were probably best for this purpose. Between these two methods, we have a slight
preference for the own share system due to its relative simplicity.%®

Finally, it is appropriate to end this paper by noting the pioneering contributions of
Van Yzeren [1957] (Van Ijzeren [1983][1987]): of the 10 methods studied in this paper, he
was the originator of 4 of them.
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Appendix 1: Proofs of Propositions

In most cases, verifying whether a multilateral method satisfies a given test is a
straightforward calculation. Hence many proofs will be omitted.
Proof of Proposition 1:
T9:  To verify monotonicity, differentiate S* with respect to the components of y*:
VaSHPY) = [ZK,p - o] [1 - S¥P,Y)]p* >> on
since pf >> Oy and 0 < S¥(P,Y) < 1.
T11: Under the conditions of T'11, we find that
TjeBS'(P,Y)/TicaS' (P,Y) = %eBibir® - v}/ TicaiBir® - v* # Qr (0% 1%, 1%, ).
Ezactness Properties: The system of functional equations (12) becomes:

&V fW)-v'/e; v F(&P) - ¥ = F(')/ (&)
or  ef(y)/eif) = FF)/ F&) since v f(v') - ¥* = f(¥°)

or eifej = 1.

Hence there is no differentiable linearly homogeneous f which satisfies (12).
The system of functional equations (13) becomes:

- Vel )u/p - Vel )uj = wifu;
or c(p")u,-/c(pj)u,- = ui/u; since p*- ve(p') = c(p')
or eifej =1 since c(p*) = e;.

Hence there is no differentiable unit cost function c that satisfies (13).

Proof of Proposition 2:
TS Letp>>0n, ox >0andpf=agpfork=1,...,K. Then for k=1,...,K:

SkP,Y) =N m(aupn,..., aKpn)yf,/Ef:Im(alpj, e ,aKpj)Efily}

= Eﬁ:lm(alv sy aK)Pnyr’:/EJI";lm(als ey aK)pJEtIily;
using the linear homogeneity of m

=p-y*/=K p- v\
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T7:. Letagy>0fork=1,...,K. Then

S¥(aip',...,axp™,Y)
= EN lm(alpm v OKPp )yn/zhf-lm(alp]’ -y XKDj )Et—ly]
n=lm(Pm <vPn )yk/zj-lm(pjr SRRy 21 )Et—-ly)

unless
(A1) m(alp,l,, . ,axan) = ¢(ay, ... ,aK)m(p,l,,. P )

for some function ¢. Using the properties of m, we can deduce that ¢ must be continuous,
strictly increasing, positive for positive ay with ¢(1,...,1) = 1. Equation (Al) is one of
Pexider’s functional equations and by a result in Eichhorn [1978; 67], there exist positive
constants C, f1, ..., B such that

m(zy,...,TK) =fo‘...z’?(";cﬁ(al,...,ax)=o€‘...d?(".

Since m is symmetric, all of the 8; must be equal to a positive constant. Since m is
positively linearly homogeneous, each B must equal 1/K. Finally, the mean property for
m implies C = 1. Thus

(A2) m(zy,...,zk) = (1 f_lxk]llx.

Hence the symmetric mean multilateral system will satisfy T°7 only if m is defined by (A2),
which is the geometric average price method defined by (3) and (16).

T9: VuSEPY)=[p-y]"'[1 - SKPY)]p>> On
where y = Ek,_ly" and § = [m(p}, .. p{(), ces ,m(P}v, e ,Pﬁ)]T-
T10: Part (i) is satisfied but not part (ii).

T11: %S’ (P,Y)/ZicaS*(P,Y) is not independent of the a; and -y; and hence is not
a function of only p?, p?, ¥® and 1.

Ezactness Properties:  Assuming (3) and (14), Diewert [1996; 255-256] showed that the
only differentiable linearly homogeneous solution to (12) is the f defined by (17) and the
only differentiable solution to (13) is the unit cost function ¢ defined by (18).

Proof of Proposition 3:  To ensure that the S* defined by (22) are well defined, we assume
that all quantity vectors are strictly positive; i.e., we assume ¢* >> Oy fork =1,2,..., K.
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T8  Substituting (22) and (23) into the equations defining the test leads to the following
system of equations that m must satisfy: for \; > 0, p* >> Oy, p? >> On, ¥* >> Op for
k=1,...,Kand1<i#j< K:

(A3) 211:J=lpri;m(y}u ey )‘iy:x’ <y Un )/E,.__.lp,.m(y,l., AR ’\iy:"v < Yp )
= 211¥=1pr1tm(yrlu <oy Un )/Erzlprm(yrv e Yy )
Cross multiplying terms in (A3), collecting terms in p}p and choosing a grid of p* and

p’ vectors implies that equations (A3) will hold only if the following system of equations
holds forall \; >0, i=1,...,Kandn, r=1,...,N:

(A4) m(y'll’ tre Aiy::l7 ct ’yf{{)/m(yrl’ M ’Aiy::) < yf ) - (y}l, ’yﬂ )/m(yr’ y"}'()'

Repeated use of (A4) for i = 1,..., K implies that the following equation must hold:

m(Ayd, Mg, .. Akl ) /m(Aayl, dag, . AkyE)

(A5)
=myn, ¥2, . ¥ /myt v ).

Let (yrln ayn) —(yl’ . »yK): (y,!, ,yr) _(zl: ,ZK) >> 0k and (’\11"',’\K) =
(z7L,... ,2x'). Making these substitutions into (A5) and using m(1g) = 1 transforms
(A5) into:

(A6)  m(zi'yn 23 v 2k k) = mlys g, k) /M2, 22, - 2K)-

Define g(z1,z9,...,ZK) = l/m(xl“l,zgl,...,xffl). Letting z, = z,;’l fork=1,.. K
and using the definition of g, (A6) becomes the following functional equation:

(A7)  m(zyy1, 292, - - -, TKYK) = m(y1, V2, - - ., UK)9(Z1, T2, - - ., TK)

which must hold for all £ >> 0k and y >> Ox. Now apply a result due to Eichhorn
[1978; 67] to (A7), use the assumption that m is a homogeneous mean and conclude that
m must be defined by (24) in order that (A7) hold. It is straightforward to show that if m
is defined by (24), then test T'8 holds. Hence a symmetric mean average quantity method

will satisfy T8 if and only if the homogeneous symmetric mean m is the geometric mean
defined by (24).

T9: Consider first the arithmetic mean case where S* is defined by (22) and (23). A
straightforward calculation shows that for j = 2,..., K and z > Op, we have

(A8) SY P,y + 2,2,... ,yK)/.S'-"'(P,‘g,/1 +2z,9%, ... ,yK) > S1(P, Y)/Sj(P, Y).
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The inequalities (A8) imply that S1(P,y!,%?,...,y¥) is increasing in the components of
y'. We can similarly show that Sk(P, Y') is increasing in the components of y* for any k.

Now consider the geometric mean case where S* is defined by (22) and (24). Let
K =2 and N = 2 and calculate the derivative of S}(P,Y)/S%(P,Y) with respect to y]. It
is possible to find positive vectors p!, p?, 1, y2 which make this derivative negative. Hence
the geometric weights method fails the monotonicity test 7°9.

T10: Part (i) holds but part (ii) does not.

T11: Z;epS’(P,Y)/TicaS'(P,Y) is not independent of the §; and §; and hence is not
a function of only p?%,p®, ¥* and yb.

Ezactness Properties:  Diewert [1996; 257] showed that for this method, the only dif-
ferentiable linearly homogeneous solution to (12) is the f defined by (17) and the only
differentiable solution to (13) is the unit cost function defined by (18).

Proof of Proposition 4:

T1: The Perron-Frobenius Theorem implies that the maximal eigenvalue eigenvector of
the positive matrix C, subject to the normalization (28), is unique and thus the components

of m will be continuous functions of the elements of C and hence of the elements of P and
Y.

T3: Letp>>0y,ar>0andp*=appfork=1,...,K. Definey = K  y*. We need
to show that S* =p-y*/p.yfor k=1,..., K. Hence we need only show that 7 =p/p-y
satisfies (27) or equivalently that Cp = p. We have:

Cp = § 2K orpy*y* T p/oup™ "
oK F
—lfjp

I
§ @

T7: The matrix C defined by (30) remains invariant if p* is replaced by oxp* for
k=1,... K.

T8: For this test to pass when K = 2, we require Pgg defined by (32) to be homogeneous
of degree 0 in the components of y® which is not true.

T9: When K = 2, we require that S2/S! be increasing in the components of 2. In this
case, we obtain an explicit function of p!,p?,y!,y? for S2/S! (see the right hand side of
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(31) with a = 1 and b = 2) and by differentiating this function with respect to a component
of 3, we can verify that monotonicity fails.

T10(i): Let p® >> Oy, p* = asp®, a; > 0, ¥® > On, ¥* = Biv®, Bi > 0 for i € A with
YicaPi = 1. Fori € A and j € A, we have

SYPY)/SHPY)=n-y[n -y =7 Biy*[n - Biy* = Bi/ ;.

T10(ii): If we premultiply (27) by the diagonal matrix g, the resulting system of equations
becomes:

(A9)  [Zicad + ZijeB? — Tiea®’ - v') 1YY — Sien(p’ - v7) 1Py T|m = Oy or
[ZicaBii® + ZjeBY¥ — TicaloiBip® - v*) laip®Biy°BiyT
~Ziep(p’ - ¥) 'Yy In =0y or
(A10) [° +Zjed — (0 - ¥*) 10T — Zjen(p? - ) 1y T|m = On.

If we premultiply (A10) by §~1, we obtain [Iy — C*]n = Oy where C* is the matrix that
corresponds to the aggregated (over countries in the subbloc A) model. Hence if 7 satisfies
(A9) and (28), it will also satisfy (A10) and (28).

