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ABSTRACT

In this paper, I present two different methods that can be used to obtain a concise set of
descriptive results about the comovement of variables. The statistics are easy to interpret and
capture important information about the dynamics in the system that would be lost if one focused
only on the unconditional correlation coefficient of detrended data. The methods do not require
assumptions about the order of integration. That is, the methods can be used for stationary as
well as integrated processes. They do not require the types of assumptions needed for VAR
decompositions either. Both methods give similar results. In the postwar period, the
comovement between output and prices is positive in the "short run" and negative in the "long
run.”" During the same period, the comovement between hours and real wages is negative in the
"short run" and positive in the "long run." I show that a model in which demand shocks
dominate in the short run and supply shocks dominate in the long run can explain the empirical

results, while standard sticky-price models with only demand shocks cannot.
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1. INTRODUCTION.

The observed correlation between macroeconomic variables plays an important role in the
development and testing of business cycle theories. Macroeconomic models are judged on their ability to
reproduce key correlations in the data, such as the comovement of output with wages, prices, and hours.
Using these kind of empirical results to judge theories presupposes that there is a set of correlations upon
which everyone can agree. In fact, the strength and even the sign of these empirical correlations are often

very sensitive to the methods used to calculate them.

Nowhere is this problem more evident than in the case of the comovement between output and
prices. For decades, it was generally belicved that prices and output exhibited a positive correlation.'
Often, some type of Phillips-curve effect was mentioned to rationalize a positive comovement between real
activity and either prices or inflation. Recently, however, the sign of the relationship between output and
prices has been called into question. In a noteworthy study, Cooley and Ohanian (1991) find that,
although the correlation between output and prices is positive from 1870 to 1975, it appears to be negative
during the postwar period. The correlation they study is the unconditional correlation coefficient of
detrended GNP and prices, using various methods of detrending. In contrast, support for a positive
correlation is given in Chadha and Prasad (1993), who argue that prices and GNP have to be detrended
using different methods. The correlation between hours and real wages has also received considerable
attention in the literature. Most empirical studies in the literature have shown that real wages are, if

anything, procyclical rather than countercyclical.?

In this paper, I argue that an important source of the disagreement in the literature is the focus on
only one corrclation cocfficient. By focusing on only the unconditional correlation, one is losing valuable
information about the dynamic aspects of the comovement of variables. Moreover, since the
unconditional correlation coefficient is only defined for stationary variables, the researcher has to
transform the data to render it stationary, and there are many ways of doing this. I present two different
types of methods that can be used to obtain a concise set of descriptive results about the comovement of
variables. The statistics are easy to interpret and capture important information about the dynamics in the
system that would be lost if one focused on only the unconditional correlation coefficient of detrended
data. The first method calculates the correlations of VAR forecast errors at different horizons.?
Identifying assumptions, usually needed for VAR decompositions, or assumptions about the order of

integration of the variables are not required. That is, the methods can be used for stationary as well as

! Cf. Abel and Bemanke (1994), Blanchard and Fischer (1989), King and Watson (1994), Lucas (1972,1977), and Mankiw (1989).

2 Cf. Dunlop (1938), Sargent (1978), Bils (1985), Bernanke and Powell (1986), Blanchard and Fischer (1989), and Abraham and
Haltiwanger (1995).

3 Following a suggestion by Jim Hamilton, Engel (1993) uses the forecast errors from a VAR to analyze the variance of several relative
price indices.



integrated processes. The second method uses band-pass filters from the frequency domain proposed by
Baxter and King (1994). In this paper, I prove, using spectral analysis for integrated processes, that the
properties of these type of frequency filters are equivalent for stationary and first and second-order
integrated processes. This result contradicts several claims in the literature that the properties of

frequency domain filters depend on the order of integration of the input series.

I apply these methods to two examples: the comovement of output with the general price level,
and the comovement of hours with real wages. Both methods give very similar results. For the postwar
period, the comovement between GNP and prices is positive in the “short run” and negative in the “long
run”. In the complete sample from 1875 to 1993, the correlation between prices and GNP is positive at
most frequencies. For the comovements between real wages and hours, I find a similar difference between
the short run and the long run during the postwar period. In the “short run”, the correlation between
hours and real wages is negative, and in the “long run”, it is positive. The results are robust to changes in
the specification of the VAR, the data frequency, the particular price index used, and the particular

postwar period considered.

Hansen and Heckman (1996) criticize the calibration approach for not matching a full set of
dynamics of the model to the dynamics in the data. The statistics that are proposed in this paper do
incorporate information about the dynamics but are still very intuitive. I argue that the type of statistics
proposed in this paper is very effective in providing information to aid a researcher who wants to build a
structural model. T support this claim by showing that the reported empirical findings have important
implications for ecconomic theories that have not been mentioned in the literature. For example, Lucas
(1977) concluded from the empirical finding that real wages are acyclical that “any attempt to assign
systematic real wage movements a central role in an explanation of business cycles is doomed to failure”.
Boldrin and Horvath (1995) use the same empirical finding to motivate a model of real wage contracts.
However, 1 find significant cyclical patterns when I distinguish between short-run and long-run
movements, which suggest that cyclical movements in real wages should play an important role. The
dynamic pattern found in the comovement of prices and output also has important implications for
economic theories. Kydland and Prescott (1990) conclude that “any theory in which procyclical prices
Sigure crucially in accounting for postwar business cycle fluctuations is doomed to failure”. My results
indicate that a theory in which prices do not have some procyclical feature is, at best, missing an
important part of the explanation of US business cycle fluctuations. A related question is whether the sign
of the correlation coefficients can reveal the importance of demand versus supply shocks. One might
think that a negative correlation between prices and output implies the presence of supply shocks.
However, Chadha and Prasad (1993) and Judd and Trehan (1995) document that a standard “sticky-price”
model with only demand shocks is capable of generating a negative unconditional correlation coefficient

between prices and output for some detrending methods. The methods proposed in this paper reveal



important information that is rclevant to this question. In particular, I show that, in contrast to the results
in Chadha and Prasad (1993) and Judd and Trehan (1995), a standard sticky-price model with only
demand shocks cannot explain the complete set of empirical results reported in this paper. I argue that a
model in which demand shocks dominate in the short run and supply shocks dominate in the long run is a

plausible explanation for the empirical results.

The remainder of this paper is organized as follows. In section 2, I show how to use a VAR to
measure the correlation between output and prices at different forecast horizons. In section 3, I show how
to use band-pass filters to measure the correlation between output and prices at different frequencies.
In section 4, I present the empirical results for the US economy regarding the comovements between
prices and output. In scction 5, I present the empirical results regarding the comovements between real
wages and hours. In section 6, I discuss the implications of the empirical results for economic theories.

The last section concludes.

2. MEASURING CORRELATIONS AT DIFFERENT FORECAST HORIZONS.

In section 2.1, I show how to use forecast errors to calculate correlation coefficients at different
forecast horizons. In scction 2.2, T analyze the relationship between this procedure and impulse response

functions.

2.1 Using forecast errors to calculate correlation coefficients.

Consider an N-vector of random variables, X;. The vector X, is allowed to contain any
combination of stationary processes and processes that are integrated of arbitrary order. If one wants to
describe the comovement between prices, P, and output , ¥, then X, has to include at least P, and ¥,.

Estimating the VAR involves estimating;

2.1) X, = pu + Bt + XL:A,X,_, + &

I=1
where 4; is an NxN matrix of regression coefficients, 4 and B are N-vectors of constants, £, is an N-
vector of innovations, and the total number of lags included is equal to L. The estimated VAR can be
used to construct a time series of k-period ahead forecast errors for each of the elements of X,. I denote the
k-period ahcad forecast and the k-period ahead forecast error of the variable ¥, by );{ k> and Y,'fk’k .
respectively. I do the same for P,. The forccast errors are used to calculate the covariances or
correlation cocfficicnts between the two series. I denote the covariance between the two random variables
P wand Y5 . by COV(k) and the correlation coefficient between these two variables by COR(k). 1
the series are stationary, then the correlation coefficient of the forecast errors will converge to the

unconditional correlation coefficient of the two series as & goes to infinity. In appendix E I show that a



consistent estimate of COV(k) and COR(k) does not require any assumptions on the order of integration of
X,. For example, it is possible that X, contains stationary as well as integrated processes. An important
assumption for the derivation of this consistency results is that equation (2.1) is correctly specified. In
particular, the lag order must be large enough to guarantee that €, is not integrated. That is, if X,
contains I(1) stochastic processes, then the lag order has to be at least equal to 1, and when X, contains
1(2) stochastic processes, then the lag order has to be at least equal to 2.

Using an unrestricted VAR in levels leads to consistent estimates of the covariances of the k-
period ahead forecast errors both when X; does and when X, does not include integrated processes.
Alternatively, one can estimate a VAR in first differences or an error-correction system. When the
restrictions that lead to these systems are correct, then imposing them may or may not lead to more
efficient forecasts in a finite sample.* Asymptotically, there is no efficiency gain.> However, if they are
not correct, then they lead to inconsistent estimates of the correlation coefficients. This suggests that, in

practice, one would want to estimate the VAR in levels.