T11:  Under the restrictions for this test, the system (27) or equivalently the system
(A9) reduces to:

[,ga + gb - (pa . ya)—lﬁayaycT _ (pb . yb)‘lﬁbybbe]w =0§ or
(A1) [# + 10 - ) BT + (0 )T B T =

Define the vectors of expenditure shares for subblocs A and B by s® = $%y%/p® - y* and
8% = pPy®/p® - 1P respectively and the quantity shares of “world” output for the two blocs
A and B by ¢* = [#°+7%]"19° and ¢® = [§® + 7]~ 14® respectively. Note that ¢°+q® = 1y,
a vector of ones. Now premultiply both sides of (A11) by y%T. Rearranging terms in the
resulting equation, we find that:

moyt/myt =15 ¢")/s" - ¢
=[s® 1y —s%-¢%/s® ¢® since s%-1y=1

=35%.¢%/s®. ¢° since 1y —¢®=¢’
= {p”T@“[ﬁ“ + 37 1 Tt + z)"]“y“} {p” /- y“}
(A12) =p® - %/p® - v Pok (0*, PP, %, ")
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where P is the bilateral Geary-Khamis price index defined by (32). Since the left hand
side of (A12) is £;epS?/TicaS*, we see that test T'11 fails: we do not obtain the bilateral
Fisher ideal quantity index on the right hand side of (A12).

Ezactness Properties:  We first consider the two country case, K = 2. In this case
when we have differentiable demand functions, using (A12), equations (13) reduce to the
following single equation:

P v* /o -y Pek (', 0%, v', v?) = wa/ur or
e(p®)ua/c(p")ur Poxc (p*, P2, ve(pt)ur, Ve(@?)uz) = ug/u; or
Pok(p', p?, ve(p')u1, ve(pP)ug) = c(p?)/c(p!) or

2N= Zcﬂ 1c,.2u1u c"lu'_’_c'l 21‘ _ 2
(AL3) Em“=1pmg %@’)%5)"1“2/ ICvn(P‘)uHc'n%p)’)uzl - %’%
The left hand side of (A13) is independent of u; and uy only if c,(p!) = cn(p?) for
n=1,2,...,N for all price vectors p* and p?; i.e., the first order partial derivatives of

the unit cost function ¢(p) must be constant in order for (13) to hold. Hence in the case

of differentiable demand functions and only 2 countries, the unit cost function must be
linear.

Now consider the two country case with differentiable inverse demand functions. In
this case, equations (12) reduce to the following single equation:

F@Pe2/ FM)erPex (T f (W )er, v ez, v',v%) = 4D/ f(¥') or
VT + 9479 v F@Pe/yT I + 9179 v fyV)er = e2fer or
(A14) vl + 9 v F (%) - v (¥ = 0.

For n=1,2,..., N, set y! = iy, the nth unit vector, and substitute into (A14). We find
that we must have f,(y?) = fu(in) forall y? for n = 1,..., N. Hence the first order partial
derivatives of f are constant and the only solution to (12) is the linear f defined by (17)
in the two country case.

Now consider the case where K > 3. In the case of differentiable demand functions,
using (8) and (29), equations (13) reduce to:

(A15) = ve(p')ui/n - Ve(p’)uj = wi/u; or
7 - [c(p') — ve(p’)] =0 for1<i,j <K.

Recall that the equations which define 7 are (27) and (28). Using (8) and letting ~ denote
the operation of diagonalizing a vector into a matrix, (27) is equivalent to:
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(A16) [Ef_; v &(p™)um — ZE_[c(p™)] 715" v c(p™) VT c(p™)um]T = On.

To show that (A16) implies that yc(p*) = c(p?) for all p* and p’ (and hence that ¢ must
be defined by (18)), we need only show that by varying p* (where k is not equal to i or
7), we can find N linearly independent ¥ which satisfy (A15). By examining (A16), we
see that this can be done. If we let all of the u,, in (A16) be close to 0 except for u, then
(A16) is approximately equivalent to the following system of equations:

Tncn(PF)ug — pEcn(0F) v c(@*) - t/c(p)ur =0; n=1,...,N,or
Tn = pE7 - ge(p¥)/c(p*); n=1,...,N.

Hence = is proportional to p* and by choosing NV linearly independent p* vectors, we can
obtain N linearly independent ¥ vectors.

For the case of differentiable inverse demand functions when K > 3, a proof of
exactness in Diewert [1996; 257] can be adapted to the present situation to show that the

differentiable linearly homogeneous aggregator function f must be the linear one defined
by (17).

Proof of Proposition 5:

T1: By the Perron-Frobenius Theorem, the maximum eigenvalue right eigenvector s of
the positive matrix D, subject to the normalization (36), is strictly positive and unique.

Thus s will be a continuous function of the elements of D and hence of the components of
PandY.

T2: Under the assumptions for this test, equations (39) become
St = a2}=l(ﬂ;/ﬂj)Sj fori=1,..., K.
Thus a = 1/K, 5% = B for k = 1,..., K satisfy (36) and (39).
TS: Letp>>0n,ar>0,p=oxpfor k=1,..., K. Equations (39) become

S'i=a2_§(=1(ajp-yi/ajp-yi)sj fori=1,...,K or
Sip-y =aXh  Si/p-of fori=1,... K.

Hence a = 1/K and S* = p- y*/p - y will satisfy (36) and (39).

T4: From equations (36) and (39), s and a are determined by the elements of the matrix
D. Since these elements are invariant to changes in the units of measurement, so are the
elements of s.
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TS5: Since the elements of D remain unchanged if we change the ordering of the com-
modities, the elements of s will also remain unchanged.

T6: By examining equations (39), we see that changing the ordering of the countries
simply changes the ordering of the elements of s and the maximum positive eigenvalue of
D remains unchanged by a simultaneous permutation of its rows and columns.

T9: For K = 2, equations (39) can be rewritten as follows:
1=l +(0* y'/p*-4*)(S*/SY)];
$?/S! = af(p! - p*/p' - ) + (S2/SY)].
Eliminating o from the above two equations leads to the following single equation:
$*/St = [pt - y?p? - ?/p - y'p? - ']t = Qr(ph, P20, 1),

Note that $2/S! = Qr(p!, p?% y',4?) is increasing in the components of y* and decreasing
in the components of y!. Thus for K = 2, monotonicity is satisfied.

However, for K > 3, monotonicity is not satisfied in general. The K + 1 equations
which define the K dimensional vector of shares s and the maximum positive eigenvalue
A of D are (recall (36) and (40) with A = 1/a):

(A17) [D- Mgls=0g; lgx-s=1;

where d;; =9 y'/p) -9 fori,j=1,...,K. Note that dj; = 1 for all i. When K = 3,
is the maximal root of the determinantal equation | D — A3 |= 0. Definez =1 — A and
this determinantal equation becomes

73 — [d1oda1 + da1d13 + daadas)z + [d1adasds) + diadadsa) = 0.

We need to find the smallest real root of the above equation. In order to find an explicit
solution, consider the case where d13 = dsg = 0. In this case, we find that A = 1+[d12d21]§.
Substitute this value for A into (A17) when K = 3 to determine the components of
s =[S, §2, ST

(A18) S'= (da1)idyo/D; 5% = (dio)hdn1/D; S° = [(d12)ds1 + (da1)1dsa)/D
with D = (dzl)%dlg + (dlz)%dzl + (dlz)%dm + (dzl)idaz > 0. By substituting d;; =

P’ -4*/p’ - 1 into (A18) and differentiating S with respect to the components of !, it
can be verified that S! is not always increasing in the components of y.

T10: Part (i) is satisfied but part (ii) is not.
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T11: Substitute the assumptions of the test into equations (39). Then for i € A, (39)
reduces to (A19) below and for j € B, (39) reduces to (A20):

(A19) S = aZrea(arp® - Bry®) 'arp® - Biy®S* + aZjep(vip’ - 6i9°) 1yp® - Byt ST
(A20) 87 = aZica(ip® - Biy®) " lip® - 14PS* + aZren(nep® - Gy?) I vep® - 63°S*.
Now let St = (3;S® for i € A and S7 = v;S? for j € B. Substituting these equations into

(A19) and (A20), we find that each equation in (A19) reduces to (A21) and each equation
in (A20) reduces to the single equation (A22):

(A21) S =a(#A)(p* - v*/p" - ¥°)S® + a(#B)(p* - y°/p° - ) S%

(A22) S®=o(#A)(p*- ¥*/p" - 4°)S° + a(#B)(p* - v*/0" - ) S

where #A is the number of countries in A and #B is the number of countries in B.
Eliminating o from (A21) and (A22), we obtain the following single equation in S%/5%:

(A23) B /p* - )@+ (1-B)Q - (0* - 4*/p* - y") =0

where 8 = #B/#A and Q = S%/5%. If #A = #B and hence # = 1, the Q solution
to (A23) reduces to Q@ = Qr(p®,p°, v, v*) = S%/S°. However, in general the number of
countries in each subbloc A and B is not restricted to be the same and so in general test
T'11 fails.

Ezactness Properties: When K = 2, in the proof of T9, we established a result due
to Van Yzeren {1957; 15]; namely S?/S! = Qp(p!,p? y',3?), the Fisher quantity index.
Thus (41) and (42) are exact for this method when K = 2.

For K > 3, replace S7/S* by f(1¥)/f(v*) and p? by 7f(1)e; in equations (39).
Letting A = 1/a, the transformed equstions (39) become, using v* - v f(v*) = f(¥*):

(A24) =K [ vf@Mer/ f@F)e] [f@F)/ f()] =X i=1,...,K or
Shott - IR/ =X i=1,.. K.

Let j # i and subtract equation j in (A24) from equation i. We obtain the following
system of equations for i # j:

(A25) =K, v &) - {[/fM)) - ¥/ 5@} =0.

If f is the linear aggregator function defined by (17), it is easy to verify that this f satisfies
(A25) (and (A24) with A = K). For K > 3, we now show that this is the only solution to
(A25).
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Let f be linearly homogeneous, increasing and once continuously differentiable and
let f satisfy (A25). Suppose that the first order partial derivatives of f are not all con-
stant. Then we can find two strictly positive vectors y{!) and y(® such that 7 f,(y(!)) and
vf (y(2)) are linearly independent, nonnegative and nonzero vectors. Pick commodities r
and s such that the vectors [f.(y(1), f,(¥())] and [f.(¥?), f,(¥?)] are linearly indepen-
dent. Fix i and j with i # j and choose ¢}, = y;', for all n except when n =r or n = s. For
the 7 and s components of ¥* and 37, choose ¢, %, 17,4 such that f(z*) = f(3¥) and

(A26) {/f()} - {}/f @)} = 2 > O,
{15} - {8/f@)} =z <.

Substitute these choices for 3* and 3 into (A25) to obtain:
(A27)  (ZE (WD) + (2K fo(vF))2e = 0.

Since K > 3, there exists a country k not equal to i or j. For such a k, replace ¥* in (A27)
by ¥1) and then y(®). Rewrite the resulting two equations as

(A28) 112 + T122s = 0; T212r + T222s = 0.

Note that the vectors [z11, Z12] and [z21, Z22] are equal to the linearly independent vectors
W, f5(¥™] and [£-(¥?, f,(¥™@] plus & common vector. Since the first order partial
derivatives of are continuous, we can perturb y{!) and y(? slightly if necessary to ensure
the linear independence of [z11, z12] and [z2;1, Z22). The linear independence of these two
vectors and (A28) implies that 2, = 0 and z, = 0 which contradicts (A26). Thus our
supposition that the first order partial derivatives of f are not all constant leads to a
contradiction.

We now determine what unit cost functions ¢ are consistent with equations (39).

Substituting (9) and (13) into (39) and letting A = 1/« leads to the following system of
functional equations:

=K p* - ve@ )ui/e(@®)ur)[ur/w] =X for i=1,....,K or
(A29) oK pF - ge@)/e(p¥) =X for i=1,... K.

Let j # ¢ and subtract equation j in (A29) from equation i. We obtain the following
system of equations for 1 <i# j < K:

(A30) =i, [p*T/c(p*)] [vel@*) — ve@)] = 0.
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Since K > 3, there exists an m not equal to i or j. Choose N p™ vectors, say p™®, n =
1,..., N, such that the vectors p™"/c(p™") + Ellc{=1,k;ém [p"/c(pk)], =1,...,N, are lin-
early independent. Substitute these p™ into (A30) and we deduce that c(p*) = we(p?)
for all p* and p?. Hence the first order partial derivatives of ¢ must be constants. Using
the fact that ¢ must be linearly homogeneous, we further deduce that ¢ must be the linear
unit cost function defined by (18).

Proof of Proposition 6:

T1: By the Perron-Frobenius Theorem, the maximum eigenvalue left eigenvector, [(S!)~!,
.o, (SE)YT, of the positive matrix D, subject to the normalization (46), is strictly pos-
itive and unique. Thus [(S!)7},...,(SK)~!] and hence [S},..., SK] will be continuous
functions of the elements of D and hence of the components of P and Y.

T2 Let y* = Bry,y >> On, B > 0for k=1,...,K with ©K 5 = 1. Equations (49)
become

(597! = aZK | [G/B)(SH) Y i=1,.. K.
Thus o = 1/K, S* = fy satisfy (46) and (49).
TS: Letp>>0,, o >0, pF = agp for k=1,..., K. Equations (49) become
(87! = aZk | [oup- v laip-)(SF)Y, i=1,...,K or
p-y/St = aEf___lp yk/Sk i=1,... K.
Hence o = 1/K and S* = p-y*/p- ZX 4/ will satisfy (46) and (49).
T4 - T6: Similar to the proofs of T4 — T6 in Proposition 5.

T9:  For K = 2, equations (49) can be written as follows:

1=alt+ (" v*/p' -4")(S'/5%)];
51/32 — a[(p2 . yl/p2 . y2) + (31/32)]
Eliminating « from the above two equations leads to $2/5' = Qr(p', p?,%',%?). Thus in
the two country case, Van Yzeren’s unweighted average basket method leads to the Fisher
ideal quantity index which satisfies monotonicity in quantities. However, for K > 3, we

can proceed as in the proof of T9 for Proposition 5 and demonstrate that monotonicity
does not always hold.

T10:  Part (i) is satisfied but part (ii) is not.
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T11: The proof is analogous to the proof of T'11 in Proposition 5. If the number of
countries in the subbloc A is equal to the number of countries in the subbloc B, then
TieBS7 /TicaS = Qr(p®, p, 4%, 47), but in general, this equality does not hold.

Ezactness Properties: For K = 2, the exactness properties are the usual ones for the
Fisher ideal quantity index (see the proof of Proposition 5 above).

For K > 3, replace S'/S7 by f(3')/f(3’) and p? by 7 f(3)e;. Letting A\ = 1/, the
transformed equations (49) become:

K=1[y"-vf(y‘)ee/f(y‘)ei] [fF&) @) =X i=1,... K or
(A31) SO ) =X i=1,.. K

Let j # i and subtract equation j in (A31) from equation i. We obtain the following
system of functional equations for ¢ # j:

(A32) =K TNV - vi@)] =0, 1<i#j<K.

This is the same system of functional equations as (A30) except that f replaces ¢ and y*
replaces p*. Thus the only differentiable linearly homogeneous solution to (A31) is the
linear aggregator function defined by (17).

Similarly, substituting (9) and (13) into (49) and letting A = 1/« leads to the following
system of functions equations:

E£{=1[pi-vc(pk)uk/c(pi)ug][u;/uk]— Ay i=1,...,K or
(A33) S5 o) o) = X i=1,...,K.

Let j # 1 and subtract equation j in (A33) from equation i. We obtain:

(A34) K, V@) {[F/cp)] - [p/ele)]} =0 i<i#j<K.

The system (A34) is identical to (A25) except that c replaces f and p* replaces y*. Thus
as usual, we deduce that the only linearly homogeneous solution to (A34) is the Leontief
unit cost function defined by (18).

Proof of Proposition 7: 'We restrict the domain of definition to strictly positive quantity
vectors. Using the positivity test BT1 and the circularity test (52), we have, following
Eichhorn {1978; 67]:

(A35) Q' %yl v®) = Q% p% 4%, ¥2)/Q(°, !, 10, ¥') = h(p?, ¥2)/h(p', ")

where we fixed p® and y° and defined A(p,¥) = Q(#°,p,3°,v). Now let y! = %> = y in
(A35) and applying the identity test BT3, we find that h(p!,y) = h(p?,y) for all p! >> 0
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and p? >> 0, which means h(p,y) is independent of p. Defining m(y) = h(1n,v), (A35)
becomes

(A36) Q(p', P ¥',v?) = m(y?)/m(y").
Now apply commensurability BT10 to (A36) with 6, = y! for n = 1,..., N. We obtain
(A37)  m(y?)/m(y') = m[(y])~"9i, - .., (uh) TR/ (i)

Define g(z1,...,zn) = m(1n)/m(z7’,...,z3}) and (A37) becomes the functional equa-
tion (A7), with N replacing K. Note that the monotonicity in quantities test BT12
implies that m and g are strictly increasing functions. Hence we may apply Eichhorn's
[1978; 66-68] Theorem (noting that g(1x) = 1) and conclude that

(A38) my1,...,un) =By .. U\

Setting y! = y? = 1y in (A37) and using BT3 implies that [m(1x)]? = 1. Using BT1,
m(ly) = 1 and hence the 8 in (A38) must equal 1. The monotonicity test BT12 implies

that each oy, is positive and the linear homogeneity test BTS implies that the a, sum to
1.

Proof of Proposition 8:

T1: Using (58), BT1 and BT2, it is evident that T'1 is satisfied.

T2: Lety>>O0n,Bk>0,5*=pyfork=1,...,K with X 5 = 1. Then
Q' p*. 9, v%) = Q2. 2%, Biv, Buy)

= (Bx/B:)Q(#', p*,v,y)  using BT5 and BT6
= Br/Bi using BT3.

Substituting the above into (58), we obtain .S',? = Braf[B1...Bk)VE for k=1,...,K.
Thus a = [B; ... Bk|'/K and S = p as required.

TS: Letp>>0n, 04 >0, P =oypfork=1,...,K. Then
Q@' r*, ¥, v*) = Q(aip, axp, ¥, ¥¥)
=Q(p,p,y',y*)  using BT7 and BTS8
=p- yk/p .4*  using BT4.

Substituting the above into (58), we obtain
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SE = o[l p-w/p - v VK

=ap-y*/lp-y'...p-yK)VK fork=1,...,K.
Thus SE is proportional to p - y* and T3 is satisfied.
T4: This test follows using (58) and BT10.
T5: This test follows using (58) and BT9.

Té6: This test follows from the symmetric nature of (58).

T7: Letag>0for k=1,...,K. Consider equations (58) when p* is replaced by axp*
fork=1,...,K:
S¢(aip!, ..., axp¥,Y) = ofIE,Q(eir’, arp®, o, yF)| VK
= o[ll5,Q(", b5, ¢, v¥)]/¥  using BT7 and BT8
= Sf(pl,...,pK,Y).
T8: Let A > 0 and use (58) to obtain a formula for the following share ratio:

Sla(P’ Ayl’ y2, tee ’yK)/Szc(P, Ayl’ y2’ AR | yK)
_ QN " Myt AT, Q' pt, o, M)V E

QL L PTE Q0 52, o, ) VK
= L QG o v v/ QG 0% o ) VK
using BTS and BT6

= ASIG(P’ yl’ y2! DR | yK)/Sg(P’ yl, y2’ cr ’yK)'

The proof for the other share ratios follows in an analogous manner.