2.2 The relationship with impulse response functions.

There is an alternative way to use the VAR to construct measures of comovements at different

forecast horizons. The alternative method clarifies the relationship between this procedure and impulse

response functions. The k-period ahead forecast error, Y,"fk' & » can be written as follows:

- - s f S S s
2.2) Ve = (Yt+k —Yr+k,1+k—l) + (Ynk,nk-l - t+k,r+k—2) t ot (Yz+k,t+l ‘Yz+k,:)

In this equation, the k-period ahead forecast error is written as the sum of the updates in the forecast of
Y., starting at period ¢+/. The first term on the right hand side is just the one-period ahead forecast
error realized at period t+k. The second term is the update of the two-period ahead forecast. I denote the
update in the k-period ahead forecast at period ¢ by Y,ﬁfk,k . Also, I denote the covariance between Y,ﬂ,k
and P,ﬁ,, ¢ by COV(¥®). Since the terms on the right hand side of equation 2.1 are serially
uncorrelated, there is a simple relation between COV(k*) and COV(k). That is,
(2.3) COV(k) = Zk:COV(xA) .

x=1
When k is equal to one, the two covariances are identical. The “COV(K*)” covariances, therefore, contain
the same information as the “COV(k)” covariances. The “COV(*)” covariances clarify the relation
between thesc slatistics and impulse response functions. Suppose that X, = A Z,, where 4 is an NxAf

matrix of coefficicnts and Z, is an M-vector of (independent) fundamental shocks. Let ¥, be the

* See Hamilton (1994, page 516) for a discussion.
3 See Fuller (1976).



effect on output of a one standard deviation shock in the m™ element of Z, after k periods. Thus, Y,:'"" "
is the impulse response of the m™ element of Z, on ¥, . I define P,™"™ in the same way. Then, COV(K")

is equal to the sum of the products of the k-step impulse responses across all fundamental shocks. That is,

2.4 COV(k®) = f"y,;""”’"' pmem,

m=1
Thus, COV(k*) measures the comovement of output and prices after & periods in response to a typical
shock. COV(k) accumulates the effects over & periods. The impulse response functions give complete
information about the comovements of output and prices after any type of shock. Estimating impulse
response functions, however, requires making identifying assumptions. The results often depend on the
particular type of identifying assumptions, and the assumptions are often ad hoc. The advantage of the
procedure proposed in this paper is that it does not require making these type of assumptions. The
disadvantage of this procedure is that it only gives the dynamic effect of a typical shock.

3. MEASURING CORRELATIONS AT DIFFERENT FREQUENCIES.

In this section, I show how to use spectral analysis to decompose series by frequency and to
measure the correlations of two series at diffcrent frequencies. In section 3.1, [ assume that the
variables are stationary. In section 3.2, I show that the procedures remain valid if the serics are first or
second-order integrated processes, or when the series contain a deterministic linear or quadratic time

trend.

3.1 Frequency-domain filters for stationary processes.

From the Wold-thcorem, I know that any covariance stationary scries has a time-domain
representation. Equivalently, any covariance stationary series has a frequency-domain representation.
Informally, the variable x, can be represented as a weighted sum of periodic functions of the form cos(w)

and sin(of), where o denotes a particular frequency. The frequency domain representation is given by
n T

3.D X, = u+ Ia(w) cos(wt) da)+J'6'(w) sin(ax)dw
0 0

Here, a(-) and &(-) are random processes. The spectrum of a series x, is given by

1 —iarj
3.2) S (w) = szfe 7 -rsw<nr,



where y; is the 7™ autocovariance and i* = -1. The spectrum is useful in determining which frequencies
are important for the behavior of a stochastic variable. If the spectrum has a peak at frequency o = /3,
then the cycle with periodicity 6 (= 2n / (n/3) ) periods is quantitatively important for the behavior of this
stochastic variable. Consider the following examples. Ifx, is white noise, then the spectrum is flat. A
flat spectrum means that all cycles are equally important for the behavior of the variable x,. This is
intuitive since the existence of cycles implies forecastibility, and white noise is, by definition,
unforcastable. Next, suppose that x, is an AR(1) with coefficient p, where 0 < p <1. The spectrum for
this random variable has a peak at ® = 0 and is monotonically decreasing with |®|. Since the
periodicity of a cycle with zero frequency is infinite, this stochastic process does not have an
obscrvable cycle. If the stochastic variable x; has a unit root, then the spectrum would be infinite at

frequency zero.

Baxter and King (1994) show how to construct filters that isolate specific frequency bands,
while removing stochastic and deterministic trends. Suppose one wants to isolate that part of a stochastic
variable x, that is associated with frequencies between ®; and w,, with0 <®; <w®; <7, If®; ==, then
the filter is called a high-pass filter since all frequencies higher than @; are included. If ®; < &, then the
filter is called a band-pass filter. The filters are two-sided symmetric lincar filters and can be expressed as

follows.

(3.3) x{ = B(L)x,

where x,F is the filtered series, L is the lag operator, and

o]
(3.4) B(Ly = Yb,L"  with b, =b_,.

h=—c0

Let the Wold-representation for x; be given by

3.5 x, = C(L)s,.
Then,
(3.6) xf' = B(L)CWl)e,,

A useful result in spectral analysis is that the spectrum of x,p is given by

(3.7 Sr(@) = |Be™)} S, (@),

where |B(e )| is the gain of the filter B(). The spectrum of the filtered series x,F has to be equal to S,

if o] € [e, 0 and equal to zero if o is outside this set. Therefore, the gain of the filter has to be equal to



one if lo| € [0, ®;] and equal to zero otherwise. Using the converse of the Riesz-Fischer theorem,

one can find the time-serics representation, i.c. B(L), that corresponds to these conditions on the gain of

the filter. The formulas are as follows

(02 —wl
b, = 2221
Ve

(3.8)
sin(w, 7)) - sin(w  h)

b =
h h

h=%1,...

The ideal filter is an infinite moving average and cannot be applied in practice. In practice

one has to truncate B(L). This gives an approximate filter 4(L), where
K
(3.9) ALY = Yalh
h=-K

and K is the truncation parameter. I set this parameter equal to 20 for the experiment using postwar data,
and equal to 40 for the experiment using the whole sample. These numbers are much higher than the
values used in Baxter and King (1994), but I find that some of the estimated correlations are sensitive
to the choice of K for lower values of K.°’ Note that a higher value of K means a more accurate band-
pass filter but, also, the loss of more data points. The ideal filter B(L) has the property that B(1)=0. To
ensure the same property for the feasible filter A(L), I adjust the coefficients of A(L) in such a way that
they add up to zcro as well. Let © be equal to

X
- Zb Y
(3.10) 6 2hK—f1
As in Baxter and King (1994), I adjust the coefficients as follows
31D a, = b, +86

Note that the distortion introduced by this restriction goes to zero if K goes to infinity.

3.2 Frequency-domain filters for non-stationary processes.®

In this section, I analyze the properties of frequency-domain filters for more general stochastic

processes. In particular, 1 show that the properties derived in section 3.2 remain valid when the input

® See appendix B.

Other approaches in the frequency domain also have to deal with the endpoints. The HP filter deals with the endpoints by using a
different filter for each observation in the sample. Band spectrum regressions assume that the last observation is at the same point in the
cycle as the first observation. (See Engle (1974)).

8 . . . . . .
This section has benefited a lot from discussions with Clive Granger.



series are integrated stochastic processes or when the input series have a linear or quadratic time trend.

To prove this, I have to define the spectrum of a non-stationary random process. Although most of the
literature on spectral analysis focuses on stationary processes, there are some exceptions.” In fact, Hannan
(1970) and Priestley (1988) consider much more general non-stationary processes than the ones

considered in this section.

First, I will discuss first-order integrated processes. When the series x, is integrated, then the
covariances used to define the spectrum in equation (3.2) are not well defined. Therefore, I will define the
spectrum of an integrated process as the limit of the spectrum of a stationary stochastic process. The
motivation for this definition is the following. According to the Beveridge-Nelson decomposition, one can,
under mild regularity conditions, write an I(1) process as the sum of a random walk, initial conditions,

and a stationary process.'’ Thus,
(3.12) x, = c+x,_, +e,,

where e, is a stationary process. The assumption is made that the spectrum of e, is continuous in a
neighborhood around zero. This means that the number of deterministic sinusoidal components with

frequencies close to zero is finite. Consider the following “AR(1)-type” process:'’
(3.13) X, = c+px,_, +e,.

Equation (3.12) can be written as:

(3.14) x = c+lim,,, px,_ +e,.

Note that, as long as [p| < 1, the process defined in (3.13) is stationary and has a well-defined spectrum,

which I denote by S, (@). Equation (3.14) motivates the following definition of the spectrum of an I(1)

| 2
— S, (w).
1-pe™®

Note that S{(») is finite for all frequencies except zero. Similarly, I can define the spectrum of an I(2)

process:

(3.15) Se@) = lim,, S,(@) = lim,,

stochastic process as

2

! S, (@)

(3.16) S, (w) = lim . -
x ad |1_2pe—m: +p2 e—21ml

® For example, Hannan (1970) and Priestley (1988).

10 See, for example, Hamilton (1994).

" This process is not necessarily an AR(1), since ¢, could be serially correlated.



The frequency-domain filter B(L) satisfies the following properties:

tl
—

|B(e"“”)| if o, <w<w,, and

(3.17)

|
[~

,B(e”"”)‘ if o<o,0>0,.
Moreover, B(1) = 0. In appendix F, I show that these properties imply that B(L) can be written as'?

3.18) B(L) = (1-L) B(L) ,

where B(l) <. Consequently, B(L) has the property that it can make first-order integrated processes

stationary. Let x,F = B(L) x,. When x, is a stationary process, then the following holds:

S(w) if v, sw<w,, and

il

Sx, (@)

(3.19) 5.0(@)

0 if 0 cw<w, w,<w<sn

I have to show that these properties also hold when x, is an I(1) process. In this case,

B
(3.20) xF —Q)—e,.
(1-1)
Because of (3.18), B(L)/(1-L) is well defined. This means that the spectrum of x,F is well defined and is
given by
B —iw 2 B —iw 2 2
(3.:21) Ser@) = [ S,@) = lim, ) [ 20 5, 0) = [BE™) 5.60)

Recall that S(o) is well defined for all values of o bigger than zero. This, together with (3.17), implies

that S, is equal to zero for 0 <w <w,. It remains to be shown that S_» is equal to zero when o is equal

to zero. Equation (3.18) implies that B(e"*)/(1- e*®) is well-defined when @ equals zero. Since S, and

B(e"™)/(1- ¢') are continuous in a neighborhood around zero, S_» is continuous at zero. This, together
with the fact that S , is equal to zero for values of @ close to zero, means that S » is equal to zero for o
equal to zero.