T9: Using (58), BT3, BT12 and BT13, we see that if any component of ¥* increases,
then S§ /o increases and the other SJG /o decrease. Hence, using (54), S¢ will increase as
any component of y* increases.

T10(i): Under the hypotheses of the test, for k € A, we have, using (58):
S¢ = oflIE, Q' p*, o, 5| VK
= oflicaQ(aip®, ap®, Bi®, Brv*)jeBQ(P, onep®, 7, Bry®)| /K

= ofll;ea(Br/B:)Q(P%, p*, ¥*, ¥*) e QP , %, v, ¥®)| VX using BT5-BT8
= Bra(llieBQ(P, p% ¥, ¥°) /MicaBi] /X using BT3.

54



Therefore, for i € A, j € A, we have S,-G /SJG = f;/B;. Hence part (i) of T'10 passes.
However, part (ii) fails.

T11: Under the conditions of the test, for i € A, using (58), we have

S¢ = oK, Q0" o', v, v)1V¥
= a[llxeaQ(axp, @ip, Bry®, Biv*Mime BQ(Ymp®, 2ip®, 6y, By X
= afi[llkeaby lﬂme BG'IQ(pb %, yb y“)]l/ K using BT3 and BT5-BT8
(A39) = BielllkeaB; Mmed71Q0%, p°, P, y*) #B/K

where #B is the number of countries in the set of countries B. For j € B, we have

S§ = oL, Q(", ¥, ¥, )] VX
= olreaQ(arp®, 1i0s Biv®, 68" MmeBQ(YmP"s %ip®, Ymy, 8530V ]
= ad;[MicaB; ' Q% 1%, ¥% vP) imepd,|YX  using BT3 and BT5-BTS
(A40) = 6J'a[nk€Aﬂk- llmmeB‘S;;l]Q(Pa,P y* yb)#A/K

Using Y 4B; = 1,Ejepd; = 1, (A39) and (A40), we find

TieBSY [TieaSE = Q0,15 v, )P 1Q(, 1%, b, ) # B/ K
= Q(Pa,P Y ,yb)[(#AH(#B)V K using BT'12
= Q(r* 7%, 4% v since (#A) + (#B) =

Ezactness Properties of the Gini-EKS System: Using (58) with @ = Qp, the system of
functional equations (12) becomes: for 1 <i # j < K:

L Qr(V (W e, V(W )i, oF, ) TE L1 QF(VF (¥ ™em, v F(1)es y™, 7))
= [f')/ F)IE.

If f is the homogeneous quadratic defined by (41), then it is known (see Diewert [1976;
116] for references to the literature) that

(A41)

(A42)  QF[Vf(*)er, Vf(¥')ei,vF o] = f(v')/f(y*) for all i and .
Substituting (A42) into (A41) leads to the identity
[F@)/ F@NE = @)/ FPNE

Hence the Gini-EKS system is exact for the f defined by (41) and hence is a superlative
system.
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A similar proof shows that the unit cost function c(p) = (pT Bp)!/? defined by (42)
satisfies the system of functional equations (13) when the country shares are defined by
(58) and Q = Q. The counterpart to (A42) that we require is

(A43)  Qrlp*, P, ve(@F)uk, ve(p)ui] = ui/uy for all i and k.

To establish (A43), use a result in Diewert [1976; 133-134] with r = 2.

Proof of Proposition 9:

T1: Using (67), BT1 and BT2, it is evident that T'1 is satisfied.

T2: Using BT3, BT5 and BT6 and substituting into (67), we obtain
S = oS (Be/B) ' = af; i=1,... K.

Thus o = 1 and S* = f; as required.

T3: Using BT4, BT7 and BT8 and substituting into (67), we obtain

St =alZK p-v*/p- I 1 =p-vo/[EK p- 4 i=1,.. K

Thus S* is proportional to p- 3* and T3 is satisfied.

T4: Follows from (67) and BT10.

T5: Follows from (67) and BT9.

T6: Obvious from the symmetry of (67).

T7: Use BT7 and BTS8 to establish this property.

T9: Using (67), BT3, BT12 and BT13, we see that if any component of 3* increases,
then S*/a increases and the other S7/a decrease. Hence S* will increase as any component
of y* increases.

T10(i): Using (67), for ¢ € A, we have:
Si = a[zi{=lQ(pkvpi: yk1 yi)—l]—l
= a[EkGAQ(akpa, aipa’ ﬂkya) ﬂiya)—l + EkGBQ(pky aipaa yk9 ﬂiya)_ll_l

= a[EkEA(ﬂk/ﬂi)Q(pa’ pa, ya, a)-—l + Ekébﬂi—lQ(pk) pa’ yk: ya)—l]—l
using BT5-BT8

= Bia[l + Tre pQ(0*, %, %, %) ]!
using BT3 and T 40, = 1.
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Therefore, for i and j belonging to A, we have S*/S7 = §;/ B; which establishes part (i).
To establish part (ii), let ¢ € B. Using (67):

S = o[Zf, Q0% v, v5, ) !
= o[ZrcaQ(arp®, 7', By, v') ! + TieQ(F, ', ok, v) Y
= o[ZkeafrQ(®, 7', 3%, ¥") " + ZkeBQ(P*, P, 4%, 3)7!]7!  using BT6 and BTS
= a[Q(p*, 7', ¥*, ¥") ! + ZkeBQ(P*, p', 45, 4) 11! using Skeabi =1
= aS*.
T11: Making the assumptions for T'11 and using (67), for i € A, we have:

S = o[SF,Q0F, ok, ) ]!
= o[ZreaQ(arp®, ip®, Biy®, Biv®) ! + ZkepQ(up®, cir®, k3, Biy®)
= a|Zrea(B/B:)Q(% 1%, ¥%, v*) ! + Tken(6k/8:) Q% %, 4%, %) 1!
using BT5-BT8
(A44) = Biall + Q2% 9%,9",4*)'|"! using BT3, Treafi = 1 and Trepdi = L.

-1]—1

Similarly, for j € B, we have

&7 = ofZE, Q0 P ok, ) !
= a[BreaQ(arp®, vir", Brv®, 6i3%) ! + SreQ(Mir®, 7ij bxy®, 659°) 1!
= a[Trea(Br/8)Q(P% 1%, 3%, 1°) ™! + Tien(6x/6))Q(2%, °, 1P, 1) 1) !
(A45) = 8;a(Q(p% p°, v%, v") 1 + 1)L,

Using (A44), (A45), Ticaf; = 1 and Zjepb; = 1, we have
ZjeBS’(P,Y)[EicaS (PY)
= [1+Q@° % 4. v*) )/l + Q% 2, 4%, ")

=1+ Q% r*, 4% )/l + Q(p*, 2%, ¥°,4%)™] using BT11
= Q% 1°,1% 1)

since (1 + 8)/(1 + B~1) = B where 8 = Q(p%, °, 1%, 1°).

Ezactness Properties of the Fisher Oun Share System: Using (67) with Q = Qp, the
system of functional equations (12) becomes: for 1 <i # j < K:

[ZK,Qr(VFF)ex, Vf(¥)ei, ¥F, 49) 1)1
[[ER1QF(VFG™)em, VF@)ej, y™, 7)1~ = F(4¥)/F ().
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Substituting (A42) into the above equations leads to the following system of equations:
for1<i#j<K:

[ZE L@/ FO) Y EELF @™ F@ = FF)/ f(&F)

which is a systeni of identities. Hence the f defined by (41) is exact for the Gini-EKS
system.

Turning now to the system of functional equations (13), substituting (67) into these
equations with @ = Qr leads to the following system of equations for 1 <i # j < K:

[ZE1Qr (", P, Te(p Yuk, Ve(p')u) 1]~/

[EX1Qr (™, b1, Ve(p™Yum, Ve u;) 71! = uifu;.
Substituting (A43) into the above equations leads to the system of identities
[BE ur /] [E s tm /us] ™ = wifu;.

Hence the ¢ defined by (42) is exact for the Gini-EKS system.
Proof of Proposition 10:

T1: The proof of existence and continuity of the share functions is somewhat involved.
Consider the minimization problem (71). If we set Sk = 1 and solve the resulting mini-
mization problem in Si,...,Sk_1, we can normalize the solution to satisfy (73). Denote
the objective function in (71) with Sg = 1 by f(S1,...,Sk—1). Denote Q(#7,p*, 97, v*)
by Qjk for 1 < j,k < K. Note that BT1 implies Q;z > 0. The first order necessary
conditions for our S = 1 modification of (71) are:

(A46) =i5MQi/S]] - DEG QmSE/ S - Qki/Si? = —Quks i=1,...,K—1.

The arguments of Van Yzeren [1956; 25-26] can be adapted to show that a unique positive
8%, .., Sk_, solution to (A46) exists. We now show that the matrix of second order partial
derivatives of f evaluated at the solution, V2f(3fs ey Sk_y) = [£ii (ST, Sk, is
positive definite. Differentiating the left hand side of (A46) with respect to S;, we obtain
the following expressions for the second order partial derivatives of f:

(A47)  fu(S1,- .., Sx-1) = 25f5Y LlQuSk/SP) + 2QKi/S3; i=1,...,K -1

(A48)  fii(S1,-..,Sk-1) = —[Qi;/S?] - [Q4i/S?); 1<i#j<K-1
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Use the ith equation in (A46) to solve for Zf___"lfk#Qk,-S,: /S?? and substitute the resulting

expression into the right hand side of (A47). Using the resulting equation and equations
(A48) evaluated at S},...,Sk_,, we find that

(A49) EXMfi(ST.. .. 8k)S = Qik + Qi/SP2>0; i=1,... K1,

where the inequalities in (A49) follow from the positivity of the Q;;. The positivity of
the Q;; also implies via (A47) that f;;(St,...,Sk_;) >0fori=1,...,K — 1 and that
fi;(St,...,Sk_1) <O0for1<i#j<K-1. Since the S; are all positive, the inequalities
(A49) imply that the matrix 2f(S},...,S)_,) has dominant diagonal (see Gale and
Nikaido [1965; 84] for a definition). Note also that 2f(S}], ..., Sk _1) has positive main
diagonal elements and negative off diagonal elements and hence is what Gale and Nikaido
[1965; 86] call a Leontief type matrix. Thus the matrix 72f(S},..., Sk_,) is & dominant
diagonal Leontief type matrix and by result noted by Gale and Nikaido [1965; 86], this
matrix is a P-matrix; i.e., all of its principle submatrices have positive determinants.
In particular, the determinant of 72f(S},...,S%_;) is positive and hence the inverse
matrix {G2f(S},...,Sk_;)]7} exists. (For later reference, by another result in Gale and
Nikaido [1965; 86], all of the elements in this inverse matrix are positive). Since the
Qij = Q(¥',p’,¥',1’) are once continuously differentiable functions of their arguments
by assumption and using the fact that [72f(S}, ..., Sk _1)]7! exists, we can apply the
Implicit Function Theorem (see Rudin [1953; 177-182]) to the system of equations (A46)
to obtain the continuity (and once continuous differentiability) of the solution functions
S;(P,Y) with respect to the elements of the matrices P and Y.

T2: Substituting the assumptions of the test into (72) and using BT3, BT5 and BT6
yields the following system of equations:

D1 (Bi/B:)(Si/S5) = Biea (Bi/ Bi)(Sk/Si); i=1,.... K

Obviously, the unique solution to this system of equations which also satisfies the normal-
ization (73) is Sy =f fork=1,..., K.

T8: Substituting the assumptions of the test into (72) and using BT4, BT7 and BT8
yields the following system of equations:

oK /p-v)(Si/S5) =T (o - vi/p-v*)(S/Si); i=1,... K.

Obviously, the solution ray to the above system of equationsis Sy = ap-y*, k=1,..., K, a >
0. Using the normalization (73) picks a unique point on this solution ray and demonstrates
that test 7°3 is satisfied.
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T4: This test follows from (72) and BT10.

T5: This test follows from (72) and BT9.

T6: This test follows from the symmetric nature of equations (72) and (73).
T7: This test follows using BT7 and BTS.

T8: Let S},..., S} be the solution to (72) and (73) when we have price vectors p* and
quantity vectors y* for k = 1,..., K. For A > 0, change y! into \y!. Using BT5 and
BTS6, it is easy to show that AS},S3,. .., Sk will satisfy equations (72) with y! replaced
everywhere by Ay! (the X factors cancel out, leaving the original system of equations). An
analogous property holds if 2 is replaced by Ay?, etc.

T9: Consider the minimization problem (71) when we set S = 1. Denote the remain-
ing shares as S}(P,Y),...,Sk_;(P,Y). Using the results established in the proof of T'1
and differentiating equations (A46) with respect to the components of y¥, we obtain the
following formula for the derivatives of the S; with respect to the components of yX for
i=12,..., K—1:

Vyk S{(PY)
Sl (VP (ST - Sk esl= vyx QT 0% v, )
+ (8172 vk Q5. P, v, ¥)]
where e; is the ith unit vector of dimension K —1. From the proof of T'1, the K—1by K—1

matrix [2f(S],...,Sk_;)] ! has all elements positive. Using BT12, the vector of deriva-
tives vaQ(pi, 9%, v, yK) is nonnegative and positive almost everywhere. Using BT13,

the vector of derivatives vaQ(pK Tt ,¥') is nonpositive and negative almost every-
where. Hence the vector of derivatives 7, xS} (P,Y) is nonpositive and negative almost
everywhere. Thus S}(P,Y) is decreasing in the components of y* fori=1,2,...,K — L.
Switching now to the model that uses the normalization (73), we see that the above re-
sults imply that Sg(P,Y) is increasing in the components of y*. Using the symmetry of
equations (72) and (73), this suffices to establish that each Si(P,Y) is increasing in the
components of ¢* for k=1,..., K.

T10(3): Under the assumptions for the test, for i € A, equations (72) become:

Tkea(Br/Bi)(Si/Sk) + TkeB Q0% P, 4%, ¥*)Si/ Sk
= Trea(Br/Br)Sk/Si + TreBBiQ(*, 1%, v*, y*)Sk/S:
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where we have used BT3 and BT5-BT8. For k € A, set Sy = (rS.. Then the above

equations become for i € A.

(A50)  (#A) + TkepQ(@% P*, %, ¥%)Sa/ Sk = (#A) + TkepQ(o*, %, v¥, 42)Sk/ Sa.

Note that equations (A50) do not depend on i. Thus there is only one independent equation
in (A50). For j € B, equations (72) become, (assuming Sy = (S, for k € A):

(AS1)  (#A)Q( 2%, ¥")Si/Sa + TkenQ(WP, 1, ¥, 4°) S5/ Sk

= (#A)Q(r%, P, v*,v")Sa/Sj + ZkeBQOE, P, vF, 47)Sk/S;.
Equation (A50) and equations (A51) for 7 € B along with the normalizing equation
Sa + ZrepSk = 1 can be solved for S, and S; for j € B. Once S; has been determined,
we have S; = §;S, for i € A and part (i) of T10 holds. However, equations (A51) show

that part (ii) of 710 does not hold; note the factor #A4 = the number of countries in the
subbloc A.

T11: Substitute the assumptions of test T'11 into equations (72). Fori € A, let S; = 5;S,
and for j € B, let Sj = 6;5;. For i € A, each of these equations in (72) reduces to

(A52) (#A4) + (#B)Q(p% r, v*, ¥°)Sa/ S = (#A) + (#B)Q(2", p*, 4, ¥°)Ss/ S

where we have used BT3 and BT5-BT8. For j € B, each of these equations in (72) reduces
to

(AS3)  (#A)Q(",p* 3, ¥*)Ss/Sa + (#B) = (#A)Q(r%, 2%, 4%, ¥°)Sa/Ss + (#B).

Both of the equations (A52) and (A53) simplify to

2;eBS;i/TieaSi = Sp/Sa = [Q(p% 1%, 4% ¥*)/ Q% %, 14, v%)] '/
(A54) = Q(pa’ pb) ya, yb)

where (A54) follows from the line above if Q satisfies the bilateral time reversal test BT11.
Note that this is the only part of the proof where test BT'11 is used. If Q is equal to either
the Paasche Qp or Laspeyres Q1 quantity index, then it can be verified that these two
indexes satisfy all of the bilateral tests except BT11. However, if either Q = Qr or Q = Qp
is inserted into (A54), we find that S,/S, = Qr(p®, p°, ¥*,1%), the Fisher ideal index. Thus
if @ = Q or Qp, all multilateral tests except 710 and T'12 are satisfied.

Ezactness Properties of the Unweighted Balanced Method: For Q = Qp, substituting
(10), (12) and (A42) into (72) leads to the following equations for i = 1,..., K:
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KL @)/ FEONF @) F @) = K, FEONF 5/ 7 )

which is a system of identities. Hence the homogeneous quadratic f defined by (41) is
exact for this method. Similarly, for @ = QF, substituting (9), (13) and (A42) into (72)
leads to the following equations for i = 1,..., K:

TE g /willus fuz) = SE [ /) [ue /i)

which is a system of identities. Hence the homogeneous quadratic unit cost function
defined by (42) is also exact for the unweighted balanced method when Q = QF.

For Q = Qr(¢",p",¥',¥’) = p* - v//p* - ¥, the Laspeyres quantity index, equations
(72) become:

(A55) =K, (o' /0 - v)(Si/Si) = T 0k - v 0k - 4F)(Sk/S:); i=1,... K.

Substituting (10) and (12) into (A55) and letting f be defined by (41) leads to the following
system of equations:

(A56) IS TAY/F)f W) = B T AV R =1, K.

where we have used Vf(y*) = Ay'/f(¢*). Since A = AT, it can be verified that (A56) is
a system of identities.

Substituting (9) and (13) into (A55) and letting ¢ be defined by (42) and using
ve(p') = Bp/c(p*) leads to:

(AS7)  TE,[pT Bp [e(p)e(p)] = B, M By [e(p) [e@)]; i=1,...,K.

Using B = BT, it can be verified that (A57) is a system of identities.

The use of @ = Qp in (72) where Qp(p’,p’,1*,¥¥) = p’ - ¥ /P’ - ¥') corresponds to
Gerardi’s [1974] version of the unweighted balanced method; see also Van Ijzeren [1983;
45-46]. Hence the identities (A56) and (A57) show that this version of the unweighted
balanced method is exact for the homogeneous quadratic aggregator function defined by
(41) and is also exact for the homogeneous quadratic unit cost function defined by (42).
Hence when Q = Qp, the unweighted balanced method is superlative.

Suppose now that Q = Q where Q1 (7', 77, 1*,17) = p* -4/ /p* - 4 is the Laspeyres bi-
lateral quantity index. This corresponds to Van Yzeren's [1956; 15-20] original unweighted
balanced method; see also Van Ijzeren [1983; 44-45] [1987; 59-61]. In a manner similar
to our derivation of equations (A55) - (A57) above, we can show that the homogeneous
quadratic f and c defined by (41) and (42) are also exact for this Q = Q version of the
unweighted balanced method. Hence Van Yzeren’s original unweighted balanced method
is also superlative.