Harvey and Jaeger (1993), Cogley and Nason (1995), and Osborn (1995) argue that the
properties of frequency-domain filters depend on the order of integration of the input series. This clearly

contradicts the analysis above. These papers reach a different conclusion because they focus on the

3 This property is well-known for finite moving-average representations. However, for infinite representations, (3.18) does not
automatically follow from the property that B(1) = 0. In appendix F, I show that (3.18) holds for symmetric infinite representations. An
example of an infinite-order polynomial for which (3.18) does not hold is the filter D(L)=(1-L)", with 0 < d < 1/2. This filter has the
property that D(1) = 0, but if D (L) is defined by D(L) = D(L) (1-L), then 5(1) = 00,



stationary part of the series, although the filter is always applied to the level. Consider, for example, the

process

(3.22) x, = px_, + e,

where e, is an arbitrary stationary process. When |p| < 1, these papers compare B(L) x, with the stationary
part of the series, i.e. x. But, when p = 1, they compare B(L) x, with the stationary part of the series, i.e.
(1-L)x,. Thus, when |p| < 1, they analyze the properties of the filter B(L), and when p = 1, they analyze
the properties of the filter B(L)/(1-L). This means that there is a discontinuity in the focus of the analysis
when p equals 1. I prefer the analysis above that uses the definition of the spectrum for integrated
processes. Note that if a researcher is interested in the first-difference of an integrated process instead of

the level he can, of course, apply the filter to Ax, as opposed to x,.

Next, I discuss second-order integrated processes. The analysis given above can be easily

generalized to second-order processes when the filter B(L) can be written as
(3.23) B(L) = (1-Ly(1-L"y B(L)= -L" (1-Ly* B(L),

where B(1) <. Equation (3.23) is satisfied for finite-order symmetric filters with the property B(1) = 0.
In appendix F, I show that a symmetric infinite-order filter with B(1)=0 only satisfies equation (3.23)
when the coefTicients vanish at a sufficiently fast rate. The coefficients of the infinite-order frequency
domain filters discussed in this section do not vanish fast enough. However, as long as w is not equal to
zero, then  B(e"™)/(1 - 2 €™ + 7} is still well-defined. Thus, for the infinite-order filter, the properties
in (3.19) hold for second-order integrated processes when @ # 0. When one uses the finite-order
approximation, then equation (3.23) is satisfied. Thus, the finite-order filters discussed in this paper have
the property that the spectrum of the filtered series is equal to the squared gain of the approximate filter

times the spectrum of the input series, for stationary and for first and second-order integrated processes.

However, for finite-order filters, there is another reason why it may matter whether the input
series are integrated or not. Consider the approximation of the filter that eliminates all frequencies below
;. The squarced gain of the approximate filter is not exactly equal to zero for frequencies less than w,
and not exactly equal to 1 for frequencics bigger than @,. Since the spectrum of the filtered series is equal
to the squared gain times the spectrum of the input series, the approximation error may be bigger for
processes for which the value of the spectrum goes to infinity as the frequency goes to zero, i.c. integrated

Pprocesscs.

10



FIGURE 1: SPECTRA OF FILTERED RANDOM PROCESSES (@, = n/16, @; = n).

A: White Noise (Squared Gain)
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Note: The variance of the white noise process in panel A is chosen in such a way that the graph also represents the squared gain. Using
equation (3.7), one can calculate the spectrum of the filtered series as the squared gain times the spectrum of the original random variable.
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FIGURE 2: SPECTRA OF FILTERED RANDOM PROCESSES (w, = /4, @; = 7).

A: White Noise (Squared Gain)
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Note: The variance of the white noise process in panel A is chosen in such a way that the graph also represents the squared gain. Using
equation (3.7), one can calculate the spectrum of the filtered series as the squared gain times the spectrum of the original random variable.
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To address this question, I calculate the spectrum of some filtered processes. The filters that I
consider are two high-pass filters that eliminate all cycles associated with periods bigger than 8 periods
and 32 periods, respectively. Besides the ideal infinite-order high-pass filter, I also consider two
approximate filters with truncation parameters equal to 40 and 20, respectively. I consider three
stochastic processes. The first is a white noise process, where the variance is chosen in such a way that
the spectrum of the filtered series is equal to the squared gain. The second process is an AR(1) with a
coefficient equal to 0.95. The third process is an integrated AR(1) with a coefficient equal to 0.4. The
results are given in figures 1 and 2. As documented in the graph, for all stochastic processes the
approximation is better for the frequencies that are less than @; than for the frequencies just above ;.
Also, the approximation errors are bigger for the two serially correlated processes than for the white noise
process. This suggests that the truncation parameter that one uses should depend on the persistence of the
underlying process; i.¢., a higher truncation parameter is needed for more persistent processes. The graph
also shows that the study of approximation errors does not reveal a fundamental difference between the
persistent stationary process and the integrated process studied here. For example, for X equal to 40 and
w, equal to 2716, the peak of the approximated spectrum is 14% and 12% less than the peak of the true

spectrum for the stationary persistent process and the integrated process, respectively.
Now suppose that the scrics x; has a linear time trend. That is, x, can be written as
(3.24) x =att y,

where y, is a stationary or integrated process. When one applics the filter B(L) and uses the results shown

in (3.18), then
(3.25) xf' = BLyx, = B()a + B(L)y,

and

Sx, (@)
Sx, (w)

Sy(w) if oy <w<wo,, and
(3.26)

0 if w<w, 0>,

Thus, the filter removes a linear trend, and (3.19) holds for the non-deterministic part of the serics. When
one uses a finite-order filter to approximate B(L), then one can use the results in (3.23), and the filter will

also take out a quadratic time trend.
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4. THE COMOVEMENTS BETWEEN US PRICES AND OUTPUT.

In this section, I use the procedures from sections 2 and 3 to analyze the comovements between
prices and output in the US economy. In section 4.1, I estimate spectra of the series. In section 4.2, I use
the k-period ahead forecast errors to calculate correlation coefficients, and in section 4.3, T use the
frequency-domain filters to calculate correlation coefficients. I use quarterly data from 1875 till 1993 for
the log of GNP and the log of GNP’s implicit price deflator.’® I analyze both the full sample and the
postwar period from 1954 to 1993. In appendix B, I show that the pattern of results discussed in this

section is extremely robust. In particular, I show that the results do not change when I

¢ impose unit root specifications in the estimation of the VAR,
¢ add monetary indicators to the VAR,

e use monthly instcad of quarterly data,

e use a different price index, or

¢ divide the postwar period into different subsamples.

4.1 The spectra of US prices and output.

In this section, T estimate the spectra of detrended measures of output and prices using a selection
of detrending procedures. The point I want to make is that the time-series properties of some of these
detrended scries are very different. In this case, the unconditional correlation coefficient is a misleading
statistic. Consider the correlation between the two random variables X, and ¥, . Let X, be an AR(1)
process with an AR coefficient equal to 0.99 and innovation g, Let Y, be white noise that is perfectly
correlated with ,. In this case, the unconditional correlation cocfficient between X; and Y, is equal to
0.14. This low number obscures the perfect correlation between the innovations of the two series. The
method using the forecast errors from a VAR would have revealed this perfect correlation at the one-
period forecast horizon. A high-pass filter would similarly document the high correlation. For this case,
the correlation coeflicient for series associated with cycles less than four periods would be equal to 0.89.
Both methods would approach 0.14 if the forecast horizon, or the periodicity of the cycles included, goes

to infinity.

14" A detailed description of the data is given in appendix A.
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FIGURE 4: SPECTRA OF DETRENDED PRICES AND OUTPUT.
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Note: Figures 4A, 4B, and 4C display the estimated spectra using quarterly US data from 1875 to 1993, using the
indicated filter. The estimator for the spectrum is given in footnote 12.
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In figure 4A, I plot the spectra of first-differenced output and prices. In figure 4B, I plot the
spectrum of first-differenced inflation.'* Note that the spectra of GNP growth differs somewhat from the
spectrum of inflation and is very different from the spectrum of the change in inflation. Consistent with
this finding is that the autocorrelation coefficient of inflation is substantially higher than the
autocorrelation coefficient of GNP growth. In figure 4C, I plot the spectra of output and prices filtered
using the Hodrick-Prescott (HP) filter.'S Note that the HP filter generates, by construction, series with a
similar spectrum. Chadha and Prasad (1994) propose to use the correlation between inflation and HP
filtered GNP as a measure of the comovement between prices and real activity. As documented in figure
4, the spectra of HP filtcred GNP and inflation are very different, which indicates that the time-series
properties will be different. As documented by the example in the last paragraph, the unconditional
correlation coefficient between two series may be very hard to interpret when the time-series properties are
so different. The time-series properties of the series obtained with the two methods proposed in this paper
are similar by construction. Scries that are detrended using first differences, using the Beveridge-Nelson

decomposition, or by taking out a deterministic time trend do not have this property.

4.2 Correlation between US prices and output at different forecast horizons.

To calculate the forecast errors, I estimate a bivariate fourth-order VAR including the log of
GNP, the log of the implicit price deflator, a constant, and a linear time trend. In appendix B, I show that
the results are robust to scveral changes in the specification of the VAR. In figure 5A, I document the
correlation between the k-period ahcad forecast errors. During the postwar period, the correlation is
positive for forecast horizons less than five years, and the correlation is negative for forecast horizons
equal to five years and higher. Within the complcte sample, however, the correlation is positive at any
forecast horizon. In figure 5B, I plot the covariance between the changes in the k-period ahead forecasts
of GNP and prices. During the postwar period, this covariance is positive for forecast horizons less than 3
years. As explained in section 2, the covariance is better than the correlation coefficient in revealing the
quantitative importance of the comovements. As documented in figure 5b, the positive covariances for the
low forecast horizons, are quantitatively less important than the negative correlations at the higher
forecast horizons. Also, the covariance between the one-quarter ahead forecast errors of prices and output
is small. This is true for the postwar period as well as for the complete sample. The results reported in

this section are consistent with King and Watson (1994). They document that there is a positive

. 1 20 J
1> The estimator of the spectrum is equal to: § . (@) = — { Fo+2 El (l - —) 7 j cos( ay')}. The general shape of the spectrum
2z 1= 21

is insensitive to the truncation parameter. See Christiano and Den Haan (1996) and Den Haan and Levin (1994) for a discussion on
alternative spectral density estimators.

€ See Prescott (1986) and King and Rebello (1993) for a discussion of the HP filter.
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correlation between the “trend” values of the unemployment and inflation rates during the postwar period

and a negative correlation between the “business-cycle” components of the two series.

FIGURE §5: COMOVEMENT BETWEEN PRICES AND OUTPUT.
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Note: Figures SA and 5B show the indicated measure of comovement between GNP and its deflator using US data for
the indicated period.
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In table D in appendix D, I report the numerical values of the estimates and their significance
levels for the postwar period.'”  As documented in table D1, most of the positive estimates for the
correlation between the forecast errors are significant at conventional significance levels and none of the
negative estimates, found at the long forecast horizons, are significant. Note that the calculation of
standard errors is difficult for the longer forecast horizons since the correction for serial correlation
becomes more important.'®* I repeat the exercise using monthly data for the deflator of nondurable
consumption and the index for industrial production. The results are reported in table D3. With this data
set, I find a similar pattern for the sign of the correlation coefficients. Using the monthly data set, I find
that the positive estimates for the short forecast horizon are highly significant both for the bivariate VAR
and for the VAR that includes monetary indicators. The negative estimates at the long forecast horizons
are insignificant for the forecast errors from a bivariate VAR but significant for the forecast errors from

the VAR with the monetary indicators.

4.3 Correlation between US prices and output at different frequencies.

In figures 6A and 6B, I plot the correlation coefficients of the filtered series of GNP and prices
using the high-pass and band-pass filter, respectively. Since the filter is a two-sided moving average, one
loses some observations at the beginning and end of the period. For the complete sample, I set X equal to
40, and, for the postwar period, I set K equal 1o 20. These high numbers are necessary since, at lower
values, increases in K would change the results quantitatively.'® As shown in figure 6A, the correlation
between the serics associated with a cycle less than or equal to S years is positive during the postwar
period. The band-pass filter, that also eliminates higher frequency cycles with an increase in the
periodicity, becomes negative at a lower periodicity. For the complete sample, the correlation coefficients
calculated with the high-pass filter are always positive. The correlation coefficients reach a minimum
when the periodicity is around 35 years. At this periodicity, the correlation cocfTicient of prices and output
filtered with the band-pass filter is negative. The popular Hodrick-Prescott filter is an approximation to a
high-pass filter that includes that part of the series associated with cycles less than 8 years. As
documented in figure 6A, the correlation coefficients of output and prices are indeed very similar for these

two filters.

In appendix D, I report the estimates for the correlation coefficients and their significance levels
for the postwar period. As documented in table D2, some of the positive ¢stimates at the low periodicities

are significant, and several of the negative estimates at the high periodicities are significant.

17
18

For the complete sample, the estimates are almost always significantly positive. These results are available on request.

To correct for serial correlation, T use the VARHAC procedure from Den Haan and Levin (1994). Similar significance levels are
found when I use the automatic bandwidth procedure from Newey and West (1993). There are several studies that document the difticulty
of obtaining accurate standard errors in small samples in the presence of serially correlated errors. See, for example, Christiano and Den
Haan (1996) for a study using typical business cycle statistics.

1 See appendix B for a sensitivily analysis of the results to changes in the truncation parameter.
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FIGURE 6: COMOVEMENT BETWEEN PRICES AND OUTPUT.
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5. THE COMOVEMENTS BETWEEN US REAL WAGES AND HOURS.

In this section, I analyze the comovement between real wages and hours in the postwar period. 1
use quarterly data from 1954 to 1993 for rcal compensation per hour in the business sector and per capita
hours of all employees in the business sector.”’ In appendix C, I perform a sensitivity analysis of the
results reported in this section. I find the same results in several postwar subsamples and for several wage

deflators.

The debate over the comovement between real wages and hours in US data seems to focus on the
question of whether the (unconditional) correlation coefficient of the real wage rate and the amount of
hours worked is zero or slightly positive.”" I will show that the data are much more informative when one
does not focus entircly on one corrclation cocfficient. With the methods proposed in this paper, I find
support for a negative as well as a positive correlation coefficient. That is, I find that, in the “short run”,
the correlation between real wages and hours is negative, and, in the “long run”, it is positive. Figure 7A
displays the results of the procedure that uses the forecast errors from the VAR. Again, a bivariate VAR
with four lags, a constant, and a linear time trend is used. As documented in the figure, the correlation
between forecast errors with a forecast horizon less than two and a half years is negative. At higher
forecast horizons, the correlation is positive, although, at some point, it gets close to zero again. Figure
7B displays the results using the frequency domain filters. When the filter removes all cycles with a
period just above two ycars, the correlation between real wages and hours is almost zero. When the cutoff
is chosen to be a lower number, the correlation is negative, and, when the cutoff is higher, the correlation
is positive. The estimaltes and their significance are reported in tables D1 and D2 in appendix D. I find
that there are highly significant negative “short run” correlation coefficients and highly significant
positive “long run” coefTicients for the filtered series. Using the VAR forecast errors, I find that one of

the negative “short run” coefficients and two of the positive “long run” coefficients are significant.

20 A detailed description of the data is given in appendix A.

A cf Dunlop (1938), Sargent (1978), Bils (1985), Bernanke and Powell (1986), Blanchard and Fischer (1989), and Abraham and
Haltiwanger (1995).
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FIGURE 7: COMOVEMENT BETWEEN REAL WAGES AND HOURS.
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Note: This figure displays the covariance of the updates of the forecasts of real wages and hours and the correlation
between the forecast errors of real wages and hours. A bivariate VAR is used to construct the forecasts. The VAR is
estimated using quarterly data from 1954 to 1993.
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Note: This figure displays the corrclation coefficient between filtered real wages and hours over the period from 1954
to 1988, where the indicated filter is used to filter out cycles with the indicated periodicity. The high-pass filter
removes all cycles with a period higher than the indicated periodicity. The band-pass filter removes all cycles with a
period higher than the indicated periodicity as well as the cycles with a period less than the indicated periodicity minus
one year.
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6. IMPLICATIONS FOR ECONOMIC THEORY.

In this section, I show that the results reported in the last two sections have important
implications for economic theories. The examples in this section illustrate that the proposed statistics are
very effective in revealing the type of information that is important for economists who try to build a
structural model. In section 6.1, I discuss the implications of the results for the comovement of prices and
output. In section 6.2, I discuss the implications of the results for the comovement of real wages and

hours.

6.1 Economic theory and the comovements between prices and output.

An interesting question is whether the sign of the correlation coefficients can reveal the
importance of demand versus supply shocks. For example, one might think that a negative correlation
between prices and output implies the presence of supply shocks. However, as pointed out by Judd and
Trehan (1995), the sign of the unconditional correlation coefficient also depends on dynamic responses in
the model. In particular, Chadha and Prasad (1993) and Judd and Trehan (1995) document that a
standard “sticky-price” model with only demand shocks is capable of generating a negative unconditional
correlation coefficient between prices and output for some detrending methods. Without additional
assumptions, the methods proposed in this paper also do not identify the underlying fundamental shocks
of the system. Nevertheless, they reveal important additional information that is relevant to this question.
First, in section 6.1.1 [ show that, in contrast to the results in Chadha and Prasad (1993) and Judd and
Trehan (1995), a standard sticky-price model with only demand shocks cannot explain the complete set of
empirical results reported in this paper. To be precise, I show that one can generate the negative
correlation between VAR forecast errors only under implausible conditions on the demand shock. The
second reason why the empirical results reported in this paper have information about the relevance of
demand and supply shocks is the following. In a static model, the most plausible consequence of a
positive demand shock is an increase in output and the price level, and the most plausible consequence of
a positive supply shock is an increase in output and a decrease in the price level. Short run effects in a
model are not affected by internal propagation mechanisms. Therefore, I think it would be hard to develop
a model without demand shocks in which the “short-run” correlation between prices and output is
positive. Iargue that a model in which demand shocks dominate in the short run and supply shocks
dominate in the long run is a plausible explanation for the empirical results. As an example, I show that a
standard “sticky-price” model with empirically plausible demand and supply shocks can explain the

pattern of correlation coefficients observed in the data.
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6.1.1 A standard sticky-price model with only demand shocks.
The sticky-price model that I analyze in this section is very similar to the model analyzed in

Chadha and Prasad (1993). The output in this economy is determined by demand. The demand for output

is given by
6.1) yo=yl =M, -P +D, =D, - P,

where y, denotes the logarithm of output at time ¢, the superscript d denotes demand, M, denotes the

logarithm of the nominal money stock, P, represents the logarithm of the aggregate price level, 5, isa

non-monetary nominal demand term, and D, combines the monetary and the non-monetary demand

terms. The demand term D, behaves according to
(62) (1 -/?.IL)(I 'lzL)(l ’).3L)Dt = &, /13 <}.2 </11 < 1, and|ﬂ.,]$l

Note that D, could have a unit root , in which case 4, = 1. The logarithm of the supply of output

is exogenous and given by

6.3) v, =a+brt.

Without loss of generality, I set the parameters a and b equal to zero. I define }7, as the price level at

which aggregate demand equals supply. Thus,

6.4) B =D - y.

I assume that prices adjust gradually towards the equilibrium price level. In particular,
(6.5) P =(-pP_, + BE, where 0< g <1.