62



Proof of Proposition 11:

T1: We have already established the existence and positivity of the S; using only BT'1.
It remains to establish the continuity of the S;(P,Y). Using (79), BT1 and BT?2, the
elements in the matrix A will be continuous functions of the elements in the matrices P
and Y. Using a Theorem of Frobenius [1908; 473], the determinant | Ix_, — A [> 0 and
so the % defined by (83) will be continuous in the elements of A. Thus using zy = 1 and
(82), the continuity of the S;(P,Y) in the elements of P and Y follows.

T2: Substituting the conditions of the test into (78) and using BT3, BT5 and BT6
yields the following system of equations:

K 1(8i/6:)S? ==K, (Bi/Br)SE; i=1,....K.
Substituting S; = B; into the above equations yields a system of identities.

T8: Substituting the conditions of the test into (78) and using BT4, BT7 and BT8
yields:

S v /p-y)S? =K (- v'/p-vF)SE i=1,... K.
Setting S; = ap -y for i = 1,..., K solves the above equations.
T4: This test follows using equations (78) and BT10.
T5: This test follows using (78) and BT9.
T6: This test follows from the symmetric nature of equations (73) and (78).
T7: This test follows using BT7 and BTS.

T8: This test fails in general unless the bilateral quantity index Q satisfies circularity.
But Proposition 7 shows that circularity is not consistent with the satisfaction of tests
BT1-BT13. Thus under our hypotheses on @, test T8 fails.

T9: By the symmetry of the method, we need only set zy = 1 and show that the
zi,...,TN-1 that satisfy (83) are decreasing functions of the components of the country
K quantity vector y¥. Define the jth column of the A matrix with row K deleted by A.j
forj=1,2,..., K. Note that Aok = @ where & appears in (83). Differentiating equations
(83) with respect to the elements of y¥ yields the following formula for the K — 1 by N
matrix of derivatives of the elements of % with respect to the elements of y¥:

(AS8) V% =k-1~ AI"HV  Aek + ZI51(V, i Asj)as}.
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From (84), the elements of [Ix_; — A]~! are all positive. Differentiating the elements of the
A matrix using definitions (79) and the monotonicity properties of @, BT12 and BT13,
the matrices of derivatives vyx.;l.j are nonpositive and negative almost everywhere for
Jj=1,..., K. Using these facts plus the positivity of the z;, (A58) implies that VykZ is
nonpositive and negative almost everywhere. Thus the z;(P,Y) fori=1,...,K — 1 are
decreasing in the components of y¥.

T10: Let p® >> On,¥* >> On, 5 > 0,6; > 0,7 = op® y* = Biy® for i € A with
LicAli = 1. For 1 € A, equations (78) become, using BT3 and BT5-BTS:

Tjea(Bi/B:)St+E5enB Q% ¥, y°, ) S?
= Tiea(Bi/Br)SE + TkeBBiQ(*, 1%, v, 1%)SE.

For k € A, let S; = [iS,. Using E;caf; = 1 and BT3, the above equations become for
1€ A:

(A59)  Q(p% P %% ¥*)S2+T;e8Q(r% P, %, ) S?
= Q% 1% v%¥*)S2 + TeBQ(F, p°, v*, y*)SE.

Note that equations (A59) do not depend on i so there is only one independent equation
in (A59). For ¢ € B, equations (78) become, using BT5-BT8 and Sy = BiS, for k € A:

(A60)  Q(r',p% ¥, ¥%)S? + T;eBQ(p', ¥, ', 1) S?
= Q(r*r', ¥*,v")S? + TiepQ(0%, ', v, ') S2.

Equations (A59) and (A60) along with the equation S, + ZrepSk = 1 can be solved for
positive S, and S for k € B. Once S, has been determined, we set S; = 5;S, fori € A
and part (i) of T'10 holds. Examination of (A59) and (A60) shows that part (ii) also holds.

T11: Substitute the assumptions of test 11 into equations (78). For i € A, let S; = 5;S,
and for j € B, let Sj = 6;Sp. For i € A, using BT3 and BT5-BTS8, each of these equations
in (78) reduces to

(A61)  SZ+ Q% 1%,y 4")S2 = S3 + Q(p*. 0", 1*, v°)SE.
For i € B, each of these equations in (78) reduces to
(A62) Q" v",¥*)SE + S = Qv®, p*, v, 1P)SE + SE.

Each of the equations (A61) and (A62) simplifies to
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YjeBSj/TicaSi = Sp/Sa
(A63) = [Q(* 7%, v, v")/Q(°, 1%, 1%, )2
(A64) = Q% v’
where (A64) follows from (A63) if € satisfies the time reversal test BT11. This is the only
place in the proof of Proposition 11 where we use property BT11. Using (A63), if Q = Q¢
or Q = Qp, we find that Sp/Ss = Qr(p®, p° 3%, 1*). As in the proof of Proposition 10, we
note that @7 and Qp satisfy all of the bilateral tests except BT11. Hence if @ = Q or

Q@ = Qp, then the resulting weighted balanced methods satisfy all of the multilateral tests
except T8 and T12.

Ezxactness Properties of the Weighted Balanced Method: For Q = Qp, substituting (10),
(12) and (A42) into (78) leads to the following system of equations for i =1,..., K:

I F) = Sl )/ F @O F
=S, F @5/ F ()]
which is a system of identities. Hence the homogeneous quadratic f defined by (41) is

exact for this method. Similarly, for @ = Qp, substituting (9), (13) and (A43) into (78)
leads to the following system of equations fori =1,..., K:

2
2JK=1 [uj/ui) = zllc(=l i /) [ /i)
= zf—_—l[“k/ ]
which is a system of identities. Hence the homogeneous quadratic unit cost function ¢

defined by (42) is also exact for this method.
For Q = QL, the Laspeyres quantity index, equations (78) become:

(A65) =K [p* - /0t - o) = K, 5 - o 00 - HISk/SE i=1,... K.

Substituting (10) and (12) into (A65) and letting f be defined by (41) leads to the following
system:

(A66) T[T AY/f(0)? = LT AV FY i=1,. K

which is a system of identities using A = AT. Hence the homogeneous quadratic f defined
by (41) is exact for the weighted balanced method with Q = Q. In a similar fashion,
we can show that the ¢ defined by (42) is exact for the weighted balanced method with
Q=0Qr.

Finally, in an analogous fashion, it can be shown that the f defined by (41) and the
c defined by (42) are exact for the weighted balanced method with @ = Qp.
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Appendix 2: A Simple Numerical Example

We consider the simplest possible example of a multilateral method where there are
3 countries (K = 3) and 2 commodities (N = 2). As usual, let p* and * denote the price
and quantity vectors for country k. These 6 vectors are defined below:

p' = (01, pd) = (1, 1);0% = (93, 93) = (10, .1);p° = (0}, P3) = (.1,10);
y' = (vl ud) = (1,2);9% = (0, 43) = (1,100);° = (9, 43) = (1000, 10).

Note that the geometric mean of the two prices in each country is unity across all countries;
however, the structure of relative prices (and relative quantities) differs vastly across the
three countries.

Nominal expenditures (expressed in a common currency) in the three countries are:
pl -yl =%2_pryl = 3;p?-y% = 20 and p® - 43 = 200. Thus country 1 is tiny, country 2 is
medium sized and country 3 is large. Note that the expenditure shares on each commodity
are equal for countries 2 and 3.

To get a preliminary idea of the variation in multilateral shares that the above example
generates, we first table S2/S! and $3/S! for the Paasche and Laspeyres star systems
where the price vector for each country is used to value outputs. Thus in Table 1, Methods
1-3 correspond to the indexes p! - y*/p! - y1,p% - v /p? - 41,0 - ¥¥/p° - y! for i = 2, 3.

TABLE 1: Paasche and Laspeyres Star and Fisher Star Systems.

Method 1 | Method 2| Method 3 | Method 4 | Method 5 | Method 6 | Method 7
Country 1| Country 2 | Country 3| Fisher Fisher Fisher | Blended

Prices Prices Prices Star 1 Star 2 Star 3 Fisher
S%/S'| 33.67 1.96 49.76 8.12 8.12 5.79 7.25
_33/31 336.67 930.49 9.95 57.88 81.25 57.88 64.12

Examining Table 1, we see that using the prices of each country to value every coun-
try’s quantity vector (Methods 1-3) causes the share of country 2 relative to 1, S2/S!, to
range from about 2 to 50 while S3/51! ranges from about 10 to 980. We also calculated the
Fisher star relative shares in Table 1 (Methods 4-6); see equations (56) with Q@ = Q. We
find that using the Fisher star systems, the relative share variation is dramatically reduced
but still is quite big: S2/S! ranges from about 5.8 to 8.1 while $3/S! ranges from about
58 to 81. We would expect that a satisfactory multilateral method should generate relative
shares S2/S! and S3/5? that fall in the ranges spanned by the Fisher stars-namely 5.8
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to 8.1 and 58 to 81 respectively. The Fisher blended shares defined by (57) are listed as

Method 7 in Table 1.

TABLE 2: Exchange Rate and Average Price and Quantity Methods.

Method 8 Method 9 Method 10 Method 11| Method 12
Exchange | Arithmetic Mean | Geometric Mean| Geary- |Van Yzeren
Rate Average Average Khamis Average
Quantities Quantities Quantities
S¢/S* 6.67 7.33 1.49 47.39 1.32
S3/S'] 66.67 60.87 11.86 57.35 13.24

In Table 2, we listed the exchange rate and average price and average quantity meth-
ods that were defined in section 4-9 of the main text of this paper. Method 8 is the
exchange rate method; see equations (1). This method does rather well in our artificial
model, probably because the geometric mean of prices in each country is identical. Hence
there are no grossly overvalued or undervalued country exchange rates. We would not
expect this good performance to carry over to examples where some countries had grossly
overvalued exchange rates.