The law of motion for prices in this model is given by

(6.6) ko= (1_(1_ﬂ)L)(1_gli')(l—AzL)(l—igL),

and the law of motion for output is given by

(1-B)(1-L)e,
(1-(1-B)L)(1- ML) (1= A, L) (1- 25L)

6.7) Ve =

Note that, even when the nominal demand shock has a unit root, i.e. 4; =1, output is still
stationary. To illustrate the dynamics of the model, I plot the impulse response functions of several
variables in response to a demand shock. I consider two cases. In the first case, the demand shock is
stationary ( 4, = 0.8, 4; = A3 =0), and the speed of the adjustment parameter, S, is equal to 0.05. In the

second case, the (nominal) demand shock is permanent ( 4; = 1, 4, =0.5, 43 =0), and the speed of
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adjustment parameter, £, is equal to 0.05. As documented in figures 8 and 9, there are several ways in

which (detrended) measures of output and prices are negatively correlated in this economy with only

demand shocks. For example, when one compares panel A and panel B in figure 8, one can see that there

are several periods in which the price level is above its long-run value and output is below. Also, as

documented by panel C and panel D in figure 9, there is a negative correlation between inflation and

output growth, except during the initial periods.

FIGURE 8. THE EFFECTS OF A STATIONARY DEMAND SHOCK.
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Note: These figures plot the impulse response functions of the indicated variables in response to a demand shock when the demand shock
is an AR(1) with 4, = 0.8 and the speed of adjustment parameter #= 0.0S.
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FIGURE 9. THE EFFECTS OF A PERMANENT DEMAND SHOCK.

A: Impulse Response of the Price Level
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Note: These figures plot the impulse response functions of the indicated variables in response to a demand shock when the demand shock
is an integrated AR(1) with 4; = 1.0 and 4; = 0.5 and the speed of adjustment parameter §= 0.05.

Next, I address the question of whether this type of model can generate the types of results

discussed in the empirical sections of this paper. I will argue that it cannot. In particular, the following

proposition shows that the correlation coefficients are guaranteed to be positive unless very implausible

assumptions on the law of motion of the demand shock are made.
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Proposition: Let COR(k) be the correlation coefficient between the k-th period ahead forecast errors of
prices and output. Without loss of generality let A, be the largest root. If

A] > 0
(6.8) max {1,,1- B} > max{-4,,-;},and
min {4;,1- 8} > min {-2,,- 43}.

Then, COR(k) > 0 for all k.

Proof: Recall from the discussion in section 2, that the covariance of the k- period ahead forecast error is

the sum of the product of the k& impulse responses. Therefore, I define the variable S, as
6.9 S, =S4+ Py
The law of motion for S, is given by

(1-p) &

(6.10) S, = .
(1-(1=A)L)’ (1= AiL)* (1- 2, L) (1- A L)°

The proof of this proposition follows directly from (6.10). Under the conditions of the
proposition, any negative roots are dominated by the positive roots, which means that the impulse

response of S, is always positive.*

Intuitively, the assumptions of the proposition say that if there are any negative roots in the law
of motion of the demand shock, then they cannot be to big. Note that these assumptions are sufficient to
rule out negative correlation coefficients. It does not say that if these assumptions are violated that the
correlation coefficients will be positive for some forecast horizon. Also note that if all roots are positive,
then the assumptions are satisfied. Another way to see how weak the assumptions are is to consider the

case in which the demand shock is integrated (4, = 1). In this case, the assumptions reduce to
(6.11) 1-8 > min{-4,,- 43},

This assumption is, for example, satisfied as long as 4; =0. This assumption can only be violated if
there are two negative roots and both are larger than (1-8) in absolute value. Chadha and Prasad (1993)
set A equal to 0.05, which means that you need two negative roots with values bigger than 0.95. The
reason that such strong conditions are necessary to generate negative comovements between forecast
errors is the following. Since the forecast errors accumulate the errors, one needs the accumulated effect

of a demand shock on output to be negative. It is more likely that the impulse response function of output

2 A proof of this last statement is given in appendix G.
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is negative at one particular point, but this is not enough to generate negative comovements between
forecast errors. Nevertheless, there are many plausible dgps for which the impulse response function for
output in response to a demand shock is always positive. For example, it is easy to show that when the
impulse response of an innovation in demand on D, is monotonically increasing then the impulse

response of output is always positive.

Next, I empirically test how sensible the assumption of the proposition are. The question arises
which variable to use for the demand shock. Under the null hypothesis that there are no supply shocks,
negative roots that are present in the nominal demand shock should also be present in output and the price
level. Therefore, I test whether there are negative roots in the law of motion for prices and output using
postwar data. As an example of a demand shock, I use nominal Af2. First, I test for the presence of a
unit root in the level and the first difference of the series. The results are reported in table 1. For GNP,
its deflator, and M2, I cannot reject the null of a unit root. For the first-difference in GNP and M2, |
clearly reject the null of a unit root. The results are mixed for inflation. Using the augmented Dickey-
Fuller test, I do not reject the null of a unit root in inflation, and, using the Phillips-Perron test, I do. 1
continue the analysis under the assumption that inflation is stationary. In table 2, I report the estimates of

the two autoregressive roots in the specification™
(6.12) (1-4L0D(1-4L) Az, = g

As documented in table 2, I find real roots for all three variables. More importantly, for none of the three

variables do I find two negative roots. Moreover, when I do find negative roots, then the value is small.

TABLE 1: UNIT ROOT TESTS.

Variable sample period Phillips-Perron Augmented Augmented
Dickey-Fuller (4) Dickey-Fuller (6)

M2 1960:3 - 1991:2 -5.07 -1.68 -2.06

P 1954:1 - 1993:4 -10.60 -0.79 -0.79

GNP 1954:1 - 19934 -10.42 -7.91 -8.34
AMM2 1960:3 - 1991:2 -45.62** -34.60** -38.29%*

AP 1954:1 - 1993:4 -82.67** -17.24 -16.93
AGNP 1954:1 - 1993:4 -99.00** -119.91** -115.31**

/) 1960:3 - 1991:2 -12.27 -10.27 -10.07
Ad 1960:3 - 1991:2 -173.90** -105.09** -114.45**

Note: In this table, I report the results of the Phillips-Perron Z), test and the augmented Dickey-Fuller (Q) test for a unit root using the
estimated OLS autoregressive coefficient. The spectral density in the Phillips-Perron test is calculated using the VARHAC estimator from
Den Haan and Levin (1994). O stands for the number of lags included in the regression. When the null of a unit root is rejected at the 10%
(1%) level, then I indicate this with a * (**). See Hamilton (1994) for a description of these tests.

23 . . . . . .. . .
The analysis can easily be extended to specifications with more than two roots. The results are not sensitive to this extension.
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TABLE 2: ESTIMATED ROOTS OF AR(2) SPECIFICATION

Variable sample period Ay As
AM2 1960:3 - 1991:2 0.62 (0.12) 0.03 (0.15)
AP 1954:1 - 1993.4 0.90 (0.03) -0.47 (0.07)
AGNP 1954:1 - 1993:4 0.48 (0.11) -0.18 (0.12)

Note: In this table I report the two autoregressive roots estimated using least-squares. The standard errors
(in parentheses) correct for heteroskedasticity.

The proposition does not show that a model with only demand shocks that generates the type of
results that are reporied in the empirical section of this paper cannot exist. The purpose of the proposition
is to show that the statistics proposed in this paper to describe the comovement of two variables are much
more powerful in distinguishing between diffcrent models than the unconditional covariance between two

detrended variables.

6.1.2 A model with demand and supply shocks.
As was shown above, a model with only demand shocks cannot replicate the negative correlation

coefficients between forecast errors observed in the postwar period. I will now address the question of
how well the model described above does when I use empirically plausible demand and supply shocks.
For the demand shock, I use (the logarithm of ) nominal A£2, and, for the supply shock, I use the
logarithm of the Solow residual.** For both variables, I cannot reject the null of a unit root in the level,
but I can reject the null of a unit root in the first-difference.”® I use a model selection criterion to find the
best (univariate) model for the change in the two variables, Both the Akaike information criterion (AIC)
and the Schwartz information criterion choose a second-order process. Using the results from the least-
squares regressions, we get the following system that is used to generate the demand and the supply

shocks?®

AD, = 06425AD,, - 00054AD,_, + 000605¢7,

(6.13)
A, = -0091A8,, + 0251A0,, + 000678 ¢%.

In addition we assume that £¢ and £¢ are i.i.d. N(0,1) distributed variables. In every replication, I
simulate an economy with 260 observations. To randomize initial conditions, I disregard the first 100
observations which lcaves us with a typical postwar sample size. For each economy, I calculate the
covariances at differcnt forecast horizons and at different frequencies. I repeat the experiment 500 times.
I consider 3 different values for the speed of the adjustment parameter 8. Those are 0.1, 0.2, 0.3, 0.4, and

0.5. In figure 10, I plot the averages of the correlation coefficients across 500 replications for the 5

3 The data for the Solow residual were kindly provided by Christian Zimmermann and are described in Zimmermann (1994).
% See table 1.
% Without loss of generality, I set the constant equal to zero.
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different values of B, as well as the empirical counterpart.”’ As documented in the graphs, as long as
prices do not adjust too quickly, then I observe the same pattern for the comovement of prices and output
as I observe in US postwar data. That is, in the long run, supply shocks dominate since demand shocks
only have a temporary effect on output. In the short run, demand shocks dominate since an innovation in
the supply shock only effects output by changing the price level, which happens gradually. A nominal
demand shock, on the other hand, affects output directly. As documented in the graphs, to generate
positive correlation coefficients at the forecast horizons and frequencies at which the correlation
coefficients are positive in the data, one needs the speed of adjustment parameter to be between .1 and .2.
These values are a little bit higher than the values reported in Rotemberg (1982).® The model does not fit
the empirical findings in scveral other respects. For example, although for some values of the speed of
adjustment the qualitative pattern of the correlation coefficients is similar to the one observed for US data,
the quantitative pattern is different. In addition, results not reported here show that the model is capable
of replicating the pattern of the US postwar covariances of forecast errors both qualitatively and

quantitatively, but that the model’s covariances at the high frequencies are much too low.

FIGURE 10: COMOVEMENT BETWEEN PRICES AND OUTPUT IN THE MODEL
A: VAR Forecast Errors
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7 - . . .
27 These results are very similar to the correlation coefficients of one long realization.
8 Rotemberg's preferred estimates vary from 0.05 to 0.08.
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B: High-Pass Filter
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Note: These graph plot the average correlation coefficient across 500 replications of the model economy described in the text as well as the

empirical counterpart using postwar quarterly data from 1954 to 1993. The numbers in the graph indicate the speed of adjustment.

The purpose of this example is not to propose an ideal model to describe the behavior of US
prices and output. The example is meant as a simple example to illustrate how informative the proposed
correlation measures are and how they can be used to judge different theories or identify parameters in a
model. The example shows that the proposed sticky price model with only demand shocks cannot
generate the negative correlation coefficients of forecast errors as long as some very plausible conditions
are satisfied. In addition, it shows that a model in which demand shocks have a (permanent) positive
effect on prices and a temporary effect on output, and supply shocks have a negative effect on prices and
persistent positive effect on output, can replicate the qualitative pattern of correlation coefficients observed

for US postwar data.

6.2 Economic theory and the comovements between real wages and hours.

Previous empirical studies of the correlation between real wages and output indicate that real
wages are either acyclical or slightly procyclical. Standard real business cycle models, however, imply a
strong positive correlation between real wages and hours because an increase in productivity causes the
firm’s labor demand curve to shift upward. Most undergraduate textbooks contain a version of an IS-LM
model in which the amount of labor is determined by the firm’s labor demand curve. This, together with
diminishing returns to scale, implies a negative correlation between hours and real wages. Therefore,

neither theory is supported by a small positive correlation coefficient. In fact, the results reported by
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Dunlop (1938) led Keynes (1939) to doubt the assumption of the General Theory that firms are always on
a stable downward sloping demand curve. Lucas (1977) concluded from the empirical finding that real
wages are acyclical that “any attempt to assign systematic real wage movements a central role in an
explanation of business cycles is doomed to failure”. Boldrin and Horvath (1995) use the fact that the
unconditional correlation coefficient between real wages and hours is close to zero to support a theory of
sticky real wages. Rotemberg and Woodford (1991) add countercyclical markups to eliminate
countercyclical real wages in a model in which firms do operate on a downward sloping labor demand
curve. Christiano and Eichenbaum (1992) emphasize intertemporal labor-leisure substitution to eliminate
the strong procyclical behavior of real wages in standard real business cycle models. The results on the
comovement of real wages and hours reported in the last section indicate how misleading the
unconditional correlation coefficient is. First, they document that there is an important cyclical role of
real wages. In particular, the correlation is negative in the “short run” and positive in the “long run”.
Moreover, these results question whether standard Keynesian models or real business cycle models need to
be adjusted, since the results are consistent with a standard Keynesian model in the “short run” and a
standard real business cycle model in the “long run”. For example, the results in the short run are
consistent with a Keynesian model with sticky nominal wages. It would be an interesting exercise to
examine, using models with sticky nominal wages, the relation between the length of nominal contracts
and the forecast horizons and frequencics for which the correlation between real wages and hours are

negative.

7. CONCLUDING COMMENTS.

In this paper, I have presented two different types of methods to measure the comovements
between prices and output at different business cycle frequencies. The first method uses the k-period
ahead forecast errors from a VAR. The second method uses filters constructed in the frequency domain.
The methods discussed in this paper can be used for non-integrated as well as for integrated variables.
Thus, the researcher does not have to take a stand on what is the best way to detrend the data. The two
mcthods proposed in this paper have relative advantages and disadvantages. Implementation of the
frequency-domain filters requires fewer choices. The researcher need only check sensitivity of the results
to the truncation parameter K. Estimation of the VAR involves making choices about the maximum lag-
order and about which variables to include. However, the results of the frequency domain filter may be
harder to interpret because most models are formulated in the time domain. For example, in section 6, I
showed that it was very easy to use the results from the VAR to reject a certain class of models. Finally,

the frequency domain filters are less sensitive to simple structural breaks like a change in the
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deterministic time trend, especially when the truncation parameter is small. If the structural break is not

modeled in the VAR, then the estimated correlation coefficients are inconsistent.

Both methods indicate a very clear pattern for the comovement of prices and real activity during
the postwar period. During this period, prices and GNP are positively correlated in the “short run”
and negatively correlated in the “long run”. During the same period, real wages and hours are negatively
correlated in the “short run” and positively correlated in the “long run”. These procedures illustrate that
useful information is lost when one focuses only on the unconditional correlation coefficient.
Unconditional correlation coefficients of detrended output and prices do not reveal the positive correlation
found in the “short run”. The unconditional correlation coefficient of real wages and hours does not

reveal the negative correlations in the “short run” nor the positive correlations in the “long run”.

Recently, Hansen and Heckman (1996) criticized the calibration approach for not matching a full
set of dynamics of the model to the dynamics in the data. The statistics that are proposed in this paper do
incorporate dynamics but are still very intuitive. I argue that the statistics proposed in this paper are very
effective in providing information that is useful for a researcher who wants to build a structural model. 1
have supported this claim by showing that the reported empirical results have important implications for
economtic theories that have not been mentioned in the literature. I was able to show this despite the fact
that I did not usc a new data set and that the empirical results reported here are implicit in, for example,
the estimated VAR coefTicients or the cross spectrum. [ think that these other statistics are just more
difficult to interpret. For example, the number of VAR coefficient becomes large very easily when there
are many variables included. Interpreting the cross spectrum is also difficult since it has a real and an

imaginary part.
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APPENDIX A. DATA SOURCES.

In this appendix, we describe the data sources. The reported sample indicates the period
necessary to duplicate all the results in this paper. The actual period for which correlation coefficients are
calculated is shorter, since the estimation of the VAR and the use of the frequency filters reduces the

length of the sample period.

Output:

e  Per capita GNP from the appendix in Gordon (1986), updated using GNPQ/GPOP from CITIBASE.
Quarterly data from 1875 to 1993.

¢ Industrial production, IP, from CITIBASE. Monthly data from 1959 to 1994:6.

Hours:
¢ Per capita hours of all employees in the business sector, LBHE/GPOP, from CITIBASE. Quarterly
data from 1949 to 1993.

Nominal Wages:
¢ Compensation per hour in the business sector, LBCP, from CITIBASE. Quarterly data from 1949 to
1993,

Prices:

e GNP deflator from the appendix in Gordon (1986), updated using GNP/GNPQ from CITIBASE.
Quarterly data from 1875 to 1993.
Wage deflator, LBCP/LBCP7, from CITIBASE. Quarterly data from 1949 to 1993.
Non-durable price deflator, GMCN/GMCNQ, from CITIBASE. Monthly and quarterly data from
1959 to 1994:6.

e Consumer price index, PUNEW (CPI-U), from CITIBASE. Monthly and quarterly data from 1959 to
1994:6.

¢ Producer price deflator, PW, from CITIBASE. Monthly and quarterly data from 1959 to 1994:6.

Monetary Indicators:
¢  Federal funds rate, FYFF, from CITIBASE. Monthly and quarterly data from 1959 to 1994:6.

e  Total reserves adjusted for reserve requirements, FMRRA, from CITIBASE. Monthly and quarterly
data from 1959 to 1994:6.

e Non-borrowed reserve mix adjusted for extended credits and reserve requirements,
FMRNBC/FMRRA, from CITIBASE. Monthly and quarterly data from 1959 to 1994:6.

e Money Stock, FM2, from CITIBASE. Quarterly data from 1960 to 1991:2.

Solow Residual:
¢ log (output) - 0.636*log(hours) - (1 - 0.636)*log(capital) from Zimmermann (1994)



APPENDIX B. SENSITIVITY ANALYSIS FOR PRICES AND OUTPUT.
In this appendix, we analyze whether the results reported in the paper for the comovement

between prices and output are sensitive to

e the truncation parameter K of the two-sided MA-filter,

e the sample period,

¢ whether or not a unit root is imposed in the estimation of the VAR,
s the number of variables included in the VAR,

e  whether monthly or quarterly data are used, and

* the choice of the price index.

Although, quantitatively, we find some differences, qualitatively, the results are extremely robust.
In all but one case, we find that, during the postwar period, the correlation coefficients are positive in the
“short run” and negative in the “long run”. The only exception occurs for the comovement between
monthly industrial production and the producer price index when a bivariate VAR is used to construct the
forecast errors. In this case, the correlation coefficients are positive at all forecast horizons considered.
Even in this case, however, prices are less procyclical in the long run since the correlation coefficients

decline to values close to zero if the forecast horizon increases.

(1) Sensitivity to the truncation parameter of the frequency-domain filter.

Implementation of the frequency-domain filters discussed in the text requires the choice of a
truncation parameter, K. In Figure B.1, we plot the correlation coefficients for different values of K using
the sample from 1895 to 1973, and in figure B.2, we plot the correlation coefficients for different values of
K using the sample from 1954 to 1983. The data series used are quarterly GNP and its deflator. We sce
that, in the post-war period, the general pattern is not very sensitive to the choice of K. Therefore, we set
K equal 20 in the post-war period. This means that 5 years of data are lost at the beginning and at the end
of the sample. As documented in figure B.1, there is much more sensitivity to the choice of K for the
complete sample. However, since the results do not change very much if we increase X from 40 to 80, we

set X equal to 40.



Figure B.1. Sensitivity to the truncation parameter of the high-pass filter (1895-1973).
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Figure B.2. Sensitivity to the truncation parameter of the high-pass filter (1954-1983).
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Note: These figures plot the correlation coefficients between quarterly GNP and its deflator, both filtered using a high-pass filter. The
high-pass filter is approximated using a two-sided moving-average filter with truncation parameter K.

(2) Sensitivity to the sample period.