Turning now to the average price methods defined in section 5, we find that the
arithmetic and geometric mean price methods defined by (15) and (16) generate equal
average prices. Hence both of these methods are equivalent to Method 1 in Table 1 where
the equal prices of country 1 were used to value quantities in each country.

Method 9 is the Walsh [1901; 431}-Fisher [1922; 307] arithmetic mean average quantity
method defined by (22) and (23) while Method 10 the Walsh [1901; 398]-Gerardi [1982;
398] geometric mean average quantity method defined by (22) and (24). The arithmetic
mean quantity vector turns out to be [334, 37.3] while the geometric mean quantity vector
is {10, 12.6). Thus Methods 9 and 10 generate quite different relative shares in Table 2.

The Geary [1958]-Khamis [1970] average prices method defined in section 7 is Method
11. The vector of international prices turns out to be [.05261, .47369], which is closest to
the structure of relative prices in the large country, country 3. This method seems to lead
to a tremendous overevaluation of the share of country 2; $?/S3 for the GK method is
47.39/57.35 = .83, which seems too large.

Van Yzeren’s [1957; 13] unweighted average price method defined in section 8 is the
next method we consider. The international price vector [p},p3] defined by (33) turns
out to be [1,1], so again, this method reduces to Method 1. Van Yzeren's [1957; 6-14]
unweighted average quantity method defined in section 9 is Method 12. The vector of
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average quantities defined by (43) for this method turns out to be [y, y3] = [.99342, 1].
This method leads to a share for country 1 which is too large.

Table 3 lists the superlative methods discussed in sections 10-13 with the bilateral @
equal to @Qr, the Fisher ideal quantity index.

TABLE 3: Superlative Methods Using the Fisher Bilateral Index.

Method 13| Method 14 | Method 15 | Method 16
Gini-EKS | Unweighted { Own Share | Weighted
Balanced Balanced
54/8! 7.2563 7.2563 6.024 6.005
S3/S| 64.8064 64.8063 59.970 59.697

The effects of weighting are evident in Table 3. The two superlative methods that
satisfy the country partitioning Test T'10 (Methods 15 and 16) have shares that are rela-
tively close to the big country’s Fisher star shares (Method 6) while the two superlative
methods that do not satisfy T10 (Methods 13 and 14) have shares that are very close
to the arithmetic average of the Fisher star shares (Method 7, a democratically weighted
method).

The above numerical example shows that the choice of a multilateral method is very
important from an empirical point of view—more important than the choice of a bilateral
index number formula in the time series context because the variation in relative prices and
quantities will usually be much greater in the multilateral context. Even when choosing
between superlative multilateral methods, we see that there can be substantial differences
between Methods 13 and 14 (which pass the linear homogeneity test 78) and Methods 15
and 16 (which pass the country partitioning test T°10).

If the quantity vector for country 1 is changed to y1 = (yi,43) = (1,1), then the
expenditure shares on each commodity will equal 1/2 in each country. Hence for this new
data set, the data are consistent with economic agents maximizing the utility function

fly,y2) = y%/ 2y;/ 2 subject to country budget constraints. This functional form is a
special case of (41) and (65) (with aj; = a2 = 0 and aj2 = 1/2) and hence the Fisher and
Walsh bilateral quantity indexes defined by (2) and (64) will empirically pass the circularity
test (52). (The direct and indirect Persons [1928; 21-22] - Térnqvist [1936] quantity indexes
Qo and Qo defined in Diewert [1976; 120-121] will also pass the circularity test for this
data set since Cobb-Douglas utility functions are exact for these functional forms as well).
For this modified data set, the entries in Table 1 for the Fisher star methods, Methods 4-6,

all reduce to S2/S! = 10 and §3/5' = 100. In this case, all of the superlative methods
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listed in Table 3 also have S?/S! = 10 and S3/S! = 100. Thus it is deviations from
circularity of the bilateral index number formula that cause the superlative methods to
yield different numerical results. As an aside, for this circular data set, it should be noted
that the Geary-Khamis relative shares are S2/S' = 90.13 and $3/S! = 108.73. Thus
the share of country 2 still seems to be too large in this case. To further illustrate that
Geary-Khamis indexes can be quite different from Fisher ideal indexes, consider Table
4 where the Geary-Khamis bilateral index number formula (31) was used to form star
system shares. The results using countries 1-3 respectively as the base country are tabled
in columns 1-3 and are compared with the common Fisher star shares in column 4.

TABLE 4: Geary-Khamis Star Shares Versus Fisher Shares Using the Circular
Data.

Geary-Khamis 1 | Geary-Khamis 2 | Geary-Khamis 3 | Fisher
S4/8’ 2.92 2.92 17.23 10
S5°/8! 20.76 3.50 20.76 100

We now return to our original noncircular data set and calculate the 4 superlative
indexes when we use the bilateral Walsh quantity index Qw defined by (64) in place of
the bilateral Fisher quantity index QF defined by (2).

In Table 5, we list the Walsh star shares $2/S! and $3/S! using countries 1-3 as
the base (see equations (56) which define the star shares) which are Methods 17-19. We
also list the corresponding Fisher-Walsh blended shares defined by (57) where Q = Qw
(Method 20).

TABLE 5: Walsh Star Shares and Walsh Blended Shares.

Method 17 Method 18 | Method 19 Method 20
Walsh Star 1| Walsh Star 2| Walsh Star 3 | Blended Shares
S4/S" 9.167 9.167 5.238 7.603
S3/81 52.381 91.667 52.381 61.381

Comparing Table 5 with Table 1, it can be seen that the Walsh star shares are less
variable than the country price star shares (Methods 1-3), but the Walsh star shares
(Methods 17-19) are more variable than the Fisher star shares (Methods 4-6). Thus the
Walsh star relative shares, $2/S!, range from about 5.2 to 9.2 (while the corresponding
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Fisher variation was 5.8 to 8.1) and the Walsh relative shares, $3/S!, range from about
52 to 92 (while the corresponding Fisher variation was 58 to 81). Since the Fisher indexes
satisfy circularity better than the Walsh indexes, we would expect that the variation in the
4 Walsh superlative indexes will be greater than the variation in the 4 Fisher superlative
indexes. This expectation is verified by the results of Table 6.

TABLE 6: Superlative Methods Using the Walsh Bilateral Index.

Method 21 | Method 22 | Method 23 | Method 24
Gini-Walsh | Unweighted | Own Share| Weighted
Balanced Balanced
S4/st 7.6067 7.6068 5.630 5.572
S°/S'| 63.1227 63.1227 55.892 55.196

Comparing Table 6 with Table 3, we see some similarities: the democratically weighted
Gini-Walsh and Walsh unweighted balanced methods (Methods 21 and 22) closely approx-
imate each other, while the plutocratically weighted Walsh own share and Walsh weighted
balanced methods (Methods 23 and 24) also approximate each other reasonably closely.
However, the spread between the methods that satisfy the linear homogeneity test T8
(Methods 21 and 22) and the methods that satisfy the country partitioning test 7°10
(Methods 23 and 24) is much wider in Table 6 than it was in Table 3 where the more
nearly circular Fisher bilateral indexes were used as the basic building blocks. In Table 6,
note that the shares corresponding to the plutocratic Methods 23 and 24 are closer to the
shares of the big country star shares (Method 19) whereas the shares corresponding to the
equally weighted Methods 21 and 22 are very close to the arithmetic average of the Walsh
star shares (Method 20).

The fact that empirically the Fisher bilateral indexes satisfy the circularity test more
closely than the Walsh indexes reinforces the case for preferring the Fisher index over its
bilateral competitors. In addition to being superlative and satisfying more reasonable tests
than its competitors, the Fisher ideal quantity index is the only superlative index that is
consistent with (bilateral) revealed preference theory; see Diewert [1976; 137]. Thus we
prefer the Fisher superlative methods listed in Table 3 over the Walsh superlative methods
listed in Table 6.

We conclude this appendix by calculating the international prices that were suggested
at the end of section 14 for our noncircular data set.
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TABLE 7: International Prices Using Own Share Price Levels and GK Prices.

Balk’s Method | Hill's Method | Geary-Khamis
mo /M) 8.895 9.027 9.004

Balk’s suggested vector of international prices 7 = (m, ) was defined by (86) and
the generalized Hill prices were defined by (25) where the price levels (or purchasing power
parities) P* and the country shares S* which appear in these equations were defined by
the analyst’s “best” multilateral method. In Table 7, we used the Fisher own share P*
and S* (see Method 15 in Table 3) in equations (86) and (25) to calculate the Balk and
Hill international prices. Both of these international price relatives mo/m are close to
the Geary-Khamis international price relative, ma/m; = 9.004. Recall that the structure
of relative prices in the three countries is p}/p} = 1, p3/p? = .01 and p3/p} = 100 for
countries 1-3 respectively. Thus the international price ratios in Table 7 all tend to lean
towards the structure of relative prices in the big country, country 3. Note that if we
used the Balk or Hill international prices to value the quantity vectors in each country,
the resulting country shares of world consumption at these constant prices would be very
close to the Geary-Khamis shares (see Method 11 in Table 2) and these shares are very
different from the shares generated by our suggested best methods listed in Table 3.