To study the sensitivity of the results to the sample period, we divide the post-war period into
three subperiods. In particular, we study the period from 1954 to 1969, the period from 1970 to 1979, and
the period from 1980 to 1988. In figure B.3, we plot the correlation coefficients of filtered GNP and
prices. The data are filtered with a high-pass filter. We see that the pattern in all three subperiods is
similar to the pattern observed in the complete post-war period. Note, however, that during the seventies
prices are more countercyclical. In particular, the correlation coefficient is already negative when cycles

associated with a periodicity of less than two years are included.



Figure B.3. Sensitivity to the sample period, high-pass filter.
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Note: This figure plots the correlation coefficients between filtered quarterly GNP and its deflator for the indicated sample period.

The sample periods considered above are too short to study the correlation of forecast errors since
we include long forecast horizons. Therefore, we split the postwar period into just two subsamples. The
first is from 1954 to 1969, and the second is from 1970 to 1993. The results are plotted in figure B.4. We
see that, in both subsamples, the pattern of correlation coefficients is very similar to the one observed for

the complete postwar period.

Figure B.4. Sensitivity to the sample period, VAR forecast errors.
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Note: This figure plots the correlation coefficient of the k-period ahead forecast errors of quarterly GNP and its deflator. A bivariate VAR
is used to estimate the forecast errors.

(3) Sensitivity to imposing unit roots.

As shown in Appendix E, the correlation coeflicients of the estimated VAR residuals are
consistent even in the presence of unit roots in the time-series in the VAR. However, in the presence of
unit roots, efficiency gains are possible when they are imposed. It is often argued that GNP has a unit root

and the price level has at least one unit root,' Here, we check whether imposing a unit root affects the

! See, for example, King, Plosser, Stock and Watson (1991).



results for the postwar sample. To do this, we first estimate a VAR in first differences.> Next, we
calculate the forecast errors for the /evels of output and prices. The correlation coefficients between these
series are plotted in figure B.5, together with the correlation coefficients obtained from the VAR estimated

in levels.

Figure B.S. Sensitivity to imposing unit roots, VAR forecast errors.
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Note: This figure plots the correlation coefficient of the k-period ahead forecast errors of quarterly GNP and its deflator for the period from
1954 to 1993. A bivariate VAR is used to estimate the forecast errors.

Although there are some quantitative differences between the two series, the pattern is robust to whether
or not unit roots are imposed. Using the VAR estimated in first differences, we also calculate the
correlation between the forecast errors for the first-differenced series. We find that the correlation
coefficients are positive at the short forecast horizon and become negative at the longer forecast horizons.
In particular, the correlation coefficient for the forecast errors of the changes becomes negative at a
forecast horizon equal to 6 quarters. Note that, at this forecast horizon, the correlation coefficients for the
forecast errors for the levels are still positive. Note that there is no reason why the correlation coefficient
for the change would equal the correlation coefficient for the level, except in the one-period ahead forecast

error.

(4) Sensitivity to including additional variables in the VAR

To check whether the results change when other variables are included in the VAR, we also use a
VAR with three monetary indicators. These indicators are the federal funds rate, the amount of total
reserves, and the ratio of non-borrowed reserves to total reserves. The correlation coefficients of the
forecast errors for the two systems are reported in figure B.6. Although there are some quantitative

differences, the general pattern is very similar for both systems.

% Note that, if one had reason to belicve that prices and output are cointegrated, then one would have to estimate an error-correction
mechanism.



Figure B.6. Sensitivity to including other variables in the VAR.
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Note: This figure plots the correlation coefficient of the k-period ahead forecast errors of quarterly GNP and its deflator for the period from
1959 to 1993, where the indicated VAR is used to estimate the forecast errors.

(5) Sensitivity to data frequency, price index, and the number of variables in the VAR.

Finally, we check whether the same pattern can be observed for monthly data. For the indicator
of real activity, we use industrial production. For the price index, we consider the deflator of non-
durables, the consumer price index, and the producer price index. The truncation parameter is set equal to
60, which corresponds to S years of data. In figure B.7, we plot the correlation coefficients of the series
filtered with a high-pass filter for the period from January 1964 to June 1988. Although we observe a
similar pattern for all three deflators, the producer price index is (at most frequencies) more procyclical

than the other two dcflators.

Next, we consider the correlation coefficients of the VAR forecast errors for the period from 1960
to 1993. We use a bivariate VAR and a VAR that also includes the three monetary indicators used above.
As documented in figure B.8, we observe the typical pattern for all sequences of correlation coefficients,
except one. When we use the producer price index, and the forecast errors are estimated with a bivariate
VAR, then the correlation coefficients are positive for all forecast horizons. Even in this case, however,
prices are less procyclical in the long run since the corrclation coefficients decline to values close to zero if

the forecast horizon increases.



Figure B.7. Sensitivity to data frequency and the price index, high-pass filter
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Note: This figure plots the correlation coeflicients between filtered monthly industrial production and a deflator using a two-sided moving-
average high-pass filter for the period from 1964 to June 1989. The series numbered 1 correspond to the deflator of nondurables. The
series numbered 2 correspond to the CPL. The series numbered 3 correspond to the PP

Figure B.8. Sensitivity to data frequency , the price index, and the number of variables included in the VAR.
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Note: This figure plots the correlation coefficient of the k-period ahead forecast errors of monthly industrial production and prices for the
period from January 1960 to June 1994. The series numbered 1 through 3 correspond to a bivariate VAR and the series numbered 4
through 6 correspond to a VAR that also includes three monetary indicators. The series numbered 1 and 4 correspond to the deflator of
nondurables. The series numbered 2 and 5 correspond to the CPI. The series numbered 3 and 6 correspond to the PPL



APPENDIX C. SENSITIVITY ANALYSIS FOR REAL WAGES AND HOURS.
In this section, we analyze whether the results reported in the paper for the comovement between

real wages and hours are sensitive to

e the sample period, and

o the choice for the nominal wage deflator.

(1) Sensitivity to the sample period.

It is well-known that the behavior of wages has changed sometime around 1970. For example,
the average annual growth in the real wage rate was equal to 3% in the period from 1954 to 1969, and
only 0.7% in the period from 1970 to 1993. The pattern of the correlation coefficients, however, is similar
in the two subsamples. That is, we find negative comovements in the “short run” and positive
comovements in the “long run”. This is documented in figure C.1 for the comovements of data filtered
with high-pass filters. When we only include data from 1980 to 1988, however, the correlation coefficients
are negative for all frequencies. It is still true, however, that the comovement is less countercyclical at the
low frequencies. There are two ways in which we can document this. First, note that the correlation
coefTicients are increasing. Second, when we filter the data with band-pass filters, we find that the
comovement between hours and real wages is positive for cycles associated with a period that is larger
than 6 years and negative for cycles associated with a period that is less than 6 years.

As documented in figure C.2, the pattern of correlation coefficients across different sample
periods is also similar when the forecast errors from a VAR are used. Just as in figure C.1, we see that
real wages are more procyclical in the earlier samples. The VAR used to calculate the forecast errors in
the subsamples is the same as the VAR used to calculate the forecast errors in the combined sample. The

same pattern is observed, however, when the VAR is reestimated.

Figure C.1. Sensitivity to the sample period, high-pass filter.
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Note: This figure plots the correlation coefficients between filtered quarterly hours and real wages for the indicated sample period.



Figure C.2. Sensitivity to sample period, VAR forecast errors.
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Note: This figure plots the correlation coefficient of the k-period ahead forecast errors of quarterly hours and real wages. A bivariate VAR
is used to estimate the forecast errors.

(2) Sensitivity to the deflator.

We consider four different deflators for the nominal wage rate. First, we use the one used in
CITIBASE to dcflate nominal wages. Second, we use the consumer price index. These two deflators are
very similar. Third, we use the producer price index. Fourth, we use the deflator for non-durables. As
documented in figures C.3 and C.4, we find the same pattern for all four deflators. Note that the producer
wage displays the least procyclicality. Thceoretically, this is what one would expect when the labor supply
curve is upward sloping and the labor demand curve is downward sloping.®> Using the VAR forecast
errors we observe both negative and positive estimates for all deflators. For the high-pass filter, we find
the same results for the first two consumer price indices, but, using the producer price index and the non-
durable deflator, we find that all correlation coefficients (except for the one corresponding to a periodicity

equal to 12 periods) are less than zero.

Figure C.3. Sensitivity to wage rate deflator, high-pass filter.
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Note: This figure plots the correlation coefficients between filtered quarterly hours and real wages for the period from 1964 to 1988. The
deflators used are the deflator used by CITIBASE to deflate nominal wages (1), the consumer price index (2), the producer price index (3)
and the deflator for non-durables (4).

* See Abraham and Haltiwanger (1995).



Figure C.4. Sensitivity to wage rate deflator, VAR forecast errors.
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Note: This figure plots the correlation coefficient of the k-period ahead forecast errors of quarterly hours and real wages for the period from

1960 to 1993, A bivariate VAR is used to estimate the forecast errors. The deflators used are the deflator used by CITIBASE to deflate
nominal wages (1), the consumer price index (2), the producer price index (3) and the deflator for non-durables (4).
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APPENDIX D. SIGNIFICANCE LEVELS.

Table D.1. Correlation coefficient of k-period ahead forecast errors
(quarterly data from 1954:1 to 1993:4)

Forecast horizon  Prices and GNP  Wages and Hours

(quarters)
1 0.173* -0.114*
2 0.28]1** -0.034
3 0.293* -0.034
4 0.308* -0.025
5 0.314* -0.020
6 0.286* -0.018
7 0.261* 0.001
8 0.242 0.001
12 0.171 0.030
16 0.071 0.178**
20 -0.013 0.158*
24 -0.079 0.0975
28 -0.193 0.0439

Note: Prices are the log of the GNP deflator. Real wages and hours are the variables LBCP7 and LBHE/GPOP from CITIBASE. The
forecast errors are constructed using a bivariate VAR including four lags. We test whether the estimated coefficient is equal to zero using a
one-sided test. Rejections at the 10%, the 5%, and the 1% significance level are indicated by *, **, and ***, respectively. To correct for
serial correlation, the standard errors for COR(k) are calculated using the VARHAC estimator from Den Haan and Levin (1994).