Our numerical example suggests that additive multilateral methods should not be
used if the structure of relative prices is very different across countries. In this case, no
single international price vector can adequately represent the prices faced by producers
or consumers in each country. In order to model adequately the very large substitution
effects that are likely to be present in this situation, an economic approach based on the
use of superlative indexes should be used.
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Footnotes
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1.  See Diewert [1992] and Balk [1995a). Balk [1995a; 87] argues that the Fisher and
Sato [1976] - Vartia [1974] [1976] price indexes are both the best from the viewpoint of
the test or axiomatic approach to index number theory. However, the Sato-Vartia price
and quantity indexes are not superlative and hence are not “best” from the perspective of
the economic approach. In addition, Reinsdorf and Dorfman [1995]) have shown that the
Sato-Vartia indexes do not satisfy the monotonicity axioms that the Fisher indexes satisfy.

2.  The study of symmetric multilateral indexes dates back to Walsh [1901; 398-431],
Fisher [1922; 297-308] and Gini {1924] (1931]. Early researchers who suggested desirable
properties or tests for multilateral indexes include Drechsler [1973; 18-21], Gerardi [1982;
395-398] and Hill [1982; 50] [1984; 130-132].

3. See Diewert [1976)].

4. The “countries” could be different regions or producer establishments. The list of
commodities consumed (or produced) by the “countries” must be the same.

5.  We interpret y* as the total amount of commodity n consumed (or produced) in
country k during the relevant time period and pf, as the corresponding average price or
unit value. If commodity n is not consumed (or produced) in country &k during the period
under consideration, then pf > 0 is interpreted as the Hicksian [1940; 114] reservation
price that would just induce the consumer to purchase 0 units of good n (or just induce
the producer to supply 0 units of good n). This is the convention on the positivity of
prices and quantities used by Armstrong [1995).

6. Notation: y > On(y >> On) means that each component of the N dimensional
column vector y is nonnegative (strictly positive); y > On means y > Oy but y # Ox and
pTy =p-y = ZN_pnyn denotes the inner product of the vectors p and y. The transpose
of the column vector y is y7.

7.  See Walsh [1901] [1921], Fisher [1911] [1922], Eichhorn and Voeller {1976], Diewert
[1992; 214-223] [1993a; 33-34] and Balk [1995a).
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8. In the producer context, we assume either: (i) each producer in country k& minimizes
input cost p* - y subject to a production function constraint f(y) = f(y*) where f is
increasing, linearly homogeneous and concave, or (ii) each producer in country k£ maximizes
revenue p* - y subject to the constraint f(y) = f(y*) where f is an increasing, linearly
homogeneous and convex factor requirements function. In case (ii), c¢(p) defined by (6) is
to be interpreted as a unit revenue function; see Diewert [1974][1976; 125).

9. See Diewert [1993b; 117].

10. The aggregator function f is restricted to be linearly homogeneous, strictly increas-
ing (vVf(y) >> Oy for y > On) and concave in the consumer context and in the cost
minimizing producer context but convez in the revenue maximizing producer context.

11. The unit cost function c is restricted to be linearly homogeneous, weakly increasing
(ve(p) > On for p >> Opn) and concave in the consumer context and in the cost minimizing
producer context but convez in the revenue maximizing producer context.

12.  See Diewert [1976; 117 and 134].

13.  We follow Diewert [1993c; 361] and define a homogeneous symmetric mean m(z;,

...,ZN) to be a continuous, symmetric, increasing and positively linearly homogeneous
function which has the mean value property m(\, A, ..., A) = A

14. The terms price and quantity levels are due to Eichhorn [1978; 141].

15.  Geary [1958] defined the method and Khamis [1970] [1972] showed that the defining
equations have a positive solution.

16.  More accessible references are Debreu and Herstein [1953; 598] and Karlin [1959;
246-256).

17.  Geary [1958; 98] first exhibited this formula for the case K = 2.
18.  For additional tests, see Martini [1992] and Balk [1995a].

19. Given s = [S!,...,S¥]|T and o = 1/, the vector of international prices p* can be
defined as p* = a):}f:l(p" -y*)~1p*S*k. It should be noted that the d;; are Afriat’s [1967]
cross-coefficients.

20.  See Diewert [1976; 116 and 133-134] for proofs and references to the literature.

21.  Frisch [1930; 399] called (51) the product test. The concept of the test is due to
Fisher [1911; 418].
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22.  The concept of the test is due to the statistician Westergaard [1890; 218-219).

23. We assume that @Q satisfies the identity test: Q(p‘, ?,v,y) = 1. In sections 10-13,
we denote the share and price level of country k by Si and Py respectively instead of using
our previous notation S* and P*_ This is done because reciprocals S ! and powers S,% of
the Si will appear in the defining equations for these methods.

24. This is what Kravis [1984; 10] calls the “star system” with country 1 as the star.

25.  Fisher [1922; 274-276] was writing about price indexes but his arguments apply also
to quantity indexes.

26. We require only BT1 and BT3 to get the constant price weights representation
(A36) in the Appendix.

27. The Cobb-Douglas price weights bilateral quantity index defined in Proposition 7
fails the crucial bilateral test BT4.

28.  Fisher [1922; 305] actually averaged price indexes (using each time period as the
base) rather than quantity indexes.

29. Gini [1924] {1931] was concerned only with making multilateral price comparisons
but his analysis can be adapted to the quantity comparison situation as we have indicated.

30. If Q does not satisfy the time reversal test, then use the Walsh [1921] rectification
procedure and obtain the solution ray to (61) by replacing Q(p?, p*,%’,%*) in (63) by
Q" (@, . ¥, vF) = [QW, p*, 7, v*)/Q(F, P, ok, ) V/2.

31. The solution ray defined by (63) does indeed solve (61) since the objective function
is bounded from below by 0, unbounded from above and there is only one ray of critical
points.

32. It should be noted that the equality between (60) and (61) is due to Van Ijzeren
[1987; 62-63] except that he restricted himself to the use of Fisher, Paasche and Laspeyres
price or quantity indexes.

33. For historical references to the originators of the corresponding tests for price
indexes, see Diewert [1992; 214-221]). For the bilateral tests, we assume that p! >>
ON,p2 >> ON,yl >> 0y and y2 >> Op.

34. See Diewert [1992; 221].
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35. This unit cost function was originally defined in Diewert [1971] where it was shown
to be a flexible functional form. It is the special case of the quadratic mean of order r unit
cost function that occurs when r = 1; see Diewert [1976; 130].

36. See Diewert [1986; 28] [1988; 69)].

37.  See also Van Ijzeren [1983; 44] [1987; 60-61] and Balk [1989], who provided an
excellent exposition of the balanced method and derived some new properties for it.

38.  Gerardi [1974] let P(p7,p*,47,y*) = p* - y*/p7 - v/*, the Paasche price index. Van
Ijzeren [1987; 61] later let P be the Laspeyres, Paasche and Fisher price indexes.

39. Note that if we sum equations (70) over ¢, we get an identity and hence any one
of the equations (70) can be dropped. A normalization on the P will make a positive
solution to (70) unique.

40. If this procedure does not converge, then use Van Yzeren’s [1956; 17] slightly more
complicated procedure. Van Yzeren [1956; 27-29] proves convergence of this latter iterative
scheme.

41. If Q empirically satisfies circularity, then the base invariant shares Sj,...,Sg will
also satisfy equations (58) and (67); i.e., the Gini system, the own share system, the
unweighted balanced system and the weighted balanced system to be studied in the next
section all collapse down to the same system of shares.

42.  Van Ijzeren [1987; 63-64] made a different theoretical argument showing why the
three variants of the unweighted balanced method will be numerically close.

43. Van Ijzeren [1983; 45-46] chose the bilateral quantity index @ to be either the
Laspeyres quantity index Q, the Paasche quantity index Qp or the Fisher ideal quantity
index Q F.

44. Our method of proof is an adaptation of Van Ijzeren’s [1987; 65] and Balk’s [1995;
8] method of proof.

45. Note that it is much easier to calculate the weighted balanced shares with a general
Q then it is to calculate the unweighted balanced shares where a closed form solution does
not seem to exist.

46. Other notable multilateral methods that we have not studied due to limitations of
space and time include methods due to Iklé [1972] (see also Dikhanov {1994]), Van Ijzeren
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[1983; 45] [1987; 64-67) Diewert [1986){1988], Kurabayashi and Sukuma {1990], Hill [1995]
and Balk [1995b].

47.  This equivalent performance of the own share and the weighted balanced method
was also obtained by Balk [1989; 310] for his set of axioms.

48. This close numerical approximation property is verified for our numerical example
described in Appendix 2.

49. This theoretical approximation result is verified for our numerical example described
in Appendix 2.

50. If K =2, Proposition 5 shows that Van Yzeren's unweighted average price method
is a superlative additive system. Another example of a superlative additive method when
K = 2 is the Walsh-Gerardi system defined by (3) and (16). In this case, S2/S! =
Qw (9!, p?, v, y?) where Qw is the Walsh [1901; 552] quantity index defined by (64) above.

51.  For statements of this effect, see Gini [1931; 14], Drechsler [1973; 26}, Gerardi [1982;
383}, P. Hill [1982; 54] [1984; 128], Kravis [1984; 8-9], Maurris [1984; 52] and R.J. Hill [1995;
ch. 4]. In the producer theory context, the indifference curve through A, B, C is replaced
with a production possibilities curve which has the opposite curvature. Hence the biases
are reversed in the producer theory context.

52.  Gini [1931; 14] had a clear understanding of substitution bias in the context of
consumer price indexes.

53.  For further references to the use of unit values to aggregate commodities over time
and place, see Diewert [1995; 28] and Balk [1995c].

54.  Of course, the resulting constant international “dollar” country aggregate values
7 - y* will not generally be proportional to the country shares S* generated by the “best”
multilateral method.

55.  Actually, only tests T2,73,7T9,T10 and T11 are new and some of these tests are
straightforward modifications of existing tests.

56. However, since the present author introduced this method, the reader should be
aware of a potential bias problem in this recommendation.
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