Table D.2. Correlation coefficient of filtered prices and real activity (high-pass filter)
(quarterly data from 1954:1 to 1988:4)

Periodicity Prices and GNP  Wages and Hours
(years)

1 0.069 -0.308***

2 0.048 -0.255%*+

3 0.310%* -0.077

4 0.232 0.072

5 0.018 0.090

6 -0.113 0.083

7 -0.240 0.104

8 -0.356** 0.148

9 0421+ 0.197**
10 0,454+ 0.239%%*
11 -0.473%** 0.27]1%%*
12 -0.483+#* 0.295%*+

Note: The high-pass filter retains that part of the series that is associated with cycles with a period less than the indicated periodicity. Prices
are the log of the GNP deflator, and real wages and hours are the variables LBCP7 and LBHE/GPOP from CITIBASE. The filters are
two-sided moving averages with 20 lags and leads. We test whether the estimated coefficient is equal to zero using a one-sided test.
Rejections at the 10%, the 5%, and the 1% significance level are indicated by *, **, and ***, respectively. To correct for serial
correlation, the standard errors are calculated using the VARHAC estimator from Den Haan and Levin (1994).
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Table D.3. Correlation coefficient of k-period ahead forecast errors
(monthly data from 1964:1 to 1994:6)

Forecast horizon

Prices and Industrial Production

(months)
Bivariate VAR S variable VAR
3 0.157%** 0.203***
6 0.224%%* 0.292%%*
9 0.238%** 0.285%**
12 0.214%* 0.225%**
18 0.136** 0.010
24 0.083 -0.130
30 -0.002 -0.202
36 -0.048 -0.237
42 -0.073 -0.306**
48 -0.089 -0.3G2%**
54 -0.091 -0.409%**
60 -0.084 -0.390**
66 -0.077 -0.33]1%*
72 -0.086 -0.270*
78 -0.125 -0.253*
84 -0.149 -0.243

Note: The deflator used is CPI-U. The forecast errors are constructed using a bivariate VAR including twelve lags. We test whether the

estimated coefficient is equal to zero using a one-sided test. Rejections at the 10%, the 5%, and the 1% significance level are indicated by
* ** and *** respectively. To correct for serial correlation, the standard errors for COR(K) are calculated using the VARHAC estimator
from Den Haan and Levin (1994).

Table D.4. Correlation coefficient of filtered prices and real activity (high-pass filter)

(monthly data from 1964:1 to 1989:6)

Periodicity Non-Durable Consumption Consumption Price Producer Price
(Years) Deflator and Industrial Production Index and Industrial Index and Industrial
Production Production

0.5 0.134 *** 0.055 -0.157**
1 -0.043 0.051 -0.003
1.5 0.215%%* 0.222%** 0.347%%*
2 0.289 **x* 0.188%*% 0.303%%*
2.5 0.285%** 0.138 0.280%**
3 0.186*** 0.074 0.266%**
3.5 0.057 -0.015 0.190**
4 0.036 -0.005 0.245%%*
4.5 -0.059 <0.123 0.175*
5 -0.148 -0.236 0.078
5.5 -0.208 -0.319* 0.013
6 -0.249 ~0.386** -0.031
6.5 -0.279* ~0.439%** -0.008
7 -0.302%* <0.475%%* -0.100

Note: The high-pass filter retains that part of the series that is associated with cycles with a period less than the indicated periodicity. The
deflator used is CPI-U. The filters are two-sided moving averages with 60 lags and leads. We test whether the estimated coefficient is equal
to zero using a one-sided test. Rejections at the 10%, the 5%, and the 1% significance level are indicated by *, **, and ***, respectively.
To correct for serial correlation, the standard errors for COR(k) are calculated using the VARHAC estimator from Den Haan and Levin

(1994).
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APPENDIX E. CONSISTENCY OF COVARIANCE ESTIMATES USING FORECAST ERRORS
In this appendix, we show that the covariances calculated using the estimated VAR residuals
converge to their population values as the sample size goes to infinity. The variables that enter in the
VAR can be any mix of stationary and integrated processes. The proof is a straightforward application of
the techniques developed in Park and Phillips (1988,1989) and Sims, Stock, and Watson (1990).
Therefore, we just give a simple example. In particular, we focus on a first-order VAR in which one

variable is an I(1) stochastic process and one variable is an I(0) stochastic process. In particular, we

assume that the stochastic processes p; and y, are generated by the following VAR:

Pr
P 1 0 a £
(E.l) [ r]=[ 3} p'_z ¥ [ l]’
B by b b Ve
Vi1

where g and v, are each i.i.d. random variables with zero mean that may be correlated.

Thus, y; is an I(0) process, and p, is an I(1) process. The following VAR is estimated

estimated with least-squares:

) = Py .
Ve by b, b - 4]
Let £,and v, be the estimates of the residuals from the least-squares regression.

Proposition: If y; and p, are generated by equation (E.1), then

T
RS
(=3

= Egv,.

With = we indicate convergence in probability.
Proof:

Using Theorems 3.1 and 3.2 in Park and Phillips (1989) or the results in section 3 in Sims, Stock

and Watson (1990), we know that the least-squares estimators of the parameters satisfy:
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7' (4, -1) =0,() T'? (bl—b,)=0p(l)

(E.4) TV (4,) =0,(} 7(6,+6) =0,()
T(é +d; ~1) =0,(1) 72 (b ;) = 0,(1)
V2 (4, ~a;) =0, (1

The idea is that the coefTicients associated with the stationary canonical regressor converge at
rate 77 , and the coefficients that are associated with the nonstationary canonical regressor converge at
rate 7. To understand the mapping between the regressors and the canonical regressors, it is useful to
write py.; as p.., + u.;, where u,., is a stationary random variable. Then, p,; is the only I(1) variable in
both regressions. The coefficients in front of this variable converge at rate 7. Using the definition of the

estimated residual, we get the following expression for the estimate of the covariance:

1~
_?))
~<>

.,
1}
w
|

-~ ~

((1‘51) Uy +(l—&| —52)17:—2 +(a3 ‘53))’:-1 +£,)((b, _51)“:—1 _(b] +bz)P:—2 +(b3 _53).\":—1 +v,)

T

M~

i~
I
™)

To show that this estimator converges to E (& v, ), we use the following results from Park and Phillips

(1989), Sims, Stock and Watson (1990) or Hamilton (1994):

t=3T2 = Op(l) .
. Zpt~2 u,
;p” Ve B = 0,0
(E.3) - = 0,0 )
i Zpt—l Ve
P28 =3 - o
=3 _ ——_T b
Ho— = 0,
For example, we get
S o)
3 E ok P2
—_—A —a 2 . . R . P
Z;((l a aZ)(b1 +b2)171—2) i (T(l—al-az) T(bl +b2))—3f2—
T T
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Both terms in the numerator are O,(1), and thus, the ratio is 0,(1). The other terms are o,(1) for similar

reasons. This completes the proof.

This proposition can be extended to more general processes, but the mapping between the
regressors and the canonical regressors becomes more complicated. These techniques can also be used to
show consistency for covariances of k-step ahead forecast errors for finite k. The proposition can also be
generalized to include higher-order integrated processes or deterministic time trends. For example,

suppose that p, is an I(2) stochastic process. In this case,

L 2
2,1’:—2
t=3 _
T - OP(I)'

The proof still goes through since the least-squares coefficients associated with the canonical second-order

regressor converge at rate 7°.
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APPENDIX F. UNIT ROOTS IN INFINITE-ORDER FILTERS.

Proposition F1: Suppose that B(L) satisfies the following properties:

(1) B(L) is symmetric, and

(2) B(L) can be expressed as Z , and

3) B(1)=0.

Then B(L) can be written as follows:

B(L)=(1-L) B(L), with B(1)=0.

Proof:
F1) B(L) = _g:, U o= b éb,(yw) .
i::bj(Lf 2+Lf) = i:: (1_LJ)(1_L-)
- Eeene (g (g
Thus,
. Bl = - Xb, (1—L‘}(ZL‘J(§L“] and
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Proposition F2: Suppose that B(L) satisfies the following properties:

1. B() is symmetric,

2. B(L) can be expressed as ZJ_:_GO b, L,
3. B(1)=0,and

4. Zlejzbj <o,

Then B(L) can be written as follows:

B(L)=(1-L) (1-L"") B(L), with B (1)< .

Proof

The proof is identical to the proof for proposition 1. In this case, we get

|

n = ij j? < w
j=1

It is easy to verify that the frequency domain filter given in equation (3.8) satisfies the conditions of

proposition F1, but does not satisfy the additional condition of proposition 2.
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APPENDIX G. POSITIVE IMPULSE RESPONSE FUNCTIONS'
Let y, be a finite AR process of order 2n. Thus,
(G.1) (1-24L)(1- A L)(1- 5 L)(1- 25 L) - (1-AAL)1-20L) w0 = &,
where & is an i.i.d. random variable. We assume that

0 < A <1 and

G2) i) < il

Proposition G1: Suppose that the law of motion for y, satisfies (G.1) and (G.2). Then the coefficients in

the MA representation
(G3) y' = 8[ + 201 8‘._1'
j=1

are all positive.

Proof: Since the roots are bounded away from one, we know that the AR process is invertible. Equation

(G.1) can be written as follows:

1 A A 1 A A
G4 - i __A J ( AR
G4 s LI’,‘—}L‘,(I—/I’]’L Ao |\ 2 A\-2L 1-AL) |

It is not hard to see that all coefficients inside the square brackets are positive. Note that the ratios inside

the round brackets are the impulse response functions of AR(1) processes with coefficients equal to
A" and A, respectively. Since |A"| = |A/;|, we know that the first ratio always dominates the second.
Thus the MA coefficients of the process in round brackets are positive. The term in front of the round

brackets is positive as well.

Note that this proposition can easily be extended to 2n+1-th order AR processes as long as the

additional root is positive.

! Thanks to Tom Sargent the reader does not have to go through the much longer proof that I came up with.
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